Принципы работы холодильной машины — УКЦ
Раздел описывает перенос тепла, осуществляемый хладагентом в кондиционере. Рассказывается, каким образом тепло в холодильном цикле переносится из помещения на улицу, и почему холодопроизводительность кондиционера превышает потребляемую мощность. Приведена принципиальная схема кондиционера и описаны его основные компоненты и их назначение.
Перенос тепла при испарении и конденсации
Основные функции кондиционера — это охлаждение и обогрев воздуха, уже находящегося внутри помещения. Охлаждение воздуха в кондиционерах происходит при помощи компрессионного цикла охлаждения.
Этот цикл основан на 2 явлениях:
- При испарении жидкости теплота поглощается из окружающей среды.
- При конденсации пара тепло выделяется.
Температура кипения
жидкости зависит от давления окружающей среды.
Теплота парообразования жидкостей очень велика. Это явление и используется в холодильной машине. Фреон превращается в пар в специальном отделении — испарителе. Трубки испарителя обдуваются потоком воздуха. Кипящий фреон поглощает тепло из этого воздушного потока, охлаждая его.
Но в холодильной машине невозможно только испарять фреон, поглощая тепло, поэтому в ней производится и обратный процесс конденсации — превращения из пара в жидкость. При конденсации любой жидкости выделяется теплота, которая поступает затем в окружающую среду. Температура конденсации, как и температура кипения, зависит от внешнего давления. При повышенном давлении конденсация может происходить при весьма высоких температурах.
Кондиционер тратит электроэнергию на перенос тепла из помещения на улицу: сжатие хладагента и его перекачку по трубкам. Холодопроизводительность кондиционера в 3-5 раз выше, чем потребляемая мощность.
Схема холодильной машины (кондиционера)
Компрессионный цикл охлаждения состоит из четырех основных элементов:
- Компрессора
- Испарителя
- Конденсатора
- регулятора потока.
Эти основные элементы соединены трубопроводами в замкнутую систему, по которой циркулирует хладагент (обычно это фреон). Циркуляцию хладагента по контуру производит компрессор холодильной машины.
Рис. 1. Схема компрессионного цикла охлаждения |
Хладагент постоянно циркулирует в холодильной машине, меняя агрегатное состояние при периодически изменяющихся температуре и давлении. В каждом цикле имеется два определенных уровня давления. На стороне высокого давления происходит конденсация хладагента и находится конденсатор. На стороне низкого давления находится испаритель и жидкий хладагент превращается в пар.
- На выходе из испарителя хладагент — это пар при низкой температуре и низком давлении.
- Затем компрессор всасывает хладагент, давление повышается до примерно 20 атм., а температура достигает 70 — 90 °С.
- После этого горячий пар хладагента попадает в конденсатор, где он охлаждается и конденсируется. Для охлаждения используется вода или воздух. На выходе из конденсатора хладагент представляет собой жидкость под высоким давлением.
- Затем хладагент (жидкий, при высоких давлении и температуре) поступает в регулятор потока. Здесь давление резко падает, и происходит частичное испарение.
- На вход испарителя попадает смесь пара и жидкости. В испарителе жидкость должна полностью перейти в парообразное состояние.
- Образовавшийся в испарителе перегретый пар выходит из него, и цикл возобновляется сначала.
В сплит-системе испаритель расположен во внутреннем блоке, а компрессор и конденсатор — во внешнем. В оконном моноблочном кондиционере все элементы заключены в один корпус, но конденсатор находится в той его части, которая обращена на улицу, а испаритель — во внутренней части корпуса.
Для улучшения теплопередачи теплообменники обдуваются воздухом при помощи вентиляторов.
Тепловой насос — обогрев помещения с помощью кондиционера
В режиме обогрева помещения (его имеют не все кондиционеры) испаритель и конденсатор меняются функциями. Кондиционер переносит тепло с улицы в помещение. При этом направление движения хладагента по холодильному контуру меняется на обратное. Такой перенос тепла называется
- Компрессор увеличивает давление хладагента и направляет его в испаритель.
- В испарителе (внутри помещения) хладагент конденсируется и превращается в жидкость с высоким давлением и низкой температурой.
- Жидкий хладагент перетекает в капилляр, где его давление снижается, и он становится смесью пара и жидкости с низкой температурой и давлением.
- Смесь попадает в конденсатор (расположенный на улице), поглощает тепло из внешнего воздуха и испаряется. Цикл работы теплового насоса повторяется.
Внимание! Зимой тепловой насос нельзя использовать для обогрева помещения (см. раздел «Что нужно знать о кондиционерах»).
Основная литература
- Спецвыпуск «Мир Климата — монтажнику», «Принципы работы холодильной машины» (mk_mon_02.html)
- Л. Корх «Принцип работы кондиционера» (prinzip-cond-korh.pdf (1 МБ))
Дополнительная литература
- Полльман «Учебник по холодильной технике», Издательство МГУ 1998 г., глава 1.3.6.2 «Цикл паровой холодильной машины и термодинамические диаграммы» (стр. 211 — 220) (pollman-hladagents-211-220.pdf (2,94 Мб))
- «Мир Климата»№32 «Тепловые насосные установки» (mk_32_17. html)
- «ПОПРАВКА К ЗАКОНУ ПРИРОДЫ. Взял киловатт, отдай три!» Г. Литвинчук (17.pdf (114.01Kb))
Контрольные вопросы:
- Удельная теплота испарения фреона 1,5 кДж/г. Какое количество фреона должно конденсироваться, чтобы выделилось 300 кДж тепловой энергии?
