Сколько метров водяного столба в 1 атмосфере: Метр водяного столба (Вода (при 4°C, 39.2°F)) → Физическая атмосфера (атм, Атмосфера)

Содержание

сколько метров в 1 атмосфере, расчет зависимости от высоты


Что такое гидростатическое давление

Если на поверхность воды действуют внешние силы, то давление в жидкости будет одинаково передаваться во всех направлениях. Так звучит основной закон гидростатики, который открыл французский ученый Блез Паскаль в 1653 году. А действует на жидкость в основном обычная сила тяжести.

В твердых телах молекулы составляют кристаллическую решетку. И, жестко связанные между собой, могут передать давление только в ту сторону, в которую действует сила, приложенная к предмету. А в состоянии покоя последняя направлена строго вниз.

В жидкостях есть относительная свобода для небольшого движения. Поэтому молекулы газа или любой жидкости могут передать давление в любом направлении. И под действием силы тяжести вода просто растекается в разные стороны, если ее движение не ограничивается стенками сосуда.

Если жидкость находится в покое, то внутри нее полностью отсутствуют касательные и растягивающие силы. Это значит, что давление столба воды направлено строго по внутренней нормали к основанию. То есть, какой бы формы не использовался бы сосуд, давление внутри него всегда будет действовать только под углом в 90 градусов относительно бортов емкости.


Одинаковое давление воды в разных сосудах Источник azureedge.net

Поскольку в бытовых условиях жидкости всегда ограничены какими-либо стенками (бак, трубы), то существует зависимость давления воды от высоты столба. То есть важно, на каком расстоянии находится поверхность жидкости от точки основания, на которую направлена сила.

Смотрите также: Каталог компаний, что специализируются на водоснабжении, канализации и сопутствующих работах

Факторы, влияющие на показатель

При отсутствии внешнего воздействия, играют роль два фактора:

  • высота столба;
  • плотность.

Выше уровень воды, налитой в сосуд, — выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.

Сверху на содержимое сосуда давит также атмосферный воздух. Поэтому в сообщающихся сосудах уровень одинаков, ведь в каждом из них над поверхностью атмосфера одна и та же.

Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:

  • внешней силы;
  • веса воды.

При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.

Измерение давления воды и формула для расчетов

За единицу измерения давления в жидкости принят 1 мм водяного столба. Он равен 9,8 Па (Н/м²). А на практике давление в воде измеряют в килограмм-силе на квадратный сантиметр (кгс/см²). И в этом случае единица называется одной атмосферой (1 ат). А метр водяного столба будет насчитывать 0,1 ат.

Чтобы точно рассчитать давление жидкости (P) на определенную площадь, необходимо воспользоваться формулой:

P = p × h × g

Для этого нужно знать плотность жидкости (p), высоту столба (h) и скорость свободного падения (g).

Плотность воды зависит от ее температуры. Но общепринято для любых расчетов брать усредненное значение в одну тысячу килограмм на кубический метр. Ускорение свободного падения также привыкли округлять до 10 м/см². Исходя из этих данных, будет нетрудно вычислить, сколько атмосфер имеют 10 метров водяного столба.


Формула водяного давления Источник infourok.ru

На выходе получается 10 кПа, что равно 1 технической атмосфере. Но для предельной точности нужно убрать округления и обязательно еще умножить произведение на величину атмосферного давления, действующего на поверхность воды. Правда для бытовых расчетов это необязательно.

Современные средства

Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:

  • падения напора на погонный метр трубопровода;
  • длины участка;
  • внутреннего диаметра трубы;
  • вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
  • способа расчёта сопротивления.

Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:

  • цементно-песчаное, нанесённое различными методами;
  • внешнее полимерцементное или пластиковое;
  • новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.

Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.

  • Автор: Мария Сухоруких
  • Распечатать

Оцените статью:

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(0 голосов, среднее: 0 из 5)

Поделитесь с друзьями!

Монтаж накопительного бака

В районах, где отсутствует централизованное водоснабжение, для бытовых нужд привыкли брать воду из колодцев или скважин. Чтобы достать питьевую жидкость с глубины, необходимо использовать насос. Но каждый раз, когда нужна лишь одна кружка воды, включение помпы становиться нерентабельным.

Поэтому целесообразен монтаж накопительного бака на определенной высоте. По СНиП, а также Постановлению Правительства за №354 давление воды на выходе из крана минимально должно составлять 0,3 ат. А для этого достаточно поднять бак всего лишь на 3 метра. Для этого даже не нужно строить вышку. Достаточно воспользоваться чердачным помещением одноэтажного дома.

Один раз в определенное время бак наполняется с помощью насоса. Затем вода двигается по трубам самотеком, согласно гидростатическому закону Паскаля. И на выходе из крана будет создаваться достаточный напор, чтобы обеспечить все бытовые нужды.

Кроме проведения разводки от накопительного бака к умывальникам и туалету, необходимо выполнить еще одни обязательные действия. Независимо от того, теплый чердак или нет, нужно дополнительно хорошо изолировать емкость для жидкости. Это будет гарантией, что при усилении морозов зимой дом не останется без воды.


Водяной накопительный бак на чердаке Источник biiom.ru

Применение на практике

Примеры использования знаний свойств воды:


  1. Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.

  2. Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
  3. Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
  4. Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.

Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:

  • выжимка масла из семян растений;
  • спуск на воду со стапелей построенного судна;
  • ковка и штамповка деталей;
  • домкраты для подъема грузов.

Обустройство капельного полива

Закон Паскаля давно и с успехом применяется во всех засушливых районах мира. Но наиболее эффективно его использовали в Израиле. В пятидесятые годы прошлого столетия для мелиорации там впервые стали практиковать метод, который впоследствии назвали капельным. А придумали его, чтобы сэкономить и так драгоценную влагу.

Влага к грядкам, как и прежде следовала самотеком, но теперь – дозировано и прямиком под корни растения. Для этого каждый корнеплод снабдили своей персональной «лейкой», а на емкость с водой установили заслонку с таймером. И через определенные промежутки времени саженец получает четко рассчитанную порцию питательной жидкости.


Капельный полив в огороде Источник prom.st

Инстанции, отвечающие за водоснабжение

Перед тем, как обращаться в какие-либо инстанции по поводу плохого напора воды, необходимо убедиться в том, что причиной этого не является засор устройства известковыми или иными отложениями, неисправность оборудования и т. д.

Если же причина не в вышеперечисленном, то при несоблюдении норм давления подаваемой в МКД воды, можно обратиться в следующие организации:

Полезная статья

В случае, если управляющая компания никак не реагирует на претензии, следует обращаться в вышестоящие контролирующие инстанции — жилищную инспекцию, Роспотребнадзор и суд. Подробнее читайте в этой статье

  • в управляющую компанию (УК), на балансе которой находится данный дом. УК, по определению, является посредником между поставщиком ресурсов жизнеобеспечения МКД и гражданином, являющимся собственником или нанимателем жилья в данном доме. Необходимо предпринять следующее:
    1. написать заявление в УК с описанием проблемы, с требованиями устранить нарушение норм подачи воды и произвести перерасчет стоимости оплаченных услуг по содержанию жилья,
    2. отнести жалобу в УК в 2 экземплярах, один – оставить в компании, другой, с пометкой о принятии заявления – забрать себе,

  • ожидать устранения проблемы, УК обязаны рассмотреть жалобу не позже 1 месяца после ее принятия.
  • в управление городской администрации, если меры по поданной жалобе не были своевременно рассмотрены УК. При обращении в администрацию следует написать новое заявление и приложить к нему второй экземпляр жалобы, ранее направленной в УК.

Коротко о главном

Знания школьной программы физики могут значительно облегчить жизнь и сохранить средства. Если воспользоваться законом гидростатики Паскаля, то можно обустроить систему, в которой вода будет поступать в нужную точку самотеком. Причем это может быть, как умывальник в доме, так и грядка с овощами в огороде.

Для этого потребуется подходящую по объему емкость установить на нужной высоте. А чтобы определить последнюю, необходимо воспользоваться специальной формулой, которая определяет давление водяного столба в системе. А всю работу будет делать обычная сила тяжести.

Оценок 0

Прочитать позже

На дно и стенку сосуда – в чем разница?

Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.

Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.

Наполнив сосуд, имеющий отверстия одного диаметра в стенках на разной высоте, можно наблюдать различный напор вытекающей струи. Чем выше отверстие – тем слабее струя. То есть, давление на стенки емкости тем больше, чем ближе ко дну.

Метр водяного столба — Справочник химика 21

    Величина давления может быть измерена также высотой уравновешивающего его столба жидкости (обычно воды или ртути). Соответствующие единицы — метр водяного столба (м вод. ст.), миллиметр водяного столба (мм вод. ст.), миллиметр ртутного столба (мм рт. ст.) и др. [c.8]

    Для перевода давления заданного в миллиметрах ртутного столба в метры водяного столба см. график фиг. 2-2. [c.44]


    Большинство приведенных единиц давления мало и в технике пользуются более удобными единицами атмосфера физическая, атмосфера техническая, миллиметр ртутного столба, миллиметр и метр водяного столба. [c.290]

    В отдельных случаях давление измеряется в миллиметрах ртутного столба (мм рт. ст.) и в метрах водяного столба (м B. .) 10 м в.с. = 760 мм рт.ст. = 1 физической атмосфере. Разрежение (вакуум) измеряется в миллиметрах ртутного столба или в килопаскалях. Существует понятие остаточное давление , измеряемое в паскалях, килопаскалях, миллиметрах ртутного столба. Выражение вакуум 700 мм рт.ст. показывает, что в сосуде (аппарате) давление ниже атмосферного на 700 мм рт.ст., а остаточное абсолютное давление равно 60 мм рт.ст. 

[c.290]

    Давление измеряют также в килограммах на квадратный метр в фунтах на квадратный дюйм, в тоннах на квадратный дюйм, в метрах водяного столба, в миллиметрах водяного и ртутного столбов, а также в дюймах водяного и ртутного столбов. В Приложении III приведены переводные коэффициенты этих единиц давления. [c.126]

    Кривая Ар на фигуре изображает потерю давления в конденсаторе в метрах водяного столба. Характер изменения ее отличен от характера изменения коэффициента теплопередачи, что указывает на значительное увеличение расхода электроэнергии, необходимой для привода насоса охлаждающей конденсатор воды при увеличении скорости. [c.173]

    Из других единиц давления применяют миллиметр ртутного столба мм рт. ст.) — давление ртутного столба высотой 1 мм на площадь 1 см (ртуть берется при тех же условиях, как и для физической атмосферы) и миллиметр и метр водяного столба мм и м вод. ст.) при плотности воды, равной 1,0 г см . 

[c.291]

    Поправочный коэффициент на плотность жидкости вводится с тем, чтобы получить потери напора, выраженные в метрах водяного столба, а не в метрах транспортируемой жидкости, и определяется по формуле [c.133]

    Малые давления, а также разности (перепады) давлений выражают в метрах водяного столба или в миллиметрах водяного и ртутного столба. [c.116]

    Плунжерные и поршневые насосы обычно имеют незначительное число ходов плунжера или поршня, порядка нескольких десятков ходов в минуту и более, умеренную производительность -до десятков литров в минуту, но развивают относительно высокие напоры — до нескольких сотен метров водяного столба. [c.150]

    Давление есть сила, действующая на единицу площади. На рис. 4.1,а показано, что давление на дно контейнера объемом 1 м заполненного водой, составляет 9,79 кПа (сила в килоньютонах, действующая на 1 м , численно равна давлению в килопаскалях). В прикладной гидравлике давление воды выражают либо в килопаскалях, либо в метрах водяного столба. Соотнощение между этими единицами показано на рис. 4.1,а (столб высотой 1 м создает давление 9,79 кПа). Давление воды линейно возрастает с увеличением глубины, так что давление в килопаскалях равно глубине в метрах, умноженной на 9,79. Давление воды действует одинаково во всех направлениях (на рис. 4.1,6 в целях трощения показано давление, действующее только горизонтально). 

[c.90]


    Напор, развиваемый насосом (недопустимые термины полный напор, суммарный напор). Напором насоса называется приращение удельной энергии перекачиваемой жидкости на участке от входа в насос до выхода из него. Напор выражается в метрах водяного столба. 
[c.47]

    Обозначив через кщ высоту напора в метрах водяного столба которая необходима для преодоления сил инерции, будем иметь  [c.100]

    Давление паров мо>нет быть также выражено в сантиметрах ртутного столба (рт. ст.) и в сантиметрах или в метрах водяного столба (вод. ст.). [c.23]

    Чаще всего давление измеряют в метрах водяного столба или [c.14]

    Контроль давления. Контроль давления в колонне производится с помощью манометров (не показанных на схеме), градуированных в метрах водяного столба. Эти манометры устанавливаются обычно в верхней и нижней части колонны. Давление в верхней части колонны равно сопротивлению дефлегматора и конденсатора и выражается всего несколькими сантиметрами водяного столба. В нижней части колонны давление, в зависимости от высоты слоя жидкости на тарелках, скорости пара в колонне и числа тарелок, выражается цифрами от 0,05 до 0,4 ати. Иногда в нижней части колонны или на регуляторе пара ставят водяной манометр. 

[c.198]

    Степень разрежения может быть определена в паскалях (метрах водяного столба, миллиметрах ртутного столба или в долях барометрического давления). Она равна сумме геодезической высоты всасывания заливаемого насоса, расстояния от оси до верха его корпуса и потерь напора во всасывающей линии вакуум-насоса. Потери обычно составляют 10—15% геодезической высоты всасывания. По полученной подаче и разрежению выбирают вакуум-насос. [c.228]

    В табл. 11 приводятся данные, при помощи которых можно определить высоту всасывания в метрах водяного столба. [c.36]

    В насосных установках напоры обычно измеряются в метрах водяного столба (м вод. ст.), а в вентиляторных установках — в миллиметрах водяного столба мм вод. ст.). [c.12]

    Вакуумметр устанавливается на всасывающем патрубке насоса и служит для измерения вакуума во всасывающей трубе. Он показывает разность между атмосферным давлением и давлением в точке подключения соединительной трубки к трубопроводу. Шкала вакуумметра градуируется в сантиметрах ртутного столба (от О до 76), иногда в метрах водяного столба (от О до 10). 

[c.16]

    Мд— приведенное к оси насоса показание манометра в метрах водяного столба  [c.16]

    Первый член правой части уравнения — выражение атмосферного давления в метрах водяного столба. Это давление изменяется в зависимости от высоты установки насоса, см. табл. 1. [c.19]

    В заводской технической характеристике насоса всегда указывается допустимая вакуумметрическая высота всасывания, т. е. тот вакуум в метрах водяного столба, который можно допустить при паспортной производительности насоса. Высота эта обычно задается по отношению к оси насоса. [c.80]

    Напор — это давление, создаваемое насосом от него зависит высота, на которую насос может поднять перекачиваемую жидкость. Она выражается в метрах водяного столба. На величину напора кроме геометрической высоты, на которую поднимается перекачиваемая жидкость, влияет также ее плотность. Чем выше плотность жидкости, тем больший напор должен создавать насос. Например, при одинаковой высоте подъема насос, подающий раствор едкого натра, должен создавать больший напор, чем насос, перекачивающий жиры. 

[c.37]

    Практически давление до сего времени часто выражают внесистемными единицами — в атмосферах, т. е. в кГ см , а также высотой столбов жидкости, используемой в приборах для измерения давления, а именно в метрах водяного столба м вод. ст.), миллиметрах водяного столба мм вод. ст.), метрах ртутного столба м рт. ст.). миллиметрах ртутного столба мм рт. ст.). [c.11]

    Противопожарный водопровод рассчитывают исходя из предположения, что пожар произойдет в часы максимального водоза бора другими потребителями Основными показателями, опреде-, ляющими работу противопожарного водопровода, являются количество водь1, расходуемой на тушение одного пожара (в литрах в секунду) расчетное-число пожаров, которые могут возникнуть одновременно расчетная продолжительность тушения пожара, а также необходимые напоры в водопроводных системах (в метрах водяного столба). 

[c.246]

    НЫМИ насосами, которые должнр запускаться не позднее чем че-рез 5 мин после извещения о пожаре. Эти-насосы должны обеспечить в нужный момент повышение давления в водопроводной сети до величины, достаточной для создания пожарных струй от гидранта. Необходимый напор Я можно определить округленно в метрах водяного столба из соотношения [c.247]

    При работе установки на низкие температуры испарения разность давлений между отдельными ступеними получается очень небольшой. Обычно, она не превышает нескольких метров водяного столба. В связи с этим можно обеспечить перетекание раствора из абсорбера в абсорбер, расположив их с достаточным превышением одного над другим. Верхнее положение занимает абсорбер с наиболее низким давлением испарения РОмин а нижнее — с наиболее высоким давлением испарения. Р°макс ЖДУ абсорберами предусматривают достаточно высокие сливные трубы, сечение которых не заполняется стекающей жидкостью. В этих трубах устанавливается столб жидкости, уравновешивающий разность давлений в соседних аппаратах. Так как величина столба имеет определенную величину, то весь притекающий из верхнего абсорбера раствор самотеком переходит в нижний абсорбер. 

[c.137]



Атмосферное давление. Нормальное атмосферное давление для человека Мм рт ст и более

За нормальное атмосферное давление принято брать давление воздуха на уровне моря на широте 45 градусов при температуре в 0оС. В этих идеальных условиях столб воздуха давит на каждый площади с такой же силой, как столб ртути высотой 760 мм. Данная цифра и является показателем нормального атмосферного давления.

Атмосферное давление зависит от высоты местности над уровнем моря. На возвышенности показатели могут отличаться от идеальных, но при этом они тоже будут считаться нормой.

Нормы атмосферного давления в разных регионах

С повышением высоты атмосферное давление понижается. Так, на высоте пять километров показатели давления будут примерно в два раза меньше, чем внизу.

Из-за расположения Москвы на возвышенности, нормой давления здесь считаются показатели 747-748 мм столба. В Санкт-Петербурге нормальное давление – 753-755 мм ртутного столба. Такая разница объясняется тем, что город на Неве расположен ниже по сравнению с Москвой. В некоторых районах Петербурга можно встретить норму давления в идеальные 760 мм ртутного столба. Для Владивостока нормальным давлением является 761 мм ртутного столба. А в горах Тибета – 413 мм ртутного столба.

Воздействие атмосферного давления на людей

Человек ко всему привыкает. Даже если показатели нормального давления низкие по сравнению с идеальными 760 мм ртутного столба, но являются нормой для данной местности, людям будет .

На самочувствие человека влияет резкое колебание атмосферного давления, т.е. понижение или повышение давления хотя бы на 1 мм ртутного столба в течение трех часов

При понижении давления возникает нехватка кислорода в крови человека, развивается гипоксия клеток организма, учащается сердцебиение. Появляются головные боли. Наблюдаются затруднения со стороны дыхательной системы. Из-за плохого кровоснабжения человека могут беспокоить боли в суставах, онемение пальцев.

Повышение давления ведет к переизбытку кислорода в крови и тканях организма. Повышается тонус сосудов, что ведет к их спазмам. Вследствие чего нарушается кровообращение организма. Могут возникать нарушения зрения в виде появления «мушек» перед глазами, головокружения, тошнота. Резкое повышение давления до больших величин может привести к разрыву ушной барабанной перепонки.

Паскаль (Па, Pa)

Бар (бар, bar) — примерно равен одной атмосфере.

Один бар равен 105 Н/м² или 106 дин/см² или 0,986923 атм.

Используется также миллибар

PSI (lb.p.sq.in.)

миллиметр водяного столба дюйм ртутного столба (inHg)

Микрон (микрон, μ )

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,

Вам понадобится

  • — калькулятор;
  • — компьютер;
  • — интернет.

Инструкция

  • При переводе давления в паскали учтите, что при измерении кровяного давления, в метеорологических сводках, а также среди инженеров-вакуумщиков часто сокращают наименование «мм рт. ст.» до «мм» (иногда опускают и миллиметры). Поэтому, если давление задано в миллиметрах или просто указано число, то скорее всего это мм рт. ст. (при возможности, все же уточните). При измерении очень низких давлений вместо мм рт. ст. «вакуумщиками» применяется единица «микрон ртутного столба», которую обычно обозначают как «мкм». Соответственно, если давление указано в микронах, то просто разделите это число на тысячу и получите давление в мм рт. ст.
  • При измерении высоких давлений часто применяется такая единица как «атмосфера», соответствующая нормальному атмосферному давлению.

    Миллиметр ртутного столба

    Одна атмосфера (атм, atm) равняется 760 мм рт. ст. То есть, для получения давления в мм рт. ст. умножьте количество атмосфер на 760. Если же давление указано в «технических атмосферах», то для перевода давления в мм рт. ст. умножьте это число на 735,56.

