1 секция батареи на сколько квадратных метров: Расчет количества секций батареи | рассчитать секции батареи

Содержание

Как правильно самостоятельно рассчитать количество секций радиатора?

Как посчитать количество секций радиатора отопления на помещение? Вы решили установить батареи в новом доме, или заменить старые на новые, или ставите для дизайна приборы другой модификации, и Вам надо подсчитать число его сегментов для комнаты. Исходя из этих расчетов можно подсчитать, сколько устройств Вам потребуется на все помещение.


Теперь о некоторых нюансах. Если Вы давно проживаете в квартире и знаете как у Вас топят:

  • если трубы горячие и температура батарей нормальная, просто они малые по мощности или дизайн не устраивает, можете считать точное количество секций по площади;
  • если же у Вас прохладно, то посчитайте точно и добавьте на пару больше.

Для начала почитайте, как выбрать подобный прибор, а я буду описывать его биметаллическую разновидность.

Порядок расчетов

Секция биметаллических радиаторов в среднем рассчитана на обогрев 1,5-2 квадратных метра, точнее надо уточнять у продавца, я расскажу на примере. Допустим, у Вас комната 20 кв. м и вертикальная система отопления, в ней находится 2 стояка отопления. Если сегмент устройства, которое Вы хотите установить, рассчитан на обогрев 1,5 квадрата, то Вам потребуется 14 штук (20 делим на 1,5, получается 13,33). Лучше поставить по семь на каждый стояк, или, чтобы было с запасом, поставьте на одном приборе 8, а на другом 7. Лучший вариант, если стояки железные, заменить батарею сваркой. Если у Вас проходит один стояк и Вы будете ставить устройство на 15 секций, то стандартное подключение Вам не подойдет, нужно подключать по диагонали. А вообще, нужно выбрать, чтобы получилась правильная установка, так как, если поставите большое число сегментов, то столкнетесь с проблемой, что не все они греют, к тому же может притормозиться движение теплоносителя по стояку — медленнее пойдет циркуляция, и это скажется на всех квартирах.

Если же у Вас двухтрубная горизонтальная система, то лучше устанавливайте 2 батареи и подключение делайте по диагонали.

Тепла Вам зимой!!!

Расчет количества секций радиаторов отопления для помещения

Существует два основных способа приближенных расчётов. В первом случае расчёт производится на основании площади помещения. На квадратный метр площади требуется 100 ватт. Этот показатель умножается на количество квадратных метров и делится на теплоотдачу одной секции радиатора. В итоге получаем необходимое количество секций для установки. Если высота потолка более трёх метров — вводится коэффициент, который равен отношению реальной высоты стен в помещении к принятой стандартной (например, при высоте потолка 4 м. коэффициент равен 4/3=1,333, для 5 метров — 5/3=1,666 ) — полученное число секций радиаторов, при необходимости, нужно умножить на этот коэффициент.

 

Цены на алюминиевые             Цены на биметаллические             Цены на чугунные

 

Следует отметить, что расчёт для биметаллических радиаторов базируется на аналогичном для чугунных. То есть, при замене старых чугунных радиаторов на новые, биметаллические, дополнительные расчёты не требуются, так как теплоотдача одной секции биметаллического радиатора приблизительно равна аналогичной величине чугунной тепловой батареи.


Во втором случае расчёт привязан к определению необходимой количества тепла для обогрева кубического метр помещения. При таком расчёте применяют нормативные данные, которые существуют для построек разного типа. В старых советских домах на кубометр площади требуется 41 ватт энергии. При хорошем утеплении и пластиковых окнах, эта величина снижается до 34 ватт. Для домов, построенных из современных материалов потребуется 20 ватт.

Определив необходимую мощность на кубометр и узнав мощность того или иного радиатора, указанную на странице каждого радиатора в строке «Теплоотдача одной секции», дальнейший расчёт осуществляется без какого-либо труда путём простейших арифметических действий. Высчитывается количество кубометров площади и умножается на требуемое количество энергии. Затем делится на мощность одной секции радиатора и на выходе получается общее необходимое количество секций.    

Пример расчета: площадь помещения — 20 кв.м., высота потолка 3 м., соответственно объем будет равен 20*3=60 куб.м; помещение размещено в старой постройке без утепления (41 ватт/1 куб.м) — 60*41=2460. Таким образом, нам нужно купить секций с суммарной мощностью 2460 ватт. Допустим, было решено приобрести радиаторы FONDITAL aluminum 500, на странице этого товара указано: «Теплоотдача одной секции: при ΔТ=70 — 193 Вт.»,  2460/178=12,75 секции. В данном примере нужно установить ~ 13 секций Fondital 500. Также следует учесть пункты, указанные ниже.

 


При двухтрубной системе отопления теплоотдача всех радиаторов, кроме стальных аналогов, будет ниже на 7-10% (умножаем полученное значение на ~ 1,1).

При наличии торцовых стен необходимое количества тепла стоит умножить на 30%

(умножаем на 1,3).

В случае, если окна не пластиковые, каждое окно, выходящее на север увеличивает это количество на 10% (одно северное окно — умножаем на 1,1, два н на 1,2, и т.д.).

Если запланировано закрытие радиаторов сплошной декоративной панелью, количество необходимого тепла умножают на 15% (умножить на 1,15).

При расположении радиатора в нише, необходимое количество нужно умножить на 5% (умножаем на 1,05).

Пример расчета (продолжение предыдущего): допустим, в комнате, в которую планируется установка тепловых радиаторов, присутствует одна торцовая стена и установлена 2-х трубная система отопления, тогда: 12,75 секции*1,3*1,1=18,23, т.е. при учете вышеуказанных условий, нам нужно приобрести не ~13 (12.75), а ~ 19 (18.23) секций алюминиевых Fonditial 500.


В любом случае, лучше устанавливать наибольшее полученное при расчёте количество секций, потому что от избыточного обогрева легко избавиться, а дополнительное отопление — это уже дополнительные затраты.

Как рассчитать количество секций радиатора

Расчет мощности алюминиевой батареи можно проводить по-разному. 

Самый простой способ определения числа секций на 1 кв. м

Существует метод расчета алюминиевого радиатора по площади. Для обогрева 1 м2 помещения до комфортной температуры ( +20 °С) отопитель должен выделять 100 Вт тепла. Эту цифру нужно использовать.

Нужно выполнить следующие действия:

  1. Определить тепловую мощность одного ребра батареи. Часто она равняется 180 Вт.
  2. Рассчитать или измерить температуру теплоносителя в системе отопления. Если температура воды, входящей в отопитель, составляет tвх. = 100 °С и, выходящей из него, составляет tвых. = 80 °С, то цифру 100 делят на 180. Результат составляет 0,55. Именно 0,55 секции нужно использовать для 1 кв. м.
  3. Если измеренные показатели ниже, то рассчитывают показатель ΔT (в вышеуказанном случае он составляет 70 °С). Для этого используют формулу ΔT = (tвх. + tвых.)/2 – tк, где tк является желаемой температурой. Стандартно tк составляет 20 °С. Пусть tвх. = 60 °С, а tвых. = 40 °С, тогда ΔT = (60 + 40)/2 – 20 = 30 °С.
  4. Найти специальную табличку, в которой определенному значению ΔT соответствует корректирующий коэффициент. Для некоторых радиаторов при ΔT = 30 °С он составляет 0,4. Эти таблички нужно спрашивать у производителей.
  5. Умножить тепловую мощность одного ребра на 0,4. 180 * 0,4 = 72 Вт. Именно столько тепла может передать одна секция от теплоносителя, нагретого до 60 °С.
  6. Разделить норму на 72. Итого 100/72 = 1,389 секции нужно, чтобы отопить 1 м2.

Этот показатель можно умножить на площадь. Если комната имеет 20 кв. м, то нужно установить батарею с 28 ребрами. Лучше разбить ее пополам.


Этот метод имеет такие недостатки:

  1. Норма 100 Вт рассчитана для помещений, высота которых меньше 3 м. Если высота больше, то нужно использовать корректирующий коэффициент.
  2. Не учитываются потери тепла через окна, дверь и стены, если комната угловая.
  3. Не учитывается потеря тепла, вызванная определенным способом установки отопителя.

Правильный расчет

Он предусматривает умножение площади комнаты на норму 100, корректировку результата в зависимости от особенностей помещения и деление конечной цифры на мощность одного ребра (желательно использовать скорректированную мощность).

Корректируют произведение площади и нормы, равной 100 Вт, таким образом:

  1. На каждое окно к нему добавляют 0,2 кВт.
  2. На каждую дверь к нему добавляют 0,1 кВт.
  3. Для угловой комнаты конечную цифру умножают на 1,3. Если угловая комната расположена в частном доме, то коэффициент составляет 1,5.
  4. Для помещения с высотой, большей 3 м, применяют коэффициенты 1,05 (высота 3 м), 1,1 (высота 3,5 м), 1,15 (4 м), 1,2 (4,5 м).

Нужно учесть и способ размещения отопителя, который также приводит к потере тепла. Эти потери являются такими:

  • 3-4% – в случае монтажа отопительного устройства под широким подоконником или полочкой;
  • 7%, если радиатор устанавливается в нише;
  • 5-7%, если находится возле открытой стены, но частично его закрывает экран;
  • 20-25% – в случае полного закрытия экраном.

Пример расчета количества секций

Планируется поставить батарею в помещении площадью 20 кв. м. Комната является угловой, имеет два окна и одну дверь. Высота равна 2,7 м. Радиатор будет размещаться под подоконником (корректирующий коэффициент – 1,04). Котел подает теплоноситель с температурой 60 °С. На выходе из отопителя вода будет иметь температуру 40 °С.

Расчет максимального количества ребер таков:

Q = (20 * 100 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 37,56 секций.

Поскольку нужно округлять в максимальную сторону, то нужно устанавливать батарею с 38 ребрами. Ее можно разделить на две части и поставить под обоими окнами. Каждая из них будет иметь 19 ребер.

Метод учитывающий высоту

Он отличается тем, что предусматривает норму тепла на 1 куб. м, а также использует не площадь помещения, а объем. Нормой в этом случае является 41 Вт. Все другие корректировки являются такими же.

Если взять вышерассмотренный пример, то количество секций радиатора будет таким:

Q = (20 * 2,7 * 41 + 0,2 + 0,1) * 1,3 * 1,04 / 72 = 41,57, то есть 42. Этот показатель можно считать максимальным.

Расчет отопления на квадратный метр

На данной странице web проекта мы попытаемся найти и выбрать для своей дачи необходимые части системы. Монтаж отопления имеет, батареи котел терморегуляторы, бак для расширения, развоздушки, крепежи, коллекторы, трубы, увеличивающие давление насосы, систему соединения. Система обогрева дачи включает определенные устройства. Указанные комплектующие монтажа очень важны. Вот почему соответствие каждого элемента монтажа важно планировать технически обдуманно.

Существуют разные методы расчёта количества радиаторов отопления. На это влияют и материал, из которого построено здание, и климатическая зона, где расположен дом, и температура носителя, и особенности теплоотдачи самого радиатора, а так же много других факторов. Рассмотрим подробнее технологию правильного расчета количества радиаторов отопления для частных домов, ведь от этого зависит эффективность работы, а так же экономичность отопительной системы дома.

Содержание

Самым демократичным способом является расчёт радиатора исходя из мощности на квадратный метр. В средней полосе России зимний показатель составляет 50−100 ватт, в регионах Сибири и Урала 100−200 ватт. Стандартные 8-секционные чугунные батареи с межосевым расстояние 50 см имеют теплоотдачу 120−150 ватт на одну секцию. Биметаллические радиации имеют мощность около 200 ватт, что немного повыше. Если мы имеем ввиду стандартный водный теплоноситель, то для комнаты в 18−20 м 2 со стандартной высотой потолков в 2,5−2,7 м понадобится два чугунных радиатора по 8-м секций.

От чего зависит количество радиаторов

Есть ещё ряд факторов, которые должны учитываться при расчёте количества радиаторов:

  • паровой теплоноситель имеет большую теплоотдачу. чем водный;
  • угловая комната холоднее. так как у неё две стены выходят на улицу;
  • чем больше окон в помещении, тем там холоднее;
  • если высота потолков выше 3 метров. то мощность теплоносителя надо высчитывать, исходя из объёма помещения, а не её площади;
  • материал, из которого изготовлен радиатор, имеет свою теплопроводность;
  • теплоизолированные стены увеличивают теплоизоляцию комнаты;
  • чем ниже зимние температуры на улице, тем большее количество батарей необходимо установить;
  • современные стеклопакеты увеличивают теплоизоляцию помещения;
  • при одностороннем подключении труб к радиатору не имеет смысла устанавливать более 10 секций;
  • если теплоноситель движется сверху вниз, его мощность увеличивается на 20%;
  • наличие вентиляции предполагает большую мощность.

