Температура перегрева фреона: Влияние перегрева на холодопроизводительность холодильной системы – Как заправить кондиционер

Влияние перегрева на холодопроизводительность холодильной системы

Варианты работы холодильной установки: работа с нормальным перегревом; с недостаточным перегревом; сильным перегревом.

Работа с нормальным перегревом.

Схема холодильной установки

Например, хладагент подаётся под давлением 18 бар, на всасывании давление 3 бара. Температура, при которой в испарителе кипит хладагент t0 = −10 °С, на выходе из испарителя температура трубы с хладагентом tт = −3 °С.

Полезный перегрев ∆t = tт − t0 = −3− (−10)= 7. Это нормальная работа холодильной установки с воздушным теплообменником. В испарителе фреон выкипает полностью примерно в 1/10 части испарителя (ближе к концу испарителя), превращаясь в газ. Дальше газ будет нагреваться температурой помещения.

Перегрев недостаточный.

Температура на выходе будет уже, к примеру, не −3, а −6 °С. Тогда перегрев составляет всего 4 °С. Точка, где перестаёт кипеть жидкий хладагент, перемещается ближе к выходу испарителя. Таким образом, большая часть испарителя заполняется жидким хладагентом. Такое может случиться, если терморегулирующий вентиль (ТРВ) будет подавать больше фреона в испаритель.

Чем больше фреона будет находиться в испарителе, тем больше будет образовываться паров, тем выше будет давление на всасывании и повысится температура кипения фреона (допустим уже не −10, а −5 °С). Компрессор начнет заливать жидким фреоном, потому что давление увеличилось,  расход хладагента увеличился и компрессор не успевает откачать все пары (если компрессор не имеет дополнительных мощностей). При такой работе холодопроизводительность повысится, но компрессор может выйти из строя.

Сильный перегрев.

Если производительность ТРВ будет меньше, то фреона будет поступать в испаритель меньше и выкипать он будет раньше, (точка выкипания сместиться ближе к входу испарителя). Весь ТРВ и трубки после него обмерзнут и покроются льдом, а процентов 70 испарителя не обмерзнут вообще. Пары фреона в испарителе будут нагреваться, и их температура может достигнуть температуры в помещении, отсюда ∆t ˃ 7. При этом холодопроизводительность системы понизится, давление на всасывании понизится, нагретые пары фреона могут вывести из строя статор компрессора.

МПК Инжиниринг

Недозаправка и перезаправка системы хладагентом

Как показывает статистика, основной причиной аномальной работы кондиционеров и выхода из строя компрессоров, является неправильная заправка холодильного контура хладагентом. Нехватка хладагента в контуре может объясняться случайными утечками. В то же время избыточная заправка, как правило, является следствием ошибочных действий персонала, вызванных его недостаточной квалификацией. Для систем, в которых в качестве дросселирующего устройства используется терморегулирующий вентиль (ТРВ), лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является переохлаждение. Слабое переохлаждение говорит о том, что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда температура переохлаждения жидкости на выходе из конденсатора поддерживается в пределах 10-12 градусов Цельсия при температуре воздуха на входе в испаритель, близкой к номинальным условиям эксплуатации.

Температура переохлаждения Тп определяется как разность:
Тп =Тк – Тф
Тк – температура конденсации, считываемая с манометра ВД.
Тф – температура фреона (трубы) на выходе из конденсатора.

1. Нехватка хладагента. Симптомы.

Недостаток фреона будет ощущаться в каждом элементе контура, но особенно этот недостаток чувствуется в испарителе, конденсаторе и жидкостной линии. В результате недостаточного количества жидкости испаритель слабо заполнен фреоном и холодопроизводительность низкая. Поскольку жидкости в испарителе недостаточно, количество производимого там пара сильно падает. Так как объемная производительность компрессора превышает количество пара, поступающего из испарителя, давление в нем аномально падает. Падение давления испарения приводит к снижению температуры испарения. Температура испарения может опуститься до минусовой отметки, в результате чего произойдет обмерзание входной трубки и испарителя, при этом перегрев пара будет очень значительным.

Температура перегрева Т перегрева определяется как разность:
Т перегрева = Т ф.и. – Т всас.
Т ф.и. — температура фреона (трубы) на выходе из испарителя.
Т всас. — температура всасывания, считываемая с манометра НД.
Нормальный перегрев 4-7 градусов Цельсия.