- Почему в горах вода закипает при температуре ниже 100°С?
- Какую функцию выполняет компрессор кондиционера?
- Почему в испарителе весь хладагент должен обязательно испариться полностью?
- При какой температуре допускается работа кондиционера в режиме теплового насоса?
- Каким образом мощность обогрева кондиционером в режиме теплового насоса оказывается выше потребляемой электрической мощности?
- Минимальное количество элементов работающего холодильного контура
- В каком режиме работает холодильная машина при обратном цикле?
Устройство, принцип работы холодильной установки и интеграция
Содержание
- Чем отличается холодильная установка от машины?
- Системы охлаждения
- Системы для получения холода
- Абсорбционные холодильные системы
- Диффузионно-абсорбционный чиллер
- Адсорбционные холодильные системы
- Компрессионная холодильная машина
- Пароструйное охлаждение
- Эффект Джоуля-Томсона. Процесс Линде
- Принципиальная структура импульсного трубчатого охладителя
- Термоэлектрический эффект. Элемент Пельтье
- Магнитный холодильник
- Испарительное охлаждение
- I—d-диаграмма влажного воздуха
- Коэффициент производительности или холодильный коэффициент
- Интеграция систем охлаждения и отопления для эффективной работы
Теоретический принцип работы холодильной установки — это 2 закон термодинамики и обратный цикл Карно. Принцип работы холодильной установки основан не на расширении или сжатии как в цикле Карно, а на конденсации и испарении (фазовые переходы). Процессы охлаждения, в которых не используются газы и движущиеся части, не называются установками для холода. Есть, например, термоэлектрический и магнитокалорический эффект.
Чем отличается холодильная установка от машины?Холодильная установка представляет комплекс: сооружения с теплоизоляцией, холодильные машины, аппараты, предназначенные для получения, транспортировки и использования искусственного охлаждения. То есть установка в дополнение к 4 элементам холодильной машины или к составляющим безмашинного получения холода, содержит аппараты, трубопроводы, приборы, сооружения и теплоизоляцию для совершения технологических процессов и оптимальной эксплуатации холодильного оборудования.
Установка для холода используется для аккумулирования, транспортировки и хранения вторичных энергоресурсов. Для этого применяются, например, водоаммиачные абсорбционные установки, гелиоустановки с фреоновыми котлами для развития низкотемпературной энергетики.
Холодильные станции различаются по следующим признакам: передвижные и стационарные (по назначению), по производительности (крупные: более 120 кВт, средние: до 120 кВт, мелкие: до 15 кВт), по температурному уровню (высокотемпературные: + 10 — +20 °C, среднетемпературные: — 10 — -30 °C, низкотемпературные: ниже -30 °C), по схеме (каскадные, одно-, двух-, многоступенчатые), по виду хладагента (аммиачные, этановые, пропановые, пароводяные, фреоновые, воздушные, водоаммиачные, бромистолитиевые и другие).
Большинство устройств парокомпрессионные, которые отличаются типом компрессора (поршневой, винтовой, ротационный, спиральный или центробежный компрессор). Широко используются парокомпрессионные устройства с поршневым компрессором.
Монреальское соглашение требует вести работы по замене фреонов, которые воздействуют на озоновый слой. Поэтому применяются альтернативные хладагенты и смеси в домашних холодильниках и для процессов с переменной температурой отвода и подвода теплоты.
Не существует чёткой методики выбора оборудования для холода, учитывающей различные факторы. Объективным способом является сопоставление капитальных и эксплуатационных затрат (годовой экономический эффект).
Системы охлажденияМашина для холода транспортирует с помощью компрессора теплоэнергию от холодного тела к тёплой среде. Работа чиллеров основана на термодинамическом цикле. Адсорбционные и абсорбционные чиллеры не имеют механического привода (двигателя). Целью чиллера является охлаждение до температурного уровня ниже температуры окружающей среды. Чиллеры похожи на тепловые насосы, но последние используют выделяемое тепло.
Схема чиллера
Чиллеры работают в соответствии со следующими принципами:
- Системы холодного пара используют испарительное получение холода с использованием хладагентов, которые имеют подходящие температурки испарения для желаемого диапазона температур и давления. Хладагент постоянно подвергается фазовому переходу жидкость-газ в контуре и наоборот.
- Машины, использующие эффект Джоуля-Томсона, обходятся без разжижения и используют эффект охлаждения газов во время релаксации. Применяется также процесс Линде. С многоступенчатыми системами получают низкие термопоказатели, например, для сжижения воздуха.
Первый в мире функционирующий чиллер построен в 1845 году американским доктором Джоном Горри во Флориде, который искал способы улучшить возможности лечения пациентов больницы в жаркой и влажной Флориде. Согласно медицинской доктрине «плохой воздух» был основным фактором болезней, а зимний лёд, привезённый из северных Великих озёр, был единственным вариантом охлаждения.
