В чём разница между алюминиевым и медным радиатором? — i2HARD
Немного теории
Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло. В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K) (W/m*K)
Итак мы подошли к основной разнице двух радиаторов, а именно разнице между теплопроводности меди и алюминия. У меди — 401 Вт/м*К, а у алюминия — 237 Вт/м*К. Это идеальные значения, не всегда встречается чистая медь или алюминий, поэтому числа могут немного отличаться. Тем самым медь «проводит тепло» в 1.69 раз лучше, чем алюминий.
Главные вопросы
Хорошо, но почему тогда большинство радиаторов алюминиевые?
- Цена. Медь дороже алюминия примерно в 4 раза, поэтому экономически выгоднее использовать алюминий, нежели медь.
- Вес. Медные радиаторы значительное тяжелее, алюминиевых, если мы не говорим о небольших радиаторах, где разница в весе будет незначительна.
Казалось бы всё, в материнских платах в большинстве случаев используются алюминиевые радиаторы и на этом можно было бы закончить, если не ещё один нюанс.
Вспомним башенные кулеры, у которых медное никелированное основание через которое проходят медные тепловые трубки и на которые напрессованы или напаяны тонкие алюминиевые пластины или же радиаторы на материнских платах с медной трубкой. Зачем смешивание двух материалов, если можно сделать всё либо медным, либо алюминиевым? Отчасти ответ выше, соотношение стоимости и эффективности охлаждения — одна из веских причин, по которым пользователь выберет ту или иную систему охлаждения.
Вспомним башенные кулеры, у которых медное никелированное основание через которое проходят медные тепловые трубки и на которые напрессованы или напаяны тонкие алюминиевые пластины или же радиаторы на материнских платах с медной трубкой. Зачем смешивание двух материалов, если можно сделать всё либо медным, либо алюминиевым? Отчасти ответ выше, соотношение стоимости и эффективности охлаждения — одна из веских причин, по которым пользователь выберет ту или иную систему охлаждения. Есть и ещё одна причина — тепловая инерция.
Тепловая инерция — это термин, используемый в основном в инженерном и научном моделировании теплопередачи, и обозначающий совокупность свойств материала, связанных с теплопроводностью и объёмной теплоёмкостью.
Объёмная теплоёмкость характеризует способность данного объёма данного конкретного вещества увеличивать свою внутреннюю энергию при изменении температуры вещества.
Тепловая инерция меди выше, чем у алюминия, но что это значит на практике? Да медь отлично «проводит тепло» при этом медь «неохотно» охлаждается. В процессе охлаждения необходимо как и отводить тепло от источника нагрева, так и отводить тепло от самих радиаторов, которое обычно происходит за счёт воздушного потока. Алюминий же в свою очередь не так хорошо «проводит» тепло, не так равномерно нагревается, но при этом имеет более низкую тепловую инерцию. Тем самым за счёт изготовления, тонких алюминиевых пластин, которые нагреваются быстрее, чем толстые и вентиляторов происходит их постоянное и достаточно быстрое охлаждение. Конечно физику не обмануть и каждый радиатор или система охлаждения обладают своей эффективностью на которую она рассчитана, за рамки которой при обычных условиях ей не выйти.
Шаг пятый. Медь vs алюминий
16 февраля 2004, понедельник 14:06
blog_user_F0 [ ] для раздела Блоги
Шаг пятый.Предыдущие шажки можно увидеть здесь.
Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
Как это возможно? Алюминий эффективней меди?
В теории:
Теплопроводность:
Алюминий 180-200 Вт/м*К
Медь обычная 300-320 Вт/м*К
Плотность:
Рал=2700 кг/м3
Рмед=8940 кг/м3, где Р-плотность
Удельная теплоёмкость:
Алюминий — 880 Дж / кг*К
Медь — 385 Дж / кг*К
видим, что:
· плотность меди выше, чем у алюминия примерно в 3,31 раза
· теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
· теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.
Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.
44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше.Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему?
В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна.
Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.
Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.
Конструктивная критика принимается
здесь.
Подпишитесь на наш канал в Яндекс. Дзен или telegram-канал @overclockers_news — это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.