При значительном недостатке фреона перегрев может достигать 12–14 оС и, соответственно, температура на входе в компрессор также возрастет. А поскольку охлаждение электрических двигателей герметичных компрессоров осуществляется при помощи всасываемых паров, то в этом случае компрессор будет аномально перегреваться и может выйти из строя. Вследствие повышения температуры паров на линии всасывания температура пара в магистрали нагнетания также будет повышенной. Поскольку в контуре будет ощущаться нехватка хладагента, точно также его будет недостаточно и в зоне переохлаждения.

    Таким образом, основные признаки нехватки фреона:
  • Низкая холодопроизводительность
  • Низкое давление испарения
  • Высокий перегрев
  • Недостаточное переохлаждение (менее 10 градусов Цельсия)

Необходимо отметить, что в установках с капиллярными трубками в качестве дросселирующего устройства, переохлаждение не может рассматриваться как определяющий показатель для оценки правильности величины заправки хладагентом.

2. Чрезмерная заправка. Симптомы.

В системах с ТРВ в качестве дросселирующего устройства, жидкость не может попасть в испаритель, поэтому излишки хладагента находятся в конденсаторе. Аномально высокий уровень жидкости в конденсаторе снижает поверхность теплообмена, охлаждение газа поступающего в конденсатор, ухудшается, что приводит к повышению температуры насыщенных паров и росту давления конденсации. С другой стороны, жидкость внизу конденсатора остается в контакте с наружным воздухом гораздо дольше, и это приводит к увеличению зоны переохлаждения. Поскольку давление конденсации увеличено, а покидающая конденсатор жидкость отлично охлаждается, переохлаждение, замеренное на выходе из конденсатора, будет высоким. Из-за повышенного давления конденсации происходит снижение массового расхода через компрессор и падение холодопроизводительности. В результате, давление испарения также будет расти. Ввиду того, что чрезмерная заправка приводит к снижению массового расхода паров, охлаждение электрического двигателя компрессора будет ухудшаться. Более того, из-за повышенного давления конденсации, растет ток электрического двигателя компрессора. Ухудшение охлаждения и увеличение потребляемого тока ведет к перегреву электрического двигателя и в конечном итоге – выходу из строя компрессор.

    Итог. Основные признаки перезаправки хладагентом:
  • Упала хладопроизводительность
  • Возросло давление испарения
  • Возросло давление конденсации
  • Повышенное переохлаждение (более 7 оС)

В системах с капиллярными трубками в качестве дросселирующего устройства излишек хладагента может попасть в компрессор, что приведет к гидроударам и, в конечном итоге, к выходу компрессора из строя.

АНО ДПО «УКЦ «УНИВЕРСИТЕТ КЛИМАТА»

Степень переохлаждения жидкости на выходе из конденсатора — одна из важнейших характеристик работы холодильного контура. Под переохлаждением понимается разность между температурой конденсации жидкости при данном давлении и температурой этой жидкости в настоящий момент времени при этом же давлении.

Что такое переохлаждение в конденсаторе

Как известно, в конденсаторе хладагент охлаждается за счёт обдува конденсатора наружным воздухом. При этом сначала происходит охлаждение горячего газообразного хладагента до температуры конденсации, далее следует сама конденсация и, наконец, происходит охлаждение полученной жидкости. То, насколько жидкость охладится после завершения процесса конденсации — и есть переохлаждение в конденсаторе.

Нормальная величина переохлаждения в конденсаторе — от 4 до 7 К.

Переохлаждение в конденсаторе ниже нормы

Если фактическое переохлаждение в конденсаторе ниже нормы (менее 4 К), то это означает, что в конденсаторе при том же давлении оказалось меньше жидкости и больше газа, что в свою очередь говорит о недостатке хладагента в системе.

Это же рассуждение справедливо и в обратную сторону — чем меньше хладагента в холодильном контуре, тем меньше хладагента в жидкой фазе будет в конденсаторе и тем ниже окажется величина переохлаждения. При значительной нехватке хладагента в холодильном контуре в конденсаторе и вовсе не окажется жидкого хладагента. Едва успев сконденсироваться, хладагент тут же поступит в дроссель. Переохлаждение в такой системе будет равно нулю.

Переохлаждение в конденсаторе выше нормы

Напротив, высокое значение переохлаждения говорит об избытке хладагента в холодильном контуре. В этом случае конденсатор в буквальном смысле слова залит жидкостью, которая успевает сильно переохладиться при обдуве конденсатора наружным воздухом.

Что влияет на величину переохлаждения в конденсаторе

Стоит отметить, что величина переохлаждения может быть отрегулирована путем изменения интенсивности обдува конденсатора наружным воздухом. То есть — изменением скорости вращения вентилятора наружного блока кондиционера. Чем выше скорость, тем интенсивнее обдув и тем большего переохлаждения можно добиться.