Машина Горри, в которой использовался обратный принцип двигателя Стирлинга, использовалась для производства льда и в то же время для охлаждения помещения (кондиционирование воздуха). Прототип был построен. В дальнейшем произошёл финансовый сбой. Д. Горри умер обедневшим.
В 1870-х годах холодильные установки стали экономичными. Первыми основными потребителями были пивоваренные заводы. Немецкий промышленник Карл фон Линде являлся крупным производителем.
Системы для получения холодаХолод, «генерируемый» чиллером, используется для технологических процессов, для кондиционирования воздуха, для производства льда (катки), консервации и охлаждения продуктов. Тепло поглощается прямо или косвенно. В случае непрямого получения холода используется охлаждающая жидкость (холодная вода, рассол, смеси с гликолем, чтобы избежать замерзания в трубах).
Конструкция простого теплообменника
Промежуточная жидкость охлаждается испаряющимся хладагентом в первом теплообменнике и поглощает тепло охлаждаемой среды во втором теплообменнике. При непосредственном использовании рабочего вещества применяется теплообменник с испаряющимся хладагентом с одной стороны и охлаждаемое вещество с другой.
Об устройстве и принципе работы холодильных установок в этом видео:
Абсорбционные холодильные системыАбсорбционные системы относятся к классу теплоиспользующих машин, в которых охлаждение достигается путём слияния прямого цикла (преобразование тепла в работу) и обратного цикла (получение холода с затратой работы). Поэтому участвуют 3 источника тепла: окружающая среда, нагреватель и охлаждаемый объект. На рисунке ниже приведена схема простейшего абсорбционного холодильного аппарата, работающего на бинарных типах.
Абсорбционные чиллеры имеет дополнительный растворитель и холодильный контур. Рабочая жидкость состоит из двух компонентов: растворителя и хладагента. Хладагент должен быть полностью растворим в растворителе. Распространены абсорбционные чиллеры с водой в качестве хладагента и водным раствором бромида лития (LiBr) в качестве растворителя.
Температуры испарения воды примерно до 3 °C достигаются с помощью вакуума. Абсорбционные чиллеры, которые используют аммиак (NH3) в качестве хладагента и воду в качестве растворителя, достигают более низких температурных уровней. Температуры испарения -70 °C достигаются в крупных холодильных системах с абсорбцией аммиака. В случае абсорбционных чиллеров есть дополнительная возможность по добавлению абсорбционного тепла.
Принцип работы абсорбционной установки
Диффузионно-абсорбционный чиллерДиффузионно-абсорбционный чиллер работает как охладитель поглощения. Изменение давления, однако, реализуется как изменение парциального давления. Для этого требуется третий компонент рабочей жидкости — инертный газ. Преимущество в том, что корпус под давлением герметично закрыт и не требует съёмных уплотнений, а устройство работает бесшумно. Технология используется, например, в кемпинговых и гостиничных холодильниках.
Адсорбционные холодильные системыАдсорбционные системы работают с фиксированным растворителем (адсорбентом), при котором хладагент адсорбируется или десорбируется. Тепло добавляется в процесс во время десорбции и отводится во время адсорбции. Поскольку адсорбент не может циркулировать в цикле, процесс осуществляется только с перерывами.
Поэтому используются две камеры с адсорбентом, в которых адсорбция и десорбция проходят параллельно в течение одного рабочего цикла (от 6 до 10 минут). По окончании рабочего цикла происходит обмен теплом и тепловыделение в двух камерах (переключение, прибл. 1 мин.). Затем адсорбция и десорбция начинаются снова параллельно. Это обеспечивает практически равномерное охлаждение.
Компрессионная холодильная машинаВ компрессорном устройстве рабочее вещество протекает по контуру потока, попеременно поглощая тепло при низкой температуре и выделяя (больше) тепло при более высокой температуре. Перекачивание, то есть введение механической работы, необходимо для поддержания потока и, следовательно, процесса.
Схема работы холодильника: 1 — конденсатор, 2 — терморегулирующий вентиль, 3 — испаритель, 4 — компрессор
Такие машины работают либо, чередуя испарение и конденсацию среды (хладагента), либо с газообразной средой (в основном с воздухом). Первый тип широко распространён и используется, например, в бытовых холодильниках, морозильниках, системах дозирования, кондиционерах, на катках, пищевых заводах и в химической промышленности.
Для работы машины согласно 2 закону термодинамики, энергия подаётся извне в виде механической работы, потому что только тогда тепло переносится из точки с низкой температурой в точку с высоким термозначением.
Пар из компрессорной машины всасывается и сжимается. Рабочее вещество конденсируется в конденсаторе, отдавая наружу теплоту. Жидкость направляется в дроссельное устройство, расширяется, давление падает, рабочее вещество охлаждается и испаряется. Процесс испарения продолжается в испарителе, хладагент забирает теплоту из холодного объёма. Компрессор всасывает испарённый и сухой (или перегретый) пар, и цикл повторяется.