  • Пример.

    505400 Па (или 505,4 кПа).

CompleteRepair.Ru

При монтаже кондиционера необходимо измерять давление в системе. На манометрах используются различные единицы измерения давления, которые, в свою очередь, могут отличаться от тех, которые указаны в технических характеристиках самого кондиционера. Как избежать путаницы в этом разнообразии?
В помощь начинающим монтажникам ниже приведено краткое описание различных единиц измерения давления.

Паскаль (Па, Pa) — равен давлению силы в один ньютон на один квадратный метр.

Бар (бар, bar)

Используется также миллибар (мбар, mbar), 1 мбар = 0,001 бар.

Атмосфера техническая (ат, at) — равна давлению 1 кгс на 1 см².

Атмосфера стандартная, физическая (атм, atm) — равна 101 325 Па и 760 миллиметрам ртутного столба.

PSI (lb.p.sq.in.) — фунт-сила на квадратный дюйм (англ. pound-force per square inch, lbf/in²) равен 6 894,75729 Па.

Миллиметр ртутного столба (мм рт. ст., mm Hg, торр, Torr) — равен 133,3223684 Па. Используются также миллиметр водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.) и дюйм ртутного столба (inHg) .

Миллиметр ртутного столба в паскаль

1 inHg = 3,386389 кПа при 0°C.

Микрон (микрон, μ ) — равен 0,001 мм рт. ст. (0,001 Торр).

Таблица перевода единиц измерения давления:

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,
технический специалист компании «Расходка»

Для того, чтобы узнать, сколько в миллиметре ртутного столба атмосфер, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество миллиметров ртутного столба, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести миллиметры ртутного столба или атмосферы в другие единицы измерения, просто кликните по соответствующей ссылке.

Что такое «миллиметр ртутного столба»

Внесистемная единица миллиметр ртутного столба (мм рт. ст.; mm Hg), иногда называемая «торр», равна 101 325 / 760 ≈ 133,322 368 4 Па. Атмосферное давление измеряли барометром со столбиком ртути, отсюда и пошло название этой единицы измерения. На уровне моря атмосферное давление примерно равно 760 мм рт. ст. или 101 325 Па, отсюда значение – 101 325/760 Па. Данная единица традиционно используется в вакуумной технике, при измерении кровяного давления и в метеосводках. В некоторых приборах измерения производят по миллиметрам водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.), а в США и Канаде встречается также «дюйм ртутного столба» (inHg) = 3,386389 кПа при 0°C.

Что такое «атмосфера»

Внесистемная единица измерения давления, приблизительно соответствующая атмосферному давлению на уровне мирового океана. Равноправно существуют две единицы – техническая атмосфера (ат, at) и нормальная, стандартная или физическая атмосфера (атм, atm). Одна техническая атмосфера – это равномерное перпендикулярное давление силы в 1 кгс на ровную поверхность площадью 1 см². 1 ат = 98 066,5 Па.

Калькулятор Давление

Стандартная атмосфера – это давление ртутного столба высотой 760 мм при плотности ртути 13 595,04 кг/м³ и нулевой температуре. 1 атм = 101 325 Па = 1,033233 ат. В РФ используется только техническая атмосфера.

В прошлом для абсолютного и избыточного давления употребляли термины «ата» и «ати». Избыточное давление – разница между абсолютным и атмосферным давлением, когда абсолютное больше атмосферного. Разница между атмосферным и абсолютным давлением, когда абсолютное давление ниже атмосферного, называется разрежением (вакуумом).

Миллиметры ртутного столба и паскали применяются для измерения давления. Хотя паскаль и является официальной системной единицей, внесистемные миллиметры ртутного столба по своей распространенности ничем не уступают им. «Миллиметры» даже имеют собственное название – «торр» (torr), данное в честь известного ученого Торричелли. Между двумя единицами существует точная зависимость: 1 мм рт. ст. = 101325 / 760 Па, которая и является определением единицы «мм рт. ст.».

Вам понадобится

  • — калькулятор;
  • — компьютер;
  • — интернет.

Инструкция

  • Чтобы перевести давление, заданное в миллиметрах ртутного столба, в паскали умножьте количество мм рт. ст. на число 101325, а затем разделите на 760. То есть, воспользуйтесь несложной формулой:Кп = Км * 101325 / 760,где:
    Км – давление в миллиметрах ртутного столба (мм рт. ст., mm Hg, торр., torr)
    Кп – давление в паскалях (Па, Ра).
  • Использование вышеприведенной формулы дает самое точное соответствие между двумя системами измерения. Для практических же расчетов воспользуйтесь более простой формулой:Кп = Км * 133,322 или упрощенно Кп = Км * 133.
  • При переводе давления в паскали учтите, что при измерении кровяного давления, в метеорологических сводках, а также среди инженеров-вакуумщиков часто сокращают наименование «мм рт. ст.» до «мм» (иногда опускают и миллиметры). Поэтому, если давление задано в миллиметрах или просто указано число, то скорее всего это мм рт. ст. (при возможности, все же уточните).

    Как перевести Па в мм. рт. ст.?

    При измерении очень низких давлений вместо мм рт. ст. «вакуумщиками» применяется единица «микрон ртутного столба», которую обычно обозначают как «мкм». Соответственно, если давление указано в микронах, то просто разделите это число на тысячу и получите давление в мм рт. ст.

  • При измерении высоких давлений часто применяется такая единица как «атмосфера», соответствующая нормальному атмосферному давлению. Одна атмосфера (атм, atm) равняется 760 мм рт. ст. То есть, для получения давления в мм рт. ст. умножьте количество атмосфер на 760. Если же давление указано в «технических атмосферах», то для перевода давления в мм рт. ст. умножьте это число на 735,56.
  • Пример.
    Давление в шине автомобиля составляет 5 атмосфер. Чему будет равняться это давление, выраженное в паскалях?Решение.
    Переведите давление из атмосфер в мм рт. ст.: 5 * 760 = 3800.
    Переведите давление из мм рт. ст. в паскали: 3800 * 133 = 505400.Ответ.
    505400 Па (или 505,4 кПа).
  • Если у вас имеется компьютер или мобильный телефон с выходом в интернет, то просто найдите любой онлайн-сервис конвертации физических единиц измерения. Для этого наберите в поисковике фразу типа «перевести из мм рт ст в паскали» и воспользуйтесь указаниями на сайте сервиса.

CompleteRepair.Ru

Перевод паскалей в миллиметры ртутного столба

При монтаже кондиционера необходимо измерять давление в системе. На манометрах используются различные единицы измерения давления, которые, в свою очередь, могут отличаться от тех, которые указаны в технических характеристиках самого кондиционера. Как избежать путаницы в этом разнообразии?
В помощь начинающим монтажникам ниже приведено краткое описание различных единиц измерения давления.

Паскаль (Па, Pa) — равен давлению силы в один ньютон на один квадратный метр.

Бар (бар, bar) — примерно равен одной атмосфере. Один бар равен 105 Н/м² или 106 дин/см² или 0,986923 атм.

Используется также миллибар (мбар, mbar), 1 мбар = 0,001 бар.

Атмосфера техническая (ат, at) — равна давлению 1 кгс на 1 см².

Атмосфера стандартная, физическая (атм, atm) — равна 101 325 Па и 760 миллиметрам ртутного столба.

PSI (lb.p.sq.in.) — фунт-сила на квадратный дюйм (англ. pound-force per square inch, lbf/in²) равен 6 894,75729 Па.

Миллиметр ртутного столба (мм рт. ст., mm Hg, торр, Torr) — равен 133,3223684 Па. Используются также миллиметр водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.) и дюйм ртутного столба (inHg) . 1 inHg = 3,386389 кПа при 0°C.

Микрон (микрон, μ ) — равен 0,001 мм рт. ст. (0,001 Торр).

Таблица перевода единиц измерения давления:

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,
технический специалист компании «Расходка»

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2 ; psf; psi; дюймы рт.ст.; дюймы в.ст.

Обратите внимание, тут 2 таблицы и список . Вот еще полезная ссылка:

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст.
В единицы:
Па (Н/м 2) МПа bar atmosphere мм рт. ст. мм в.ст. м в.ст. кгс/см 2
Следует умножить на:
Па (Н/м 2) 1 1*10 -6 10 -5 9.87*10 -6 0.0075 0.1 10 -4 1.02*10 -5
МПа 1*10 6 1 10 9.87 7.5*10 3 10 5 10 2 10.2
бар 10 5 10 -1 1 0.987 750 1.0197*10 4 10.197 1.0197
атм 1.01*10 5 1.01* 10 -1 1.013 1 759.9 10332 10.332 1.03
мм рт. ст. 133.3 133.3*10 -6 1.33*10 -3 1.32*10 -3 1 13.3 0.013 1.36*10 -3
мм в.ст. 10 10 -5 0.000097 9.87*10 -5 0.075 1 0.001 1.02*10 -4
м в.ст. 10 4 10 -2 0.097 9.87*10 -2 75 1000 1 0.102
кгс/см 2 9.8*10 4 9.8*10 -2 0.98 0.97 735 10000 10 1
47.8 4.78*10 -5 4.78*10 -4 4.72*10 -4 0.36 4.78 4.78 10 -3 4.88*10 -4
6894.76 6.89476*10 -3 0.069 0.068 51.7 689.7 0.690 0.07
Дюймов рт.ст. / inches Hg 3377 3.377*10 -3 0.0338 0.033 25.33 337.7 0.337 0.034
Дюймов в.ст. / inches H 2 O 248.8 2.488*10 -2 2.49*10 -3 2.46*10 -3 1.87 24.88 0.0249 0.0025
Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст .
Для того, чтобы перевести давление в единицах: В единицы:
фунтов на кв. фут / pound square feet (psf) фунтов на кв. дюйм / pound square inches (psi) Дюймов рт.ст. / inches Hg Дюймов в.ст. / inches H 2 O
Следует умножить на:
Па (Н/м 2) 0.021 1.450326*10 -4 2.96*10 -4 4.02*10 -3
МПа 2.1*10 4 1.450326*10 2 2.96*10 2 4.02*10 3
бар 2090 14.50 29.61 402
атм 2117.5 14.69 29.92 407
мм рт. ст. 2.79 0.019 0.039 0.54
мм в.ст. 0.209 1.45*10 -3 2.96*10 -3 0.04
м в.ст. 209 1.45 2.96 40.2
кгс/см 2 2049 14.21 29.03 394
фунтов на кв. фут / pound square feet (psf) 1 0.0069 0.014 0.19
фунтов на кв. дюйм / pound square inches (psi) 144 1 2.04 27.7
Дюймов рт.ст. / inches Hg 70.6 0.49 1 13.57
Дюймов в.ст. / inches H 2 O 5.2 0.036 0.074 1

Подробный список единиц давления:

  • 1 Па (Н/м 2) = 0.0000102 Атмосфера «метрическая» / Atmosphere (metric)
  • 1 Па (Н/м 2) = 0.0000099 Atmosphere (standard) = Standard atmosphere
  • 1 Па (Н/м 2) = 0.00001 Бар / Bar
  • 1 Па (Н/м 2) = 10 Барад / Barad
  • 1 Па (Н/м 2) = 0.0007501 Сантиметров рт. ст. (0 °C)
  • 1 Па (Н/м 2) = 0.0101974 Сантиметров во. ст. (4 °C)
  • 1 Па (Н/м 2) = 10 Дин/квадратный сантиметр
  • 1 Па (Н/м 2) = 0.0003346 Футов водяного столба / Foot of water (4 °C)
  • 1 Па (Н/м 2) = 10 -9 Гигапаскалей
  • 1 Па (Н/м 2) = 0.01
  • 1 Па (Н/м 2) = 0.0002953 Дюмов рт.ст. / Inch of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.0002961 Дюймов рт. ст. / Inch of mercury (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040186 Дюмов в.ст. / Inch of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040147 Дюмов в.ст. / Inch of water (4 °C)
  • 1 Па (Н/м 2) = 0.0000102 кгс/см 2 / Kilogram force/centimetre 2
  • 1 Па (Н/м 2) = 0.0010197 кгс/дм 2 / Kilogram force/decimetre 2
  • 1 Па (Н/м 2) = 0.101972 кгс/м 2 / Kilogram force/meter 2
  • 1 Па (Н/м 2) = 10 -7 кгс/мм 2 / Kilogram force/millimeter 2
  • 1 Па (Н/м 2) = 10 -3 кПа
  • 1 Па (Н/м 2) = 10 -7 Килофунтов силы/ квадратный дюйм / Kilopound force/square inch
  • 1 Па (Н/м 2) = 10 -6 МПа
  • 1 Па (Н/м 2) = 0.000102 Метров в.ст. / Meter of water (4 °C)
  • 1 Па (Н/м 2) = 10 Микробар / Microbar (barye, barrie)
  • 1 Па (Н/м 2) = 7.50062 Микронов рт.ст. / Micron of mercury (millitorr)
  • 1 Па (Н/м 2) = 0.01 Милибар / Millibar
  • 1 Па (Н/м 2) = 0.0075006 Миллиметров рт.ст / Millimeter of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.10207 Миллиметров в.ст. / Millimeter of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.10197 Миллиметров в.ст. / Millimeter of water (4 °C)
  • 1 Па (Н/м 2) =7.5006 Миллиторр / Millitorr
  • 1 Па (Н/м 2) = 1Н/м 2 / Newton/square meter
  • 1 Па (Н/м 2) = 32.1507 Повседневных унций / кв. дюйм / Ounce force (avdp)/square inch
  • 1 Па (Н/м 2) = 0.0208854 Фунтов силы на кв. фут / Pound force/square foot
  • 1 Па (Н/м 2) = 0.000145 Фунтов силы на кв. дюйм / Pound force/square inch
  • 1 Па (Н/м 2) = 0.671969 Паундалов на кв. фут / Poundal/square foot
  • 1 Па (Н/м 2) = 0.0046665 Паундалов на кв. дюйм / Poundal/square inch
  • 1 Па (Н/м 2) = 0.0000093 Длинных тонн на кв. фут / Ton (long)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Длинных тонн на кв. дюйм / Ton (long)/inch 2
  • 1 Па (Н/м 2) = 0.0000104 Коротких тонн на кв. фут / Ton (short)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Тонн на кв. дюйм / Ton/inch 2
  • 1 Па (Н/м 2) = 0.0075006 Торр / Torr

Каждый человек знает, что давление воздуха измеряется в миллиметрах ртутного столба, поскольку в обиходе используется именно эта единица измерения. В физике же в системе единиц СИ давление измеряется в паскалях. О том, как перевести в паскали миллиметры ртутного столба, расскажет статья.

Давление воздуха

Для начала разберемся с вопросом о том, что представляет собой давление воздуха. Под этой величиной понимают давление, которое атмосфера нашей планеты оказывает на любые объекты, находящиеся на поверхности Земли. Понять причину появления этого давления легко: для этого нужно вспомнить, что каждое тело конечной массы обладает некоторым весом, который можно определить по формуле: N = m*g, где N — вес тела, g — значение ускорения свободного падения, m — масса тела. Наличие веса у тела обусловлено земным притяжением.

Атмосфера нашей планеты — это большое газообразное тело, которое также обладает некоторой массой, а поэтому имеет вес. Экспериментально установлено, что масса воздуха, которая оказывает давление на 1 м 2 поверхности земли на высоте уровня моря, приблизительно равна 10 тоннам! Давление же, которое оказывает эта воздушная масса, составляет 101 325 паскалей (Па).

Перевод в паскали миллиметров ртутного столба

При просмотре прогноза погоды информацию об атмосферном давлении обычно представляют в миллиметрах столба ртути (мм рт. ст.). Чтобы понять, как мм рт. ст. перевести в паскали, необходимо лишь знать соотношение между этими единицами. И запомнить это соотношение просто: 760 мм рт. ст. соответствует давление 101 325 Па.

Зная названные выше цифры, можно получить формулу перевода в паскали миллиметров ртутного столба. Для этого проще всего воспользоваться простой пропорцией. Например, известно некоторое давление H в мм рт. ст., тогда давление P в паскалях будет равняться: P = H*101325/760 = 133,322*H.

Приведенной формулой легко пользоваться. Например, на вершине горы Эльбрус (5642 м) давление воздуха приблизительно составляет 368 мм рт. ст. Подставляя это значение в формулу, получаем: P = 133,322*H = 133,322*368 = 49062 Па, или приблизительно 49 кПа.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 паскаль [Па] = 0,00750063755419211 миллиметр ртутного столба (0°C) [мм рт.ст.]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах — они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Mmhg единица измерения. Как перевести из миллиметров ртутного столба в паскали. Реакция на пониженное атмосферное давление

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2 ; psf; psi; дюймы рт.ст.; дюймы в.ст.

Обратите внимание, тут 2 таблицы и список . Вот еще полезная ссылка:

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст.
В единицы:
Па (Н/м 2) МПа bar atmosphere мм рт. ст. мм в.ст. м в.ст. кгс/см 2
Следует умножить на:
Па (Н/м 2) 1 1*10 -6 10 -5 9.87*10 -6 0.0075 0.1 10 -4 1.02*10 -5
МПа 1*10 6 1 10 9.87 7.5*10 3 10 5 10 2 10.2
бар 10 5 10 -1 1 0.987 750 1.0197*10 4 10.197 1.0197
атм 1.01*10 5 1.01* 10 -1 1.013 1 759.9 10332 10.332 1.03
мм рт. ст. 133.3 133.3*10 -6 1.33*10 -3 1.32*10 -3 1 13.3 0.013 1.36*10 -3
мм в.ст. 10 10 -5 0.000097 9.87*10 -5 0.075 1 0.001 1.02*10 -4
м в.ст. 10 4 10 -2 0.097 9.87*10 -2 75 1000 1 0.102
кгс/см 2 9.8*10 4 9.8*10 -2 0.98 0.97 735 10000 10 1
47.8 4.78*10 -5 4.78*10 -4 4.72*10 -4 0.36 4.78 4.78 10 -3 4.88*10 -4
6894.76 6.89476*10 -3 0.069 0.068 51.7 689.7 0.690 0.07
Дюймов рт.ст. / inches Hg 3377 3.377*10 -3 0.0338 0.033 25.33 337.7 0.337 0.034
Дюймов в.ст. / inches H 2 O 248.8 2.488*10 -2 2.49*10 -3 2.46*10 -3 1.87 24.88 0.0249 0.0025
Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст .
Для того, чтобы перевести давление в единицах: В единицы:
фунтов на кв. фут / pound square feet (psf) фунтов на кв. дюйм / pound square inches (psi) Дюймов рт.ст. / inches Hg Дюймов в.ст. / inches H 2 O
Следует умножить на:
Па (Н/м 2) 0.021 1.450326*10 -4 2.96*10 -4 4.02*10 -3
МПа 2.1*10 4 1.450326*10 2 2.96*10 2 4.02*10 3
бар 2090 14.50 29.61 402
атм 2117.5 14.69 29.92 407
мм рт. ст. 2.79 0.019 0.039 0.54
мм в.ст. 0.209 1.45*10 -3 2.96*10 -3 0.04
м в.ст. 209 1.45 2.96 40.2
кгс/см 2 2049 14.21 29.03 394
фунтов на кв. фут / pound square feet (psf) 1 0.0069 0.014 0.19
фунтов на кв. дюйм / pound square inches (psi) 144 1 2.04 27.7
Дюймов рт.ст. / inches Hg 70.6 0.49 1 13.57
Дюймов в.ст. / inches H 2 O 5.2 0.036 0.074 1

Подробный список единиц давления:

  • 1 Па (Н/м 2) = 0.0000102 Атмосфера «метрическая» / Atmosphere (metric)
  • 1 Па (Н/м 2) = 0.0000099 Atmosphere (standard) = Standard atmosphere
  • 1 Па (Н/м 2) = 0.00001 Бар / Bar
  • 1 Па (Н/м 2) = 10 Барад / Barad
  • 1 Па (Н/м 2) = 0.0007501 Сантиметров рт. ст. (0 °C)
  • 1 Па (Н/м 2) = 0.0101974 Сантиметров во. ст. (4 °C)
  • 1 Па (Н/м 2) = 10 Дин/квадратный сантиметр
  • 1 Па (Н/м 2) = 0.0003346 Футов водяного столба / Foot of water (4 °C)
  • 1 Па (Н/м 2) = 10 -9 Гигапаскалей
  • 1 Па (Н/м 2) = 0.01
  • 1 Па (Н/м 2) = 0.0002953 Дюмов рт.ст. / Inch of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.0002961 Дюймов рт. ст. / Inch of mercury (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040186 Дюмов в.ст. / Inch of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040147 Дюмов в.ст. / Inch of water (4 °C)
  • 1 Па (Н/м 2) = 0.0000102 кгс/см 2 / Kilogram force/centimetre 2
  • 1 Па (Н/м 2) = 0.0010197 кгс/дм 2 / Kilogram force/decimetre 2
  • 1 Па (Н/м 2) = 0.101972 кгс/м 2 / Kilogram force/meter 2
  • 1 Па (Н/м 2) = 10 -7 кгс/мм 2 / Kilogram force/millimeter 2
  • 1 Па (Н/м 2) = 10 -3 кПа
  • 1 Па (Н/м 2) = 10 -7 Килофунтов силы/ квадратный дюйм / Kilopound force/square inch
  • 1 Па (Н/м 2) = 10 -6 МПа
  • 1 Па (Н/м 2) = 0.000102 Метров в.ст. / Meter of water (4 °C)
  • 1 Па (Н/м 2) = 10 Микробар / Microbar (barye, barrie)
  • 1 Па (Н/м 2) = 7.50062 Микронов рт.ст. / Micron of mercury (millitorr)
  • 1 Па (Н/м 2) = 0.01 Милибар / Millibar
  • 1 Па (Н/м 2) = 0.0075006 Миллиметров рт.ст / Millimeter of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.10207 Миллиметров в.ст. / Millimeter of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.10197 Миллиметров в.ст. / Millimeter of water (4 °C)
  • 1 Па (Н/м 2) =7.5006 Миллиторр / Millitorr
  • 1 Па (Н/м 2) = 1Н/м 2 / Newton/square meter
  • 1 Па (Н/м 2) = 32.1507 Повседневных унций / кв. дюйм / Ounce force (avdp)/square inch
  • 1 Па (Н/м 2) = 0.0208854 Фунтов силы на кв. фут / Pound force/square foot
  • 1 Па (Н/м 2) = 0.000145 Фунтов силы на кв. дюйм / Pound force/square inch
  • 1 Па (Н/м 2) = 0.671969 Паундалов на кв. фут / Poundal/square foot
  • 1 Па (Н/м 2) = 0.0046665 Паундалов на кв. дюйм / Poundal/square inch
  • 1 Па (Н/м 2) = 0.0000093 Длинных тонн на кв. фут / Ton (long)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Длинных тонн на кв. дюйм / Ton (long)/inch 2
  • 1 Па (Н/м 2) = 0.0000104 Коротких тонн на кв. фут / Ton (short)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Тонн на кв. дюйм / Ton/inch 2
  • 1 Па (Н/м 2) = 0.0075006 Торр / Torr

Каждый человек знает, что давление воздуха измеряется в миллиметрах ртутного столба, поскольку в обиходе используется именно эта единица измерения. В физике же в системе единиц СИ давление измеряется в паскалях. О том, как перевести в паскали миллиметры ртутного столба, расскажет статья.