Формула и пример расчета

Учитывая вышеперечисленные факторы, можно сделать расчёт. На 1 м 2 понадобится 100 Вт, соответственно, на отопление комнаты в 18м 2 нужно затратить 1800 Вт. Одна батарея из 8-ми чугунных секций выделяет 120 Вт. Делим 1800 на 120 и получаем 15 секций. Это весьма средний показатель.

В частном доме с собственным водонагревателем мощность теплоносителя высчитывается по максимуму. Тогда 1800 делим на 150 и получаем 12 секций. Столько нам понадобится для обогрева комнаты в 18м 2. Существует весьма сложная формула, по которой можно рассчитать точное количество секций в радиаторе.

Формула выглядит так:

  • q 1 — это вид остекления: тройной стеклопакет 0,85; двойной стеклопакет 1; обычное стекло 1,27;
  • q 2 — теплоизоляция стен: современная теплоизоляция 0,85; стена в 2 кирпича 1; плохая изоляция 1,27;
  • q 3 — отношение площади окон к площади пола: 10% 0,8; 20% 0,9; 30% 1,1; 40% 1,2;
  • q 4 — минимальная температура снаружи: -10 0 С 0,7; -15 0 С 0,9; -20 0 С 1,1; -25 0 С 1,3; -35 0 С 1,5;
  • q 5 — количество наружных стен: одна 1,1; две (угловая) 1,2; три 1,3; четыре 1,4;
  • q 6 — тип помещения над расчётным: обогреваемое помещение 0,8; отапливаемый чердак 0,9; холодный чердак 1;
  • q 7 — высота потолков: 2,5 м — 1; 3 м — 1,05; 3,5м — 1,1; 4м — 1,15; 4,5м — 1,2;

Проведём расчёт для угловой комнаты 20 м 2 с высотой потолка 3 м, двумя 2-х створчатыми окнами с тройным стеклопакетом, стенками в 2 кирпича, расположенной под холодным чердаком в доме в подмосковном посёлке, где зимой температура опускается до 20 0 С.

Получится 1844,9 Вт. Разделим на 150 Вт и получим 12,3 или 12 секций.

Радиаторы делаются из трёх видов металла: чугунные, алюминиевые и биметаллические. Чугунные и алюминиевые радиаторы имеют одинаковую теплоотдачу, но нагретый чугун остывает медленнее алюминия. Биметаллические батареи имеют большую теплоотдачу, чем чугунные, но они быстрее остывают. Стальные радиаторы имеют высокую теплоотдачу, но они подвержены коррозии.

Самой комфортной для человеческого организма температурой в помещении принято считать 21 0 С. Однако для хорошего крепкого сна больше подходит температура не выше 18 0 С, поэтому немалую роль играет и назначение отапливаемого помещения. И если в зале площадью 20 м 2 нужно установить 12 секций батареи. то в аналогичном спальном помещении предпочтительнее установить 10 батарей, и человеку в такой комнате будет комфортно спать. В угловом помещении такой же площади смело размещайте 16 батарей. и Вам не будет жарко. Т. е. расчёт радиаторов в помещении весьма индивидуален, и можно давать только приблизительные рекомендации, сколько секций необходимо установить в той или иной комнате. Главное, произвести установку грамотно, и тепло всегда будет в вашем доме.

Расчет радиаторов в двухтрубной системе (видео)

Источник: http://teplo.guru/radiatory/vybor/raschet-radiatorov-otopleniya-v-dome.html

Есть несколько методов выполнения расчета радиаторов отопления. Самые сложные включают использование тепловизоров и мощного программного обеспечения. Мы говорим о самом простом расчете «на пальцах». При этом исходят исходят из необходимой мощности на квадратный метр. В средней климатической полосе России, то есть примерно на уровне Москвы эта необходимая мощность отопления зимой составляет на квадратный метр приблизительно 50-100 ватт. В северных районах, сразу за Москвой 100-200. Такие же цифры используются при выборе котла отопления.

Расчет радиаторов отопления

Выше речь шла о расчете радиаторов, исходя из площади помещения. При этом подразумевалось, что высота потолка составляет стандартные 2,7 метра. Если высота потолков больше, то необходимо выполнять расчет радиаторов, исходя из кубатуры помещения. Соответсвующие цифры приводятся на нашей страничке Расчет количества секций радиатора .

Однако такой расчет радиаторов отопления не учитывает дополнительных факторов. Угловая комната в доме холоднее, так как у нее две стены выходят на улицу, а не одна. Через окна уходит в окружающее пространство до 70 процентов тепла. Конечно все зависит от качества окон. Если это двухкамерные пластиковые окна с семи камерными профилями и инфракрасным напылением, то это позволяет экономить немало тепла. Тем не менее, через два окна уходит в два раза больше тепла, чем через одно. Кроме того, бывает, что температура теплоносителя в системе центрального отопления хронически ниже, чем нужно. На каждый из этих факторов следует накинуть дополнительно 10-30 процентов потерь тепла.

К тому же если вы хотите, чтобы зимой помещения в вашем доме хорошо проветривались, следует брать батареи с запасом. Холодный воздух с улицы в мороз будет заметно охлаждать помещение. Играют роль и щели в традиционных деревянных окнах и многие другие факторы. В общем, можно посоветовать не увлекаться точными вычислениями, они в строительстве малоэффективны, а производить расчет радиаторов отопления для вашей квартиры или дома с запасом.

Батареи обеспечивают высокий комфорт проживания, поэтому не стоит на этом экономить и мерзнуть зимой. Берите радиаторы побольше. Если же вдруг зимой станет слишком жарко в квартире, можно просто завесить батарею чем-нибудь, и она будет давать меньше тепла. Если же это ваш частный дом с автономной системой отопления, то регулировать температуру теплоносителя, подаваемого котлом, не сложно.

Учесть все факторы действительно достаточно сложно. Если, например, дом идеально утеплен, то, как утверждают, можно вообще обойтись без батарей отопления . Тепла от кухонной плиты и других электрических приборов должно хватать. Хотя подобное возможно, наверно, только где-нибудь в Германии. Соответственно, на кухне часто устанавливают меньшее количество секций.

В приведенном выше примере на 20 квадратных метров устанавливается 16 секций радиатора. Если дом плохо утеплен, то этого будет недостаточно. Например, на летней веранде. Решающим фактором в такой ситуации является уже не наличие батарей отопления, а качество утепления помещений. На это часто обращают недостаточное внимание. Тепло в доме зависит не только от системы отопления, но в первую очередь от качества окон и тепловых свойств конструкции здания или дома. Если это так же 20-метровая комната в многоквартирном доме, вытянутой формы, с трех сторон теплые жилые комнаты, одно окно, расчет радиаторов отопления получается совсем другим. Вместо 16 секций может хватить 8. А если это кухня, то даже 4 секций. Хорошую подсказку дает сравнение с уже имеющейся аналогичной комнатой. В общем, опытный сантехник может дать советы, исходя из своего опыта, которые окажутся ценнее любых расчетов.

Ну и, естественно, если у вас есть дополнительные средства, то вы можете просто установить термостаты на батареи отопления, которые будут автоматически регулировать температуру каждого радиатора в зависимости от температуры окружающей среды. Тогда есть шанс обеспечить в вашем доме температуру идеального комфорта, которая равна 21 градусу Цельсия. Дешевым вариантом, который заменяет термостаты, является продуманная система кранов. Некоторые заказчики просят установить специальные регулировочные краны, которые могут достаточно точно регулировать температуру в помещении.

Однако в Японии, например, температура в домах традиционно ниже. Учитывая, что там продолжительность жизни выше, чем в других странах, возможно и не стоит стремиться к идеальному комфорту. Главный фактор, который следует учесть, это возможность сильных морозов. И основное внимание следует уделять не отоплению, так как это расходный, не экономичный подход, а утеплению дома. Например, установке все тех же качественных окон, дверей, устранению холодных мест в конструкции здания.

Источник: http://tedremont.com/batarei-radiatory-otoplenija/raschet-radiatorov-otoplenija.html

Перед покупкой и установкой секционных радиаторов отопления (как правило это алюминиевые и биметаллические) у многих возникает вопрос — какое количество секций должно быть в радиаторе и как рассчитать это количество.

Более правильным, всегда будет расчет теплопотерь помещения. Однако в нем используется такое количество коэффициентов, что в результате может получиться, что-то завышенное или наоборот. Поэтому в большинстве случаев пользуются упрощенными способами.

Некоторые ЖЭКи не разрешают самостоятельно рассчитывать количество секций, и делают это для жителей на коммерческой основе. Это связано с тем, что дома во первых новые, и нельзя нарушать балансировку системы, а во вторых при регулировании температуры теплоносителя мощность радиатора сильно меняется. А если в новом доме температура теплоносителя, даже в самые холода, не превышает 70 °С, то стандартный расчет в данном случае не подходит.

Стандартный расчет для многоэтажного дома

Согласно «Строительным нормам и правилам» для компенсации теплопотерь пощения, на один квадратный метр площади требуется 100 Вт мощности радиатора отопления.

Этот расчет справедлив для любых радиаторов, в том числе алюминиевых и биметаллических .

В таком варианте требуемое количество секций вычисляется по формуле:

N = S*100/P, где S = площадь помещения, P = мощность одной секции радиатора отопления.

Пример, мощность одной секции радиатора GLOBAL STYLE PLUS 500 равняется 185 Вт, а площадь комнаты — 20 м.кв. в таком случае:

N=20*100/185=10,8.

Принимаем округление в большую сторону, и получаем 11 секций биметаллического радиатора GLOBAL STYLE PLUS 500.

Для высотных домов, часто пользуется еще более простым методом — делят площадь помещения на 2, и получают необходимое количество секций. В нашем примере их бы получилось 10. Но это не значит, что люди будут замерзать. В высотном доме соседи греют друг друга, и в реальной жизни 100 Вт на метр квадратный даже много.

Для торцевых и угловых комнат желательно ввести добавочный коэффициент 1,1 — 1,2, в этом случае необходимое количество секций для 20 метровой комнаты составит 12-13. Характеристики радиатора GLOBAL STYLE PLUS 500

Зависимость мощности радиатора от теплового потока

Как видно из таблицы, при температурном напоре 70 °С мощность радиатора 185 Вт, при 50 — 114 Вт.

Температурный напор в 70 °С можно создать только в центральной системе отопления со стальными трубами, в частном же доме с пластиковым трубопроводом и настенным котлом, максимальный напор составляет 50 °С. Поэтому упрощенная формула «1 секция радиатора на 2 кв. метра» в частном доме не подходит.

Если же у вас в частном доме радиаторы посчитаны по упрощенной формуле, зимой при продолжительных низких температурах за окном (от -25 °С) в доме может быть прохладно.

Расчет количества секций в частном загородном доме

Если для квартир в многоэтажном доме, действует правило — на один квадратный метр площади требуется 100 Вт мощности радиатора отопления, то для частного дома не совсем так.

Для первого отапливаемого этажа эта мощность составляет 110 — 120 Вт (в зависимости от утепления пола), для второго и следующих этажей эта мощность составляет примерно 80 — 90 Вт. Поэтому многоэтажные дома всегда более экономичны (тепло поднимается на верх).

Тогда, для расчета количества секций радиаторов в частном доме, в формуле N = S*100/P, вместо 100 необходимо подставлять соответствующую мощность (120-80 Вт).

Наш совет — в частный дом лучше взять чуть больше секций (с запасом), это не значит, что от этого у вас в доме будет жарко, просто, как видно из рисунка выше, чем шире радиатор, тем меньше температуру нужно подавать на радиатор. Чем ниже температура теплоносителя — тем дольше прослужит вся система — и трубы и сам котел.

Интересные статьи:

Источник: http://isd74.ru/raschjot_kolichestva_sekcij_radiatora_otoplenija.html

Содержание

Расчет количества секций радиаторов отопления

Радиаторы отопления — это самый распространенный отопительный прибор, который устанавливается в жилых, общественных и производственных помещениях. Он представляет собой полые внутри элементы, заполненные теплоносителем. Через них тепловая энергия поступает в помещение для его обогрева. При выборе радиаторов необходимо в первую очередь обращать внимание на два технических показателя. Это мощность прибора и выдерживаемое им давление теплоносителя. Но чтобы окончательно определиться с температурным режимом помещения, необходимо провести точный расчет радиаторов отопления .