Схема (а) и цикл (б) машины для холода со сжатием в компрессоре сухого пара
Пароструйное охлаждениеОхлаждение пара струи является тепловой системой для получения холода, в которой используется водяной пар в качестве хладагента и солевой раствор. Расширение струи водяного пара создаёт вакуум, и водяной пар отсасывается из испарителя. Испарение охлаждает резервуар для воды в испарителе, а вода используется в качестве охлаждающей жидкости.
Эффект Джоуля-Томсона. Процесс ЛиндеДля обеспечения охлаждения температуру газа (например, воздуха, гелия), который не конденсируется в рабочей зоне, снижают путём дросселирования. При использовании эффекта Джоуля-Томсона охлаждение составляет 0,4 К на перепад давления в дросселе. Хотя этот эффект мал, но его используют для достижения низких температур, близких к абсолютному нулю.
Системы часто выполняются в несколько этапов. Оборудование системы Джоуля-Томсона аналогично оборудованию компрессорного холодильника, но теплообменники не сконструированы как конденсаторы или испарители. Для оптимизации энергопотребления необходимо предварительно охладить газ в рекуперативном (противоточном) теплообменнике, чтобы газ возвращался из охладителя перед расширительным клапаном (дросселем).
В 1895 году Карл Линде использовал такую систему сжижения воздуха и сжижал большие количества (1 ведро/ч) воздуха. С тех пор процесс Джоуля-Томсона для сжижения воздуха стал называться процессом Линде.
Однако для охлаждения с использованием процесса Джоуля-Томсона крайне важно, чтобы начальный тепловой уровень был ниже температуры инверсии соответствующего газа. Это примерно + 450 °С для воздуха, -80 °С для водорода и -239 °С для гелия. Если газ выходит ниже температуры инверсии, то остывает, а если выходит выше температурки инверсии, то нагревается. Для того чтобы иметь возможность охлаждать газ с использованием процесса Линде, начальный тепловой показатель должен быть ниже температурки инверсии.
Принципиальная схема установки с циклом Линде приведена на рисунке ниже. Рабочее тело — сжиженный воздух. Воздух, очищенный и осушённый от углекислоты, засасывается компрессором 1 и в идеале изотермически сжимается до давления 10—20 МПа. В реальном случае сжатие происходит по политропе (температура повышается). Пройдя теплообменник 2, воздух охлаждается окружающим объёмом до начальной температуры.
Затем воздух проходит теплообменник 3 (основной), дроссель 4, сборник жидкости 5, опять теплообменник 3 и поступает в компрессор. В основном теплообменнике навстречу друг другу идёт «тёплый» поток воздуха (сжатие в компрессоре) и «холодный» поток (расширение в дросселе). Температурный уровень холода понижается без передачи тепла внешним источникам. Происходит внутренний теплообмен.
Схема установки с циклом Линде
Принципиальная структура импульсного трубчатого охладителяИмпульсная трубка-холодильник является холодильной машиной, принцип действия которой соответствует принципу работы двигателя Стирлинга. Импульсной трубке-холодильнику не требуется механических подвижных частей. Это позволяет создавать компактные охлаждающие головки, а минимальный температурный уровень не ограничивается механическим теплом трения деталей. Самое низкое значение до сих пор было 1,3 K (–272 °C).
Импульсная трубка-холодильник
Термоэлектрический эффект. Элемент ПельтьеЭлемент Пельтье также используется для охлаждения (или нагрева), который работает от электричества и не требует хладагента. Однако при большой разнице температур (50-70 К) охлаждающая способность падает до нуля. Для высоких перепадов температуры используются пирамидальные многоступенчатые структуры.
Эта технология используется для стабилизации температуры полупроводниковых лазеров и датчиков, в автомобильных кулерах, в термоциклерах и для охлаждения датчиков изображения в камерах от инфракрасного до ультрафиолетового излучения.
Магнитный холодильникСхема работы магнитного холодильника
Другой метод получения холода основан на магнитных свойствах определённых веществ. При намагничивании некоторые вещества выделяют тепло. Такие вещества называют магнитокалорическими. При магнитном охлаждении вещество попадает в магнитное поле, где нагревается. Тепло рассеивается с помощью охлаждающей жидкости.
Материал, возвращённый к температуре окружающей среды, теперь покидает магнитное поле и размагничивается в области, подлежащей охлаждению. Материал поглощает тепло при размагничивании. Механическая работа выполняется снаружи, чтобы удалить намагниченный материал из магнитного поля. Такие системы для холода эффективнее систем, работающих с паром, но более дорогие.
Испарительное охлаждениеПри испарительном охлаждении энергия в виде тепла (энтальпия испарения) извлекается из среды (например, воздуха или поверхности) путём испарения воды. Испарительное охлаждение также часто называют адиабатическим охлаждением, поскольку теоретически физический процесс представляет собой изоэнтальпическое преобразование из чувствительного в скрытое тепло.
Это процесс теплопередачи от высокой к низкой температуре, который усиливается фазовым переходом (вода в пар) и, таким образом, представляет собой самодействующий термодинамический цикл «по часовой стрелке». Следовательно, кроме транспортировки воздуха и воды, не требуется никакой дополнительной механической, электрической или тепловой энергии.