Давление воздуха

Для начала разберемся с вопросом о том, что представляет собой давление воздуха. Под этой величиной понимают давление, которое атмосфера нашей планеты оказывает на любые объекты, находящиеся на поверхности Земли. Понять причину появления этого давления легко: для этого нужно вспомнить, что каждое тело конечной массы обладает некоторым весом, который можно определить по формуле: N = m*g, где N — вес тела, g — значение ускорения свободного падения, m — масса тела. Наличие веса у тела обусловлено земным притяжением.

Атмосфера нашей планеты — это большое газообразное тело, которое также обладает некоторой массой, а поэтому имеет вес. Экспериментально установлено, что масса воздуха, которая оказывает давление на 1 м 2 поверхности земли на высоте уровня моря, приблизительно равна 10 тоннам! Давление же, которое оказывает эта воздушная масса, составляет 101 325 паскалей (Па).

Перевод в паскали миллиметров ртутного столба

При просмотре прогноза погоды информацию об атмосферном давлении обычно представляют в миллиметрах столба ртути (мм рт. ст.). Чтобы понять, как мм рт. ст. перевести в паскали, необходимо лишь знать соотношение между этими единицами. И запомнить это соотношение просто: 760 мм рт. ст. соответствует давление 101 325 Па.

Зная названные выше цифры, можно получить формулу перевода в паскали миллиметров ртутного столба. Для этого проще всего воспользоваться простой пропорцией. Например, известно некоторое давление H в мм рт. ст., тогда давление P в паскалях будет равняться: P = H*101325/760 = 133,322*H.

Приведенной формулой легко пользоваться. Например, на вершине горы Эльбрус (5642 м) давление воздуха приблизительно составляет 368 мм рт. ст. Подставляя это значение в формулу, получаем: P = 133,322*H = 133,322*368 = 49062 Па, или приблизительно 49 кПа.

В котором давление уравновешивается столбиком жидкости . В качестве жидкости часто используется , поскольку у неё очень высокая плотность (≈13 600 кг/м³ ) и низкое давление насыщенного пара при комнатной температуре.

Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным (точно) 760 мм рт. ст. , или 101 325 Па , отсюда вытекает определение миллиметра ртутного столба (101 325/760 Па ). Ранее использовалось несколько иное определение: давление столба ртути высотой 1 мм и плотностью 13,5951·10 3 кг/м³ при ускорении свободного падения 9,806 65 м/с² . Разница между этими двумя определениями составляет 0,000 014% .

Миллиметры ртутного столба используются, например, в вакуумной технике, в метеорологических сводках и при измерении кровяного давления . Поскольку в вакуумной технике очень часто давление измеряют просто в миллиметрах, опуская слова «ртутного столба», естественный для вакуумщиков переход к мкм (микронам) осуществляется, как правило, тоже без указания «давления ртутного столба». Соответственно, когда на вакуумном насосе указано давление 25 мкм, речь идёт о предельном разрежении, создаваемом этим насосом, измеряемом в микронах ртутного столба. Само собой, никто не использует манометр Торричелли для измерения таких низких давлений. Для измерения низких давлений используют другие приборы, например, манометр (вакуумметр) Мак-Леода .

Иногда используются миллиметры водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст. ). В США и Канаде также, используется единица измерения «дюйм ртутного столба» (обозначение — inHg). 1 inHg = 3,386389 кПа при 0 °C.

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)
Миллиметр ртутного столба
(мм рт.ст.,mmHg, Torr, торр)
Метр водяного столба
(м вод. ст.,m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
1 мм рт.ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт.ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Миллиметр ртутного столба» в других словарях:

    — (мм рт. ст., mm Hg), внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. МИЛЛИМЕ … Физическая энциклопедия

    Внесистемная ед. давления, примен. при измер. атм. давления водяного пара, высокого вакуума и т. д. Обозн.: рус. — мм рт. ст., междунар. — mm Hg. 1 мм рт. ст. равен гидростатич. давлению столба ртути высотой 1 мм и плотностью 13,5951… … Справочник технического переводчика

    Большой Энциклопедический словарь

    — – внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. [Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.] Рубрика термина: Общие термины… … Энциклопедия терминов, определений и пояснений строительных материалов

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм водного столба. * * * МИЛЛИМЕТР РТУТНОГО СТОЛБА МИЛЛИМЕТР РТУТНОГО СТОЛБА, внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 … Энциклопедический словарь

    Торр, внесистемная единица давления, применяемая при измерении атмосферного давления водяного пара, высокого вакуума и т. д. Обозначение: русское мм рт. ст., международное mm Hg. 1 мм ртутного столба равен гидростатическому … Энциклопедический словарь по металлургии

    — (mmHg) единица давления, в результате которого ртуть в столбике поднимается на 1 миллиметр. 1 мм рт. ст. = 133,3224 Па … Толковый словарь по медицине

    Торр, внесистемная единица давления, применяемая при измерениях атмосферного давления, парциального давления водяного пара, высокого вакуума и т. д. Обозначения: русское мм рт. ст., международное mm Hg. 1 мм рт. см. равен… … Большая советская энциклопедия

    Не подлежащая применению внесистемная ед. давления. Обозначение мм рт. ст. 1 мм рт. ст. = 133,322 Па (см. Паскаль) … Большой энциклопедический политехнический словарь

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм вод. ст … Естествознание. Энциклопедический словарь

Паскаль (Па, Pa)

Паскаль (Па, Pa) — единица измерения давления в Международной системе единиц измерения (система СИ). Единица названа в честь французского физика и математика Блеза Паскаля.

Паскаль равен давлению, вызываемому силой, равной одному ньютону (Н), равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр:

1 паскаль (Па) ≡ 1 Н/м²

Кратные единицы образуют с помощью стандартных приставок СИ:

1 МПа (1 мегапаскаль) = 1000 кПа (1000 килопаскалей)

Атмосфера (физическая, техническая)

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана.

Существуют две примерно равные друг другу единицы с таким названием:

  1. Физическая, нормальная или стандартная атмосфера (атм, atm) — в точности равна 101 325 Па или 760 миллиметрам ртутного столба.
  2. Техническая атмосфера (ат, at, кгс/см²) — равна давлению, производимому силой 1 кгс, направленной перпендикулярно и равномерно распределённой по плоской поверхности площадью 1 см² (98 066,5 Па).

    1 техническая атмосфера = 1 кгс/см² («килограмм-сила на сантиметр квадратный»). // 1 кгс = 9,80665 ньютонов (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus, означающего вес.

Заметьте разницу: не pound (по-английски «фунт»), а pondus .

На практике приближенно принимают: 1 МПа = 10 атмосфер, 1 атмосфера = 0,1 МПа.

Бар

Бар (от греческого βάρος — тяжесть) — внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Н/м² (или 0,1 МПа).

Соотношения между единицами давления

1 МПа = 10 бар = 10,19716 кгс/см² = 145,0377 PSI = 9,869233 (физ. атм.) =7500,7 мм рт.ст.

1 бар = 0,1 МПа = 1,019716 кгс/см² = 14,50377 PSI = 0,986923 (физ. атм.) =750,07 мм рт.ст.

1 ат (техническая атмосфера) = 1 кгс/см² (1 kp/cm², 1 kilopond/cm²) = 0,0980665 МПа = 0,98066 бар = 14,223

1 атм (физическая атмосфера) = 760 мм рт.ст.= 0,101325 МПа = 1,01325 бар = 1,0333 кгс/см²

1 мм ртутного столба = 133,32 Па =13,5951 мм водяного столба

Объемы жидкостей и газов / Volume

1 gl (US) = 3,785 л

1 gl (Imperial) = 4,546 л

1 cu ft = 28,32 л = 0,0283 куб.м

1 cu in = 16,387 куб.см

Скорость потока / Flow

1 л/с = 60 л/мин = 3,6 куб.м/час = 2,119 cfm

1 л/мин = 0,0167 л/с = 0,06 куб.м/час = 0,0353 cfm

1 куб.м/час = 16,667 л/мин = 0,2777 л/с = 0,5885 cfm

1 cfm (кубический фут в минуту) = 0,47195 л/с = 28,31685 л/мин = 1,699011 куб.м/час

Пропускная способность / Valve flow characteristics

Коэффициент (фактор) расхода Kv

Flow Factor — Kv

Основным параметром запорного и регулирующего органа является коэффициент расхода Kv. Коэффициент расхода Kv показывает объем воды в куб.м/час (cbm/h) при температуре 5-30ºC, проходящей через затвор с потерей напора в 1 бар.

Коэффициент расхода Cv

Flow Coefficient — Cv

В странах с дюймовой системой измерений используется коэффициент Cv. Он показывает, какой расход воды в галлон/мин (gallon/minute, gpm) при температуре 60ºF проходит через арматуру при перепаде давления на арматуре в 1 psi.

Кинематическая вязкость / Viscosity

1 ft = 12 in = 0,3048 м

1 in = 0,0833 ft = 0,0254 м = 25,4 мм

1 м = 3,28083 ft = 39,3699 in

Единицы силы / Force

1 Н = 0,102 кгс = 0,2248 lbf

1 lbf = 0,454 кгс = 4,448 Н

1 кгс = 9,80665 Н (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus , означающего вес. Обратите внимание: не pound (по-английски «фунт»), а pondus .

Единицы массы / Mass

1 фунт = 16 унций = 453,59 г

Момент силы (крутящий момент) / Torque

1 кгс. м = 9,81 Н. м = 7,233 фунт-сила-фут (lbf * ft)

Единицы измерения мощности / Power

Некоторые величины:

Ватт (Вт, W, 1 Вт = 1 Дж/с), лошадиная сила (л.с. — рус., hp или HP — англ., CV — франц., PS — нем.)

Соотношение единиц:

В России и некоторых других странах 1 л.с. (1 PS, 1 CV) = 75 кгс* м/с = 735,4988 Вт

В США, Великобритании и других странах 1 hp = 550 фут*фунт/с = 745,6999 Вт

Температура / Temperature

Температура по шкале Фаренгейта:

[°F] = [°C] × 9⁄5 + 32

[°F] = [K] × 9⁄5 − 459,67

Температура по шкале Цельсия:

[°C] = [K] − 273,15

[°C] = ([°F] − 32) × 5⁄9

Температура по шкале Кельвина:

[K] = [°C] + 273.15

[K] = ([°F] + 459,67) × 5⁄9

Атмосферное давление создается воздушной оболочкой и испытывают его все предметы, находящиеся на поверхности Земли. Причина в том, что воздух, как и всё остальное, притягивается к земному шару посредством гравитации. В сводках прогноза погоды сведения о давлении атмосферы даются в миллиметрах ртутного столба. А ведь это внесистемная единица. Официально давление, как физическая величина, в СИ с 1971 году выражается в «паскалях», равный силе в 1 Н, действующей на поверхность площадью 1 м2. Соответственно, существует переход «мм. рт. ст. в паскали».

Происхождение этой единицы связано с именем ученого Эванджелиста Торричелли. Именно он в 1643 году, совместно с Вивиани, измерил атмосферное давление, используя трубку, из которой был выкачан воздух. Она заполнялась ртутью, обладающей наибольшей среди жидкостей плотностью (13 600 кг/м3) . Впоследствии к трубке была прикреплена вертикальная шкала, и такой прибор получил название ртутный барометр. В опыте Торричелли столбик ртути, уравновешивающий внешнее давление воздуха, установился на высоте 76 см или 760 мм. Его и взяли в качестве меры воздушного давления. Значение 760 мм. рт. ст считается нормальным атмосферным давлением при температуре 00С на широте уровня моря. Известно, что давление атмосферы очень изменчиво и колеблется в течение дня. Это связано с изменением температуры. Также оно уменьшается с высотой. Ведь в верхних слоях атмосферы плотность воздуха становится меньше.

Используя физическую формулу, есть возможность перевести миллиметры ртутного столба в паскали. Для этого нужно плотность ртути (13600кг/м3) умножить на ускорение свободного падения (9,8 кг/м3) и умножить на высоту столбика ртути (0,6м) . Соответственно, получаем стандартное атмосферное давление 101325 Па или примерно 101 кПа. В метеорологии еще используют гектопаскали. 1 гПа = 100 Па. А сколько паскалей будет составлять 1 мм. рт. ст? Для этого 101325 Па делим на 760. Получаем нужную зависимость: 1 мм. рт. ст = 3,2 Па или примерно 3,3 Па. Поэтому, если требуется, например, перевести 750 мм. рт. ст. в паскали, нужно просто перемножить числа 750 и 3,3. Полученный ответ и будет давление, измеренное в паскалях.

Интересно, что в 1646 году ученый Паскаль использовал для измерения атмосферного давления водяной барометр. Но так как плотность воды меньше плотности ртути, то высота водного столба была намного выше, чем ртутного. Аквалангисты хорошо знают, что атмосферное давление такое же, что и на глубине 10 метров под водой. Поэтому, использование водяного барометра вызывает некоторые неудобства. Хотя преимуществом является то, что вода всегда под рукой и не ядовита.

Внесистемные единицы давления на сегодняшний день широко распространены. Кроме метеорологических сводок миллиметры ртутного столба во многих странах используют при измерении кровяного давления. В легких человека давление выражают в сантиметрах водного столба. В вакуумной технике применяются миллиметры, микрометры, а также дюймы ртутного столба. Причем, вакуумщики чаще всего опускают слова «ртутного столба» и говорят о давлении, измеряемом в миллиметрах. А вот мм. рт. ст. в паскали никто не переводит. Вакуумные системы предполагают слишком низкие давления, по сравнению с атмосферным. Ведь вакуум означает «безвоздушное пространство».

Поэтому, здесь уже приходится говорить о давлении в несколько микрометров или микронах ртутного столба. А фактическое измерение давления проводится с помощью специальных манометров. Так вакуумметр Мак-Леода сжимает газ с помощью видоизмененного ртутного манометра, поддерживая стабильное состояние газа. Методика прибора обладает наибольшей точностью, но способ измерения занимает много времени. Не всегда перевод в паскали имеет практическое значение. Ведь, благодаря когда-то проведенному опыту существование атмосферного давления было наглядно доказано, а его измерение стало общедоступным. Так на стенах музеев, картинных галерей, библиотек можно встретить незамысловатые приборы – барометры, не использующие жидкости. А их шала проградуирована для удобства и в миллиметрах ртутного столба, и в паскалях.

Давление 120 бар сколько атмосфер. Калькулятор перевода давления в барах на МПа, кгс и psi

Покупая наручные часы, мы часто обращаем внимание на значение Water Resistant (влагостойкость) и индекс защищенности их, но, как показывает практика, не всем ясны обусловленные международным стандартом индексы влагозащиты. Распространено убеждение, что если часы выдерживают высокое давление, они защищены от попадания воды внутрь корпуса при плавании и нырянии, хотя на самом деле производителем гарантировано сохранение их работоспособности только под дождем или от брызг при умывании. Что же означают отметки о водонепроницаемости на часах на самом деле?

Единицы измерения влагозащиты

Водонепроницаемость часов измеряется в метрах, атмосферах или барах. Один бар (1 бар) равен одной атмосфере (1 атм). Обе единицы соответствуют давлению воды на глубине 10 метров. То есть при индексе 1 бар (или 1 атм) часы могут выдержать давление воды на глубине 10 метров. Для водонепроницаемых же часов, помимо способности корпуса и стекла противостоять давлению воды, важна и герметичность заводной головки, которая, в свою очередь также должна выдерживать давление воды.

Так, часы с пометкой Water Resistant 3 ATM, 3 BAR и 30 meters защищены от влаги и брызг, но погружать целиком в воду их крайне не рекомендуется, поскольку производитель в таком случае не гарантирует их работоспособность. В таких часах негерметична заводная головка. Значение 3 атм (3ATM) сообщает, что часы в процессе испытаний подвергались давлению в 3 атмосферы, но не топились.

Тем не менее, рисковые смельчаки занимаются дайвингом в трехатмосферных на глубине более 18 м.


Картинка

Наименование меры измерения давления БАР имеет греческое происхождение. Так греческое слово – обозначает неподъемность. Проистекшая данной меры, миллибар, не редко употребляется в метеорологии.

Бар принадлежит к списку единиц, устанавливающихся посредством единиц силы и площади. Имеются две одинаково названные единицы, что зовутся баром. Одна из которых – это единица вымеривания давления, интегрированная в физическую систему мер «СГС» – сантиметр, грамм, секунда. Распознается данная мера как 1 дин на см кв., при том, что 1 дин – установленная в системе мера определения силы.

1 бар — какое давление?

В свой черед, под 1 баром понимают не стандартную, метеорологическую меру, которую также именуют как системная атмосфера. Соразмерность между обоими барами следующая — один бар или одна системная атмосфера равняется 106 дин на см. кв.

Наряду с системной атмосферой, в реальности применяется техническая либо метрическая атмосфера, а также нормальная или физическая атмосфера. Техническая или метрическая атмосфера применяется в техническом методе мер МКГСС. Оно в свою очередь помечается в кгс на см. кв. Метрическая атмосфера назначена на роль определения давления, производимого с силой 1 кгс, сориентированной перпендикулярно и определенной размеренно, по плоской поверхности с площадью 1 см. кв. Соответствие у бара с метрической атмосферой следующее – 1 бар равен 10197 кгс на см. кв.

Нормальная атмосфера выступает внесистемной мерой, равной давлению на поверхности Земли. Она выступает, словно давление, сбалансированное в высоту 760 миллиметров ртутного столба, при 0 градусов по Цельсию, обычной ртутной плотности и естественном ускорении вольного падения. Сопоставление промеж баром и нормальной атмосферой в такой степени – 1 бар приравнивается к 0,98692 атмосферам.

Частенько для скорых и комфортных подсчетов не нужна совершенная скрупулезность. По этой причине представленные перед этим числа возможно округлять, обуславливая это тем фактором погрешности, который вы можете допустить в замерах.

На дне океана, где давление воды достигает 100 мегапаскаль, обитают глубоководные рыбы. Организм этих живых существ с незапамятных пор адаптирован к экстремальным условиям жизни. Воздействует ли воздух на сушу подобно воде на дно просторов морских? В чем проявляется, как может измеряться его воздействие? А 1 бар сколько атмосфер составляет?