Сюда входит не только количество самих приборов и их секций, но и материал, из которого они изготовлены. Современный рынок отопительного оборудования предлагает огромный ассортимент батарей с разными техническими характеристиками. Главное, что нужно знать — это возможности одной секции батареи, а именно, ее способность выделять максимальное количество тепловой энергии. Этот показатель и ляжет в основу проводимого расчета для всей системы отопления .

Проведем расчет

Зная, что на 1 квадратный метр площади помещения необходимо 100 ватт тепла, можно легко подсчитать и количество необходимых радиаторов. Поэтому вначале нужно точно определить площадь комнаты, куда будут устанавливаться батареи.

Обязательно учитывается высота потолков, а также количество дверей и окон — ведь это проемы, через которые тепло улетучивается быстрее всего. Поэтому материал, из которого изготовлены двери и окна, также идет в расчет.

Теперь определяется самая низкая температура в вашем регионе и температура теплоносителя в это же самое время. Все нюансы рассчитываются с помощью коэффициентов, которые занесены в СНиП. С учетом этих коэффициентов можно высчитать и мощность отопления.

Быстрый расчет производится простым умножением площади помещения на 100 ватт. Но это будет не точно. Для коррекции и используются коэффициенты.

Коэффициенты корректировки мощности

Их два: уменьшения и увеличения.

Коэффициенты уменьшения мощности применяют следующим образом:

  • Если на окнах установлены пластиковые многокамерные стеклопакеты, то показатель умножается на 0,2.
  • Если высота потолка меньше стандартной (3 м), то применяется понижающий коэффициент. Его определяют как отношение фактической высоты к стандартной. Пример — высота потолка равна 2,7 м. Значит, коэффициент рассчитывается по формуле: 2,7/3 = 0.9.
  • Если отопительный котел работает с повышенной мощностью, то каждые 10 градусов вырабатываемой им тепловой энергии понижают мощность отопительных радиаторов на 15%.

Коэффициенты увеличения мощности берутся во внимание в следующих ситуациях:

  1. Если высота потолка выше стандартного размера, то коэффициент подсчитывается по той же формуле.
  2. Если квартира является угловой, то для повышения мощности отопительных приборов применяется коэффициент 1,8.
  3. Если радиаторы имеют нижнее подключение, то к расчетной величине прибавляют 8%.
  4. Если отопительный котел понижает температуру теплоносителя в самые холодные дни, то на каждые 10 градусов понижения необходимо увеличение мощности батарей на 17%.
  5. Если иногда температура на улице достигает критических отметок, то придется увеличивать мощность отопления в 2 раза.

Определяем количество секций одного радиатора

Секции оборудования

Специалисты предлагают несколько вариантов расчета количества радиаторов отопления и их секций.

Первый — это так называемый обыкновенный способ. Он самый простой. Обычно в паспорте или сертификате качества, которые выдают как сопроводительный документ к каждому изделию, установлены технические параметры. Здесь можно найти информацию о том, какую мощность имеет одна секция радиаторов отопления.

К примеру, она равна 200 ватт. Высчитывается мощность, необходимая для обогрева комнаты, с учетом понижающих и повышающих коэффициентов. Предположим, что она равна 2400 ватт.

Теперь производятся чисто математические выкладки: 2400/200 = 12. Это и есть количество секций, которые необходимо установить в данной комнате. Можно использовать одну 12-секционную батарею или две 6-секционные.

Второй вариант — производится расчет с учетом прогревающей способности одной секции для определенного объема пространства. Для этого высчитывается полный объем комнаты и делится на показатель объемного прогревания секции.

Расцветка оборудования отопления

Третий — примерный расчет, которым пользуются мастера, исходя из своего личного опыта. Все батареи отопления имеют практически одинаковые размеры. Отличия есть, но незначительные. Так вот было замечено, что при высоте потолка в 2,7 метра, одна секция может обогреть площадь, равную 1,8 квадратным метрам.

Например, комната имеет площадь 25 м2. Проводим расчет: 25/1,8=13,8. То есть, 14 секций необходимо будет установить.

Как видите, провести расчет батарей отопления не так уж и сложно. Здесь важно учесть все параметры, которые влияют на саму систему. Правда, иногда сделать это бывает сложно.

Поэтому совет: привлекайте к данному процессу профессионалов — ведь небольшая ошибка или минимальный недочет могут привести к нежелательной ситуации. Вам будет просто не комфортно в квартире или доме зимой — когда температура воздуха не доходит до комнатной.

Источник: http://gidotopleniya.ru/radiatory-otopleniya/raschet-radiatorov-otoplenija-v-svoej-kvartire-358

Смотрите также:
03 июня 2021 года

Правила расчета количества секций алюминиевого радиатора отопления

Что такое алюминиевый радиатор

Строго говоря, алюминиевый радиатор бывает двух типов:

  • собственно, алюминиевые;
  • биметаллические, из стали и алюминия.

Конструктивно такой радиатор представляет собой трубу, собранную в подобие гармошки, по которой течет горячая вода. К трубе присоединены плоские элементы, которые нагреваются теплоносителем и нагревают воздух в помещении.

Описание преимуществ и недостатков каждого типа радиаторов выходит за рамки настоящей статьи, однако можно указать на несколько немаловажных факторов. В отличие от традиционных чугунных, алюминиевые батареи отапливают в первую очередь за счет конвекции: нагретый воздух устремляется вверх, а его место занимает свежая порция холодного. За счет этого процесса получается нагреть помещение гораздо быстрее.

К этому стоит добавить небольшой вес и легкость монтажа алюминиевых изделий, а также их относительную дешевизну.

Сущность метода

Сам метод заключается в подборе оптимального радиатора, который будет обладать достаточной мощностью, чтобы прогреть помещение. Для этого необходимо лишь знать указанную в паспорте заводом-изготовителем теплоту, выдаваемую одной секцией.

Расчет по квадратам

Согласно санитарным нормам, для обогрева одного квадратного метра жилого дома требуется 100 Вт тепловой энергии. Соответственно, для того, чтобы узнать, сколько необходимо секций алюминиевого радиатора, нужно умножить площадь помещения на это значение – таким образом, можно узнать, сколько тепла в ваттах нужно для отопления всего дома или квартиры. После этого результат делят на производительность одной секции и округляют итог в большую сторону.

Формула для расчета алюминиевых секций по квадратным метрам:

N = (100 * S)/Qc, где

  • N – необходимое количество секций, шт;
  • 100 – требуемая теплота для обогрева 1 м2;
  • S – площадь помещения в м
    2
    , которую находят умножением длины комнаты на ее ширину;
  • Qс – производительность, выдаваемая одной секции радиатора.

К примеру, дана комната размерами 3,5 х 4 м. Ее площадь будет составлять S = 3,5 * 4 = 14 м2. Стандартная теплоотдача одной секции из алюминия – 190 Вт. Таким образом, чтобы обогреть это помещение, необходимо:

N = (100 * 14) / 190 = 7,34 ≈ 8 секций.

Основной недостаток расчета количества секций алюминиевого радиатора отопления на квадраты – он не учитывает высоту комнаты, так как рассчитан на стандартную высоту 2,7 м. Его результат будет близок к истине в типовых панельных домах, но не подойдет для частных домов или нестандартных квартир.

Расчет по кубам

Чтобы в какой-то мере восполнить существенный пробел предыдущего способа вычисления, разработан метод подбора секций по объему помещения. Чтобы его вычислить, достаточно умножить площадь комнаты на ее высоту.

Для обогрева 1 м3

панельного дома согласно все тех же норм, необходимо затратить 41 Вт тепловой энергии (для кирпичного – 35 Вт). Формула несколько видоизменяется по сравнению с приведенной выше:

N = (41*V)/Qc, где

  • V – объем помещения.

Чтобы сравнить оба метода, возьмем ту же комнату с высотой потолков 2,7 м, количество теплоты, выделяемое одной секцией, остается тем же:

N = (41 * 14 * 2,7) / 190 = 8,156 ≈ 9 секций.

Что касается расчета количества секций алюминиевого радиатора отопления в кирпичном доме, то для этого достаточно изменить в формуле значение норматива с 41 Вт на 35 Вт.

Как видно, разные методы для одного помещения дают разные результаты. Они будут разниться тем больше, чем обширнее комната. Кроме того, они не учитывают множество существенных моментов: климат, расположение относительно солнца, способ подключения и тепловые потери.

Чтобы максимально точно узнать, сколько же нужно секций для обогрева, необходимо ввести поправочные коэффициенты, которые и будут описывать эти нюансы.

Уточненный расчет

Формула для этого метода берется, как для расчета по квадратам, но с дополнениями:

N = (100 * S *R1 * R2 * R3 * R4 * R5 * R6 * R7 *R8 * R9 * R10)/Qc

  • R1 – количество наружных стен, то есть те, за которыми уже улица. Для обычной комнаты она будет 1, с торца здания – 2, а для частного дома из одной комнаты – 4. Коэффициент для каждого случая можно узнать из таблицы:

Количество наружных стен

Значение К1

1

1

2

1,2

3

1,3

4

1,4

  • R2 учитывает, на какую сторону выходят окна. И хотя для южного и северного направления они разные, принято принимать его значение равным 1,05.
  • R3 описывает, как тепло теряется через стены. Чем больше этот коэффициент, тем быстрее остывает дом. Если стены утеплены, его берут равным 0,85, стандартные стены толщиной в два кирпича – 1, а для неутепленных стен – 1,27.
  • R4 зависит от климатической зоны, точнее, от минимальной отрицательной температуры зимой.

Минимальная температура зимой, 0С

Значение R4

-35

1,5

-25 до -35

1,3

— 20 и меньше

1,1

-15 и менее

0,9

-10 и менее

0,7

  • R5 зависит от высоты помещения.

Высота потолка, м

Значение R5

2,7

1,0

2,8 – 3,0

1,05

3,1 – 3,5

1,1

3,6 – 4,0

1,15

Больше 4,0

1,2

  • R6 учитывает потери тепла через крышу. Если это частный дом с неотапливаемым чердаком, то он равен 1,0, если утеплен, то 0,9. В случае, если сверху находится отапливаемая комната, то R5 принимают равным 0,7.
  • Тепло уходит из комнаты и через окна, для учета этого немаловажного фактора и существует R7. Самые ненадежные с этой точки зрения – деревянные, и в этом случае коэффициент будет равным 1,27. Далее следуют пластиковые окна с одинарным стеклопакетом – 1,0, а замыкают с двойным стеклопакетом – 1,27.
  • Тепло уходит через окна тем сильнее, чем они больше. Именно этот фактор и учитывает коэффициент R8. Чтобы его узнать, необходимо вычислить общую площадь поверхности окон в комнате и разделить полученный результат на площадь помещения. Далее можно свериться с таблицей.

Площадь окон / площадь комнаты

Значение R8

Меньше 0,1

0,8

0,11 – 0,2

0,9

0,21 – 0,3

1,0

0,31 – 0,4

1,1

0,41 – 0,5

1,2

  • С тепловыми потерями на этом закончено. Осталось учесть планируемую схему подключения радиатора через коэффициент R9. Говоря иными словами, теплоотдача алюминиевой батареи будет зависеть от того, как именно через него будет проходить горячая вода.

Диагональная схема подключения самая эффективная, для нее коэффициент R9 принимает значение 1,0

 

Боковая схема подключения чуть хуже по тепловой отдаче, поэтому в этом случае R9 будет 1,03

 

При нижней схеме подключения теплоотдача будет происходить гораздо хуже, в связи с чем здесь коэффициент R9 равен 1,13

 

  •  R10 учитывает эффективность процесса конвекции. Чем больше препятствий воздуху на его пути к радиатору и от радиатора, тем медленнее будет происходить нагрев помещения. Если батарея ничем не закрыта, то он равен 0,9. Наглухо закрытая батарея дает значение R10 1,2, если же есть подоконник и панель сверху – 1,12.

Понятие теплового напора

Когда вычислен точный объем тепла, необходимый для обогрева, нелишне будет обратить более пристально внимание на заявленную мощность секции.

Дело в том, что заводы, как правило, указывают максимальное значение этого показателя при разности температур горячей воды и воздуха помещения в 70 0С. Если желаемая температура в доме – около 25 0С, то поступающая горячая вода должна быть разогрета до 100 0С.

Естественно, что в большинстве тепловых сетей максимальная температура теплоносителя составляет около 65 – 75 0С, что подводит к закономерному вопросу: какова будет выдаваемое одной секцией количество теплоты в данных условиях?

К счастью, есть специальная таблица, благодаря которой можно легко ответить на этот вопрос. Достаточно умножить коэффициент из соответствующей строчки на тепловую производительность секции, указанной в паспорте радиатора отопления.