Испарительное охлаждение — старейший метод охлаждения. Испарение воды в воздухе создаёт охлаждающий потенциал, который ниже температуры окружающей среды. Достижимая пониженная температура зависит от климатических условий воздуха. Во многих случаях этого достаточно для кондиционирования воздуха в помещении. В некоторых технологических системах, таких как влажная градирня, охлаждающий эффект также увеличивается в случае воздушного охлаждения.
Возможная степень охлаждения зависит от температуры и влажности окружающего воздуха, то есть относительной влажности. Если относительная влажность воздуха близка к 100%, то есть воздух насыщен или даже перенасыщен (как в тумане), эффект не определяется. Давление насыщенного пара воды в воздухе слишком высокое. Однако, чем ниже относительная влажность, тем выше вероятность дальнейшего впитывания влаги, и тем больше воды испаряется, снижая температуру воздуха.
I—d-диаграмма влажного воздуха
Области состояний влажного воздуха в i—d-диаграмме
Все изменения в состоянии воздуха узнаете на i—d-диаграмме (абсолютная влажность в зависимости от температуры). Общее содержание энергии в воздухе дано в кДж/кг. Поскольку во время испарительного охлаждения (адиабатическое) содержание энергии не меняется, изменение состояния происходит сверху вниз. При относительной влажности 100% достигнете линии насыщения.
Испарительное охлаждение является критическим физическим процессом, стоящим за охлаждающим эффектом потоотделения (или, например, смачиваемой кожи на руке, подвергшейся воздействию ветра). Этот тип охлаждения также использовался на ранних этапах истории техники, поскольку в древние времена было известно, что глиняные сосуды увлажняются и позволяют испаряться через поверхность с открытыми порами, чтобы охлаждать содержимое (например, охладитель глинистого масла)
Получение холода. Принцип работы холодильника. (видео)
Коэффициент производительности или холодильный коэффициентВ реальных холодильниках работают разные циклы. Циклы холодильников на диаграмме p-V проходят против часовой стрелочки.
Идеальный цикл холодильника на диаграмме p-V, Qнагр < 0, A < 0, Qхол > 0, Tнагр > Tхол
Термическая эффективность охлаждения или нагрева производится в расчёте на количество механической работы. Как показатель качества её называют коэффициентом энергоэффективности или холодильным коэффициентом. Следующее относится к холодильной системе, использующей охлаждающую способность IQхолI: холодильный коэффициент = Qхол / Qнагр — Qхол
Холодильный коэффициент определяют как отношение отнятого тепла Qхол к затраченной работе A: холодильный коэффициент = IQхолI / IAI. Выходная тепловая мощность — это сумма поглощённой мощности охлаждения и работы. Эфективность работы холодильника – это количество теплоты, отобранной от охлаждаемых веществ на 1 джоуль работы.
Холодильный коэффициент больше или меньше 1
Процесс Карно представляет собой пограничный случай обратимого процесса, который требует идеальных условий, и которые технически недостижимы. Количество тепла также получите с помощью энтропии S. Изменение ΔS энтропии идентично для обратимого процесса Карно для двух изотермических изменений состояния при температурках Tхол и Tнагр
Если реальный процесс сравнивается с процессом Карно, то для систем охлаждения запишем следующее: холодильный коэффициент = Tхол / Tнагр — Tхол = 1 / КПДКарно, где температуры Т в Кельвинах.
Чиллер используется не только для охлаждения, но и для отопления. Бытовой холодильник также подогревает воздух. Принцип отопления предложен Томсоном и используется в теплонасосах.
Интеграция систем охлаждения и отопления для эффективной работыОбщий вид холодильной машины с интегрированным теплонасосом
Для небольших магазинов (площадью до 800 м2) в основном хладагентом является гидрофторуглерод (R-404A). Для обеспечения теплотой в зимнее время применяются такие варианты: утилизация тепла конденсации, использование воздушного теплового насоса или геотермального и другие.
Для супермаркетов и гипермаркетов применяются холодильные установки, работающие на диоксиде углерода. Поэтому целесообразно для снижения потребления электроэнергии по сравнению с применением электрического котла использовать воздушный тепловой насос, который позволит отапливать помещения при температуре наружного воздуха до –30 °C.
Разработки по интеграции теплового насоса в холодильную систему ведутся компаниями «Лэнд» и «Данфосс». Подобранный на максимальную производительность тепловой насос обеспечивает холодоснабжение супермаркета.
Использование насоса для тепла позволит снизить энергопотребление на 50% по сравнению с электробогревом. Комбинированная установка холодоснабжения и отопления магазина – это надёжный и эффективный метод энергоэкономии в торговой сети. Система позволит оптимизировать режимы работы супермаркета, уменьшить время оттайки и снижает эксплуатационные затраты. Экономическая выгода при эксплуатации очевидна.
Теперь знаете системы охлаждения и принцип работы холодильной установки на должном уровне. Советую посмотреть следующее видео по принципиальной схеме установки для получения холода:
Изобретайте и дерзайте! Успехов!
Использованные материалы
- Холодильные установки. Учебник для студентов вузов. Курылев Е.С., Оносовский В. В., Румянцев Ю. Д. — 3-е изд., СПб.: Политехника, 2007 г. — 576 с.