Наконец, повлиять на величину переохлаждения может и неправильная конструкция наружного блока кондиционера. Как известно, жидкость тяжелее газа, поэтому в нижней части конденсатора под действием гравитационных сил накапливается именно жидкость. Если обдув конденсатора выполнен по ходу движения хладагента, то добиться эффективного переохлаждения будет проблематично.

Дело в том, что воздух, проходя через конденсатор, будет нагреваться. Подходя к той части конденсатора, где осуществляется переохлаждение жидкости, воздух будет уже достаточно горячим, а горячим потоком, очевидно, трудно выполнить переохлаждение.

Таким образом, хладагент и воздух в конденсаторе должны двигаться навстречу друг другу (противоток). Это обеспечит проток наиболее холодного воздуха через конденсатор в зоне переохлаждения и более эффективное регулирование переохлаждения в конденсаторе.

7.2. Поддержание параметров при оптимальном режиме работы хладоновых установок

Оптимальный режим характеризуется определенными значениями перепадов температур между средами в теплообменных аппаратах, температурами перегрева пара на всасывании в компрессор и нагнетания.
    Температура кипения хладона. В системах непосредственного охлаждения разность температур воздуха в охлаждаемом помещении и кипения в камерных приборах принимается в пределах: в установках большой производительности 7…10°С; в установках малой производительности 12…20°С, вследствие того, что для малых установок нецелесообразно применение большой теплопередающей поверхности испарителя.

   В испарителях, предназначенных для охлаждения хладоносителя, разность между средней температурой хладоносителя и кипением хладагента следующая: в оросительных испарителях 6…7 °С; в затопленных испарителях 4…6 °С. Перепад между воздухом охлаждаемого помещения и хладоносителем в камерных приборах составляет 7…10°С.
    Температуру кипения определяют по двухшкальному манометру, установленному на испарителе, температуру камеры — по термометру, установленному на 2/3 высоты от пола в средней части камеры. Средняя температура хладоносителя равна полусумме температур входящего в испаритель хладоносителя и выходящего из него.
    Температура пара, поступающего в компрессор (перегрева пара). Зависит от степени заполнения испарителя хладоном, теплопередающей поверхности теплообменника и значений температур t0 и tк.
   Перегрев пара до теплообменника целесообразно поддерживать минимальным с целью организации устойчивого возврата масла в компрессор: в системах с верхней подачей хладона 5…10°С; в затопленных змеевиковых батареях 2…3 °С; в кожухотрубных затопленных испарителях 1…1,5 °С.
    Перегрев пара после теплообменника должен быть возможно большим для увеличения коэффициента подачи (рис. 87) и лучшего отделения масла от хладона.

Рекомендуемые перегревы пара указаны в табл. 54 и 55.
    Температуру всасывания определяют по термометру, установленному на всасывающей линии на расстоянии 0,2— 0,3 м до запорного всасывающего вентиля компрессора.

Температура конденсации. Параметры конденсации самоустанавливаются в зависимости от плотности теплового потока, температуры и расхода воды или воздуха, проходящих через аппарат.
   При расчете конденсатора разность между температурой конденсации и средней температурой воды в кожухотрубном конденсаторе принимают 4…6 °С; разность температур конденсации и средней температуры окружающего воздуха в воздушном конденсаторе 11…17°С.
    Перепад между температурами воды, выходящей из конденсатора и входящей в него, должен быть при оборотном водоснабжении 2…4 °С, при проточном водоснабжении 6…8°С.
    С уменьшением температуры конденсации увеличивается холодопроизводительность установки. Однако при низких температурах и давлениях конденсации осложняется подача жидкого хладона в испарительную систему. Поэтому при очень низких температурах окружающей среды для поддержания давления конденсации не менее 0,4 МПа уменьшают расход воды, проходящей через конденсатор, а при воздушном охлаждении отключают вентиляторы конденсаторов.
    Температура конденсации определяется по двухшкальному манометру, установленному на конденсаторе.
Верхний предел температуры конденсации для хладона-12 составляет 60 °С, а для хладона-22 — 40 °С.
    Температура нагнетания компрессора. Она дает возможность с высокой точностью судить как о техническом состоянии установки, так и возникновении различного рода неполадок в ее работе.
    Максимально допустимая температура нагнетания не должна превышать: 125 °С — для поршневых компрессоров, работающих на хладоне-12; 140 °С — на хладоне-22; 90 °С — для винтовых компрессоров.
    Показатели нормальной работы хладоновой машины. При установившейся работе поршневого компрессора должны быть следующие показатели:
     температура картера не должна превышать температуру воздуха машинного отделения более чем на 25…30 °С;
     температура цилиндровых крышек должна быть близка к температуре нагнетательного трубопровода;
     температура смазочного масла во время работы должна быть не выше 55 °С и может превышать температуру картера только на 3…4 °С;
     температура сальника не должна превышать 60 °С;
     система смазки должна обеспечивать разность давлений масла в сальнике и картере в пределах 0,05—0,15 МПа для низкооборотных компрессоров и 0,2—0,3 МПа — для высокооборотных;
     уровень масла в картере должен поддерживаться на 3/4 высоты смотрового стекла.