Ртуть, вода, вино…

Земля окружена слоем воздуха, состоящим из смеси газов. Этот воздушный слой именуется атмосферой. Находящиеся на Земле объекты подвержены атмосферному влиянию.

Э. Торичелли (1608 — 1647 гг.) первым придумал метод его измерения.

Спустя 3 года после того, как был сделан ртутный барометр, великий Б. Паскаль сконструировал водяной барометр. Учёный повторил опыт, заменив ртуть водой. Но этого ему показалось мало. Он продолжал опыты с маслом, вином и… кто знает, сколько жидкостей утекло за время исследований!

Есть множество единиц измерения давления:

  • Па — паскаль (и его производные: МПа (мегапаскаль), кПа (килопаскаль)
  • атмосфера
  • миллиметры ртутного столба
  • дюймы ртутного столба
  • миллиметры водного столба
  • дюймы водного столба
  • килограмм cилы на см 2 (кГс/см 2)
  • метры водного столба

Соотношение между разными единицами измерения

Воспользовавшись таблицей, можно сравнить различные значения и выяснить, как 1 бар будет измеряться в атмосферах, либо узнать 1 кгс/см 2 сколько кПа.

Мгновенно перевести единицы измерения давления и выразить атмосферы в мм рт. ст. можно по ссылке .

В перечне указаны наиболее часто встречаемые переходы:

  • бар = 100 кПа
  • бар = 1 техн. атм (at)
  • bar = 750 мм рт. столба
  • bar = 0,1 МПа
  • bar = 1,0197 кГс/см 2

Бар — это одна из величин, которыми может измеряться давление. Ничего общего с баррелем, то есть единицей объема нефти, она не имеет. Разве только три первые звучные буквы их объединяют.

Сопоставим величины:

  • 1 па = 0,00001 бар
  • килопаскаль = 0,01 бар
  • паскаль = 9,869210 -6 атм
  • kpa = 9,869210 -3 atm
  • мегапаскаль = 9,8692 атм
  • килограммсилы/ см 2 = 0,98 бар
  • атм = 101325 Па

Пояснение: at — техническая атмосфера, atm — физическая. Физическая атмосфера характеризуется воздействием газа в 760 мм рт.ст. и температурой 0 0 С. Термин «техническая атмосфера» уместен при нормальных технических условиях, характеризуемых давлением 735,6 мм рт.ст. при t=15 0 C.

Если же нужно перевести бары в атмосферы, смело кликайте сюда — безо всяких заморочек, все предельно ясно.

Подытожим

Нужно сказать несколько слов об «иностранцах» в нашей таблице — измерениях «psi» и «psf».

Pounds scuare feet (psf) — это фунты на квадратный фут; ими, так же как и «psi» (pounds scuare inches) — фунтами на квадратный дюйм, может измеряться давление при описании в англоязычных источниках. Так, к примеру, один кгс/ см2 примерно равен 14 psi.

А на этом видео конкретным примером доступно проиллюстрировано, как перевести одну единицу в иную в рамках системы СИ:

Углубившись в тему, вскоре вы научитесь сами переводить не только МПа в килограмм с/см 2 , но и совершать обратный перевод, т.е. обращать килограмм с/см 2 в МПа.

Дорогие друзья и читатели сайта Веб-Механик.РФ мы продолжаем раскрывать тему перевода различных величин . Сегодня мы рассмотрим перевод величины давление .

Что такое давление? Давление — это физическая величина , которая равна силе, которая действует на единицу площади перпендикулярно этой поверхности.

Таблицы перевода давления

Единица Па = 1 Н/м2 МПа бар ат = kp/cm2 атм
1 Па = 1 Н/м2 1 0,000001 0,00001
1 МПа 1000000 1 10 10,19716 9,86923
1 бар 100000 0,1 1 1,01972 0,98692
1 ат = 1 kp/cm2 98066,5 0,09806 0,98066 1 0,96784
1 атм 101325 0,10133 1,01325 1,03323 1

Под давлением поднимается соотношение силы F к площади A: p = F/A

Сила F измеряется в ньютонах, площадь A в м2. Поэтому давление измеряется в Н/м2, единица давления — паскаль (Па).

В технике используют большие единицы давления, например, мегапаскаль (МПа), гектопаскаль (гПа) или бар. При незначительном давлении используют миллибар (мбар).

Важно: больше не допускается использование распространенных ранее единиц давления, таких как ат, атм, торр и мм вод. ст.!

Пример:

Давление составляет 3,67 МПа. Сколько это будет в бар?

(1) В первой колонке («Единица») спуститься до 1 МПа.

(2) В ряду «бар» дойти до значения «10».

(3) Т. к. требуется найти 3,67 МПа, то значение 10 умножается на 3,67.

(4) Результат: 3,67 МПа = 3,67 x 10 = 36,7 бар.

Таблица перевода бар – psi

В англо-американском языковом пространстве в качестве единицы давления используется фунт на квадратный дюйм (psi).

Переводный коэффициент при переводе из бар в psi составляет 14,504 (округленное значение), т. е. 1 бар = 14,504 psi.

Переводный коэффициент при переводе из psi в бар составляет 0,069 (округленное значение), т. е. 1 psi = 0,069 бар.

бар psi бар psi
1,0 14,50 40,0 580,16
2,0 29,01 50,0 725,20
3,0 43,51 69,0 1000,00
4,0 58,02 100 1450,40
5,0 72,52 200,0 2900,80
6,9 100,00 207,0 3000,00
10,0 145,04 300,0 4351,20
20,0 290,08 400,0 5801,60
30,0 435,12 414,0 6000,00
34,5 500,00 500,0 7252,00

Пример на вычисление:

(1) Дано: 22,6 бар

Найти: значение в psi

Решение: переводный коэффициент бар – psi = 14,504

22,6 x 14,504 = 327,79 psi

(2) Дано: 80 psi

Найти: значение в бар

Решение: переводный коэффициент psi – бар = 0,069

80 x 0,069 = 5,52 бар

Запомни:
м вод. ст. = метр водяного столба
мм рт. ст. = миллиметр ртутного столба; используется также мм Hg
(Hg = гидраргирум)
атм = физическая атмосфера
ат = техническая атмосфера

Дополнительную информацию о единицах давления и расчете давления Вы найдете в норме по вопросам давления DIN 1314.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 техническая атмосфера [ат] = 0,980665000000027 бар [бар]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Удельный расход топлива

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах — они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

небольшая история и единицы измерения

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 миллиметр ртутного столба (0°C) [мм рт.ст.] = 0,0013595060494664 техническая атмосфера [ат]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Термическое сопротивление

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах — они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Паскаль (Па, Pa)

Бар (бар, bar) — примерно равен одной атмосфере.

Один бар равен 105 Н/м² или 106 дин/см² или 0,986923 атм.

Используется также миллибар

PSI (lb.p.sq.in.)

миллиметр водяного столба дюйм ртутного столба (inHg)

Микрон (микрон, μ )

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,

Вам понадобится

  • — калькулятор;
  • — компьютер;
  • — интернет.

Инструкция

  • При переводе давления в паскали учтите, что при измерении кровяного давления, в метеорологических сводках, а также среди инженеров-вакуумщиков часто сокращают наименование «мм рт. ст.» до «мм» (иногда опускают и миллиметры). Поэтому, если давление задано в миллиметрах или просто указано число, то скорее всего это мм рт. ст. (при возможности, все же уточните). При измерении очень низких давлений вместо мм рт. ст. «вакуумщиками» применяется единица «микрон ртутного столба», которую обычно обозначают как «мкм». Соответственно, если давление указано в микронах, то просто разделите это число на тысячу и получите давление в мм рт. ст.
  • При измерении высоких давлений часто применяется такая единица как «атмосфера», соответствующая нормальному атмосферному давлению.

    Миллиметр ртутного столба

    Одна атмосфера (атм, atm) равняется 760 мм рт. ст. То есть, для получения давления в мм рт. ст. умножьте количество атмосфер на 760. Если же давление указано в «технических атмосферах», то для перевода давления в мм рт. ст. умножьте это число на 735,56.

  • Пример.

    505400 Па (или 505,4 кПа).

CompleteRepair.Ru

При монтаже кондиционера необходимо измерять давление в системе. На манометрах используются различные единицы измерения давления, которые, в свою очередь, могут отличаться от тех, которые указаны в технических характеристиках самого кондиционера. Как избежать путаницы в этом разнообразии?
В помощь начинающим монтажникам ниже приведено краткое описание различных единиц измерения давления.

Паскаль (Па, Pa) — равен давлению силы в один ньютон на один квадратный метр.

Бар (бар, bar)

Используется также миллибар (мбар, mbar), 1 мбар = 0,001 бар.

Атмосфера техническая (ат, at) — равна давлению 1 кгс на 1 см².

Атмосфера стандартная, физическая (атм, atm) — равна 101 325 Па и 760 миллиметрам ртутного столба.

PSI (lb.p.sq.in.) — фунт-сила на квадратный дюйм (англ. pound-force per square inch, lbf/in²) равен 6 894,75729 Па.

Миллиметр ртутного столба (мм рт. ст., mm Hg, торр, Torr) — равен 133,3223684 Па. Используются также миллиметр водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.) и дюйм ртутного столба (inHg) .

Миллиметр ртутного столба в паскаль

1 inHg = 3,386389 кПа при 0°C.

Микрон (микрон, μ ) — равен 0,001 мм рт. ст. (0,001 Торр).

Таблица перевода единиц измерения давления:

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,
технический специалист компании «Расходка»

Для того, чтобы узнать, сколько в миллиметре ртутного столба атмосфер, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество миллиметров ртутного столба, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести миллиметры ртутного столба или атмосферы в другие единицы измерения, просто кликните по соответствующей ссылке.

Что такое «миллиметр ртутного столба»

Внесистемная единица миллиметр ртутного столба (мм рт. ст.; mm Hg), иногда называемая «торр», равна 101 325 / 760 ≈ 133,322 368 4 Па. Атмосферное давление измеряли барометром со столбиком ртути, отсюда и пошло название этой единицы измерения. На уровне моря атмосферное давление примерно равно 760 мм рт. ст. или 101 325 Па, отсюда значение – 101 325/760 Па. Данная единица традиционно используется в вакуумной технике, при измерении кровяного давления и в метеосводках. В некоторых приборах измерения производят по миллиметрам водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.), а в США и Канаде встречается также «дюйм ртутного столба» (inHg) = 3,386389 кПа при 0°C.

Что такое «атмосфера»

Внесистемная единица измерения давления, приблизительно соответствующая атмосферному давлению на уровне мирового океана. Равноправно существуют две единицы – техническая атмосфера (ат, at) и нормальная, стандартная или физическая атмосфера (атм, atm). Одна техническая атмосфера – это равномерное перпендикулярное давление силы в 1 кгс на ровную поверхность площадью 1 см². 1 ат = 98 066,5 Па.

Калькулятор Давление

Стандартная атмосфера – это давление ртутного столба высотой 760 мм при плотности ртути 13 595,04 кг/м³ и нулевой температуре. 1 атм = 101 325 Па = 1,033233 ат. В РФ используется только техническая атмосфера.

В прошлом для абсолютного и избыточного давления употребляли термины «ата» и «ати». Избыточное давление – разница между абсолютным и атмосферным давлением, когда абсолютное больше атмосферного. Разница между атмосферным и абсолютным давлением, когда абсолютное давление ниже атмосферного, называется разрежением (вакуумом).

Миллиметры ртутного столба и паскали применяются для измерения давления. Хотя паскаль и является официальной системной единицей, внесистемные миллиметры ртутного столба по своей распространенности ничем не уступают им. «Миллиметры» даже имеют собственное название – «торр» (torr), данное в честь известного ученого Торричелли. Между двумя единицами существует точная зависимость: 1 мм рт. ст. = 101325 / 760 Па, которая и является определением единицы «мм рт. ст.».

Вам понадобится

  • — калькулятор;
  • — компьютер;
  • — интернет.

Инструкция

  • Чтобы перевести давление, заданное в миллиметрах ртутного столба, в паскали умножьте количество мм рт. ст. на число 101325, а затем разделите на 760. То есть, воспользуйтесь несложной формулой:Кп = Км * 101325 / 760,где:
    Км – давление в миллиметрах ртутного столба (мм рт. ст., mm Hg, торр., torr)
    Кп – давление в паскалях (Па, Ра).
  • Использование вышеприведенной формулы дает самое точное соответствие между двумя системами измерения. Для практических же расчетов воспользуйтесь более простой формулой:Кп = Км * 133,322 или упрощенно Кп = Км * 133.
  • При переводе давления в паскали учтите, что при измерении кровяного давления, в метеорологических сводках, а также среди инженеров-вакуумщиков часто сокращают наименование «мм рт. ст.» до «мм» (иногда опускают и миллиметры). Поэтому, если давление задано в миллиметрах или просто указано число, то скорее всего это мм рт. ст. (при возможности, все же уточните).

    Как перевести Па в мм. рт. ст.?

    При измерении очень низких давлений вместо мм рт. ст. «вакуумщиками» применяется единица «микрон ртутного столба», которую обычно обозначают как «мкм». Соответственно, если давление указано в микронах, то просто разделите это число на тысячу и получите давление в мм рт. ст.

  • При измерении высоких давлений часто применяется такая единица как «атмосфера», соответствующая нормальному атмосферному давлению. Одна атмосфера (атм, atm) равняется 760 мм рт. ст. То есть, для получения давления в мм рт. ст. умножьте количество атмосфер на 760. Если же давление указано в «технических атмосферах», то для перевода давления в мм рт. ст. умножьте это число на 735,56.
  • Пример.
    Давление в шине автомобиля составляет 5 атмосфер. Чему будет равняться это давление, выраженное в паскалях?Решение.
    Переведите давление из атмосфер в мм рт. ст.: 5 * 760 = 3800.
    Переведите давление из мм рт. ст. в паскали: 3800 * 133 = 505400.Ответ.
    505400 Па (или 505,4 кПа).
  • Если у вас имеется компьютер или мобильный телефон с выходом в интернет, то просто найдите любой онлайн-сервис конвертации физических единиц измерения. Для этого наберите в поисковике фразу типа «перевести из мм рт ст в паскали» и воспользуйтесь указаниями на сайте сервиса.

CompleteRepair.Ru

Перевод паскалей в миллиметры ртутного столба

При монтаже кондиционера необходимо измерять давление в системе. На манометрах используются различные единицы измерения давления, которые, в свою очередь, могут отличаться от тех, которые указаны в технических характеристиках самого кондиционера. Как избежать путаницы в этом разнообразии?
В помощь начинающим монтажникам ниже приведено краткое описание различных единиц измерения давления.

Паскаль (Па, Pa) — равен давлению силы в один ньютон на один квадратный метр.

Бар (бар, bar) — примерно равен одной атмосфере. Один бар равен 105 Н/м² или 106 дин/см² или 0,986923 атм.

Используется также миллибар (мбар, mbar), 1 мбар = 0,001 бар.

Атмосфера техническая (ат, at) — равна давлению 1 кгс на 1 см².

Атмосфера стандартная, физическая (атм, atm) — равна 101 325 Па и 760 миллиметрам ртутного столба.

PSI (lb.p.sq.in.) — фунт-сила на квадратный дюйм (англ. pound-force per square inch, lbf/in²) равен 6 894,75729 Па.

Миллиметр ртутного столба (мм рт. ст., mm Hg, торр, Torr) — равен 133,3223684 Па. Используются также миллиметр водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.) и дюйм ртутного столба (inHg) . 1 inHg = 3,386389 кПа при 0°C.

Микрон (микрон, μ ) — равен 0,001 мм рт. ст. (0,001 Торр).

Таблица перевода единиц измерения давления:

Паскаль Бар Техническая атмосфера Физическая атмосфера Миллиметр ртутного столба Фунт-сила на квадратный дюйм Микрон Дюйм ртутного столба
(Pa, Па) (bar, бар) (at, ат) (atm, атм) (mmHg, torr, торр) (psi) (μκ, микрон) (» Hg, inHg)
1 Па 1 Н·м2 10-5 10,197·10-6 9,8692·10-6 7,5006·10-6 145,04·10-6 7,5 29,53·10-5
1 бар 105 1·106 дин/см2 1,0197 0,98692 750,06 14,504 7,5·105 2,953
1 ат 98066,5 0,980665 1 кгс/см2 0,96784 735,56 14,223 7,356·105 28,96
1 атм 101325 1,01325 1,033 1 атм 760 14,696 7,6·105 29,9222
1 mmHg 133,322 1,3332·10-3 1,3595·10-3 1,3158·10-3 1 mmHg 19,337·10-3 1000 39,37·10-3
1 psi 6894,76 68,948·10-3 70,307·10-3 68,046·10-3 51,715 1 lbf/in2 5,171·104 0,2036
1 микрон 0,1333 1,333·10-6 1,3595·10-6 1,3158·10-6 10-3 19,337·10-6 1 μκ 39,37·10-6
1″ Hg 3,386·103 0,33864 34,531·10-3 33,42·10-3 25,4 4,9116 25,4·103 1 inHg

Алексей Матвеев,
технический специалист компании «Расходка»

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2 ; psf; psi; дюймы рт.ст.; дюймы в.ст.

Обратите внимание, тут 2 таблицы и список . Вот еще полезная ссылка:

Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст.
В единицы:
Па (Н/м 2) МПа bar atmosphere мм рт. ст. мм в.ст. м в.ст. кгс/см 2
Следует умножить на:
Па (Н/м 2) 1 1*10 -6 10 -5 9.87*10 -6 0.0075 0.1 10 -4 1.02*10 -5
МПа 1*10 6 1 10 9.87 7.5*10 3 10 5 10 2 10.2
бар 10 5 10 -1 1 0.987 750 1.0197*10 4 10.197 1.0197
атм 1.01*10 5 1.01* 10 -1 1.013 1 759.9 10332 10.332 1.03
мм рт. ст. 133.3 133.3*10 -6 1.33*10 -3 1.32*10 -3 1 13.3 0.013 1.36*10 -3
мм в.ст. 10 10 -5 0.000097 9.87*10 -5 0.075 1 0.001 1.02*10 -4
м в.ст. 10 4 10 -2 0.097 9.87*10 -2 75 1000 1 0.102
кгс/см 2 9.8*10 4 9.8*10 -2 0.98 0.97 735 10000 10 1
47.8 4.78*10 -5 4.78*10 -4 4.72*10 -4 0.36 4.78 4.78 10 -3 4.88*10 -4
6894.76 6.89476*10 -3 0.069 0.068 51.7 689.7 0.690 0.07
Дюймов рт.ст. / inches Hg 3377 3.377*10 -3 0.0338 0.033 25.33 337.7 0.337 0.034
Дюймов в.ст. / inches H 2 O 248.8 2.488*10 -2 2.49*10 -3 2.46*10 -3 1.87 24.88 0.0249 0.0025
Таблица перевода единиц измерения давления. Па; МПа; бар; атм; мм рт.ст.; мм в.ст.; м в.ст., кг/см 2; psf; psi; дюймы рт.ст.; дюймы в.ст .
Для того, чтобы перевести давление в единицах: В единицы:
фунтов на кв. фут / pound square feet (psf) фунтов на кв. дюйм / pound square inches (psi) Дюймов рт.ст. / inches Hg Дюймов в.ст. / inches H 2 O
Следует умножить на:
Па (Н/м 2) 0.021 1.450326*10 -4 2.96*10 -4 4.02*10 -3
МПа 2.1*10 4 1.450326*10 2 2.96*10 2 4.02*10 3
бар 2090 14.50 29.61 402
атм 2117.5 14.69 29.92 407
мм рт. ст. 2.79 0.019 0.039 0.54
мм в.ст. 0.209 1.45*10 -3 2.96*10 -3 0.04
м в.ст. 209 1.45 2.96 40.2
кгс/см 2 2049 14.21 29.03 394
фунтов на кв. фут / pound square feet (psf) 1 0.0069 0.014 0.19
фунтов на кв. дюйм / pound square inches (psi) 144 1 2.04 27.7
Дюймов рт.ст. / inches Hg 70.6 0.49 1 13.57
Дюймов в.ст. / inches H 2 O 5.2 0.036 0.074 1

Подробный список единиц давления:

  • 1 Па (Н/м 2) = 0.0000102 Атмосфера «метрическая» / Atmosphere (metric)
  • 1 Па (Н/м 2) = 0.0000099 Atmosphere (standard) = Standard atmosphere
  • 1 Па (Н/м 2) = 0.00001 Бар / Bar
  • 1 Па (Н/м 2) = 10 Барад / Barad
  • 1 Па (Н/м 2) = 0.0007501 Сантиметров рт. ст. (0 °C)
  • 1 Па (Н/м 2) = 0.0101974 Сантиметров во. ст. (4 °C)
  • 1 Па (Н/м 2) = 10 Дин/квадратный сантиметр
  • 1 Па (Н/м 2) = 0.0003346 Футов водяного столба / Foot of water (4 °C)
  • 1 Па (Н/м 2) = 10 -9 Гигапаскалей
  • 1 Па (Н/м 2) = 0.01
  • 1 Па (Н/м 2) = 0.0002953 Дюмов рт.ст. / Inch of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.0002961 Дюймов рт. ст. / Inch of mercury (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040186 Дюмов в.ст. / Inch of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.0040147 Дюмов в.ст. / Inch of water (4 °C)
  • 1 Па (Н/м 2) = 0.0000102 кгс/см 2 / Kilogram force/centimetre 2
  • 1 Па (Н/м 2) = 0.0010197 кгс/дм 2 / Kilogram force/decimetre 2
  • 1 Па (Н/м 2) = 0.101972 кгс/м 2 / Kilogram force/meter 2
  • 1 Па (Н/м 2) = 10 -7 кгс/мм 2 / Kilogram force/millimeter 2
  • 1 Па (Н/м 2) = 10 -3 кПа
  • 1 Па (Н/м 2) = 10 -7 Килофунтов силы/ квадратный дюйм / Kilopound force/square inch
  • 1 Па (Н/м 2) = 10 -6 МПа
  • 1 Па (Н/м 2) = 0.000102 Метров в.ст. / Meter of water (4 °C)
  • 1 Па (Н/м 2) = 10 Микробар / Microbar (barye, barrie)
  • 1 Па (Н/м 2) = 7.50062 Микронов рт.ст. / Micron of mercury (millitorr)
  • 1 Па (Н/м 2) = 0.01 Милибар / Millibar
  • 1 Па (Н/м 2) = 0.0075006 Миллиметров рт.ст / Millimeter of mercury (0 °C)
  • 1 Па (Н/м 2) = 0.10207 Миллиметров в.ст. / Millimeter of water (15.56 °C)
  • 1 Па (Н/м 2) = 0.10197 Миллиметров в.ст. / Millimeter of water (4 °C)
  • 1 Па (Н/м 2) =7.5006 Миллиторр / Millitorr
  • 1 Па (Н/м 2) = 1Н/м 2 / Newton/square meter
  • 1 Па (Н/м 2) = 32.1507 Повседневных унций / кв. дюйм / Ounce force (avdp)/square inch
  • 1 Па (Н/м 2) = 0.0208854 Фунтов силы на кв. фут / Pound force/square foot
  • 1 Па (Н/м 2) = 0.000145 Фунтов силы на кв. дюйм / Pound force/square inch
  • 1 Па (Н/м 2) = 0.671969 Паундалов на кв. фут / Poundal/square foot
  • 1 Па (Н/м 2) = 0.0046665 Паундалов на кв. дюйм / Poundal/square inch
  • 1 Па (Н/м 2) = 0.0000093 Длинных тонн на кв. фут / Ton (long)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Длинных тонн на кв. дюйм / Ton (long)/inch 2
  • 1 Па (Н/м 2) = 0.0000104 Коротких тонн на кв. фут / Ton (short)/foot 2
  • 1 Па (Н/м 2) = 10 -7 Тонн на кв. дюйм / Ton/inch 2
  • 1 Па (Н/м 2) = 0.0075006 Торр / Torr

Паскаль (Па, Pa)

Паскаль (Па, Pa) — единица измерения давления в Международной системе единиц измерения (система СИ). Единица названа в честь французского физика и математика Блеза Паскаля.

Паскаль равен давлению, вызываемому силой, равной одному ньютону (Н), равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр:

1 паскаль (Па) ≡ 1 Н/м²

Кратные единицы образуют с помощью стандартных приставок СИ:

1 МПа (1 мегапаскаль) = 1000 кПа (1000 килопаскалей)

Атмосфера (физическая, техническая)

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана.

Существуют две примерно равные друг другу единицы с таким названием:

  1. Физическая, нормальная или стандартная атмосфера (атм, atm) — в точности равна 101 325 Па или 760 миллиметрам ртутного столба.
  2. Техническая атмосфера (ат, at, кгс/см²) — равна давлению, производимому силой 1 кгс, направленной перпендикулярно и равномерно распределённой по плоской поверхности площадью 1 см² (98 066,5 Па).

    1 техническая атмосфера = 1 кгс/см² («килограмм-сила на сантиметр квадратный»). // 1 кгс = 9,80665 ньютонов (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus, означающего вес.

Заметьте разницу: не pound (по-английски «фунт»), а pondus .

На практике приближенно принимают: 1 МПа = 10 атмосфер, 1 атмосфера = 0,1 МПа.

Бар

Бар (от греческого βάρος — тяжесть) — внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Н/м² (или 0,1 МПа).

Соотношения между единицами давления

1 МПа = 10 бар = 10,19716 кгс/см² = 145,0377 PSI = 9,869233 (физ. атм.) =7500,7 мм рт.ст.

1 бар = 0,1 МПа = 1,019716 кгс/см² = 14,50377 PSI = 0,986923 (физ. атм.) =750,07 мм рт.ст.

1 ат (техническая атмосфера) = 1 кгс/см² (1 kp/cm², 1 kilopond/cm²) = 0,0980665 МПа = 0,98066 бар = 14,223

1 атм (физическая атмосфера) = 760 мм рт.ст.= 0,101325 МПа = 1,01325 бар = 1,0333 кгс/см²

1 мм ртутного столба = 133,32 Па =13,5951 мм водяного столба

Объемы жидкостей и газов / Volume

1 gl (US) = 3,785 л

1 gl (Imperial) = 4,546 л

1 cu ft = 28,32 л = 0,0283 куб.м

1 cu in = 16,387 куб.см

Скорость потока / Flow

1 л/с = 60 л/мин = 3,6 куб.м/час = 2,119 cfm

1 л/мин = 0,0167 л/с = 0,06 куб.м/час = 0,0353 cfm

1 куб.м/час = 16,667 л/мин = 0,2777 л/с = 0,5885 cfm

1 cfm (кубический фут в минуту) = 0,47195 л/с = 28,31685 л/мин = 1,699011 куб.м/час

Пропускная способность / Valve flow characteristics

Коэффициент (фактор) расхода Kv

Flow Factor — Kv

Основным параметром запорного и регулирующего органа является коэффициент расхода Kv. Коэффициент расхода Kv показывает объем воды в куб.м/час (cbm/h) при температуре 5-30ºC, проходящей через затвор с потерей напора в 1 бар.

Коэффициент расхода Cv

Flow Coefficient — Cv

В странах с дюймовой системой измерений используется коэффициент Cv. Он показывает, какой расход воды в галлон/мин (gallon/minute, gpm) при температуре 60ºF проходит через арматуру при перепаде давления на арматуре в 1 psi.

Кинематическая вязкость / Viscosity

1 ft = 12 in = 0,3048 м

1 in = 0,0833 ft = 0,0254 м = 25,4 мм

1 м = 3,28083 ft = 39,3699 in

Единицы силы / Force

1 Н = 0,102 кгс = 0,2248 lbf

1 lbf = 0,454 кгс = 4,448 Н

1 кгс = 9,80665 Н (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus , означающего вес. Обратите внимание: не pound (по-английски «фунт»), а pondus .

Единицы массы / Mass

1 фунт = 16 унций = 453,59 г

Момент силы (крутящий момент) / Torque

1 кгс. м = 9,81 Н. м = 7,233 фунт-сила-фут (lbf * ft)

Единицы измерения мощности / Power

Некоторые величины:

Ватт (Вт, W, 1 Вт = 1 Дж/с), лошадиная сила (л.с. — рус., hp или HP — англ., CV — франц., PS — нем.)

Соотношение единиц:

В России и некоторых других странах 1 л.с. (1 PS, 1 CV) = 75 кгс* м/с = 735,4988 Вт

В США, Великобритании и других странах 1 hp = 550 фут*фунт/с = 745,6999 Вт

Температура / Temperature

Температура по шкале Фаренгейта:

[°F] = [°C] × 9⁄5 + 32

[°F] = [K] × 9⁄5 − 459,67

Температура по шкале Цельсия:

[°C] = [K] − 273,15

[°C] = ([°F] − 32) × 5⁄9

Температура по шкале Кельвина:

[K] = [°C] + 273.15

[K] = ([°F] + 459,67) × 5⁄9

В котором давление уравновешивается столбиком жидкости . В качестве жидкости часто используется , поскольку у неё очень высокая плотность (≈13 600 кг/м³ ) и низкое давление насыщенного пара при комнатной температуре.

Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным (точно) 760 мм рт. ст. , или 101 325 Па , отсюда вытекает определение миллиметра ртутного столба (101 325/760 Па ). Ранее использовалось несколько иное определение: давление столба ртути высотой 1 мм и плотностью 13,5951·10 3 кг/м³ при ускорении свободного падения 9,806 65 м/с² . Разница между этими двумя определениями составляет 0,000 014% .

Миллиметры ртутного столба используются, например, в вакуумной технике, в метеорологических сводках и при измерении кровяного давления . Поскольку в вакуумной технике очень часто давление измеряют просто в миллиметрах, опуская слова «ртутного столба», естественный для вакуумщиков переход к мкм (микронам) осуществляется, как правило, тоже без указания «давления ртутного столба». Соответственно, когда на вакуумном насосе указано давление 25 мкм, речь идёт о предельном разрежении, создаваемом этим насосом, измеряемом в микронах ртутного столба. Само собой, никто не использует манометр Торричелли для измерения таких низких давлений. Для измерения низких давлений используют другие приборы, например, манометр (вакуумметр) Мак-Леода .

Иногда используются миллиметры водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст. ). В США и Канаде также, используется единица измерения «дюйм ртутного столба» (обозначение — inHg). 1 inHg = 3,386389 кПа при 0 °C.

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)
Миллиметр ртутного столба
(мм рт.ст.,mmHg, Torr, торр)
Метр водяного столба
(м вод. ст.,m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
1 мм рт.ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт.ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

См. также

Wikimedia Foundation . 2010 .

  • Родченко, Александр Михайлович
  • Шайхет, Аркадий Самойлович

Смотреть что такое «Миллиметр ртутного столба» в других словарях:

    — (мм рт. ст., mm Hg), внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. МИЛЛИМЕ … Физическая энциклопедия

    Внесистемная ед. давления, примен. при измер. атм. давления водяного пара, высокого вакуума и т. д. Обозн.: рус. — мм рт. ст., междунар. — mm Hg. 1 мм рт. ст. равен гидростатич. давлению столба ртути высотой 1 мм и плотностью 13,5951… … Справочник технического переводчика

    Большой Энциклопедический словарь

    — – внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. [Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.] Рубрика термина: Общие термины… … Энциклопедия терминов, определений и пояснений строительных материалов

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм водного столба. * * * МИЛЛИМЕТР РТУТНОГО СТОЛБА МИЛЛИМЕТР РТУТНОГО СТОЛБА, внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 … Энциклопедический словарь

    Торр, внесистемная единица давления, применяемая при измерении атмосферного давления водяного пара, высокого вакуума и т. д. Обозначение: русское мм рт. ст., международное mm Hg. 1 мм ртутного столба равен гидростатическому … Энциклопедический словарь по металлургии

    — (mmHg) единица давления, в результате которого ртуть в столбике поднимается на 1 миллиметр. 1 мм рт. ст. = 133,3224 Па … Толковый словарь по медицине

    Торр, внесистемная единица давления, применяемая при измерениях атмосферного давления, парциального давления водяного пара, высокого вакуума и т. д. Обозначения: русское мм рт. ст., международное mm Hg. 1 мм рт. см. равен… … Большая советская энциклопедия

    Не подлежащая применению внесистемная ед. давления. Обозначение мм рт. ст. 1 мм рт. ст. = 133,322 Па (см. Паскаль) … Большой энциклопедический политехнический словарь

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм вод. ст … Естествознание. Энциклопедический словарь

Единицы измерений. Нормальное атмосферное давление для человека Перевести из па в мм рт ст

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 паскаль [Па] = 0,00750063755419211 миллиметр ртутного столба (0°C) [мм рт.ст.]

Исходная величина

Преобразованная величина

паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах — они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Атмосферное давление создается воздушной оболочкой и испытывают его все предметы, находящиеся на поверхности Земли. Причина в том, что воздух, как и всё остальное, притягивается к земному шару посредством гравитации. В сводках прогноза погоды сведения о давлении атмосферы даются в миллиметрах ртутного столба. А ведь это внесистемная единица. Официально давление, как физическая величина, в СИ с 1971 году выражается в «паскалях», равный силе в 1 Н, действующей на поверхность площадью 1 м2. Соответственно, существует переход «мм. рт. ст. в паскали».

Происхождение этой единицы связано с именем ученого Эванджелиста Торричелли. Именно он в 1643 году, совместно с Вивиани, измерил атмосферное давление, используя трубку, из которой был выкачан воздух. Она заполнялась ртутью, обладающей наибольшей среди жидкостей плотностью (13 600 кг/м3) . Впоследствии к трубке была прикреплена вертикальная шкала, и такой прибор получил название ртутный барометр. В опыте Торричелли столбик ртути, уравновешивающий внешнее давление воздуха, установился на высоте 76 см или 760 мм. Его и взяли в качестве меры воздушного давления. Значение 760 мм. рт. ст считается нормальным атмосферным давлением при температуре 00С на широте уровня моря. Известно, что давление атмосферы очень изменчиво и колеблется в течение дня. Это связано с изменением температуры. Также оно уменьшается с высотой. Ведь в верхних слоях атмосферы плотность воздуха становится меньше.

Используя физическую формулу, есть возможность перевести миллиметры ртутного столба в паскали. Для этого нужно плотность ртути (13600кг/м3) умножить на ускорение свободного падения (9,8 кг/м3) и умножить на высоту столбика ртути (0,6м) . Соответственно, получаем стандартное атмосферное давление 101325 Па или примерно 101 кПа. В метеорологии еще используют гектопаскали. 1 гПа = 100 Па. А сколько паскалей будет составлять 1 мм. рт. ст? Для этого 101325 Па делим на 760. Получаем нужную зависимость: 1 мм. рт. ст = 3,2 Па или примерно 3,3 Па. Поэтому, если требуется, например, перевести 750 мм. рт. ст. в паскали, нужно просто перемножить числа 750 и 3,3. Полученный ответ и будет давление, измеренное в паскалях.

Интересно, что в 1646 году ученый Паскаль использовал для измерения атмосферного давления водяной барометр. Но так как плотность воды меньше плотности ртути, то высота водного столба была намного выше, чем ртутного. Аквалангисты хорошо знают, что атмосферное давление такое же, что и на глубине 10 метров под водой. Поэтому, использование водяного барометра вызывает некоторые неудобства. Хотя преимуществом является то, что вода всегда под рукой и не ядовита.

Внесистемные единицы давления на сегодняшний день широко распространены. Кроме метеорологических сводок миллиметры ртутного столба во многих странах используют при измерении кровяного давления. В легких человека давление выражают в сантиметрах водного столба. В вакуумной технике применяются миллиметры, микрометры, а также дюймы ртутного столба. Причем, вакуумщики чаще всего опускают слова «ртутного столба» и говорят о давлении, измеряемом в миллиметрах. А вот мм. рт. ст. в паскали никто не переводит. Вакуумные системы предполагают слишком низкие давления, по сравнению с атмосферным. Ведь вакуум означает «безвоздушное пространство».

Поэтому, здесь уже приходится говорить о давлении в несколько микрометров или микронах ртутного столба. А фактическое измерение давления проводится с помощью специальных манометров. Так вакуумметр Мак-Леода сжимает газ с помощью видоизмененного ртутного манометра, поддерживая стабильное состояние газа. Методика прибора обладает наибольшей точностью, но способ измерения занимает много времени. Не всегда перевод в паскали имеет практическое значение. Ведь, благодаря когда-то проведенному опыту существование атмосферного давления было наглядно доказано, а его измерение стало общедоступным. Так на стенах музеев, картинных галерей, библиотек можно встретить незамысловатые приборы – барометры, не использующие жидкости. А их шала проградуирована для удобства и в миллиметрах ртутного столба, и в паскалях.

; иногда называется «торр» (русское обозначение — торр , международное — Torr) в честь Эванджелисты Торричелли .

Происхождение этой единицы связано со способом измерения атмосферного давления при помощи барометра , в котором давление уравновешивается столбиком жидкости . В качестве жидкости часто используется , поскольку у неё очень высокая плотность (≈13 600 кг/м³ ) и низкое давление насыщенного пара при комнатной температуре.

Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным (точно) 760 мм рт. ст. , или 101 325 Па , отсюда вытекает определение миллиметра ртутного столба (101 325/760 Па ). Ранее использовалось несколько иное определение: давление столба ртути высотой 1 мм и плотностью 13,5951·10 3 кг/м³ при ускорении свободного падения 9,806 65 м/с² . Разница между этими двумя определениями составляет 0,000 014% .

Миллиметры ртутного столба используются, например, в вакуумной технике, в метеорологических сводках и при измерении кровяного давления . Поскольку в вакуумной технике очень часто давление измеряют просто в миллиметрах, опуская слова «ртутного столба», естественный для вакуумщиков переход к мкм (микронам) осуществляется, как правило, тоже без указания «давления ртутного столба». Соответственно, когда на вакуумном насосе указано давление 25 мкм, речь идёт о предельном разрежении, создаваемом этим насосом, измеряемом в микронах ртутного столба. Само собой, никто не использует манометр Торричелли для измерения таких низких давлений. Для измерения низких давлений используют другие приборы, например, манометр (вакуумметр) Мак-Леода .

Иногда используются миллиметры водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст. ). В США и Канаде также используется единица измерения «дюйм ртутного столба» (обозначение — inHg). 1 inHg = 3,386389 кПа при 0 °C.

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)
Миллиметр ртутного столба
(мм рт. ст., mm Hg, Torr, торр)
Метр водяного столба
(м вод. ст., m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
1 мм рт. ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт. ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

См. также

Напишите отзыв о статье «Миллиметр ртутного столба»

Примечания

Отрывок, характеризующий Миллиметр ртутного столба

В октябре 1805 года русские войска занимали села и города эрцгерцогства Австрийского, и еще новые полки приходили из России и, отягощая постоем жителей, располагались у крепости Браунау. В Браунау была главная квартира главнокомандующего Кутузова.
11 го октября 1805 года один из только что пришедших к Браунау пехотных полков, ожидая смотра главнокомандующего, стоял в полумиле от города. Несмотря на нерусскую местность и обстановку (фруктовые сады, каменные ограды, черепичные крыши, горы, видневшиеся вдали), на нерусский народ, c любопытством смотревший на солдат, полк имел точно такой же вид, какой имел всякий русский полк, готовившийся к смотру где нибудь в середине России.
С вечера, на последнем переходе, был получен приказ, что главнокомандующий будет смотреть полк на походе. Хотя слова приказа и показались неясны полковому командиру, и возник вопрос, как разуметь слова приказа: в походной форме или нет? в совете батальонных командиров было решено представить полк в парадной форме на том основании, что всегда лучше перекланяться, чем не докланяться. И солдаты, после тридцативерстного перехода, не смыкали глаз, всю ночь чинились, чистились; адъютанты и ротные рассчитывали, отчисляли; и к утру полк, вместо растянутой беспорядочной толпы, какою он был накануне на последнем переходе, представлял стройную массу 2 000 людей, из которых каждый знал свое место, свое дело и из которых на каждом каждая пуговка и ремешок были на своем месте и блестели чистотой. Не только наружное было исправно, но ежели бы угодно было главнокомандующему заглянуть под мундиры, то на каждом он увидел бы одинаково чистую рубаху и в каждом ранце нашел бы узаконенное число вещей, «шильце и мыльце», как говорят солдаты. Было только одно обстоятельство, насчет которого никто не мог быть спокоен. Это была обувь. Больше чем у половины людей сапоги были разбиты. Но недостаток этот происходил не от вины полкового командира, так как, несмотря на неоднократные требования, ему не был отпущен товар от австрийского ведомства, а полк прошел тысячу верст.
Полковой командир был пожилой, сангвинический, с седеющими бровями и бакенбардами генерал, плотный и широкий больше от груди к спине, чем от одного плеча к другому. На нем был новый, с иголочки, со слежавшимися складками мундир и густые золотые эполеты, которые как будто не книзу, а кверху поднимали его тучные плечи. Полковой командир имел вид человека, счастливо совершающего одно из самых торжественных дел жизни. Он похаживал перед фронтом и, похаживая, подрагивал на каждом шагу, слегка изгибаясь спиною. Видно, было, что полковой командир любуется своим полком, счастлив им, что все его силы душевные заняты только полком; но, несмотря на то, его подрагивающая походка как будто говорила, что, кроме военных интересов, в душе его немалое место занимают и интересы общественного быта и женский пол.
– Ну, батюшка Михайло Митрич, – обратился он к одному батальонному командиру (батальонный командир улыбаясь подался вперед; видно было, что они были счастливы), – досталось на орехи нынче ночью. Однако, кажется, ничего, полк не из дурных… А?