- Современные энергоэффективные системы холодоснабжения. http://promholod.land-group.ru/gruppa-kompanij-lend/novosti/i/289/
- Научно-технический и информационно-аналитический журнал “Холодильная техника”, N1-2, 2020 г., Москва, ООО «Вива-Стар», http://www.holodteh.ru
Автор: Королёв Сергей
Как работает компрессионная холодильная система?
Как работает компрессионная холодильная система?
- Автор сообщения: Process Solutions, Inc.
- Сообщение опубликовано: 1 июля 2020 г.
- Категория сообщения: Информационная
Парокомпрессионные холодильные установки обычно используются на промышленных предприятиях для создания условий, способствующих сохранению и безопасному хранению продуктов. В этом руководстве мы рассмотрим, как работает компрессионная холодильная система, и четыре основных компонента, используемых для создания холодильного цикла.
Парокомпрессионный холодильный цикл
Компрессионный холодильный цикл состоит из циркуляции жидкого хладагента через четыре ступени замкнутой системы. По мере циркуляции хладагента по системе он то сжимается, то расширяется, меняя свое состояние с жидкого на парообразное. По мере изменения состояния хладагента тепло поглощается и отводится системой, снижая температуру кондиционируемого пространства.
Этап 1: Сжатие
На первом этапе цикла охлаждения хладагент поступает в компрессор в виде пара низкого давления. Компрессор сжимает хладагент до пара высокого давления, вызывая его перегрев. Как только хладагент сжимается и нагревается, он выходит из компрессора и переходит на следующую стадию цикла.
КОНЧИК:
Существует несколько типов компрессоров, которые можно использовать в холодильном цикле, включая спиральные, винтовые, центробежные или поршневые компрессоры.
Этап 2: Конденсация
После выхода из компрессора горячий парообразный хладагент переходит на следующую стадию цикла — конденсацию. На стадии конденсации хладагент поступает в конденсатор и проходит через ряд S-образных трубок. Когда горячий пар проходит через конденсатор, вентилятор продувает холодный воздух по трубкам.
Поскольку воздух, обдуваемый трубками, холоднее хладагента, тепло передается от трубок более холодному воздуху. Этот теплообмен приводит к тому, что горячий парообразный хладагент достигает температуры насыщения, которая затем меняет свое состояние на жидкость под высоким давлением. Как только хладагент находится в жидком состоянии под высоким давлением, он готов покинуть конденсатор и перейти к этапу измерения и расширения цикла.
Этап 3: Измерение и расширение
Третий этап работы компрессионных холодильных систем состоит из подачи жидкого хладагента под высоким давлением в дозирующее устройство или расширительный клапан. Дозирующее устройство поддерживает высокое давление на входе, а также расширяет жидкий хладагент и снижает давление на выходе. В процессе расширения температура жидкого хладагента также снижается.
Стадия 4: Испарение
В холодном жидком состоянии при низком давлении хладагент теперь готов вступить в стадию испарения, на которой тепло окончательно отводится из кондиционируемого пространства.
На этапе испарения холодный жидкий хладагент выходит из дозатора и поступает в испаритель по змеевикам.
Тем временем, когда хладагент поглощает тепло из воздуха, он начинает кипеть и превращается в пар низкого давления. Затем пар низкого давления втягивается обратно в компрессор, и цикл начинается заново.
О компании Process Solutions, Inc.
Компания Process Solutions, расположенная недалеко от Сиэтла, штат Вашингтон, обладает более чем 30-летним опытом разработки высококачественных и надежных систем управления. Имея в штате более 100 инженеров и техников и производя более 3000 промышленных панелей управления в год, Process Solutions является крупнейшим интегратором систем управления на Северо-Западе. В дополнение к индивидуальному дизайну панели управления, сборке и вводу в эксплуатацию, услуги Process Solutions по системам управления включают программирование ПЛК и ЧМИ, интеграцию роботизированных систем, системы управления энергопотреблением и промышленным охлаждением, программное обеспечение SCADA и программное обеспечение для мониторинга машин DAQuery.
Холодильный цикл — в простых для понимания описаниях и схемах!
20 августа 2020 г.
Цикл охлаждения — это простой, но удивительно умный и полезный процесс.
В своей простейшей форме цикл охлаждения состоит всего из 4 основных компонентов, завершающих контур:
- Компрессор
- А Конденсатор
- А Ограничение
- Испаритель
Вот и все. Ну вот и все — нам также нужен хладагент для циркуляции внутри контура.
Как следует из названия, процесс охлаждения представляет собой цикл.
Мы начинаем с компрессора, проходим через конденсатор, затем через дроссель, затем через испаритель и, наконец, обратно к компрессору, где цикл начинается заново.
Итак, давайте кратко рассмотрим каждый из компонентов по очереди. К счастью, их имена говорят сами за себя:
1.
Компрессор. Компрессор можно рассматривать как сердце процесса.
Он действует как насос для создания циркуляции путем сжатия газообразного хладагента, создавая перепад давления, который перемещает хладагент по контуру в непрерывном цикле.
2. Конденсатор.