Тепловой напор, 0С

Поправочный коэффициент

Тепловой напор, 0С

Поправочный коэффициент

Тепловой напор, 0С

Поправочный коэффициент

40

0,48

52

0,68

64

0,89

41

0,50

0,70

65

0,91

42

0,51

54

0,71

66

0,9З

0,5З

55

0,8З

67

0,94

44

0,55

56

0,75

68

0,96

45

0,56

57

0,77

69

0,98

46

0,58

58

0,78

70

1,0

47

0,60

59

0,80

71

1,02

48

0,61

60

0,82

72

1,04

49

0,6З

61

0,84

1,06

50

0,65

62

0,85

74

1,07

51

0,66

0,87

75

1,09

Как становится понятно, расчет количества секций алюминиевых радиаторов отопления в деревянном или блочном доме разнится несильно, главное вооружиться карандашом и калькулятором. Остальное – чистая математика.

В нашем интернет-магазине большой выбор алюминиевых радиаторов ведущих производителей, посмотрите!

Норма КВТ на квадратный метр

Автор Евгения На чтение 22 мин. Опубликовано

Норма КВТ на квадратный метр

Расчет отопления по площади помещения — подробный разбор методов

Если у вас возникла необходимость замены старых, вышедших из строя радиаторов, или же вы собираетесь произвести установку новой системы в строящемся доме, следует знать, как произвести расчет отопления по площади помещения.

Чтобы работа системы была эффективной, следует точно определить количество секций устанавливаемых радиаторов, чтобы теплоотдача и прогревание были оптимальными.

Если секций будет недостаточно, то комната никогда не прогреется должным образом, а большое их количество приведет к неэкономному и чрезмерному расходованию тепла, и соответственно пагубно скажется на ваших финансах и бютжете. Потребности помещений стандартного типа и планировки можно определить с помощью довольно простых расчетов, а чтобы добиться большей точности, необходимо обязательно учитывать и некоторые дополнительные параметры и особенности.

Простые вычисления по площади

Вычислить величину батарей отопления для определенного помещения можно, ориентируясь на его площадь. Это самый простой способ – использовать сантехнические нормы, которые предписывают, что тепловой мощности 100 Вт в час нужно для обогрева 1 кв.м. Надо помнить, что этот метод используется для помещений, у которых потолки стандартной высоты (2,5-2,7 метра), а результат получается несколько завышенным.
К тому же он не учитывает таких особенностей, как:

  • число окон и тип стеклопакетов на них;
  • количество в комнате наружных стен;
  • толщина стен здания и из какого материала они состоят;
  • тип и толщина использованного утеплителя;
  • диапазон температур в данной климатической зоне.

Тепло, которое для обогрева комнаты должны давать радиаторы: площадь следует умножить на тепловую мощность (100 Вт). К примеру, для комнаты в 18 кв.м требуется такая мощность батареи отопления:

18 кв.м х 100 Вт = 1800 Вт

То есть, в час для обогрева 18-ти квадратных метров необходимо 1,8 кВт мощности. Этот результат надо поделить на количество тепла, которое в час выделяет секция отопительного радиатора. Если данные в его паспорте указывают, что это составляет 170 Вт, то следующий этап вычислений выглядит так:

1800 Вт / 170 Вт = 10,59

Это число надо округлить до целого (обычно округляется в большую сторону) – получится 11. То есть, чтобы в комнате температура в отопительный сезон была оптимальной, необходимо установить радиатор отопления с 11-ю секциями.

Такой метод подходит только для вычисления величины батареи в помещениях с центральным отоплением, где температура теплоносителя не выше 70 градусов Цельсия.

Есть и более простой способ, который можно применять для обычных условий квартир панельных домов. В этом приблизительном расчете учитывается, что для обогрева 1,8 кв.м площади нужна одна секция. Другими словами, площадь помещения надо разделить на 1,8. Например, при площади 25 кв.м необходимо 14 частей:

25 кв.м / 1,8 кв.м = 13,89

Но такой метод расчета неприемлем для радиатора пониженной или повышенной мощности (когда средняя отдача одной секции варьируется в пределах от 120 до 200 Вт).

Рассмотрим метод вычислений для комнат с высокими потолками

Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:

24 кв.м х 3 м = 72 куб.м (объем комнаты).

72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).

Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:

2952 Вт / 180 Вт = 16,4

Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.

Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.

Дополнительные параметры, которые нужно учесть

Произведя примерный расчет количества секций радиаторов отопления для своей квартиры, не забудьте его откорректировать, приняв во внимание особенности помещения. Их нужно учитывать следующим образом:

  • для угловой комнаты (две стены выходят на улицу) с одним окном мощность радиатора надо увеличить на 20%, а при двух окнах – на 30%;
  • если радиатор монтируется в нише под окном, его теплоотдача снизится, это компенсируется увеличением мощности на 5%;
  • на 10% следует увеличить, если окна выходят на северную либо северо-восточную сторону;
  • экран, для красоты закрывающий радиаторы, «крадет» 15% их теплоотдачи, которые также надо учесть при расчете.

В самом начале следует рассчитать общее значение необходимой для помещения тепловой мощности, учитывая все наличествующие параметры и факторы. И лишь затем разделить это значение на количество тепла, которое выделяет в час одна секция. Результат при дробном значении, как правило, округляется до целого в большую сторону.

Специфика и другие особенности

Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

  • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
  • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
  • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

Климатические зоны тоже важны

Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.

Климатические зоны также имеют свои коэффициенты:

  • средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
  • северные и восточные регионы: 1,6;
  • южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).

Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.

Выводы

Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.

Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.

Расчет мощности отопления коттеджа — как все сделать правильно

Если вы построили собственный дом и уже готовы приступить к сооружению инженерных сетей, вам необходимо ознакомиться с некоторыми нюансами, которые будут влиять на правильность проведения монтажных работ. Давайте поговорим о системе отопления. И начнем с расчета отопления помещения.

Казалось бы, что тут можно рассчитывать — покупай котел, трубы и радиаторы, все это устанавливай и соединяй. Но не все так просто. Ведь вкладывать придется свои кровные. А правильно проведенный расчет системы позволит сэкономить немалые денежные средства.

Расчет отопительного котла

Это самый простой из расчетов, потому что мощность отопительного котла зависит от площади помещений, которые он будет отапливать. Для этого берут соотношение — 1 киловатт тепловой энергии обогревает 10 квадратных метров площади при высоте потолков не выше 3-х метров. Берете общую площадь дома, делите на 10 и получаете мощность отопительного котла.

Эту упрощенную формулу можно использовать только для одноконтурных устройств. Для двухконтурного агрегата расчет придется проводить по-другому. Например, дом площадью 240 квадратных метров не получится обогреть настенным котлом мощностью 24 киловатта. Один отопительный контур будет работать на обогрев помещений, а второй — на подогрев воды для бытовых нужд. Поэтому мощность придется разделить на 2, и получится, что таким котлом можно отапливать дом площадью не более 120 квадратных метров.

Однако специалисты рекомендуют приобретать котлы с большей мощностью для создания небольшого запаса — 10-15% бывает достаточно. Правда, многое будет зависеть от высоты потолков.

С одноконтурным прибором все гораздо проще, но и здесь необходим небольшой задел. Например, выбирая одноконтурный котел мощностью 24 киловатта, можно гарантировать, что он спокойно обогреет дом площадью 200 квадратных метров при высоте потолков 2,5-2,6 метров. Если потолки в доме 3 метра, то прибор сможет обогреть помещения общей площадью 170 квадратов. Вот такие манипуляции.

Расчет размеров и количества радиаторов

Расчет радиаторов отопления в квартире тоже очень важен. И здесь придется в первую очередь определить их количество, причем для каждого помещения отдельно. Для этого за основу нужно брать не площадь, а кубатуру. Если батарей будет мало, это обеспечит нехватку тепла, а значит, в комнатах всегда будет холодно. Если радиаторов будет слишком много, то за такое тепло придется заплатить больше, приобретая большее количество топлива. Так что все должно быть в меру.

Расчет радиаторов отопления условно делят на два этапа:

  1. Определение общего количества секций, необходимых для эффективного отопления помещения.
  2. Определение количества радиаторов.

При этом придется принять во внимание показатели теплоотдачи тех приборов, которые вы выбрали для установки в доме. Давайте рассмотрим один простой пример, который покажет, как подсчитать количество радиаторов.

Альтернативное подключение радиаторов отопления в автономной системе

Для примера возьмем комнату площадью 10 квадратных метров с высотой потолков 3 метра. Есть стандартный показатель, определяющий количество тепловой энергии, которой хватает для обогрева 1 кубометра пространства. Он равен 39-41 ватт. Чтобы подсчитать объем помещения, нужно умножить площадь на высоту комнаты — в нашем примере это 30 кубических метров. Теперь эту величину умножаем на 41 ватт. Итог — 1230 ватт. Это та мощность, которая потянет объем данного помещения.

Есть еще один стандартный показатель — это количество тепловой энергии, которую может выработать 1 секция радиатора. Оно равно 200 ваттам. Теперь полученную общую мощность делим на мощность одной секции —1230/200=6,15. Это и есть необходимое количество секций, которое нужно округлить в большую сторону. В итоге получается цифра «7». Значит, в этом помещении можно устанавливать радиатор с семью секциями. Вот так все просто.

Для угловых помещений расчет чугунных батарей проводят с применением дополнительного корректирующего коэффициента, который зависит от региона. Коэффициент равен 1,1-1,3. Чтобы не ошибиться, возьмите за основу максимальный показатель. Формула получится такой — 1230х1,3/200=7,995. Округляем до 8.

Внимание! В нашем случае количество секций не такое большое. Иногда это число зашкаливает за пару десятков. Для таких случаев совет — разбивать число секций на равное количество батарей, установленных равномерно по всему зданию и в идеале под окном.

Расчет остальных материалов для отопления

Для тех, кто никогда не сталкивался с монтажом системы отопления, будет очень сложно подсчитать необходимые материалы. Минимум, что нужно, это хотя бы иметь представление, как будет проводиться разводка труб, как будет обвязываться отопительный котел, и как будут подсоединяться батареи. Поэтому перед тем как начать подсчет, необходимо изучить схему работы отопительной системы. Если вы с этим не справитесь, то лучше обратиться к специалистам.

Схемы подключения радиаторов

Какие материалы нужны для отопительной системы? Рассмотрим их на примере двухконтурного котла. Чтобы подключить его к системе отопления дома, потребуется, как минимум, четыре шаровых крана с разъемными соединениями — по одному на каждый вход и выход двух контуров. К каждому крану по одному резьбовому переходнику, чтобы подключать его к трубопроводам. Обязательно потребуется два фильтра для механической очистки поступающей в котел воды.

Теперь переходим к обвязке радиаторов. Здесь нужны два крана (регулирующий и отсекающий), кран Маевского (для спуска воздуха), заглушка, два резьбовых переходника и два тройника для подсоединения патрубков к основной магистрали. И это комплект только на один радиатор. Чтобы подсчитать все необходимые изделия, придется умножить это на количество батарей, которые запланированы в вашем доме.

Что касается труб, то придется промерить расстояния от радиаторов до котла и полученный метраж умножить на два. Потому что многие системы работают по принципу подачи и обратки теплоносителя. Единственная проблема может возникнуть с диаметрами трубопроводов, но и здесь не все так сложно. Во многих системах используются, в основном, трубы от 20 до 32 миллиметров в диаметре. И если ваш дом по своим размерам не очень большой, то этот показатель будет достаточным.

Заключение по теме

Как видите, расчет мощности отопления коттеджа — дело серьезное. Здесь необходимо учитывать многие параметры самого дома. Но в целом эти математические выкладки не представляют ничего сложного, если в них разобраться.

Как провести расчет батарей отопления собственной квартиры?

Как провести расчет секций радиаторов отопления?

Как самостоятельно провести расчет системы отопления частного дома

Программа для расчета отопительной системы дома

Как правильно провести расчет тепловой энергии на отопление

Как рассчитать необходимую мощность обогревателя для помещения?

Правильно рассчитать мощность электрических обогревателей для дома, дачи или гаража лучше всего сможет специалист, который учтет множество факторов. Однако чтобы сэкономить на сторонней помощи, определить необходимый параметр можно самостоятельно. Рассмотрим, как рассчитать мощность обогревателя, чтобы сделать удачную покупку.

Обзор ассортимента

К устройствам обогрева относятся:

  • тепловые пушки;
  • конвекторы;
  • масляные и конвекционные радиаторы;
  • инфракрасные обогреватели;
  • тепловые завесы.