В котором давление уравновешивается столбиком жидкости . В качестве жидкости часто используется , поскольку у неё очень высокая плотность (≈13 600 кг/м³ ) и низкое давление насыщенного пара при комнатной температуре.

Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным (точно) 760 мм рт. ст. , или 101 325 Па , отсюда вытекает определение миллиметра ртутного столба (101 325/760 Па ). Ранее использовалось несколько иное определение: давление столба ртути высотой 1 мм и плотностью 13,5951·10 3 кг/м³ при ускорении свободного падения 9,806 65 м/с² . Разница между этими двумя определениями составляет 0,000 014% .

Миллиметры ртутного столба используются, например, в вакуумной технике, в метеорологических сводках и при измерении кровяного давления . Поскольку в вакуумной технике очень часто давление измеряют просто в миллиметрах, опуская слова «ртутного столба», естественный для вакуумщиков переход к мкм (микронам) осуществляется, как правило, тоже без указания «давления ртутного столба». Соответственно, когда на вакуумном насосе указано давление 25 мкм, речь идёт о предельном разрежении, создаваемом этим насосом, измеряемом в микронах ртутного столба. Само собой, никто не использует манометр Торричелли для измерения таких низких давлений. Для измерения низких давлений используют другие приборы, например, манометр (вакуумметр) Мак-Леода .

Иногда используются миллиметры водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст. ). В США и Канаде также, используется единица измерения «дюйм ртутного столба» (обозначение — inHg). 1 inHg = 3,386389 кПа при 0 °C.

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)
Миллиметр ртутного столба
(мм рт.ст.,mmHg, Torr, торр)
Метр водяного столба
(м вод. ст.,m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
1 мм рт.ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт.ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

См. также

Wikimedia Foundation . 2010 .

  • Родченко, Александр Михайлович
  • Шайхет, Аркадий Самойлович

Смотреть что такое «Миллиметр ртутного столба» в других словарях:

    — (мм рт. ст., mm Hg), внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. МИЛЛИМЕ … Физическая энциклопедия

    Внесистемная ед. давления, примен. при измер. атм. давления водяного пара, высокого вакуума и т. д. Обозн.: рус. — мм рт. ст., междунар. — mm Hg. 1 мм рт. ст. равен гидростатич. давлению столба ртути высотой 1 мм и плотностью 13,5951… … Справочник технического переводчика

    Большой Энциклопедический словарь

    — – внесистемная ед. давления; 1 мм рт. ст.= 133,332 Па =1,35952 10 3 кгс/см2 = 13,595 мм вод. ст. [Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.] Рубрика термина: Общие термины… … Энциклопедия терминов, определений и пояснений строительных материалов

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм водного столба. * * * МИЛЛИМЕТР РТУТНОГО СТОЛБА МИЛЛИМЕТР РТУТНОГО СТОЛБА, внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 … Энциклопедический словарь

    Торр, внесистемная единица давления, применяемая при измерении атмосферного давления водяного пара, высокого вакуума и т. д. Обозначение: русское мм рт. ст., международное mm Hg. 1 мм ртутного столба равен гидростатическому … Энциклопедический словарь по металлургии

    — (mmHg) единица давления, в результате которого ртуть в столбике поднимается на 1 миллиметр. 1 мм рт. ст. = 133,3224 Па … Толковый словарь по медицине

    Торр, внесистемная единица давления, применяемая при измерениях атмосферного давления, парциального давления водяного пара, высокого вакуума и т. д. Обозначения: русское мм рт. ст., международное mm Hg. 1 мм рт. см. равен… … Большая советская энциклопедия

    Не подлежащая применению внесистемная ед. давления. Обозначение мм рт. ст. 1 мм рт. ст. = 133,322 Па (см. Паскаль) … Большой энциклопедический политехнический словарь

    Внесистемная единица давления; обозначение: мм рт. ст. 1 мм рт. ст. = 133,322 Па = 13,5951 мм вод. ст … Естествознание. Энциклопедический словарь

Паскаль (Па, Pa)

Паскаль (Па, Pa) — единица измерения давления в Международной системе единиц измерения (система СИ). Единица названа в честь французского физика и математика Блеза Паскаля.

Паскаль равен давлению, вызываемому силой, равной одному ньютону (Н), равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр:

1 паскаль (Па) ≡ 1 Н/м²

Кратные единицы образуют с помощью стандартных приставок СИ:

1 МПа (1 мегапаскаль) = 1000 кПа (1000 килопаскалей)

Атмосфера (физическая, техническая)

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана.

Существуют две примерно равные друг другу единицы с таким названием:

  1. Физическая, нормальная или стандартная атмосфера (атм, atm) — в точности равна 101 325 Па или 760 миллиметрам ртутного столба.
  2. Техническая атмосфера (ат, at, кгс/см²) — равна давлению, производимому силой 1 кгс, направленной перпендикулярно и равномерно распределённой по плоской поверхности площадью 1 см² (98 066,5 Па).

    1 техническая атмосфера = 1 кгс/см² («килограмм-сила на сантиметр квадратный»). // 1 кгс = 9,80665 ньютонов (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus, означающего вес.

Заметьте разницу: не pound (по-английски «фунт»), а pondus .

На практике приближенно принимают: 1 МПа = 10 атмосфер, 1 атмосфера = 0,1 МПа.

Бар

Бар (от греческого βάρος — тяжесть) — внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Н/м² (или 0,1 МПа).

Соотношения между единицами давления

1 МПа = 10 бар = 10,19716 кгс/см² = 145,0377 PSI = 9,869233 (физ. атм.) =7500,7 мм рт.ст.

1 бар = 0,1 МПа = 1,019716 кгс/см² = 14,50377 PSI = 0,986923 (физ. атм.) =750,07 мм рт.ст.

1 ат (техническая атмосфера) = 1 кгс/см² (1 kp/cm², 1 kilopond/cm²) = 0,0980665 МПа = 0,98066 бар = 14,223

1 атм (физическая атмосфера) = 760 мм рт.ст.= 0,101325 МПа = 1,01325 бар = 1,0333 кгс/см²

1 мм ртутного столба = 133,32 Па =13,5951 мм водяного столба

Объемы жидкостей и газов / Volume

1 gl (US) = 3,785 л

1 gl (Imperial) = 4,546 л

1 cu ft = 28,32 л = 0,0283 куб.м

1 cu in = 16,387 куб.см

Скорость потока / Flow

1 л/с = 60 л/мин = 3,6 куб.м/час = 2,119 cfm

1 л/мин = 0,0167 л/с = 0,06 куб.м/час = 0,0353 cfm

1 куб.м/час = 16,667 л/мин = 0,2777 л/с = 0,5885 cfm

1 cfm (кубический фут в минуту) = 0,47195 л/с = 28,31685 л/мин = 1,699011 куб.м/час

Пропускная способность / Valve flow characteristics

Коэффициент (фактор) расхода Kv

Flow Factor — Kv

Основным параметром запорного и регулирующего органа является коэффициент расхода Kv. Коэффициент расхода Kv показывает объем воды в куб.м/час (cbm/h) при температуре 5-30ºC, проходящей через затвор с потерей напора в 1 бар.

Коэффициент расхода Cv

Flow Coefficient — Cv

В странах с дюймовой системой измерений используется коэффициент Cv. Он показывает, какой расход воды в галлон/мин (gallon/minute, gpm) при температуре 60ºF проходит через арматуру при перепаде давления на арматуре в 1 psi.

Кинематическая вязкость / Viscosity

1 ft = 12 in = 0,3048 м

1 in = 0,0833 ft = 0,0254 м = 25,4 мм

1 м = 3,28083 ft = 39,3699 in

Единицы силы / Force

1 Н = 0,102 кгс = 0,2248 lbf

1 lbf = 0,454 кгс = 4,448 Н

1 кгс = 9,80665 Н (точно) ≈ 10 Н; 1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

На английском языке килограмм-сила обозначается как kgf (kilogram-force) или kp (kilopond) — килопонд, от латинского pondus , означающего вес. Обратите внимание: не pound (по-английски «фунт»), а pondus .

Единицы массы / Mass

1 фунт = 16 унций = 453,59 г

Момент силы (крутящий момент) / Torque

1 кгс. м = 9,81 Н. м = 7,233 фунт-сила-фут (lbf * ft)

Единицы измерения мощности / Power

Некоторые величины:

Ватт (Вт, W, 1 Вт = 1 Дж/с), лошадиная сила (л.с. — рус., hp или HP — англ., CV — франц., PS — нем.)

Соотношение единиц:

В России и некоторых других странах 1 л.с. (1 PS, 1 CV) = 75 кгс* м/с = 735,4988 Вт

В США, Великобритании и других странах 1 hp = 550 фут*фунт/с = 745,6999 Вт

Температура / Temperature

Температура по шкале Фаренгейта:

[°F] = [°C] × 9⁄5 + 32

[°F] = [K] × 9⁄5 − 459,67

Температура по шкале Цельсия:

[°C] = [K] − 273,15

[°C] = ([°F] − 32) × 5⁄9

Температура по шкале Кельвина:

[K] = [°C] + 273.15

[K] = ([°F] + 459,67) × 5⁄9

Перевести метр напора в атм

›› Перевести метр напора в атмосферу [стандарт]

Пожалуйста, включите Javascript для использования преобразователь единиц измерения.
Обратите внимание, что вы можете отключить большую часть рекламы здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация от преобразователя единиц измерения

Сколько метров напора в 1 атм? Ответ 10.334920336739.
Мы предполагаем, что вы конвертируете между метров напора и атмосфер [стандарт] .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
метров напора или атм
Производной единицей СИ для давления является паскаль.
1 паскаль равен 0,00010199773339984 метра напора, или 9,8692326671601E-6 атм.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как конвертировать метры напора в атмосферу.
Введите свои собственные числа в форму, чтобы преобразовать единицы измерения!


›› Таблица быстрого перевода метра напора в атм

1 метр напора в атм = 0.09676 атм

10 метров напора на атм = 0,96759 атм

20 метров напора на атм = 1,93519 атм

30 метров напора на атм = 2, атм

40 метров напора в атм = 3,87037 атм

50 метров напора в атм = 4,83797 атм

100 метров напора на атм = 9,67593 атм

200 метров напора на атм = 19,35187 атм



›› Хотите другие юниты?

Вы можете сделать обратное преобразование единиц из атм → метр напора или введите любые две единицы из числа ниже:

›› Общие преобразования давления

метр водного столба в килограмм силы на квадратный миллиметр
метр водного столба в петапаскаль
метр водяного столба в сантиметр ртутного столба
метр водного столба в йоттабар
метр водного столба в сантиторр в петабар
метр напора в зеттапаскаль
метр напора в миллихг
метр напора в тонна на квадратный дюйм


›› Определение: Атмосфера

Стандартная атмосфера (обозначение: атм) — это единица давления, определяемая как 101325 Па (1.01325 бар). Иногда его используют в качестве эталонного давления или стандартного давления. Оно примерно равно земному атмосферному давлению на уровне моря.


›› Метрические преобразования и многое другое

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования единиц СИ. как английские единицы, валюта и другие данные. Введите единицу измерения символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы.Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоунов 4, кубический см, метры в квадрате, граммы, моли, футы в секунду и многое другое!

Перевести атм в метры напора

›› Перевести атмосферу [стандарт] в метр напора

Пожалуйста, включите Javascript для использования преобразователь единиц измерения.
Обратите внимание, что вы можете отключить большую часть рекламы здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация от преобразователя единиц измерения

Сколько атм в 1 метре напора? Ответ 0.096759333155687.
Мы предполагаем, что вы конвертируете между атмосфер [стандарт] и метров напора .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
атм или метр напора
Производной единицей СИ для давления является паскаль.
1 паскаль равен 9,8692326671601E-6 атм, или 0,00010199773339984 метра водяного столба.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать атмосферу в метры водяного столба.
Введите свои собственные числа в форму, чтобы преобразовать единицы измерения!


›› Быстрый перевод атм в метр напора

1 атм → метр напора = 10,33492 метра напора

2 атм → метр напора = 20,66984 метр напора

3 атм → метр напора = 31,00476 метр напора

4 атм → метр напора = 41,33968 метр напора

5 атм → метр напора = 51,6746 метр напора

6 атм → метр напора = 62,00952 метра напора

7 атм → метр напора = 72.34444 метра напора

8 атм → метр напора = 82,67936 метр напора

9 атм → метр напора = 93,01428 метр напора

10 атм → метр напора = 103,3492 метра напора



›› Хотите другие юниты?

Вы можете сделать обратное преобразование единиц из метр напора в атм или введите любые две единицы ниже:

›› Общие преобразования давления

атм в нанопаскаль
атм в ньютон на квадратный метр
атм в зептопаскаль
атм в дюйм водяного столба
атм в фут ртутного столба


›› Определение: Атмосфера

Стандартная атмосфера (обозначение: атм) — это единица давления, определяемая как 101325 Па (1.01325 бар). Иногда его используют в качестве эталонного давления или стандартного давления. Оно примерно равно земному атмосферному давлению на уровне моря.


›› Метрические преобразования и многое другое

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования единиц СИ. как английские единицы, валюта и другие данные. Введите единицу измерения символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы.Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоунов 4, кубический см, метры в квадрате, граммы, моли, футы в секунду и многое другое!

Давление воды на глубинах океана

Давление воды на глубине — одно из многих явлений, которые должны исследовать исследователи. довольствоваться при исследовании глубоководных участков. Океан глубокий. Если бы мы побрились со всех континентов и заполнили траншеи в океанах землей с континентов весь земной шар был бы покрыт водой примерно на 2 миль в глубину.Средняя глубина океана составляет 12 566 футов около 3800 метров. Наибольшая глубина океана составляет 36 200 футов на высоте более 11 000 метров! Какой эффект дает эта огромная глубина воды оказывает влияние на живущих в океане существ? Ответ зависит от того, где в океане он живет. Рыба или растение у поверхности чувствует небольшой эффект от больших глубин. Неважно, если есть шесть футов или шесть тысяч футов под плавающей рыбой. Животное, живущее в Однако глубина 10 000 футов сильно зависит от глубины воды. над ним.

Мы часто говорим о давлении в терминах атмосфер. Одна атмосфера равна к весу земной атмосферы на уровне моря, около 14,6 фунтов на квадратный дюйм. Если вы находитесь на уровне моря, каждый квадратный дюйм вашей поверхности подвергается силе 14,6 фунтов.

Давление увеличивается примерно на одну атмосферу на каждые 10 метров воды. глубина. На глубине 5000 метров давление будет примерно 500 атмосфер или в 500 раз больше, чем давление на уровне моря.Это большое давление.

Исследовательское оборудование должно быть спроектировано так, чтобы справляться с огромными нагрузками. встречаются на глубине. Подводные лодки должны иметь усиленные стенки, чтобы с выдерживать нагрузки. Инструменты, которые хорошо работают на поверхности, могут быть разрушены или бесполезно из-за давления.

Рассчитайте, какое давление (фунтов на квадратный дюйм) использовало оборудование на Круиз NeMO должен выдержать.

Глубина Осевая кальдера — 1540 метров
(Давление в одну атмосферу на один квадратный дюйм поверхности подвергается сила 14.6 дюймов. Давление увеличивается примерно на одну атмосферу на каждые 10 метров глубины воды)

Сколько фунтов давления на квадратный дюйм будет Опыт круизного снаряжения NeMO???

Доктор Уильям Биб был пионером в исследовании морских глубин. При поддержке Национальное географическое общество и Нью-Йоркское зоологическое общество, Биби построил батисферу (bathy = глубокий). В этой стальной сфере он был бы опущены на глубину более 2500 футов.Сфера с толстыми стенками была разработана чтобы противостоять большому давлению океанских глубин. Сфера имела два толстых кварцевые окна для просмотра. Чтобы проверить окна, батисфера, незанятая был снижен до 3000 футов. Когда большой стальной шар подняли, Биби написал.

    «Было очевидно, что что-то очень не так, и когда батисфера качнулся ясно, я увидел иглу воды, стреляющую по лицу порта окно. Веся намного больше, чем должна была, она перевалилась через борт и опустили на палубу.Глядя в одно из хороших окон, я мог видеть что она была почти полна воды. На вершине пошла любопытная рябь. вода, и я знал, что пространство наверху заполнено воздухом, но такой воздух как ни одно человеческое существо не может терпеть ни на мгновение. Непрестанно тонкий поток воды и воздуха бежали наискось по внешней поверхности кварца. я начал откручивать гигантский барашковый болт в центре двери и после первые несколько оборотов раздалось странное высокое пение, затем тонкий туман, пар — как по консистенции, выстрелил, игла пара, потом еще и еще.Это предупредило меня, что я должен был почувствовать, когда смотрел в окно что содержимое батисферы находилось под огромным давлением. я очистил палуба перед дверью всех, персонала и экипажа. Одно движение фотокамера была размещена на верхней палубе, а вторая рядом, но по одну сторону от батисферы. Осторожно, понемногу, вдвоем крутил латунные ручки, пропитанные брызгами, и я слушал, как высокие, музыкальный тон нетерпеливых замкнутых элементов постепенно спускался по шкале, четверть тона или меньше при каждом небольшом повороте.Понимая, что может произойти; мы отклонился как можно дальше от линии огня. Внезапно без малейшего предупреждения болт вырвался у нас из рук и масса тяжелого металла пронеслась по палубе, как снаряд из пушки. Траектория была почти прямой, и латунный болт врезался в стальной лебедкой тридцать футов через палубу и вырезал полудюймовую выемку, выдолбленную по более твердому металлу. Затем последовал твердый цилиндр с водой, который ослабла через некоторое время до катаракты, изливающейся из дыры в двери, немного воздуха смешалось с водой, похожей на горячий пар.Вместо Стрельба сжатым воздухом через ледяную воду. Если бы я был на пути, я был бы обезглавлен. »

Давление действительно большое.

From: Half Mile Down Уильяма Биба, опубликовано Duell Sloan Pearch (New Йорк) 1951.

Существа, живущие на больших глубинах, не имеют воздуха в своих телах, таких как плавательный пузырь у рыб, живущих на мелководье. Без воздуха в их телах, проблема с давлением решена.Рыба, краб, осьминог, черви, блюдца и моллюски — лишь некоторые из существ, обитающих в глубинах океанов.

Когда человек входит в мир воды, он сталкивается с рядом проблем. То средний аквалангист становится недееспособным на глубине 250 футов. Это далеко от глубины 11 500 футов, на которой были обнаружены глубоководные рыбы.

Аквалангистам для выживания нужен кислород. Кислород составляет 21% воздуха, который мы дышать. Около 78% воздуха, которым мы дышим, состоит из газообразного азота.Азот относительно инертен; он более или менее химически неактивен. Кислород и азот переносится кровью. На уровне моря азот представлен не проблема для человека. Но что происходит с этими газами, когда мы спускаемся в океанские глубины.

Повышенное давление позволяет большему количеству кислорода и большему количеству азота растворяться в кровь. На высоте около 100 футов давление создаст достаточное количество азота, чтобы раствориться в крови, чтобы азот стал опасным.Азотный наркоз возникает из-за слишком большого количества азота, поступающего в кровоток. Так и будет в конечном итоге приводит к ступору и сну, не очень хорошему состоянию на 100 футов ниже поверхность. Перед стадией оцепенения у дайверов возникает головокружение, их способность принимать даже простые умственные решения (например, сказать время) сокращается. Иногда они решают, что им больше не нужно дышать через мундштук. То точные симптомы и глубина проявления симптомов варьируются в зависимости от каждого индивидуально и при каждом погружении.Дайвинг ниже 100 футов требует специальных навыков. и опасно. Возвращение на поверхность снижает содержание азота и уменьшает симптомы.

Если одна атмосфера соответствует давлению примерно 14,6 фунта на квадратный дюйм, а давление увеличивается на 1 атмосферу на каждые 10 метров глубины. Как много атмосфер вытесняют азот в кровоток на расстоянии 30 метров (около 100 футов) и на 75 метрах (около 250 футов)?

Дайверы, ограничивающие время и глубину своих погружений, могут избежать азота. наркоз.Выход на поверхность поэтапно с паузой на каждом этапе позволяет азот диффундирует из крови.

Давление адаптировано из Project For Sea Джима Колба.