Конденсатор охлаждает и конденсирует газообразный хладагент, выходящий из компрессора, в пар и, наконец, в жидкость.
3. Ограничение.
Дроссель ограничивает поток жидкого хладагента и создает разницу давлений между собой и испарителем. Ограничитель чаще называют ИЗМЕРИТЕЛЬНЫМ УСТРОЙСТВОМ, поскольку он измеряет количество хладагента, поступающего в испаритель.
4. Испаритель.
Испаритель испаряет жидкий хладагент в пар, а затем в газ, прежде чем он вернется в компрессор.
5. Хладагент.
Вы могли заметить, что в этом очень кратком и упрощенном введении к компонентам мы уже говорили о том, что хладагент представляет собой ГАЗ, ПАР и ЖИДКОСТЬ. Именно это изменение состояния хладагента создает охлаждающий эффект и является основным принципом холодильного цикла — подробнее об этом чуть позже.
Вот несколько примеров этих компонентов и их внешний вид:
1. Компрессор.
Компрессор является сердцем холодильного цикла и поставляется в широком диапазоне размеров.
В небольших системах он обычно находится внутри наружного блока, но в больших системах с несколькими компрессорами они обычно находятся в техническом помещении.
2. Конденсатор.
Конденсатор часто называют «наружным блоком», , и обычно его можно найти именно там — на улице, на полу, стене или крыше. В большинстве установок кондиционирования воздуха и небольших холодильных установках наружный блок содержит компрессор, конденсатор, различную электронику и, в некоторых случаях, ограничитель (измерительный прибор).
Конденсатор холодильной камеры. Конденсаторы чиллеров на крыше. Конденсаторы кондиционеров.3. Сужение (прибор учета).
Капиллярный дозатор. Термостатический дозатор. Электронный дозатор.Подавляющее большинство всех современных систем охлаждения и кондиционирования воздуха будет использовать один из этих 3 типов измерительных устройств.
Капиллярные трубки представляют собой отрезок очень узкой трубки, ограничивающий поток хладагента.
Чаще всего их можно найти в небольших холодильниках, таких как у вас дома.
Термостатические дозирующие устройства , чаще называемые TEV или TXV (термостатические расширительные клапаны), очень распространены во всех холодильных системах. В них используется колба, частично заполненная хладагентом и прикрепленная к трубе, выходящей из испарителя. Эта лампа измеряет температуру хладагента, выходящего из испарителя, и под давлением может открываться и закрываться для изменения количества хладагента, поступающего в испаритель.
Электронные дозирующие устройства , чаще называемые EEV или EXV (электронные расширительные клапаны), представляют собой более современную и точную версию TEV. Они управляются электронным способом с помощью данных, предоставляемых электронным датчиком температуры, и могут открываться и закрываться несколько раз в секунду, что позволяет очень точно контролировать количество хладагента, поступающего в испаритель.
Чтобы помочь понять работу ограничительного или измерительного устройства, может быть свободно по сравнению с соплом аэрозольного баллончика.
4. Испаритель.
Испаритель часто называют «внутренним блоком», , и обычно именно там вы его и найдете — в помещении, в помещении, которое охлаждается (или нагревается в случае кондиционирования воздуха с тепловым насосом). Обычно их монтируют на высоком уровне на потолке или стене.
Испаритель для холодильной камеры. Испаритель для кондиционирования воздуха. Испаритель для холодильной камеры. Змеевики испарителя и конденсатора в основном имеют одинаковую конструкцию.
Длинный отрезок трубопровода, окруженный алюминиевыми ребрами.
По сути, это теплообменники, похожие на радиатор в автомобиле.
5. Хладагент.
Существует множество типов хладагентов и смесей хладагентов. Различные хладагенты имеют разные свойства в зависимости от применения — кондиционеры, холодильные камеры, морозильные камеры и т. д.
Хладагенты обычно обозначаются номером «R», например R32, R410A, R422D, R507.
Пропан (R290), аммиак (R717) и CO² (R744) также в настоящее время используются в качестве хладагентов.
Прежде чем двигаться дальше, важно понять, что такое охлаждение:
Термин охлаждение означает охлаждение пространства, вещества или системы для понижения и/или поддержания их температуры ниже температуры окружающей среды (при этом отводимое тепло отводится при более высокой температуре). Другими словами, охлаждение — это искусственное (искусственное) охлаждение.
Википедия.
Важной частью этого определения является «
удаленное тепло ». То, что вы воспринимаете как «Холод», не имеет «Тепла».
Задача холодильной системы — просто отводить тепло оттуда, где оно не нужно.
Тепло относительно – что вы считаете горячим?
Один очень важный аспект, который необходимо усвоить при понимании холодильного цикла, заключается в том, что теплота относительна.
Мы склонны думать о тепле с точки зрения нашего повседневного опыта и ситуаций.
При температуре 30°C мы думаем, что это КИПЯЩИЙ ГОРЯЧИЙ день!
Когда мы окунаемся в море с температурой 16°C в этот жаркий день, кажется, что это ЛЕЗЯЩИЙ ХОЛОД!
Таким образом, при разнице всего в 14°C наше восприятие тепла изменилось с КИПЕНИЯ на ЗАМОРОЖЕНИЕ!