Перечисленное оборудование подбирается для определенных целей с учетом возможностей и необходимости обслуживания. Если производительность прибора не отвечает потребностям помещения, он будет нерационально расходовать энергию. Тепловые завесы в быту не используются. Они актуальны в магазинах, больших мастерских и на промышленных объектах. Остальные же можно встретить дома, на даче или в гараже. Именно для них актуален вопрос, как рассчитать мощность обогревателя.

Быстрый расчет производительности для отапливаемого помещения

Этот вариант очень прост, но не позволяет рассчитать мощность инфракрасного обогревателя. Требуется:

1. Замерить площадь (s).

2. Определить высоту стен (h).

3. Вычислить объем помещения (v), перемножив первые значения.

4. Результат вычисления кубатуры разделить на 30 – специально определенное число-коэффициент для такого типа вычислений.

Формула определяемой производительности выглядит так: W=s*h/30.

Например: площадь комнаты – 18 кв. м, высота ее стен – 2,8 м. Получаем кубатуру в 50,4 куб. м. Объем делим на 30 и видим результат – 1,68 кВт необходимо для подогрева комнаты и поддержания в ней тепла. В целом можно говорить, что для 10 кв. м (высота до 3 м) нужно до 1 кВт/ч.

Такой метод будет точнее, если учитывать местонахождение комнат в здании. Для кабинета в северной или угловой части увеличиваем прогнозированную производительность до 20%.

Как рассчитать мощность электрических обогревателей для гаража или склада

Этот алгоритм подходит для неотапливаемых хозяйственных помещений. Он учитывает объем, теплоизоляцию стен, разницу температур.

1. Определяем кубатуру помещения: v=s*h.

2. Высчитываем разницу температур (?T). От ожидаемой температуры отнимаем уличные показатели.

3. Полученные числа перемножаем вместе с коэффициентом термоизоляции (k) и выходит необходимое количество килокалорий в час, нужных для нагрева и поддержки тепла.

4. Все делим на 860. Результатом окажутся искомые киловатты.

Формула, позволяющая рассчитать мощность электрических обогревателей для гаража и других хозяйственных помещений: W=k*v*?T/860.

Коэффициент термоизоляции разный:

  • сооружения, не обладающие теплоизоляцией, – 4,0;
  • простые постройки из дерева или профнастила – от 3,0;
  • одинарная кирпичная кладки с простой оконной и кровельной конструкцией – от 2,0;
  • обычные постройки (советские многоэтажные дома, старые здания) – от 1,0;
  • современные сооружения или с дополнительным утеплением – от 0,6.

В качестве примера предлагаем рассчитать прогнозируемую мощность электрических обогревателей для гаража с кладкой из одинарного кирпича и несложной шиферной крышей. Допустим, его площадь – 24 кв. м, от пола до потолка – 3 м, температура на улице – -3 градуса, хотим получить тепло +15. Считаем по формуле:

W=2*24*3*(15 – (-3)/860=3 кВт, или W=2,9*24*3*(15 – (-3)/860=4,4 кВт.

Вывод: для обогрева в указанных условиях необходима производительность от 3 до 4,4 киловатта.

Инфракрасные обогреватели: как подсчитать их мощность?

Такое устройство нагревает предметы и людей, их тепло дальше распространяется по комнате. Поэтому требуемая производительность определяется иначе. Рассчитать мощность инфракрасного обогревателя в пространстве можно так: в зависимости от модели на 1 кв. м предполагаются затраты до 0,1 киловатта. Это число может начинаться от 0,01 кВт.

Обращайте внимание на заводские характеристики, чтобы понять, как рассчитать мощность обогревателя. Современные инфракрасные производители тепла дают существенную экономию и в неотапливаемом помещении. Но их эффективность в среднем в 2 раза меньше. То есть на 1 кв. м затраты могут достигать 0,2 киловатта.

Мощность отопления.

Непосредственно перед выбором котла для отопления дома, потребитель задается вопросом: какую мощность должен иметь котел для эффективного отопления дома и как правильно рассчитать эту мощность? Давайте разберемся в вопросе мощности отопления.

В случаях, когда мощность котла будет невысокой, а объем помещения внушительным, то такая система отопления не позволит прогреть дом до необходимой, комфортной температуры.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Именно по этой причине, расчет мощности системы отопления является одним из важнейших вопросов, который возникает при выборе отопительного котла. Следует так же помнить и об экономии, ведь если приобрести котел высокой мощности (так сказать с запасом), то в помещении будет комфортно, но такая система отопления будет затратной, ведь за энергоноситель придётся платить, учитывая что холодное время года в России длится в течении 5-6 месяцев.

Расчет мощности отопления.

Ориентировочный расчет мощности котла отопления можно выполнить используя простую формулу:

Wкотла = S*Wуд / 10

  • S — площадь отапливаемого помещения;
  • Wуд — удельная мощность котла на 10 м 3 помещения, определяется с учетом климатических условий региона.

Так же существуют общепринятые значения удельной мощности отопления по климатическим зонам регионов:

  • Для районов Подмосковья Wуд = 1-1,5 кВт;
  • Для северных районов Wуд = 1,3-2 кВт;
  • Для южных районов Wуд = 0,6-0,9 кВт.

Часто строители используют усредненное значение, где Wуд, = 1.

Выполним расчет мощности отопления на конкретном примере:

  • Площадь отапливаемого помещения = 100 м 2
  • Удельная мощность 1,4 кВт (допускаем что зимы будут холодными)
  • Используем усредненное значение удельной мощности 1 кВт
  • Мощность котла 100*1,4/10=14 кВт
  • Мощность котла 100*1/10=10 кВт

Собственно для того чтобы прикинуть мощность отопления, можно воспользоваться данным способом, стоит отметить, что существуют системы отопления работающие на различных видах топлива, следовательно, для расчета таких систем отопления могут использоваться другие методы расчёта мощности.

Так же для расчета мощности котла можете использовать таблицу, которая будет приведена ниже.

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м 3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Аккумулятор какого размера вам понадобится для питания вашего дома?

Похоже, Tesla делает аккумулятор для вашего дома. Было бы круто? Я думаю так. Но зачем вам домашний аккумулятор? Я могу придумать несколько вариантов использования:

  • Для автономного дома вы можете использовать солнечную или ветровую энергию. К сожалению, ни один из этих двух источников не обеспечивает постоянной энергии. Если бы вы могли хранить энергию в батарее, вы могли бы использовать ее ночью или в безветренную погоду.
  • Многие люди держат дома бензиновый генератор. У меня есть один, который я использую не слишком часто, но он великолепен, когда он вам нужен. Что, если бы у вас была батарея, которую вы могли бы использовать в своем доме во время перебоев в подаче электроэнергии? Это было бы круто.
  • Вроде бы энергокомпания хотела бы, чтобы у всех был аккумулятор. С домашней батареей вы можете уменьшить скачки напряжения в сети. Когда вы включаете кондиционер, он потребляет большой ток в течение короткого периода времени (вот объяснение, почему ток резко возрастает).С батареей этот текущий спрос может быть нивелирован (я думаю).

Но вы здесь не для этого, не так ли? Вы хотите знать, какой большой аккумулятор вам понадобится. Давай выясним.

Размер батареи

Нам нужны некоторые начальные значения. Во-первых, как долго вы хотите, чтобы ваш дом работал от батареи? Я думаю, Илон Маск (из Tesla) сказал одну неделю. Понятно. Следующий важный момент — это энергопотребление. Я думаю, что справедливым предположением является постоянное потребление мощности 2000 Вт. Очевидно, что дому в какой-то момент дня потребуется более 2000 Вт.Тем не менее, ночью вам не потребуется много энергии, так что средняя дневная мощность может составлять 2000 Вт. Если вам не нравится это значение, вы можете использовать свои собственные числа в расчетах.

Если я знаю мощность и время, я могу использовать определение мощности для расчета энергии, хранящейся в батарее.

Мощность в ваттах — это нормально (поскольку ватт — это джоуль в секунду), но мне нужно время в секундах.

Теперь я могу рассчитать запасенную в батарее энергию.

Отлично. Но что, черт возьми, такое Джоуль? Конечно, это единица энергии, но много ли это? Вот простой эксперимент, который вы можете провести самостоятельно. Возьмите учебник и положите на пол. Теперь возьмите его и положите на стол. Чтобы поднять книгу, вам нужна энергия (чтобы изменить ее гравитационную потенциальную энергию). Книга весит около 1 кг, а вы подняли ее примерно на 1 метр. Это дает изменение энергии примерно на 10 Джоулей (не забывайте, что гравитационное поле составляет 9,8 Н / кг). Итак, теперь вы знаете о Джоулях.

Инновационное производство и материалы для недорогих литий-ионных батарей (Технический отчет)

Карлсон, Стивен. Инновационное производство и материалы для недорогих литий-ионных батарей . США: Н. П., 2015. Интернет. DOI: 10,2172 / 1261827.

Карлсон, Стивен. Инновационное производство и материалы для недорогих литий-ионных батарей .Соединенные Штаты. https://doi.org/10.2172/1261827

Карлсон, Стивен. Вт. «Инновационное производство и материалы для недорогих литий-ионных батарей». Соединенные Штаты. https://doi.org/10.2172/1261827. https://www.osti.gov/servlets/purl/1261827.

@article {osti_1261827,
title = {Инновационное производство и материалы для недорогих ионно-литиевых батарей},
author = {Карлсон, Стивен},
abstractNote = {В этом проекте были продемонстрированы совершенно новые варианты производственного процесса для литий-ионных батарей с большим потенциалом повышения стоимости и производительности.Эти новые подходы к производству основаны на использовании новых сепараторов с электродным покрытием вместо традиционных металлических токосъемников с электродным покрытием. Ключевым фактором для создания этих сепараторов с электродным покрытием является новый и уникальный цельнокерамический сепаратор, в котором отсутствует традиционный пористый пластиковый сепаратор. Простой, недорогой и высокоскоростной производственный процесс однократного нанесения керамического пигмента и полимерного связующего на многоразовую разделительную пленку с последующим отслаиванием цельнокерамического сепаратора и любых слоев, нанесенных на него, таких как электроды и металлические токоприемники.Был разработан подходящий цельнокерамический сепаратор, который продемонстрировал следующие требуемые характеристики, необходимые для изготовления сепараторов с электродным покрытием: (1) отсутствие пор диаметром более 100 нанометров (нм) для предотвращения любого проникновения электродных пигментов в сепаратор; (2) отсутствие усадки сепаратора при нагревании до высоких температур печи, необходимых для сушки электродного слоя; и (3) отсутствие значительного сжатия разделительного слоя на этапе каландрирования под высоким давлением, необходимого для уплотнения электродов примерно на 30%.Кроме того, этот нанопористый цельнокерамический сепаратор может быть очень тонким и составлять 8 микрон для увеличения плотности энергии, обеспечивая при этом все характеристики, обеспечиваемые нынешними пластиковыми сепараторами с керамическим покрытием, используемыми в автомобильных аккумуляторных батареях: повышенная безопасность, более длительный срок службы, и стабильность работы при напряжении до 5,0 В для получения еще большей плотности энергии. Тонкий цельнокерамический сепаратор обеспечивает экономию затрат не менее 50% на компонент сепаратора и сам по себе отвечает общей цели этого проекта по снижению стоимости неактивных компонентов ячейки как минимум на 20%.Цельнокерамический сепаратор также обеспечивает дополнительную экономию за счет превосходной термостойкости без усадки при температуре до 220 ° C. Это позволяет сушить под вакуумом сухой элемент непосредственно перед заполнением электролитом и, таким образом, может уменьшить размер сухого помещения для сборки элемента на 50%. После изготовления сепаратора с электродным покрытием существует множество различных подходов к добавлению слоев металлического токоприемника, изготовлению и соединению выводов ячеек. Эти подходы включают в себя: (1) наслоение электродной стороны сепаратора с электродным покрытием на обе стороны металлического токосъемника; и (2) изготовление пакета электродов с полным покрытием путем нанесения покрытия или нанесения слоя токосъемника на сторону электрода с последующим нанесением второго слоя электрода на токосъемник.Дополнительную экономию средств можно получить за счет использования более дешевых и / или более тонких и легких токосъемников, а также за счет использования процесса изготовления покрытия сепаратора при ширине 1,5 метра (м) или более и при высоких скоростях производственной линии до 125 метров в минуту (м / мин. ), оба из которых намного превышают обычную ширину покрытия и линейную скорость, которые в настоящее время используются при производстве электродов для литий-ионных батарей.},
doi = {10.2172 / 1261827},
url = {https: // www.osti.gov/biblio/1261827}, journal = {},
number =,
объем =,
place = {United States},
год = {2015},
месяц = ​​{12}
}

Вопросы и ответы с нашим экспертом по рынку литиевых батарей, часть 1

Если вы пропустили наш веб-семинар в прошлом месяце о тенденциях мирового рынка литиевых батарей, не волнуйтесь. Мы провели эксклюзивные вопросы и ответы с нашим аналитиком по рынку литиевых батарей Кристофером Фраем.