Вернуться к учебным материалам NeMO

Водонепроницаемы ли часы? — Atelier Lou

Многие клиенты спрашивают нас, являются ли их часы водонепроницаемыми. Короткий ответ — нет, это не так. Часы могут быть водостойкими, что обычно означает, что они имеют отметку, указывающую степень водостойкости, на которую они были протестированы (обычно это отметка BAR, ATM, метры, футы или их комбинация).Следует иметь в виду, что лабораторные тесты, которым подвергаются часы, используют статическое давление, которое отличается от фактического давления воды на часы во время реальных действий.

Прежде чем углубляться в суть того, что влечет за собой «водостойкость», мы должны выделить одну важную вещь, о которой всегда нужно помнить; Водостойкий не является водонепроницаемым.

На самом деле, когда речь идет об устройствах, будь то часы или бытовая электроника, не бывает водонепроницаемых. Каждое устройство, включая часы, как бы тщательно оно ни было спроектировано, имеет точку отказа. У каждого смартфона, смарт-часов, носимых, «водонепроницаемых» камер, даже подводных лодок, у всего есть точка, в которой сочетание температуры воды, глубины, продолжительности воздействия или манипуляций с устройством во время погружения приведет к выходу из строя водо- механизм(ы) сопротивления, и устройство больше не будет водонепроницаемым.

Справедливо сказать, что не только не существует такой вещи, как водонепроницаемость, но даже большинство экземпляров «водонепроницаемости» плохо продаются, плохо понимаются и плохо работают в реальных условиях.

Давайте начнем с изучения рейтинга атмосферы (ATM), поскольку он является наиболее распространенным и применимым к часам, и посмотрим, как этот рейтинг применяется в реальном мире.

Понимание рейтинга банкоматов

Задолго до того, как кто-то даже задумался о том, чтобы брать с собой камеры в бассейн или телефоны во время катания на гидроцикле, люди носили наручные часы на пляже. ATM или атмосферный рейтинг используется для обозначения того, какое статическое атмосферное давление может выдержать устройство при погружении в воду.Чем выше рейтинг банкомата, тем глубже может погрузиться устройство, так как более глубокая вода оказывает большее давление. Рейтинг устойчивости к давлению/водонепроницаемости ATM чаще всего встречается у обычных механических часов и часов с батарейным питанием.

Один атм соответствует статическому давлению при статическом погружении на глубину 10 метров. В следующей таблице представлены общие рейтинги банкоматов для потребительских часов и носимых устройств. Поскольку метрический рейтинг легко переводится из АТМ в метры (1 АТМ = 10 метров), мы добавили значение давления в футах для удобства тех, кто не привык к метрической системе.

В качестве ориентира, помогающего понять схему, на уровне моря вы уже находитесь на уровне 1 АТМ. Вот почему часы (или устройство) с рейтингом 1 АТМ не обеспечивают защиты от погружения или общей водонепроницаемости. Просто поместив часы под поверхность воды, вы немедленно подвергаете их небольшому увеличению давления, и для многих часов этого более чем достаточно, чтобы позволить воде проникнуть внутрь.

Кроме того, как уже упоминалось, эти характеристики относятся к статическому давлению. Это означает, что если часы находятся совершенно неподвижно в испытательной камере, они могут выдержать давление до номинального значения, а затем, после извлечения из испытательной камеры, они будут функционировать.Любое приложение динамического давления, вызванное движением пользователя (например, плавание, ныряние в бассейн, падение с гидроцикла и т. д.), увеличивает давление воздействия воды. Вот почему часы, рассчитанные на 3 АТМ и способные выдержать ливень, в конечном итоге будут повреждены, если на них брызнет вода из шланга высокого давления.

Рейтинг Давление Использование по назначению / меры предосторожности
1 банкомат Плохая водостойкость.Устройство следует держать вдали от воды.
3 банкомата ~100 футов Подходит для повседневного использования. Защищен от брызг, дождя, воздействия воды во время мытья рук и так далее. Не для плавания.
5 банкоматов ~150 футов Подходит для кратковременного погружения в воду, например, для легкого плавания.
10 банкоматов ~330 футов Подходит для длительного погружения в воду, например, для подводного плавания.
20 банкоматов ~660 футов Подходит для занятий водными видами спорта с высокими ударными нагрузками, такими как серфинг, водные лыжи и погружения на мелководье.
Дайвер >660 футов Часы для дайвинга, сертифицированные по стандарту ISO 6425.

 

Поскольку нет официального органа, который проводит тесты банкоматов и следит за соблюдением правил, рейтинг является неофициальным. Часы с номиналом от 1 до 20 атм маркируются производителем и не всегда маркируются в соответствии с общепринятыми соглашениями, используемыми другими производителями.

Как было сказано выше, водонепроницаемости не существует. Существует водонепроницаемость при контролируемых параметрах испытаний, но реальность такова, что даже водостойкие часы действительно сопротивляются воде только до тех пор, пока они остаются в пределах параметров длины, температуры и глубины воздействия воды, указанных в рейтинге ATM и производителя. технические характеристики.

Если для вас действительно важна водонепроницаемость, у Bremont есть часы именно для вас!

Простой ответ

Преимущество этой проблемы в том, что вам не нужно знать, как работает осмос. или обратный осмос работают на молекулярном уровне.Данная информация является достаточно.

Обман частично и в формулировке задачи, и в описании это предполагает, что вы опускаете трубку, уже наполненную пресной водой. Если трубка была заполнена водой до поверхности океана, перепад давления через пробку было бы слишком мало, чтобы инициировать обратный осмос.

Для запуска обратного осмоса давление на мембране или полупроницаемой пробке должно быть примерно 20 атм.Давление на глубине 200 метров ниже уровня моря примерно на 20 атмосфер превышает атмосферное давление. Эти приблизительные значения послужат нашим нынешним целям.

Итак, чтобы инициировал обратный осмос через мембрану, пресная вода в трубке должна быть по крайней мере на 200 метров ниже поверхности воды снаружи трубки, чтобы иметь перепад давления на мембране в 20 атмосфер. Это верно независимо от того, насколько длинна труба или насколько глубоко она уходит в океан.Конец истории. Идея не сработает. Это так просто.

Удивительно, как легко люди отвлекаются на посторонние соображения, соленость воды, расслоение плотности солености, инженерные трудности изготовления длинной трубы, необходимость очистки фильтрующей мембраны, экономические соображения, штормы на море и т.д. и т.п. Они настолько одержимы с тем, что они считают «практическими» соображениями, что они слепы к простой логической ошибке, которая действительно делает идею неработоспособной.Для примера см.: веб-обсуждение. Слышать, как эти люди говорят о проблеме так, как будто они что-то о ней знают, а потом все еще не понимают сути, весьма поучительно. Зайдите в любую из дискуссионных групп в Интернете, посвященных вечным двигателям, и вы увидите в изобилии такую ​​же неосведомленную псевдоглубокость.

Но все же нужно быть осторожным с предположениями, используемыми для того, чтобы прийти к заключению. При этом предполагалось, что плотность пресной и соленой воды одинакова.Это на самом деле не так. Это имеет значение?

Детали

Конечно, рассмотрение деталей может быть интересным само по себе. Итак, вот еще об этой классической проблеме.

Рисунок А иллюстрирует то, на что надеется оптимист. Трубка имеет полупроницаемая пробка (красная) на дне, опущенная на глубину, на которой Давление воды в океане достаточно для обратного осмоса. Пресная вода хлещет из верхней части трубы, вращая маленькое водяное колесо, Вт .На рисунках B, C и D показано, что происходит на самом деле.

Рис. B. Трубка не достигает достаточной глубины. Ничего не произошло.

Если опустить трубку с полупроницаемой пробкой на глубину H = 200 метров, где давление воды снаружи нижней части трубы равно 21 атмосфера. Но давление внутри трубки всего 1 атм. Давление на пористую пробку составляет 20 атмосфер. Тем не менее, ничего не происходит, ибо любая вода через пробку создаст давление выше и остановит процесс.

Рис. С. Теперь предположим, что мы опускаем полупроницаемую пробку на большую глубину. На глубине 300 метров перепад давления через полупроницаемую пробку первоначально 30 атмосфер, более чем достаточно для обратный осмос. Внутри трубы поднимается чистая вода, и этот столб вода оказывает давление на верхнюю часть пробки, поэтому разница давлений через заглушку становится все меньше и меньше по мере того, как вода внутри трубки поднимается. Вода внутри трубы поднимается до тех пор, пока не окажется на 100 метров выше уровня воды. пористая пробка и оказывает давление 11 атмосфер на верхнюю часть пробки.Разность давлений на пористая пробка 31-11=20 атмосфер. Обратный осмос останавливается. Уровень воды внутри трубы на 200 метров ниже уровня моря. Не достаточно хорош.

Рис. D. Теперь опустите пробку на глубину H+Y = 400 метров. Давление океана на этой глубине составляет 41 атмосферу. Давление в верхней части плунжера первоначально равно 1 атмосферы. Чистая вода поднимается внутри трубы до тех пор, пока не создаст давление 21 атмосферы на штекере. Давление разница по свече опять всего 41-21=20 атмосфер.Обратный осмос теперь останавливается. Пресная вода внутри трубы достигла , а не уровня моря, на самом деле она снова на 200 метров ниже уровня моря.

Это давление в 1 атмосферу учитывается в приведенных выше расчетах, поскольку оно одинаково влияет на давление с обеих сторон свечи. У меня было искушение пропустить его, но тогда кто-то мог подумать, что его упущение повлияло на результаты. Это не так.

Более простой способ увидеть это — отметить, что разница давления на пробке должна быть не менее 20 атмосфер.Так, при достижении статического равновесия на любой глубине жидкость внутри трубы должна оказывать на пробку давление на 20 атмосфер меньше, чем вода снаружи. Поэтому верх водяного столба внутри трубы должен быть на 200 м ниже уровня моря, так как 200-метровый столб воды оказывает давление в 20 атмосфер.
Так что как бы глубоко вы ни опустили пористую пробку, вода внутри поднимется только до высоты, где она находится на 200 метров ниже уровня моря, после чего остановится. Наши надежды на бесконечную энергию и неограниченную пресную воду рухнули.

Некоторые могут возразить, что мы не учли 2,5-процентную разницу в плотности соли и морской воды. Или кто-то может заметить, что мы не учли изменения солености с глубиной или какие-то другие детали. Мы рассмотрим это возражение в следующем разделе.

Спасибо Roy Havenhill за полезные и проницательные комментарии и предложения по улучшению этого документа.

2 1/2-процентный раствор.

[Январь 2007 г.] В течение почти трех лет эта проблема висит здесь, и каждые несколько месяцев я получаю письма от людей, которые указывают мне, что проблема 2.В моем «простом решении» не учтена 5% разница в плотности между соленой и пресной водой. Возможно, они не заметили, что я признал это в предпоследнем абзаце этого раздела, тонко предлагая читателям найти решение этой головоломки . В каждом решении таится еще одна загадка. Должен признаться, что я «отложил» этих людей, дав лишь несколько намеков, как это можно сделать. Кто-то ушел разочарованный, а кто-то, возможно, разозлился, потому что я не дал «ответа».Я всегда думал, что ответы менее интересны, чем процесс получения ответов.

Подсказки, которые я дал, включали:

  • Вопрос был не в том, работает ли обратный осмос (работает), а в том, можно ли с его помощью создать непрерывный цикл и извлечь из него полезную работу, не заставляя поток замедляться и останавливаться.
  • Вечное движение циклического процесса требует, чтобы процесс оставался в движении и, возможно, также производил избыточную работу.Итак, в этом устройстве мы должны считать, что жидкость постоянно течет постоянно.
  • Приведенное выше простое решение было статическим. Возможно, необходимо динамическое решение.
  • Возможно, просветление придет от разработки простого концептуального эксперимента, чтобы выяснить, сколько работы требуется, чтобы отделить соль от соленой воды для получения пресной воды. Меня на это никто не брал.
  • Труба не является замкнутой системой, поскольку она находится внутри и может взаимодействовать со всем океаном.Если бы мы создали закрытую систему, работала бы она так же?
  • При опускании трубы и заглушки в океан выполняется работа по вытеснению столба морской воды. Это представляет собой потенциальную энергию. Это восстанавливается, когда пресная вода поднимается в трубу до своего равновесного положения. По сути, система запускается уже «заряженной» энергией. Так что первоначальный подъем не представляет собой энергию «из океана».
Я искал объяснение в самых простых терминах, с минимумом математики и без обращения к продвинутым формулам гидродинамики.Я надеялся, что читатель сделает это за меня. Так что теперь я делюсь здесь намеками, признаваясь, что до сих пор не решил проблему, возникающую из-за разницы в плотности между соленой и пресной водой.

Довольно много людей представили следующий анализ, расширяющий мое простое решение. Это показывает, что при достаточной глубине система будет поддерживать столб пресной воды выше уровня моря. Это согласуется с расчетом, который я сделал ранее, но не показал на моей веб-странице.

Так как морская вода на 2,5% плотнее пресной, то столб пресной воды внутри трубы на 2,5% длиннее, чем я вычислил выше. Таким образом, когда пористая пробка находится на глубине 40 метров от поверхности, вода внутри находится не на 200 метров ниже поверхности, а на 200 — 200 (0,025) = 0,975 (200) = 195 метров. То есть на каждые дополнительные 200 метров мы опускаем пористую пробку, получаем пресную воду на 0,5 метра ближе к поверхности. 200/5 = 40, а если опустить пробку до (40+1)(200) = 8200 метров = 8.2 км уровень пресной воды внутри трубы будет на уровне моря. Опустите трубу и заткните еще больше, и у вас будет поверхность пресной воды над уровнем моря, и вы сможете дать ей перелиться, чтобы произвести пресную воду и полезную работу бесплатно.
Самая большая глубина в океане, Марианская впадина, составляет около 11 км, поэтому глубина океана не является ограничением!

Можем ли мы затем использовать это для создания циклического, непрерывно поддерживаемого процесса, из которого мы можем извлекать энергию и пресную воду? Мы подозреваем, что этот анализ не может быть правильным.Как я уже говорил в другом месте на этих страницах, основные и хорошо проверенные законы природы, такие как законы Ньютона, законы сохранения и законы термодинамики, в решающей степени зависят от еще более фундаментального закона, принципа Вечной неподвижности, или » Природа не терпит вечного движения». (Природа не может создать вечное движение.) Всякий раз, когда наш анализ физической системы приходит к выводу, что она может допускать вечное движение или сверхединичную производительность, мы знаем, что нам следует искать одну из следующих ошибок в нашем анализе:

  • Мы ошиблись в расчетах.
  • Мы пропустили какой-то процесс в системе.
  • Мы проглядели какой-то источник энергии.
  • Мы упустили из виду энергию, изначально присутствующую в системе.
  • Мы неправильно рассчитали выходную или входную мощность.
  • Мы измерили выходную или входную мощность неподходящими приборами или неподходящими методами.
Это может быть мощным подходом к прояснению наших представлений о головоломных устройствах.

Но здесь я все же должен оставить эту оставшуюся проблему читателям, потому что у меня нет хорошего ответа на эту запутанную проблему.

[18 декабря 2007 г.] Примечание для тех, кто недавно обсуждал эту проблему на доске объявлений. Я полностью осознаю, что это устройство — , а не — вечный двигатель, и уж точно не является устройством «сверхединства», ибо я убежден, что такие устройства невозможны в природе. Зачем вообще здесь эта загадка? Потому что, когда Дерек Кристи из Новой Зеландии обратил мое внимание на это в журнале Scientific American , я понял, что в том виде, в каком это было представлено там, это был хитрый обман, который определенно квалифицировался как «неработоспособный».Но если принять во внимание разницу в плотности соленой и пресной воды и сделать трубу достаточно длинной, кажется, что она могла бы постоянно «качать» воду, поэтому это становится немного озадачивающим. Анализ в Scientific American показался мне неполным и неудовлетворительным.

Честно говоря, мне было жаль, что я ввязался в это, потому что меня не интересуют такие запутанные проблемы. Они могут стать навязчивой идеей. Так что я оставил это в покое, подозревая, что есть какое-то простое решение, которое я не вижу, потому что я ищу не в том месте или использую неподходящий подход.Я надеялся, что кто-то другой может «увидеть это».

Замкнутая система с полной изоляцией.
Соленая вода зеленая, пресная вода синяя,
пористая пробка (АВ) красного цвета.

Пролив пресной воды в столб соленой воды
в C если пресная вода поднята
выше соленой воды,
поддержание непрерывного потока.

Может ли это случиться на самом деле?

Вот некоторые вещи, которые можно попробовать:

  • Удалим усложнение большого океана и рассмотрим замкнутый контур из двух очень (достаточно) длинных труб, соединенных внизу пористой пробкой, а вверху перевернутой буквой «U».(См. рисунок.) В трубу не допускается никакая энергия извне. Будет ли вода непрерывно течь по этому контуру? Используя те же аргументы, которые мы использовали выше, кажется, что так и должно быть, и в этом проблема, потому что это действительно было бы вечным двигателем, а это просто невозможно.
  • Посмотрите на вопросы, которые мы проигнорировали выше. Вода не статична, а течет, по крайней мере, до тех пор, пока не остановится. Вода, протекающая через пробку, теряет энергию из-за перепада давления на пробке. Обычно мы игнорируем трение в качестве первого шага при анализе этих неработоспособных машин, но здесь мы не можем обойтись без этой стратегии.Почему? Поскольку в нашем предыдущем анализе (из-за которого у нас возникли проблемы) использовал факт перепада давления на пористой пробке, поэтому мы должны последовательно использовать его везде, где он оказывает влияние. Если бы действительно не было трения, не было бы и эффектов обратного осмоса, и вся проблема была бы бессмысленной. Мы должны признать, что разница давлений существует, поэтому мы должны также признать потерю энергии, поскольку вода вынуждена преодолевать эту разницу давлений.
  • Наконец, я думаю, было бы поучительно рассмотреть простую (!) проблему энергии, необходимой для удаления соли из воды.Соль сама по себе не выделяется. Мы теряем системную энергию, поскольку система удаляет соль. Итак, рассмотрим цилиндрическую трубку с соленой водой, стоящую на столе. Теперь «волшебным образом» достаньте соль и положите ее на стол рядом. Если принять таблицу за «ноль» для расчета потенциальной энергии, то соль, находившаяся в трубке, имела потенциальную энергию ½r sw гх, где h — высота воды в цилиндре. После удаления солей оставшаяся вода в цилиндре пресная и имеет большую высоту, Н.Его потенциальная энергия составляет ½r w gH. Теперь сравните потенциальную энергию системы до и после. Теперь наша трубка обратного осмоса отличается. Соль физически удаляется пробкой внутри системы, и для этого удаления требуется энергия, которая должна поступать откуда-то из системы.
    Прежде чем восторгаться практическими возможностями получения полезной работы бесплатно с помощью этого устройства, примите во внимание следующий факт, вытекающий из термодинамики: «0,66 ккал/л есть минимальная энергия, необходимая для опреснения одного литра морской воды, независимо от применяемой технологии. обработать…» Этот расчет предполагает обратимый процесс и совершенную эффективность. «Практические системы опреснения никогда не бывают полностью обратимыми, и существуют потери энергии, связанные с неизбежными необратимыми вкладами. Эти потери, которые зависят от коэффициента извлечения воды, увеличивают энергию, [необходимую для] опреснения, выше обратимого термодинамического предела». Эти цитаты взяты из книги Ури Лахиша «Энергия опреснения морской воды». Примечание: 0,66 килокалории/литр равно 0,767 киловатт-час/м 3 .Но лучшие системы опреснения обратным осмосом гораздо менее эффективны, чем идеальная термодинамическая система, требующая около 5 киловатт-часов/м 3 .
  • И еще один малозаметный вопрос о том, что происходит наверху. Если пресная вода действительно немного поднимется над поверхностью океана и будет перенаправлена ​​в трубу с соленой водой, эта пресная вода постепенно уменьшит соленость в трубе с соленой водой. Как предполагает один корреспондент, это могло продолжаться до тех пор, пока вся вода в системе не станет пресной.Сколько времени это может занять? Но если мы используем закрытую систему, изолированную от внешних источников энергии, мы должны спросить: «Откуда берется энергия для поддержания потока?» Я уверен, что этот сценарий не произойдет, поскольку он игнорирует большие непрерывные потери энергии, когда вода течет через пористую пробку.

Действительно, я убежден, что именно потеря энергии воды, нагнетаемой через пробку, обрекает это устройство на провал. Постройте достаточно длинную U-образную трубу с пористой пробкой на дне и наполните ее соленой водой с одной стороны и пресной водой с другой.Теперь эти столбы воды находились бы в статическом равновесии с пресной водой выше, чем с соленой водой на 2,5%. Это простой факт, который соблазнил нас в этом беспорядке.