Но когда мы смотрим на эти температуры по отношению к другим температурам, реальность совсем другая.
Если мы посмотрим на температуру солнца в 5500°C, то наш 30°C ГОРЯЧИЙ день, соответственно, будет положительно холодным. Точно так же жидкий азот при температуре -200°C делает наше МОРОЗНО-ХОЛОДНОЕ 16°C море кажущимся КИПЯЩИМ ГОРЯЧИМ!
Когда мы думаем о термине «КИПЕНИЕ», мы сразу же представляем себе воду в чайнике, кипящую при 100°C. Мы инстинктивно ассоциируем кипение с температурой 100°C. Но важно понимать, что это происходит только с водой, на уровне моря, где атмосферное давление составляет 1 бар. Если бы мы были на вершине Эвереста, где давление всего 0,34 бара, наша вода «кипела бы» при 71°C.
Влияние снижения давления на снижение температуры кипения воды блестяще продемонстрировано при кипячении воды при комнатной температуре путем помещения воды в вакуум:
Отсюда важно забыть о вашей связи кипения = 100°C и думать о кипении как о ИЗМЕНЕНИИ СОСТОЯНИЯ из жидкости в газ. Некоторые хладагенты могут «кипеть» при температуре -40°C.
Эта взаимосвязь между ДАВЛЕНИЕМ И ТЕМПЕРАТУРОЙ является ключевым фактором в процессе цикла охлаждения.
Изменение состояния хладагента из жидкого в газообразное достигается изменением его давления.
Под высоким давлением хладагент остается в жидком состоянии, а при снижении давления жидкий хладагент начинает «кипеть» и превращается в пар или газ.
Если мы вернемся к холодильному циклу с помощью некоторых диаграмм, мы увидим, как на самом деле происходят эти изменения давления, вызывающие изменения состояния хладагента.
Цикл охлаждения – Компоненты:
Здесь мы видим 4 основных компонента контура.Цикл охлаждения – направление потока:
Показывает направление потока хладагента – начиная с компрессора по часовой стрелке.Цикл охлаждения – передача тепла:
Показывает передачу тепловой энергии. Тепло поглощается испарителем и отводится конденсатором.Тепло, отводимое от воздуха, проходящего через испаритель, делает его холоднее. Затем вентилятор испарителя нагнетает этот более холодный воздух обратно в охлаждаемое пространство.
Отведенное тепло затем отводится конденсатором, который находится за пределами охлаждаемого помещения, и обычно физически снаружи на открытом воздухе. Вентилятор продувает окружающий воздух над горячими змеевиками конденсации. Это охлаждает и конденсирует хладагент, но нагревает воздух, обдуваемый конденсатором. Вот почему, когда вы стоите перед конденсатором, он обычно дует на вас горячим воздухом.
Цикл охлаждения – Давление:
Разделив систему по вертикали, как указано выше, мы видим, что во всех точках слева от линии – хладагент находится под низким давлением, а во всех точках справа от линии линия – хладагент находится под высоким давлением .Цикл охлаждения – Состояние хладагента:
Разделив систему по горизонтали, как указано выше, мы можем увидеть, что во всех точках выше линии хладагент представляет собой газ, а во всех точках ниже линии хладагент представляет собой жидкость.В середине конденсатора и испарителя, где происходит изменение состояния хладагента, хладагент находится как в жидком, так и в газообразном состояниях и называется паром.
Цикл охлаждения – завершен:
В этой окончательной диаграмме цикла охлаждения мы ввели 3 новых термина: перегретый, насыщенный и переохлажденный.- ПЕРЕГРЕВ – Количество тепла, сообщаемое парам хладагента сверх точки его кипения. Это гарантирует, что хладагент находится в газообразном состоянии без присутствия жидкости.
- НАСЫЩЕННЫЙ – когда хладагент представляет собой пар, содержащий как жидкость, так и газ.
- ПЕРЕОХЛАЖДЕНИЕ – Количество тепла, отводимого от хладагента ниже точки его конденсации. Это гарантирует, что хладагент находится в жидком состоянии без присутствия газа.
Перегрев важен для предотвращения попадания жидкости обратно в компрессор. Хотя ранее мы описали компрессор как «действующий» как насос, это не насос. Насосы обычно перемещают жидкости с помощью рабочего колеса, тогда как компрессоры, как следует из названия, сжимают объем газа, что повышает его температуру и давление. Жидкость нельзя сжать, и любая жидкость, попадающая обратно в компрессор, может нанести серьезный ущерб.
Переохлаждение важно, так как оно гарантирует, что только чистая жидкость попадет в дозатор. Это обеспечивает максимальную производительность, эффективность и надежность системы.
Итак, оглядываясь назад на нашу схему завершенного цикла охлаждения, давайте опишем процесс полностью:
- Хладагент поступает в компрессор в виде перегретого газа низкого давления.
- Компрессор сжимает газ, превращая его в перегретый газ высокого давления.
- Внутри конденсатора газ начинает охлаждаться и переходить в парообразное состояние. Дополнительное охлаждение внутри конденсатора заставляет пары хладагента конденсироваться в переохлажденную жидкость под высоким давлением.