Ниже приведены его ответы на вопросы ВАС (наших членов, участников рынка, ученых и других).

В: Заменят ли в будущем суперконденсаторы литиевые батареи в некоторых областях?

A: Сомнительно, что суперконденсаторы (или ультраконденсаторы, как их еще называют) полностью заменят литиевые батареи, но есть некоторые приложения, в которых суперконденсаторы действительно имеют преимущества перед батареями. Суперконденсаторы не имеют почти такой же плотности энергии, как LIB, поэтому в таких приложениях, как смартфоны или компьютеры, маловероятно, что суперконденсаторы вытеснят LIB.

Суперконденсаторы

действительно обладают высокой плотностью мощности, а это означает, что энергия может быть высвобождена быстрее, поскольку не требует химической реакции, как в случае батарей.

По этой причине, а также с недавними инновациями, использующими ультраконденсаторы на основе графена, могут быть приложения, связанные с электромобилями, где они могут оказаться полезными и выгодными. Тем не менее, даже в этих приложениях суперконденсаторы считаются дополнением к аккумуляторам электромобилей, а не заменой.

В: Как вы думаете, твердотельные литиевые батареи окажут огромное влияние на рынок батарей?

A: Твердотельные литиевые батареи могут оказать большое влияние на рынок аккумуляторов. В настоящее время эти прототипы и продукты, представленные на рынке, представлены в основном небольшими приложениями с низким энергопотреблением в носимых устройствах и продуктах Интернета вещей.

Вероятно, по крайней мере, 5-7 лет, прежде чем коммерциализация этих типов аккумуляторов расширится на другие продукты, хотя многие OEM-производители в автомобильной сфере вкладывают значительные средства в это исследование, поскольку твердотельные аккумуляторы для автомобильных приложений могут обеспечить лучшую безопасность за счет значительных затрат. более высокая плотность энергии.

Основная проблема твердотельных батарей — низкая проводимость при низких температурах. Достижение повышения безопасности при использовании твердого состояния также может означать, что перенос ионов затруднен, поскольку жидкие электролиты могут покрывать большую площадь поверхности, чем твердый электролит. Другой проблемой является стоимость производства, особенно в процессах, обеспечивающих высокую чистоту.

Q: Каковы основные проблемы в разделителях батарей?

A: С точки зрения производителя аккумуляторов, одна из основных проблем при разработке сепараторов аккумуляторов — это количество отходов, возникающих из-за того, что многие поставщики предоставляют большие оптовые заказы на квадратный фут или квадратный метр.

Существует не так много исследований, которые пытались бы дать количественную оценку этого, но в отчете отмечается, что одна производственная линия проверена, где отходы составляли более 50% . В отсеке для литиевых батарей разделители батарей почти полностью изготовлены из полимерных материалов, при этом все еще используются стеклянные маты.

Другими проблемами, связанными с этими материалами, являются стоимость и некоторые технические проблемы, связанные с достижением баланса между механическими характеристиками и свойствами пористости.

Основная функция сепаратора — ограничить контакт между катодом и анодом, позволяя при этом проходить ионам в ячейке.

Лучший способ обобщить проблемы, связанные с сепараторами аккумуляторных батарей, — это понять, что идеальные требования к сепаратору (т. Е. Большое поглощение электролита, тонкая толщина с высокой механической прочностью, быть электрохимически и структурно стабильным, быть высокопористым; и, в идеале, он должен иметь возможность для отключения аккумулятора в случае перегрева).

Найти материалы, удовлетворяющие всем этим требованиям, сложно, поэтому производителям приходится искать компромисс.

В. Каким вы видите рост рынка тонких и гибких аккумуляторов или аккумуляторов для Интернета вещей? Когда мы ожидаем, что все твердотельные батареи получат разумную долю рынка?

A: Ответить на второй вопрос особенно сложно. Большинство наблюдателей, похоже, собираются вокруг 5-7-летней отметки для более существенной коммерциализации и, возможно, еще нескольких лет для достижения разумной доли рынка, хотя неясно, что здесь определяется как «разумное».”

Что касается первого вопроса, в отчете действительно выделяются некоторые области — особенно носимые устройства и те, которые используют подключение к Интернету, — где использование тонких и гибких батарей растет.

Темпы роста в некоторых из этих областей выше, чем у LIB в целом (более 15%). На данный момент основными областями коммерциализации твердотельных LIB являются маломощные приложения для датчиков, подключенных к Интернету. Такие фирмы, как Cymbet, уже производят эти типы батарей для маломощных небольших приложений.

Q: Каковы долгосрочные перспективы того, как справиться с нехваткой лития и высокой стоимостью?

A: Одним словом, поиск других материалов и разработка составов батарей, в которых используется меньше сырья; возможно, если вы владеете автомобильной компанией, и у вас есть долгосрочные контракты на поставку. Литий, поскольку он не является товаром, доступен в различных сортах и ​​для батарей, требует чистоты, в сочетании с тем, что на рынке доминируют несколько производителей, что затрудняет оценку текущих цен, не говоря уже о прогнозировании.

Судьба индустрии электромобилей и рост их внедрения являются одним из основных факторов, определяющих, будут ли перебои в поставках иметь большое влияние или нет.

Q: Где находится NM C811 в вашей оценке рынка катодных материалов, в отличие от других составов NMC?

A: В отчете представлены некоторые подробности для различных формулировок, хотя большинство сравнений шире. Состав NM C811 просто основан на том, что уже является частью этого рынка при использовании никель-марганец-кобальт; в этом составе используется больше никеля, чем в других составах, и поэтому он имеет более высокую емкость.

В нем используется меньше кобальта (10%), поэтому он дешевле и менее подвержен проблемам в цепочке поставок, но более высокое содержание никеля требует дополнительных производственных затрат. Он также имеет некоторые проблемы с деградацией при более высоких температурах.

С учетом всего сказанного, вполне вероятно, что эта формула (и другие, смягчающие проблемы компромисса) будут играть роль в области литиевых батарей. Я считаю, что SK Innovation и LG Chem — два наиболее крупных игрока, использующих эту формулу.

У нас есть еще вопросы и ответы с Кристофером Фраем, так что следите за обновлениями части 2!

Кристофер Фрай обладает более чем 20-летним опытом исследований в своей независимой консультационной практике, где он проводит исследования рынка и бизнес-консультации для предпринимателей и малых предприятий, занимающихся технологиями.Он работал экономистом и статистиком и руководил группами по исследованию рынка и разработке продуктов в различных отраслевых вертикалях. Кристофер обладает богатым опытом в области электроэнергетики, возобновляемых источников энергии и электромобилей, а также работал над несколькими энергетическими проектами в США и некоторых частях Латинской Америки.

Производство литий-ионных батарей растет, но какой ценой?

В своем первом генеральном плане Tesla Motors Илон Маск писал: «Общая цель Tesla Motors (и причина, по которой я финансирую компанию) — помочь ускорить переход от экономики, основанной на добыче и сжигании углеводородов, к экономике солнечной электроэнергии. которое я считаю основным, но не исключительным, устойчивым решением.”

Чуть более десяти лет спустя кажется, что это устойчивое решение находится в пределах досягаемости — развертывание солнечной энергии быстро растет, и Tesla лидирует в направлении большего распространения электромобилей, которые могут работать на возобновляемых электронах.

Но по мере расцвета экологически чистой энергии решения компаний-производителей электромобилей и производителей аккумуляторов имеют гораздо большее отношение к майнингу, чем можно было бы предположить из манифеста Маска. Хотя взрыв электромобилей и накопителей энергии позволит странам полагаться на менее углеродоемкую энергию, извлечение основных ингредиентов для создания рентабельных литий-ионных аккумуляторов, как правило, оставляет за собой экологические и человеческие разрушения.

Лидеры отрасли приблизились к решению, как хранить энергию и приводить в движение автомобили без ископаемого топлива в больших масштабах, но они только начинают бороться с моральными последствиями чистой энергетики, опирающейся на уродливую правду о детском труде и загрязнении окружающей среды.

«Это довольно интересный случай, когда преимущества перехода к« зеленым »технологиям перевешиваются в некоторых случаях, когда вы смотрите на добычу полезных ископаемых, — сказал Стефан Сабо-Уолш, руководитель отдела исследования сырьевых товаров в Verisk Analytics.

Литиевый треугольник

По словам Джеймса Уайтсайда, управляющего консультанта консалтинговой группы Wood Mackenzie по металлу и горному делу, Австралия и Южная Америка, особенно «литиевый треугольник» Аргентины, Чили и Боливии, в настоящее время доминируют в производстве лития от 80 до 90 процентов.

Южноамериканское производство основано на рассоле, добываемом из недр земли. На участках с рассолом соленая вода разливается по большим поверхностям на уровне нескольких футов глубиной и оставляется испаряться в течение нескольких месяцев.При перемещении из пруда в пруд концентрация лития медленно увеличивается до тех пор, пока его не удастся отделить от остальной части рассола. Затем неочищенный литий перерабатывается в хлорид лития для использования в таких устройствах, как батареи. В Австралии производители сырья концентрируются на более энергоемкой и дорогостоящей добыче твердых пород, при которой литий получают из камней.

В 2016 году производство лития выросло на 16 процентов по сравнению с предыдущим годом. Большая часть его произведена в Австралии — 14 300 метрических тонн, большая часть которых отправляется в Китай для переработки.

Так называемая «белая золотая лихорадка» позволила производителям аккумуляторов расширить производство и сохранить планы относительно гигафабрик в стадии разработки. Но его результаты не были столь позитивными для коренных народов, таких как община Атакама в Южной Америке, что вызвало протесты с написанными от руки табличками с надписью «Мы не едим батарейки», как сообщает The Washington Post .

Коренные жители литиевого треугольника обеспокоены тем, что высокий уровень воды, необходимый для производства лития — до полумиллиона галлонов на тонну — может сократить и без того ограниченное водоснабжение в засушливых и засушливых районах, где находятся участки с рассолом. расположена.Эти опасения вызвали протесты против эксплуатации ресурсов крупными компаниями. В 2012 году 33 общины коренных народов обратились в Верховный суд Аргентины с просьбой проконсультироваться по вопросам разработки лития.

«Неизвестно, какой ущерб может быть нанесен»

Хелле Абельвик-Лоусон, докторант и исследователь из Университета Эссекса, которая занимается изучением воздействия добычи лития в Боливии и Аргентине, сказала, что многие — но не все — сообщества учатся жить с активностью и развитием горнодобывающих компаний. приносить, потому что они также доставляют рабочие места.«Главное, чтобы сообщества, если они собираются создать эту огромную индустрию, хотели участвовать», — сказала она.

Но есть также сообщества, по ее словам, «которые категорически против этого».

По словам Абельвик-Лоусон, нынешнее воздействие мелкомасштабной добычи лития относительно минимально. Но поскольку спрос стремительно растет, то, как компании увеличивают производство, может это изменить. «Есть опасения, — сказала она. «Как только что-то действительно масштабируется, невозможно сказать, какой крупномасштабный ущерб может быть нанесен.»

Места с рассолом обычно потребляют мало энергии, потому что солнце перерабатывает литий из бассейнов. Но Уайтсайд сказал, что недавний всплеск спроса стимулировал практику «прямых поставок руды» с горных выработок в Китай за последние три-шесть месяцев. Чтобы ускорить процесс, отправляется больше сырья, прежде чем оно будет сконцентрировано.

«Это означает, что ваше энергопотребление на транспорт намного выше — примерно в три раза выше», — сказал Уайтсайд. «В долгосрочной перспективе это не будет конкурентоспособным с точки зрения затрат, но в настоящее время с такими ценами, как они есть, такое производство стимулируется.”

Литиевые батареи также требуют таких сырьевых материалов, как кобальт, никель и графит, что еще больше усложняет цепочку поставок. Трудовая несправедливость при добыче кобальта хорошо задокументирована. Более 20 процентов экспорта из Демократической Республики Конго, крупнейшего производителя в мире, приходится на нерегулируемые кустарные рудники, на которых часто работают дети. Что касается таких сырьевых материалов, как никель и графит, страны-производители борются с загрязнением воды и обезлесением.

Масштабирование и массовое производство литиевых батарей сложно, но проблемы с правами человека и окружающей средой, связанные с их производством, сделают это еще более трудным для производителей и конечных пользователей.Сырье поступает из шахт по всему миру, и определить его происхождение не всегда легко. Компаниям, продающим экологически чистые продукты с этической маркой, такие как электромобили и солнечные батареи плюс накопители, необходимо будет искать лучший выбор, поскольку использование аккумуляторов продолжает расти — или рисковать столкнуться с риском отдачи.