Основными причинами увеличения температуры отдельных частей компрессора являются поломка пластин нагнетательных клапанов; негерметичность байпаса или перепускного предохранительного клапана; задиры на поверхности гильзы или поломка поршневых колец; неплотность прилегания пластин нагнетательного клапана; нарушение возврата масла в картер; повышение перегрева пара хладагента, поступающего в компрессор; засорение рубашки компрессора или прекращение подачи охлаждающей воды; применение масла, не соответствующего техническим требованиям.
    Компрессор должен работать без стука в шатунно-поршневой группе. Появление стука свидетельствует о неисправности самого компрессора: появление увеличенных зазоров, недостаточная величина мертвого пространства, поломка пластин или пружин клапанов или других деталей.
    К появлению стуков может привести попадание в цилиндры жидкого хладона или масла.
    При появлении стуков компрессор нужно немедленно остановить!

 

Принцип работы испарителя | Промхолд

В испарителе происходит процесс перехода хладагента из жидкого фазового состояния в газообразное с одним и тем же давлением, давление внутри испарителя везде одинаковое. В процессе перехода вещества из жидкого в газообразное (его выкипание) в испарителе – испаритель поглощает тепло в отличие от конденсатора, который выделяет тепло в окружающую среду. т.о. посредством двух теплообменников  происходит процесс теплообмена между двумя веществами: охлаждаемым веществом, которое находится вокруг испарителя и наружным воздухом, который находится вокруг конденсатора.

Схема движения жидкого фреона

Соленоидный клапан – перекрывает или открывает подачу хладагента в испаритель, всегда либо полностью открыт либо полностью закрыт (может и отсутствовать в системе)

Терморегулирующий вентиль (ТРВ) – это точный прибор, регулирующий подачу хладагента в испаритель в зависимости от интенсивности кипения хладагента в испарителе. Он препятствует попаданию жидкого хладагента в компрессор.

Жидкий фреон поступает на ТРВ, через мембрану в ТРВ происходит дросселирование хладагента (фреон распыляется) и начинает кипеть из-за перепада давления, постепенно капли превращаются в газ, на всем участке трубопровода испарителя. Начиная с дросселирующего устройства ТРВ, давление остаётся постоянным. Фреон продолжает кипеть и на определенном участке испарителя полностью превращается в газ и дальше, проходя по испарителю газ, начинает нагреваться воздухом, который находится в камере.

Двухпоточный воздухоохладитель

Если, например, температура кипения фреона -10 °С, температура в камере +2 °С, фреон превратившись в газ в испарителе начинает нагреваться и на выходе из испарителя его температура должна быть равной -3, -4 °С, таким образом Δt (разница между температурой кипения хладагента и температурой газа на выходе испарителя) должна быть = 7-8, это режим нормальной работы системы. При данной Δt мы будем знать, что на выходе из испарителя не будет частиц не выкипевшего фреона (их не должно быть), если кипение будет происходить в трубе, то значит не вся мощность используется для охлаждения вещества. Труба теплоизолируется, чтобы фреон не нагревался до температуры окружающей среды, т.к. газом хладагента охлаждается статор компрессора.  Если все же происходит попадание жидкого фреона в трубу, то значит, доза подачи его в систему слишком большая, либо испаритель поставлен слабый (короткий).

Если  Δt меньше 7, то испаритель заливается фреоном, он не успевает выкипеть и система работает неправильно, компрессор также заливается жидким фреоном и выходит из строя. В большую сторону перегрев не так опасен, чем перегрев в меньшую сторону, при Δt ˃ 7 может произойти перегрев статора компрессора, но небольшой избыток перегрева может никак не почувствоваться компрессором и при работе он предпочтительней.

С помощью вентиляторов, которые находятся в воздухоохладителе, происходит съем холода с испарителя. Если бы этого не происходило, то трубки покрывались льдом и при этом хладагент достигал бы температуры своего насыщения, при которой он перестаёт кипеть, и далее даже независимо от перепада давления в испаритель бы попадал фреон жидкий не испаряясь, заливая компрессор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*