Но можно ли было бы получить такой же результат, если бы сторона пресной воды была изначально пустой, а затем позволила бы заполниться за счет разницы давлений и обратного осмоса? Эти два случая энергетически неодинаковы. В статическом случае мы не теряли энергию на диссоциацию соли из воды. Кроме того, статический корпус не терял энергии при проталкивании воды через пористую пробку.По обеим этим причинам высота со стороны пресной воды окажется ниже, чем со стороны соленой воды. И лишняя длина трубы не поможет.

Окончательное решение?

[Фев, 2010] Давайте раз и навсегда отбросим представление о том, что из этой системы можно получить вечную энергию. Предположим, у вас есть океан, достаточно глубокий, чтобы пресная вода поднималась по трубе над поверхностью океана с соленой водой. Чтобы проверить это, возьмите очень длинную трубку, вставьте в дно пористую пробку, а также заглушку, чтобы вода сразу не начала вытекать через пробку.Опустите его (медленно) в океан. При этом он вытесняет собственный объем морской воды. Из-за плавучести пустой трубы вы должны работать над трубой, опуская ее. Это связано с тем, что трубка отталкивает соленую воду в сторону и, следовательно, слегка поднимает уровень океана. Когда трубка окажется на необходимой глубине, откройте крышку и дайте начать обратному осмосу. Пресная вода поднимается по трубе до тех пор, пока поток не прекратится. Теперь сравним энергии начального и конечного состояний. Система труб (труба и океан) имела начальную потенциальную энергию, равную работе, которую вы совершили при ее опускании.В конце энергия океана немного уменьшилась, но столб пресной воды по мере подъема набирает потенциальную энергию. Но вода внутри пресная, а соль, которая была в том объеме воды, осталась снаружи на дне пробирки. У нее более низкая потенциальная энергия, чем когда эта соль распространялась с этой глубины до поверхности океана. Когда вы суммируете энергии до и после, вы получаете ноль, предполагая идеализированный процесс обратного осмоса (который никогда даже близко не достигается на практике).

Добрый читатель, Глен Робинсон, проделал работу, которую мне было лень делать, и я полностью цитирую его письмо.

Привет Дональд,

Мне понравилось читать ваш Музей Нерабочих Устройств. Прочитав задачу обратного осмоса, кажется, что вы не нашли вескую причину (или, по крайней мере, ту, которая вас удовлетворила), почему он не будет работать, если принять во внимание разницу в плотности в 2,5%.

Ответ заключается в том, что теоретически это будет работать так, как описано, но не на земле. Минимальное гидростатическое давление, необходимое для отделения соли, равно 27.8 бар (2,82 МПа — при условии, что температура в самой глубокой части океана составляет 3°C). Используя это значение вместо 20 бар, минимальная необходимая глубина составляет 11 502 м, что примерно на 500 м глубже, чем бездна Челленджера в Марианской впадине. На этой точной глубине скорость потока через мембрану замедлится до нуля в тот момент, когда пресная вода вернется на поверхность, что требует, чтобы работающая система (та, где был разумный поток) должна была быть немного глубже. .

Тем не менее, теория верна — энергия в системе исходит из разницы потенциальной энергии между массой соли наверху океана и на дне океана.25 кг соли (разница в массе между 1 м 3 соленой и пресной воды), перемещенные на 11502 м, могут произвести 2,82 МДж, что точно соответствует работе, необходимой для толкания 1 м 2 поршня на расстояние 1 м (следовательно, перемещение 1 м 3 воды) через мембрану 2 длиной 1 м, требующую давления 2,82 МПа. Кроме того, в системе не должно быть большого избыточного давления (как в коммерческих системах обратного осмоса), так как соль не будет концентрироваться вокруг мембраны во время процесса (увеличение концентрации увеличивает усилие, необходимое для ее отделения), так как соль будет диффундировать. обратно в окружающую соленую воду.

Проблема глубины потенциально может быть решена двумя способами: во-первых, путем увеличения давления на солевой стороне или во-вторых, путем снижения давления в пресной части.

Первый: путем добавления насоса сравнительно низкого давления (по сравнению с обычными требованиями системы обратного осмоса) в нижней части трубы, однако это затем добавляет проблему увеличения концентрации соли (поскольку теперь мембрана должна быть закрыта), что требует либо увеличенный расход (с более низким давлением), чтобы концентрация рассола оставалась низкой, или более высокое давление, чтобы справиться с повышенной концентрацией.В нем отсутствует автоматическое повторное смешивание, которое было бы в открытой системе, а также добавлены движущиеся части, значительное электрооборудование и источник питания, которые необходимы для предотвращения попадания воды под очень высоким давлением.

Второе: гораздо проще было бы откачивать воду из водопроводной трубы, поддерживая уровень воды на уровне, скажем, 100 м ниже поверхности. Тогда потребуется приблизительно 1 МДж/м 3 (теоретическая), чтобы поднять воду на поверхность. Потери в процессе накачки, вероятно, увеличат это значение до 1.5 МДж/м 3 , однако по сравнению с передовой мировой практикой обратного осмоса ~7,2 МДж/м 3 , это действительно неплохо.

Вот где экономика и другие реалии ситуации начинают кусаться — стоимость очень глубокой трубы будет непомерно высокой, а требование наличия очень глубокой воды сокращает потенциальные места, где это можно сделать. Альтернативой является ситуация, когда труба не такая глубокая, что потребует гораздо большего количества энергии для подъема воды.На минимальной глубине (~300 м) энергия подъема лишь немногим меньше, чем энергия, необходимая для систем обратного осмоса с передовой практикой, и скорость потока будет низкой. Затем вам придется идти глубже, чтобы получить больший поток, давая большую требуемую подъемную энергию, что делает его в лучшем случае предельным с точки зрения использования энергии. Кроме того, количество мест, где относительно глубокая вода (> 500 м) находится близко к крупному населенному пункту, ограничено. Наконец, представьте стоимость и сложность периодической очистки и/или замены мембраны.

Это почти вещь, но недостаточно близко.

Ура,

Глен Робинсон BAppSc (физика), BEng (электротехника)

Осмелюсь ли я предположить, что это будет последнее слово по этому вопросу? Мы, конечно, исчерпали детали этой проблемы, которая начала свою жизнь как обманчивая головоломка. Я думаю, мы можем с уверенностью заключить, что (1) Идея не является сверхединичным устройством, (2) и даже не является практическим методом извлечения энергии из подводной среды.

—Дональд Симанек

Документ начат в 2004 г. Последнее изменение в феврале 2010 г.

Вернуться в Музей неисправных устройств Приложение.

Ключ к ответу на домашнее задание №1: лето 2004 г.

Ключ к ответу на домашнее задание №1: лето 2004 г.
ATM OCN
(Метеорология) 100

Лето 2004 г.


Срок: Четверг, 26 июня 2004 г.

Общее максимальное количество баллов: 60 .Распределение баллов за каждый вопрос, указанный ниже.


1. ПОГОДНЫЕ ЭЛЕМЕНТЫ

1а. Барометрическое давление, связанное с одним эталоном атмосфера на среднем уровне моря равна
           [вы может округляться до ближайшего целого числа] :

(5 баллов — по 1 шт.)
 

1 атмосфера давления эквивалентна: 

29.92 (или 30) дюймов ртутного столба

76,0 см ртутного столба

14,7 (или 15) фунтов на квадратный дюйм (psi)

1013,25 (1000) миллибар (мб)

34 фута воды
(обратите внимание, что этот ответ эквивалентен примерно 10 метрам воды, но ноги просили.)


1б. самый низкий зарегистрированный уровень моря с поправкой на давление в мире было ________. [Пожалуйста, укажите единицы измерения!]
 

Самое низкое давление: 870 мбар = 25,68 дюйма ртутного столба

    самых высоких зарегистрированных морей уровень скорректированного давления в мире был ________. [Пожалуйста включите единицы!]

Максимальное давление: 1083.8 мб = 32,01 дюйма ртутного столба

    Диапазон между рекордно низкое и максимальное давление с поправкой на уровень моря (выше)
     составляет приблизительно ________.

Диапазон: Диапазон = (Высокий — Низкий)
= (1083,8 — 870) мб = 214 мб
= (32,01 — 25,68) дюйма = 6,33 дюйма ртутного столба

(4 балла — 1,1,2)


1с. Какой вес оказывает атмосфера на плоская горизонтальная крыша здания размером 25 на 50 футов? [Предполагать стандартные условия на уровне моря; Здесь могут быть использованы английские единицы]. Ясно показать свою работу для частичного кредита!
 

Из Давление = Вес / площадь , мы можем определить что Вес = Давление x площадь

Давление = 15 фунтов на квадратный дюйм (прибл.)

Площадь = 25 футов x 50 футов = 1250 кв.футов. Поскольку 1 кв. фут = 144 кв. в. (считайте их — так как по 12 дюймов с каждой стороны квадрата), то 1250 кв. футов = 1500 x 144 = 180 000 кв. дюймов.

Затем:

Вес = 15 фунтов на кв. дюйм x 180 000 кв. дюймов = 2 700 000 фунтов или 1350 тонн

(если бы использовалось давление 14,7 фунтов на квадратный дюйм, вес составил бы 2 646 000 фунтов или 1323 тонны)

Обратите внимание, что юниты тоже проверяются!

Хотя этот ответ может показаться большим, крыша не рухнет от веса, оказываемого атмосферой, так как атмосферное давление давить на крышу во всех направлениях.

(5 баллов)


1д. Футбольный болельщик принес в школу Майл Хай барометр-анероид Стадион в Денвере (высота 1 миля) и показания 835 мб. Каким будет приблизительное давление с поправкой на уровень моря, если мы предположили, что давление уменьшается примерно на 1 мб на 10 метров подъем через атмосферу?
 

Стадион

Mile High в Денвере находится на высоте 5280 футов над средним уровнем моря. (MSL), или 1600 м над уровнем моря.

Поскольку предполагается, что давление воздуха уменьшается со скоростью 1 на 10 м, давление на стадионе должно быть на 160 мб меньше, чем на средний уровень моря прямо под стадионом.

Поскольку наблюдаемая станция (или, в данном случае, стадион) давление было 835 мб, при спуске на уровень моря давление бы увеличьте, или на стадионе будет [840+160] мб или 995 мб .

(4 балла)

Как соотносится рассчитанное вами давление на уровне моря с стандартное давление на уровне моря?
 

Давление на уровне моря ниже Денвера в этот конкретный день (995 мб) немного меньше типичного значения давления на уровне моря. (1000 мб) и на 18 мб меньше стандартного давления на уровне моря. (1013 мб) .

(3 балла)


2. Текущая погода в Интернете (6 баллов)
См. http://www.aos.wisc.edu/~hopkins/aos100/homework/s04hmk1k.htm
Эта часть домашнего задания предназначена для того, чтобы вы получили доступ к текущим информация о погоде и климате от местной национальной метеорологической службы Офис в Интернете. Любой «разумный ответ», попадавший в диапазон значений погоды прошлой недели в Мэдисоне составил принятый.


3. Преобразование следующих значений температуры:
 

41° F = 5°C = 278 К

-40ºC = -40º F = 233 K 

258 К = -15ºC = 5º F

Примечание : Будьте осторожны с знаками! Если отрицательный знак не появляется в вашем ответе, где это уместно, ответ , а не правильный.

(6 баллов)


4а. Рекордная самая высокая температура в Мэдисоне, штат Висконсин, составила 107º F. (41,7 º C) 14 июля 1936 г., тогда как рекордно низкий уровень был -37º F (-38,3ºC ) 30 января 1951 года. Каков диапазон Экстремальные температуры Мэдисона?
 

Диапазон = (Высокий — Низкий) = 107° F — (-37)° F = 144 градуса по Фаренгейту .

(1 балл)


4б. Сравните эти рекордные температуры и диапазон с данными Соединенные Штаты и мир.
[Пожалуйста, укажите единицы измерения!]

Следующие значения получены по ссылкам с оф. Страница лекции № 3 (температура):
     Для США: «Постоянная температура экстремумы по состоянию «
» и для мира: «наблюдаемые экстремумы по температуре по континентам (от NCDC)».

 

Рекордно высокий

Рекордно низкий

Диапазон = (Высокий — Низкий)

США

134º F или
56.7ºC

-79,8º F или
-62,1ºC 
(включая Аляску) 

-69,7º F или
-56ºC
(для нижних 48 штатов) 

213,8º F или
118,8ºC
(включая Аляску) 

203.7° F или
112,7° C или
(для нижних 48 штатов)
 

Мир

136º F или
57,8ºC

-129º F или
-89.4ºC

265º F или 
147,3ºC

(6 баллов)


5. Национальная служба погоды в Мэдисоне сообщила о следующая информация для отдельных дней в прошлом январе. То также включены «нормальные» высокие и низкие температуры для этих дней и представляют собой 30-летние средние климатологические данные за 1971-2000 гг. интервал.
 

ДЕНЬ

Наблюдаемые
Средняя температура

Нормальный
Средняя температура*

 

 

 

26 января 2004 г.

[22 + 15]/2 = 19ºF

[25 + 9]/2 = 17º F

28 января 2004 г.

[10 + (-6)]/2 = F

[26 + 9]/2 = 18º F

(12 баллов.)

i.) Единицы фактического градусо-дня отопления:
 

HDDU = [65ºF – среднесуточная температура]

26 января 2004 г.: 65 º Ж   — 19 º Ж = 46 HDDU

28 января 2004 г.: 65 º F   —  2 º F = 63 HDDU

ii.) Обычный HDDU

26 января: 65 º Ж   — 17 º Ж   = 48 HDDU

28 января: 65 º Ж   — 18 º Ж   = 47 HDDU

iii.) Какое количество энергии потребуется для отопления помещений на каждый тех дат сравнить с это климатологическое (или «нормальное») среднее значение для соответствующего даты? Объясните свои рассуждения.

Второй день, 28 января 2004 г., потребует больше энергии для высокая температура.
Причина: С 28 января 2004 год был холодным днем ​​(средняя дневная температура составляла +2 º F) или «ниже нормы» по температуре (при норме 17 º F), 63 HDDU были накоплены по сравнению с «нормальными» 47 HDDU. Таким образом, для обогрева вашего дома потребуется больше энергии, чем обычно. жилой дом. Однако двумя днями ранее (25 января 2003 г.) среднесуточная из 19 º F   было немного выше «нормального» (17 º F), означает, что ожидается «нормальное» количество тепла (другие факторы, такие как поскольку ветер и солнечный свет, не включенные в этот расчет, также влияют на расход топлива), так как было накоплено 46 HDDU как по сравнению с типичным 48 HDDU.

(4 балла)


Последняя редакция: 27 июня 2004 г. (21:00 UTC)

Продюсер: Эдвард Дж. Хопкинс, доктор философии.
Департамент атмосферных и океанических наук
Университет Висконсин-Мэдисон, Мэдисон, Висконсин 53706
[email protected]


URL-адрес: aos100/homework/s04hmk01a.html



атмосфер в водяные футы [4 °C] Программа преобразования

Давление

Атмосфера

атмосфера – это единица измерения давления, равная 101 325 паскалей, символ – атм.

барад

барад — единица измерения давления, равная 0,1 паскаля, символ — барад.

Бар

Бар — это единица измерения давления, равная 100 килопаскалям. Оно примерно равно атмосферному давлению на Земле на уровне моря.

барье

барье — единица измерения давления, равная 0,1 паскаля, символ — Ba.

Дина на квадратный сантиметр

Дина на квадратный сантиметр — единица измерения давления, равная 0,1 паскаля, символ — дин/с².

фут воздуха [0 °C]

фут воздуха [0 °C] — единица давления, равная приблизительно 3.8640888 паскалей и символ фут-воздух 0°.

фут воздуха [15 °C]

фут воздуха [15 °C] — единица измерения давления, равная примерно 3,6622931 паскаля, и символом является фут-воздух 15° .

фут напора

фут напора — это единица давления, равная примерно 2989,0669 паскалей, и символом является фут-напор.

фут ртутного столба [0 °C]

фут ртутного столба [0 °C] — единица измерения давления, равная примерно 40636,664 паскаля, символ — фут ртутного столба 0°.

фут водяного столба [4 °C]

фут водяного столба [4 °C] — единица измерения давления, равная примерно 2989.0669 паскалей и символ фут-вода 4°.

гигабар

гигабар — это единица давления, комбинация метрического префикса «гига» и единицы давления «бар», равная 10 14 паскалей и обозначена как Гбар.

Гигапаскаль

Гигапаскаль представляет собой комбинацию метрического префикса «гига» и производной единицы давления СИ «паскаль», единицу давления, равную 10 9 паскалей, и символом является ГПа.

Дюйм воздуха [0 °C]

Дюйм воздуха [0 °C] — единица давления, равная примерно 0.3220074 паскаля и символ в воздухе 0°.

Дюйм воздуха [15 °C]

Дюйм воздуха [15 °C] — это единица измерения давления, равная примерно 0,30516666667 паскалей, а символ — 15° в воздухе.

Дюйм ртутного столба [0 °C]

Дюйм ртутного столба [0 °C] — это единица измерения давления, равная примерно 3386,388666666667 паскалей, символ ртутного столба — 0°.

Дюйм водяного столба [4 °C]

Дюйм водяного столба [4 °C] — это единица измерения давления, равная примерно 249,08833333 паскалей, а символ — 4° в воде.

Килобар

Килобар представляет собой смесь метрической приставки «кило» и единицы давления «бар», единица давления, равная 100000000 паскалей, и символом является кбар.

Килопаскаль

Килопаскаль представляет собой комбинацию метрического префикса «кило» и производной единицы давления в системе СИ «паскаль», единицы давления, равной xx паскалям, и символом является кПа.

кип / квадратный фут

кип / квадратный фут — это единица давления, равная примерно 47880,25888888889 паскалей, и символом является кип / фут².

кип / квадратный дюйм

кип / квадратный дюйм — это единица измерения давления, равная примерно 6894757,28 паскаля, символ — кип / дюйм².

Мегабар

Мегабар (мега + бар) — единица измерения давления, равная 10 11 паскалей, символ — Мбар.

Мегапаскаль

Мегапаскаль — единица измерения давления, равная 10 6 паскалей, символ — МПа.

Метр воздуха [0 °C]

Метр воздуха [0 °C] — единица давления, равная приблизительно 12.677457 паскалей и символ м-воздух 0°.

Метр воздуха [15 °C]

Метр воздуха [15 °C] — единица измерения давления, равная приблизительно 12,015397 паскалям, символ — м-воздух 15°.

Микробар

Микробар (микро + бар) — единица измерения давления, равная 0,1 паскаля, символ — мкбар.

Миллибар

Миллибар (милли + бар) — единица измерения давления, равная 100 паскалям, символ — мбар.

Миллипаскаль

Миллипаскаль — единица измерения давления, равная 0.001 паскаль и символ мПа.

Ньютон/квадратный метр

Ньютон/квадратный метр — это единица измерения давления, эквивалентная паскалю, символ Н/м².

Ньютон на квадратный миллиметр

Ньютон на квадратный миллиметр — единица измерения давления, равная 10 6 паскалей, символ Н/мм².

Унция на квадратный дюйм

Унция на квадратный дюйм — это единица измерения давления, равная примерно 430,92233 паскалям, символ — унция/дюйм².

Паскаль

Паскаль — производная единица измерения давления в системе СИ (обозначение Па).

Пьез

Пьез — единица измерения давления в системе метр-тонна-секунда (система МТС), использовавшейся, например, в бывшем Советском Союзе в 1933-1955 гг. Он определяется как один стен на квадратный метр. Символ пз.

Фунт/квадратный фут

Фунт/квадратный фут – это единица давления, равная примерно 47,88 паскалям, символ – psft.

Фунт на квадратный дюйм

Фунт на квадратный дюйм — это единица измерения давления, равная примерно 6894,75728 паскалям, символ — psi.

Техническая атмосфера

Техническая атмосфера – это единица измерения давления, равная приблизительно 98066,5 паскаля, и обозначается символом ат.

Терапаскаль

Терапаскаль представляет собой комбинацию метрической приставки «тера» и производной единицы измерения давления в системе СИ «паскаль».

Тонна / квадратный фут [длинный]

Тонна / квадратный фут [длинный] — единица измерения давления, равная примерно 94995,32252 паскаля, и символом является т/фут²-длинный.

Тонна/квадратный фут [короткая]

Тонна/квадратный фут [короткая] – единица давления, равная примерно 95760.52 паскаля и символ t/ft²-короткий.

Тонна на квадратный дюйм [длинная]

Тонна на квадратный дюйм [длинная] — единица измерения давления, равная примерно 13679326,44352 паскаля, символом является т/дюйм²-длинная.

Добавить комментарий

Ваш адрес email не будет опубликован.

*