Стрела аккумуляторная

По данным Bloomberg New Energy Finance, к 2021 году мировые мощности по производству аккумуляторов увеличатся вдвое и составят более 278 гигаватт-часов в год.Ожидается, что к тому же году литий-ионные батареи будут на 43 процента дешевле.

В то время как производители альтернативных батарей в последние годы пытались опробовать литиевые модели за свои деньги, это была проигранная битва отчасти из-за простоты и гибкости технологии. Шокирующе низкие цены на литиевые батареи останутся главным фактором, способствующим доминированию этой технологии в будущем — до тех пор, пока производители смогут продолжать производство лития.

Отношение запасов к производству лития (оставшееся количество невозобновляемого ресурса, выраженное во времени) измеряется [величиной] сотен, тогда как для большинства добываемых товаров оно исчисляется десятками », — сказал Уайтхаус.«Есть много ресурсов».

«В ближайшее десятилетие определенно будет достаточно … лития», — добавил он. «Вопрос в том, сколько времени потребуется, чтобы эти источники стали доступными».

Беспокойство не связано с известными запасами, которых очень много. Уайтсайд, который работает над исследованием рынка лития Wood Mackenzie, описывает традиционную кривую спроса и предложения лития. Хотя цены на аккумуляторы достигают новых минимумов, цены растут (в настоящее время около 12 000 долларов за тонну), как и спрос.Чтобы удовлетворить этот спрос, производители запланировали проекты по всему миру. Но поскольку добыча лития отнимает так много времени, а многие из этих проектов не будут завершены в течение многих лет, высокий спрос и ограниченное предложение, по словам Уайтхауса, вероятно, сохранятся в настоящее время.

«На рынке будут циклы», — добавил он. «Я уверен, что в какой-то момент на рынке появится избыток предложения просто из-за количества разрабатываемых проектов».

Но пока производители аккумуляторов жаждут всего лития, которое они могут получить.Поиски этично добытого лития, вероятно, только увеличат спрос и цены.

Другой путь вперед

Есть и другие способы расширить производство лития, не полагаясь на сомнительные трудовые и экологические практики, которые в настоящее время широко распространены в процессе добычи лития.

Компании, включая MGX Minerals, базирующуюся в Канаде, работают над поиском доступных и малоиспользуемых магазинов лития. Начиная с 2016 года MGX тестирует систему нанофильтрации, в которой используется набор узкоспециализированных мембран для пассивного отсеивания лития из сточных вод.По словам генерального директора Джареда Лазерсона, система MGX возвращает 70 процентов лития и занимает всего день, а не традиционные месяцы.

На данный момент MGX сотрудничает с такими компаниями, как Canadian Natural Resources Limited в Альберте, и работает над коммерческим заводом, способным перерабатывать 7500 баррелей сточных вод в день и давать значительный объем эквивалента карбоната лития.

Процесс MGX очищает воду, оставшуюся от традиционных нефтяных операций, и приносит прибыль.Привлекательным дополнительным преимуществом могло бы стать привлечение к участию традиционных крупных энергетических компаний.

«Нефтяные компании очень, очень традиционны в своем мышлении, но они следят за тем, что происходит», — сказал Лазерсон. «Это заставляет их немного нервничать и заставляет очень серьезно относиться к этим [проектам]».

Что касается привлечения к ответственности за традиционную добычу полезных ископаемых, то это, вероятно, выпадет на долю компаний и корпоративных объединений, сказал Сабо-Уолш. Он сказал, что прошлые примеры, связанные с конфликтными минералами золота, вольфрама, олова и тантала, которые регулируются законом Додда-Франка, могут послужить уроком для отраслевых партнерств по обмену информацией о практике поставщиков, оценочных анкетах и ​​экологических рейтингах.Рассмотрение того, куда идет литий после его использования, также может заставить производителей более внимательно относиться к производственному процессу.

«Автомобильные компании должны обсудить и спланировать окончательный срок использования литий-ионных аккумуляторов», — сказал Уайтсайд. «Это то, о чем многие автомобильные компании даже не задумываются».

В конечном счете, по мере роста производства компаниям необходимо будет сделать подотчетность основным показателем срока службы батареи.Хотя мировых запасов лития будет достаточно, чтобы подпитывать крупномасштабную революцию в области хранения, текущие затраты совсем не незначительны.

Присоединяйтесь к GTM, чтобы подробно познакомиться с перспективным внутренним рынком хранения энергии на Саммите по хранению энергии в США в 2017 году. Коммунальные предприятия, финансисты, регулирующие органы, новаторы в области технологий и специалисты по хранению энергии соберутся вместе, чтобы провести два полных дня презентаций с большим объемом данных, аналитик- проводил панельные сессии с лидерами отрасли и широкое налаживание контактов на высоком уровне.Узнайте больше здесь.

Таблица преобразования Electropaedia

Примечание 1: 1 н.э. — это количество нефти, имеющее эквивалентное энергосодержание 11,6 МВт-ч электроэнергии. Это , а не количество нефти, необходимое для производства 11,6 МВт-ч электроэнергии. Количество нефти, потребляемой для производства 11,6 МВт-ч электроэнергии, может быть более чем в три раза больше из-за неэффективности процесса преобразования.

Примечание 2: Световой поток в 668 люменов эквивалентен расходу энергии в 1 Вт излучаемой электрической (или другой) мощности.Это , а не световой поток, производимый 1 Вт электричества. Лампа накаливания обычно преобразует в свет менее 10% входящей электрической энергии. Остальное теряется в виде тепла. См. «Энергоэффективность».

Примечание 3: Мощность в мегаваттах электростанции может быть выражена как МВт или МВт (альтернативно МВт тепл.). MWe является более распространенным и представляет собой электрическую выходную мощность установки. МВт — тепловая мощность , вырабатываемая печью или ядерным реактором.Выходная мощность МВт обычно составляет всего около 30% или 40% входной мощности МВт.

Примечание 4: I Sievert = I Gray X Q, где коэффициент качества (Q) является мерой величины ущерба, нанесенного дозой. Серый — это доза, Зиверт — это эффект дозы.

Аналогично 1 rem = 1R X Q.

Энергия

1 киловатт-час (кВтч)

=

3,6 мегаджоулей (МДж)

1 киловатт-час (кВтч)

=

3412 Британские тепловые единицы (BTU)

1 киловатт-час (кВтч)

=

859.2 килокалории (ккал)

1 Джоуль (Дж)

=

1 Вт-секунда

1 Джоуль (Дж)

=

1 Ньютон-метр (Н-м)

1 Джоуль (Дж)

=

0.1026 Метр-килограмм (мкг)

1 Джоуль (Дж)

=

1 В x 1 кулон

1 Джоуль (Дж)

=

6,24 x 10 12 Миллион электронвольт (МэВ)

1 Электронвольт (эВ)

=

1.6 X 10 -19 Дж (Дж)

1 Электронвольт (эВ)

=

1,16 X 10 4 Градусы Кельвина (K) Эквивалент

(См. Эквивалентную температуру электронов ниже)

1 МэВ

=

1.07 X 10 -3 а.е.м. (преобразование массы в энергию)

1 гигаджоуль (ГДж)

=

277,8 киловатт-часов (кВтч)

1 калория (кал.)

=

4.19002 Джоули (Дж)

1 Британская тепловая единица (BTU)

=

1055 Джоулей (Дж)

1 Терм

=

100 000 БТЕ

1 Терм

=

29.3 кВтч

1 квадриллион БТЕ (четырехъядерный)

=

10 15 БТЕ

1 квадриллион БТЕ (четырехъядерный)

=

2.931 x 10 11 киловатт-часов (кВтч)

1 квадриллион БТЕ (четырехъядерный)

=

293,1 тераватторесурсов (ТВтч)

1 тонна нефтяного эквивалента (т н.у.)

=

41.87 гигаджоулей (ГДж)

1 тонна нефтяного эквивалента (т н.у.)

=

11,6 мегаватт-часов (МВтч) [см. Примечание 1 ниже]

1 метрическая тонна в тротиловом эквиваленте

=

4.184 гигаджоулей (ГДж)

1 короткая тонна тротила

=

3,796 Гигаджоуль (ГДж)

1 тонна нефтяного эквивалента (т н.у.)

=

10 тонн тротила

1 гигаватт-час (ГВтч)

=

86 тонн нефтяного эквивалента (т.н.э.)

1 TeraWatthour (ТВтч)

=

1 миллиард киловатт-часов (кВтч)

Энергетическая плотность / теплотворная способность

1 киловатт-час / килограмм (кВтч / кг)

=

3.6 гигаджоулей на тонну (ГДж / тонну)

Мощность

1 Вт (Вт)

=

1 Джоуль / сек (Дж / с)

1 Вт (Вт)

=

3.7 БТЕ в час (БТЕ / ч)

1 Вт (Вт)

=

668 люмен [см. Примечание 2 ниже]

1 киловатт (кВт)

=

1000 Вт (Вт)

1 МВт (МВт)

=

1000 киловатт (кВт) [см. Примечание 3 ниже]

1 Мощность в лошадиных силах (л.с.)

=

746 Вт (Вт)

0 децибел (дБ)

=

1 Коэффициент мощности (обратите внимание на логарифмическую шкалу)

3 дБ

=

2 Передаточное число

10 дБ

=

10 Коэффициент мощности

1 милливатт (мВт)

=

0 дБм Относительная мощность (обратите внимание на логарифмическую шкалу)

100 милливатт (мВт)

=

20 дБм

1 микроватт (мкВт)

=

-30 дБм

1 фемто-ватт (фВт)

=

10 -15 Вт

Разгон

1 метр в секунду в секунду (м / с 2 )

=

3.281 фут в секунду в секунду (фут / с 2 )

Гравитационная постоянная (G) (на поверхности Земли)

9,80665 (м / с 2 )

=

32,174 (фут / с 2 )

Вес

1 длинная тонна (Великобритания) (т)

=

2240 фунтов (фунт)

1 Короткая тонна (США) (т)

=

2000 фунтов (фунт)

1 Метрическая тонна (т)

2204.623 фунта (фунт)

1 килограмм (кг)

=

2,2 фунта (фунт)

1 килограмм (кг)

=

9.807 Ньютонов (Н) На поверхности Земли

1 Камень

=

6.35 Килограмм (кг)

1 унция (унция)

=

28,35 грамма (г)

1 Атомная единица массы (а.е.м.)

=

1.67377 X 10 -27 Килограмм (кг)

1 Единица атомной массы (а.е.м.)

=

931,5 МэВ (преобразование массы в энергию)

Усилие

1 Ньютон (Н)

=

0.102 Килограмм-сила (кгс)

1 Ньютон (Н)

=

0,22 фунт-сила (фунт-сила)

1 фунт

=

0,138 Ньютон (Н)

1 фунт

=

0.031 фунт-сила (фунт-сила)

Крутящий момент

1 Ньютон-метр (НМ)

=

0,102 килограмм-сила.метр (кгс.м)

1 Ньютон-метр (НМ)

=

0.738 фут-фунт-сила (фут-фунт-сила)

Электрический заряд

1 кулон (C)

=

1 ампер-секунда

1 кулон (C)

=

6.25 X 10 18 Электроны (д)

1 ампер-час (Ач)

=

3600 Кулонов (К)

Электрический ток

1 ампер (A)

=

1 кулон в секунду (К / с)

1 ампер (A)

=

6.25 X 10 18 Электронов в секунду

Электронный поток

Электрическое напряжение

1 В (В)

=

1 Джоуль на кулон (Дж / Кл)

Частота / длина волны

1 мегагерц (МГц)

=

300 метров (М)

Расход

1 литр в секунду

=

792 галлона (англ.) В час (галлон / час)

Расстояние

1 миля

=

1.6 Километров (км)

1 метр (м)

=

39,4 дюйма (дюйм)

1 дюйм (дюйм)

=

2,54 см (см)

1 тысяча дюйма (тыс.)

=

25.4 мкм

1 микрометр (микрон)

=

10 -3 (0,001) Миллиметры (мм)

1 Нм

=

10 -6 Миллиметры (мм)

1 Ангстрем

=

10 -7 Миллиметры (мм)

Атомный диаметр

=

1 Ангстрем (приблизительно)

1 морская миля (морская миля)

=

1.1508 миль (м)

Площадь

1 квадратный метр (м 2 )

=

10,76 Квадратные футы

1 Га

=

10,000 квадратных метров (м 2 )

1 Га

=

2.47 акров (акров)

1 акр (акр)

=

4840 квадратных ярдов

1 квадратная миля ( миля 2 )

=

640 Акров (акров)

1 квадратная миля ( миля 2 )

=

2.59 квадратных километров (km 2 )

1 квадратный километр (км 2 )

=

100 Га (га)

Ядерный разрез — амбар (млрд)

=

10 -28 м 2

Объем

1 Кубический метр (м 3 )

=

1,000 литров (л)

1 литр (л)

=

1000000 (мм 3 )

1 галлон (британские единицы) (галлон)

=

4.55 литров (л)

1 галлон (британские единицы) (галлон)

=

1,2 галлона (США) (гал)

1 баррель (американская нефть) (баррель)

=

42 галлона (жидкий куб. США) (галлон)

Скорость

1 метр в секунду (м / с)

=

2.24 мили в час (миль / ч)

1 миля в час (миль / ч)

=

1.61 Километров в час (км / ч)

1 узел (узел)

=

1,15 миль в час (миль / ч)

Скорость вращения

1 оборот в минуту (об / мин)

=

0.105 рад в секунду (рад / сек)

Давление

1 бар или атм (атмосферное давление)

=

14,5 фунтов на квадратный дюйм (psi)

1 бар

=

100000 Паскалей (Па)

1 фунт на квадратный дюйм (psi)

=

6895 Ньютонов на квадратный метр (Н / м 2 )

1 Паскаль (Па)

=

1 Ньютон на квадратный метр (Н / м 2 )

1 мегапаскаль (МПа)

=

145 фунтов на квадратный дюйм (psi)

Расход топлива

30 миль на галлон (британские единицы) (миль на галлон)

=

9.42 литра / 100 километров (л / 100 км)

Радиационная активность (радиоактивный распад)

1 Беккерель (Бк)

=

Количество производимого материала

1 Ядерных распадов в секунду

1 Кюри (Ки) (Устарело)

=

3.7 X 10 10 Беккерель (Бк)

Доза излучения

1 Серый (Gy)

=

1 Джоуль на килограмм (Дж / кг)

1 Поглощенная доза излучения (рад)

(Устарело)

=

0.01 Серый (Гр)

1 Röntgen (R) (Устарело)

=

258 X 10 -6 Кулонов на килограмм воздуха (Кл / кг)

1 Серый (Gy)

=

115 Röntgen (R)

1 зиверт (Зв)

=

1 Серый X Q (Гр) [см. Примечание 4 ниже]

1 Röntgen Equivalent Man (rem) (Устарело)

=

0.01 зиверт (Зв) [см. Примечание 4 ниже]

Суммы

Номер Авогадроса (N A )

=

6.02214179 Х 10 23

1 Моль (н)

=

Содержит N A частиц

Прочие аналоги

1 Метрическая тонна масла (тонна)

=

7.64 баррелей (барр.)

Некоторые физические константы

Скорость света ( c )

=

300 X 10 6 метров в секунду (м / с)

Проницаемость вакуума ( мкм 0 )

=

4π X 10 -7 Ньютонов на квадратный ампер (N / A 2 ) или Генри на метр (Г / м)

Проницаемость вакуума ( ε 0 )

=

8.8 X 10 -12 Фарад / метр (Ф / м)

1 моль — ( моль )

=

Единица, представляющая количество вещества, которое содержит 6,022 X 10 23 объекта (атомы, молекулы, ионы, электроны и т. Д.)

Электронный заряд ( e )

=

1.6 X 10 -19 Кулоны (C)

Энергия электронов (электронвольт) ( эВ, )

=

1,6 X 10 -19 Джоуля (Дж)

Эквивалентная электронная температура

(градусы Кельвина) ( K )

=

Постоянная Больцмана / Электронный заряд = к / э = 8.6 X 10 -5 Электронвольт (эВ)

Электронвольт ( эВ, )

(температурный эквивалент)

=

1,16 X 10 4 градусов Кельвина (K)

Масса электрона

=

9,1 X 10 -31 кг

Константа Фарадея ( F )

=

Количество электрического заряда в одном моль электронов N A X e = 9.650 X 10 4 Кулоны / моль (Кл / моль)

Константа или число Авогадро ( N A )

=

Число атомов в 12 граммах углерода-12 = 6.02214179 X 10 23

Также = количество объектов в моле этих объектов.

Обратите внимание, что Число Авогадро N A , деленное на атомной массы элемента, дает количество атомов этого элемента в один грамм .

Таким образом, Уран 235 содержит 6,022 X 10 23 / 235 = примерно 2,563 X 10 21 атомов на грамма .

Константа Больцмана ( k )

=

Кинетическая энергия одной молекулы идеального газа = 1,38 X 10 -23 Джоулей / градус Кельвина (Дж / К)

Универсальная газовая постоянная ( R )

=

Кинетическая энергия одного моля идеального газа = 8.31446 Джоули на градус Кельвина (Дж / К)

Постоянная Планка ( ч )

=

6,63 X 10 -34 Джоуль секунды (Дж · с)

= 4,14 X 10 -15 эВ секунды (эВ · с)

Часто задаваемые вопросы об аккумуляторах: Найдите ответы на свои вопросы | STIHL

Само по себе указанное напряжение ничего не говорит о мощности батарей или беспроводных устройств.

Мощность определяется как произведение напряжения и тока:
Мощность = Напряжение x Сила тока -> Вт = В x A

Взаимодействие между напряжением и током и техническая реализация всей системы — это точки, которые определяют рабочие характеристики беспроводного продукта.

В случае портативных аккумуляторных батарей компактная конструкция и вес имеют решающее значение для удобства оператора. С технической точки зрения существуют определенные ограничения при изготовлении изделий компактными:

  • Один идет на высокое напряжение (например.грамм. 80 В) и технически может использовать только низкие электрические токи, поскольку в противном случае увеличилось бы количество компонентов и вес.
  • С другой стороны, можно ограничиться все еще значимым высоким напряжением (36 В), которое технически допускает высокие электрические токи и может ограничивать количество компонентов и вес.

STIHL, как и многие другие известные производители аккумуляторных батарей, предпочли систему с максимальным напряжением 36 В. Это высокое напряжение, которое по-прежнему имеет значение с технической точки зрения и позволяет использовать высокие электрические токи, гарантирует высокую производительность и надежность аккумуляторных продуктов в будущем.
Беспроводные продукты компактны, легки и более надежны благодаря использованию меньшего количества электрических компонентов.

Кроме того, STIHL предлагает эффективную и высокопроизводительную общую систему согласованных компонентов:

  • Интеллектуальное управление двигателем гарантирует постоянную высокую мощность в течение всего времени работы.
  • Подача энергии на электродвигатель активно регулируется в зависимости от типа приложения. Полная мощность всегда доступна для экстремальных приложений.Однако мощность автоматически снижается, если она не требуется для текущего приложения. Таким образом, энергия аккумулятора используется оптимально, а время автономной работы увеличивается.
  • Эффективные аккумуляторы в компактном дизайне и доступные в различных версиях (с высоким содержанием энергии или малым весом) обеспечивают длительный срок службы и удобство оператора.
  • Режущие приспособления, подходящие к беспроводному изделию, например Пильная цепь ¼ «P гарантирует оптимальную производительность в любой области применения.

В конечном счете, время автономной работы и производительность всегда определяются энергоемкостью батареи, а также эффективностью и реализацией всей системы. По этой причине системы на 56 В или 80 В не имеют преимуществ перед беспроводной системой STIHL на 36 В.

Что происходит, когда батарея умирает?

Одна компания по переработке отходов сообщила о 37,5% -ном увеличении количества пожаров, вызванных старыми батареями на ее объектах с 2017 года. 2 Согласно опросу, проведенному в масштабах ЕС в 2018 году, средняя стоимость этих пожаров составила 190 000 евро, хотя наиболее серьезные примеры принесла бизнесу 1 евро.3 миллиона повреждений. 3

Батареи везде. Они занимают все большее место в нашей повседневной жизни. Аккумуляторы — от автомобилей и часов до ноутбуков и смартфонов — являются важной частью технологий, на которые мы полагаемся.

Батареи в этой технологии часто бывают Li-on. Они обеспечивают большую мощность; однако это имеет один существенный недостаток — больший риск. Старые никелевые и щелочные батареи давали значительно меньше энергии, но они также были более безопасными. В отличие от старых типов батарей, литий-ионные батареи требуют схемы безопасности, чтобы сделать их безопасными.

Риски

Всегда есть риск, связанный с любой батареей. Старые батареи могут взорваться, протечь, выбросить вредные газы или, как мы видели, загореться. Хотя батарея может быть маленькой, не больше монеты, ее воздействие может быть огромным. В одном примере свинья съела шагомер и выбросила батарею, что привело к пожару на площади 75 квадратных метров. 4

Известно, что батареи загораются при различных необычных обстоятельствах — например, при ожидании в офисе или во время полета. 5 В этих случаях батареи не выбрасывались и номинально находились под наблюдением. Однако последствия могли быть серьезными.

Те же риски сохраняются, когда батарея достигла конца своего срока службы, главное отличие состоит в том, что они больше не контролируются и могут храниться в условиях, усугубляющих возможность причинения вреда. В одном отчете, касающемся электромобилей, говорится, что, хотя «мертвый» литий-ионный аккумулятор больше не может питать автомобиль, он по-прежнему сохраняет около 80% своего заряда. 6 Это означает, что существует большая вероятность возгорания, взрыва или утечки, если аккумулятор неправильно утилизирован.

Безопасная утилизация батарей

В прошлом вопрос о том, как люди утилизируют батареи, не считался важным вопросом. Когда батарейка AA или AAA разряжалась, ее просто бросали в бытовой мусор. Затем этот мусор был доставлен на централизованный объект для утилизации. Процедура будет включать тяжелое оборудование, такое как бульдозеры, изменения температуры и другие процессы, которые могут повредить аккумулятор.Этот метод утилизации считался приемлемым, потому что экологические соображения не были в центре внимания многих людей, а количество и мощность используемых батарей были намного меньше.

Сегодня мы видим большее количество выброшенных батарей, и они часто являются литий-ионными батареями большей мощности. Количество аккумуляторов в системе сбора отходов значительно увеличивает вероятность их повреждения. Даже малейшее пробитие защитных слоев литий-ионного аккумулятора может привести к выходу из строя. 7

Поэтому важно утилизировать все батареи правильным образом. Это включает в себя поиск места для хранения аккумуляторов, где можно будет принять правильные меры безопасности. Это может быть местный магазин электроники или центр переработки.

Также не следует забывать, что в некоторых местах, например в Нью-Йорке, запрещено выбрасывать электрические предметы в мусор. Поэтому правильная утилизация отработанных батарей — это не только вопрос безопасности, но и юридический вопрос. 8

Переработка имеет смысл не только с экологической точки зрения; это также имеет смысл с финансовой точки зрения. Одно исследование показало, что материалы в аккумуляторной батарее электронного транспортного средства стоят около 1200 долларов США, но их рыночная стоимость составляет от 10 000 до 15 000 долларов США. Поэтому переработка компонентов имеет большую ценность. Следует также сказать, что, поскольку аккумулятор все еще имеет около 80% своей способности зарядки, также имеет смысл продолжать использовать аккумулятор в другом контексте. 9

SGS Solutions

SGS имеет более чем 20-летний опыт тестирования аккумуляторов. Используя глобальную сеть современных лабораторий, мы располагаем необходимыми возможностями, чтобы помочь производителям разрабатывать безопасные и надежные батареи, соответствующие сложным нормам, регулирующим сегодняшние конкурентные рынки. Наш обширный спектр услуг включает в себя тесты, охватывающие злоупотребления, долговечность, электромагнитную совместимость (ЭМС), производительность, стандарты безопасности и транспортировку.Кроме того, мы можем изучить воздействие на окружающую среду и провести полный анализ жизненного цикла.

Узнайте больше об услугах SGS по тестированию аккумуляторов.

Родни Граймс
Старший инспектор по аккумуляторным батареям
SGS Потребительские и розничные услуги
t: +1770570 1800

Список литературы

1 Кошмар с батареями
2 Консорциум по расследованию пожаров, связанных с отходами батарей
3 Характеристика пожаров, вызванных батареями в WEEE
4 Свиньи начинают пожар на 75 квадратных метрах после проглатывания и выделения шагомера с батарейным питанием
5 Человек снимает брюки в аэропорту после возгорания электронного устройства
6 Привод по переработке литий-ионных батарей
7 и 8 Литиевые батареи опаснее, чем вы думаете
9 Привод по переработке литий-ионных батарей

.

Добавить комментарий

Ваш адрес email не будет опубликован.

*