Оценитe материал
предыдущая запись
следующая запись
Лента материалов
Обзор звуковых карт Creative Sound Blaster Обзор сетевого хранилища TerraMaster F4-423 Обзор USB-разветвителя Streamplify HUB CTRL 7 Главные игры мая 2023 годаИнтересные материалы
Обзор звуковых карт Creative Sound Blaster
24 мая 2023
Возможно вас заинтересует
Эффективная реклама для вашего бизнеса
ВС РФ в ходе КТО в Белгородской области затрофеили много западного оружия, включая броневики MaxxPro Контртеррористическая операция в Белгородской области завершена Череватый: Украинское командование верит в окружение Бахмута и готовит тактические сюрпризы Деревянные дешевые муляжи дронов, используемые ВС РФ, вызывают перерасход ракет ПВО Украине для окружения Бахмута нужно еще минимум 5 бригад Буданов раскрыл причину по которой постоянно переносят контрнаступление Впервые в автоматическом режиме без участия человека ЗРК С-350 «Витязь» поразил самолёты ВСУ Причастные к атаке на Белгородскую область заявляют, что продолжают бои и готовят новый прорыв Пригожин рассказал о планах ЧВК «Вагнер» на ближайшие месяцы Глава немецкой разведки заявил об отсутствии признаков ослабления российской армии GeForce RTX 4060 Ti сталкивается с типичными проблемами 8-гиговых карт в современных играх Бойцы Росгвардии нашли на территории ЛНР брошенную замаскированную военную технику ВСУ Появились кадры уничтоженной техники украинских диверсантов на КПП «Грайворон» в Белгородской области Командующий ВМС Украины: «Морские пехотинцы должны вернуться в пункт постоянной дислокации – Крым» В Минобороны Украины считают, что продолжают удерживать Бахмут Почему вам не стоить ждать выхода GeForce RTX 4060 Ti – Radeon RX 6750 ХТ быстрее и дешевле- медь: 8,96
- алюминий: 2,7
- медь: -0,35
- алюминий: -0,95
Что означают эти свойства? Для всех последующих сравнений рассмотрим два материала одинаковой геометрии.
Более высокая теплопроводность меди означает, что температура на радиаторе будет более равномерной. Это может быть выгодно, так как края радиатора будут теплее (и, следовательно, излучать более эффективно), а горячая точка, прикрепленная к тепловой нагрузке, будет холоднее.
Более высокая объемная теплоемкость меди означает, что для повышения температуры радиатора потребуется большее количество энергии. Это означает, что медь способна более эффективно «сглаживать» тепловую нагрузку. Это может означать, что короткие периоды тепловой нагрузки приводят к более низкой пиковой температуре.
Более высокая плотность меди, очевидно, делает ее тяжелее.
Различный анодный индекс материалов может сделать один материал более подходящим, если возникает проблема гальванической коррозии. Что более благоприятно, будет зависеть от того, какие другие металлы находятся в контакте с радиатором.
Судя по этим физическим свойствам, медь в любом случае обладает превосходными тепловыми характеристиками. Но как это перевести на реальную производительность? Мы должны учитывать не только материал радиатора, но и то, как этот материал взаимодействует с окружающей средой. Поверхность раздела между радиатором и окружающей его средой (обычно воздухом) очень важна. Кроме того, важную роль играет особая геометрия радиатора. Мы должны учитывать все эти вещи.
В исследовании Майкла Хаскелла «Сравнение влияния различных материалов радиатора на эффективность охлаждения» были проведены некоторые эмпирические и расчетные испытания радиаторов из алюминия, меди и пенографита одинаковой геометрии. Я могу грубо упростить выводы: (и я не буду обращать внимание на радиатор из графитовой пены)
Для конкретной проверенной геометрии алюминий и медь показали очень похожие характеристики, медь лишь немного лучше. Чтобы дать вам представление, при скорости воздушного потока 1,5 м/с тепловое сопротивление меди от нагревателя к воздуху составляло 1,637 К/Вт, а алюминия — 1,677. Эти цифры настолько близки, что было бы трудно оправдать дополнительную стоимость и вес меди.
Поскольку радиатор становится большим по сравнению с охлаждаемым объектом, медь получает преимущество перед алюминием благодаря своей более высокой теплопроводности. Это связано с тем, что медь способна поддерживать более равномерное распределение тепла, более эффективно отводить тепло к концам и более эффективно использовать всю излучающую площадь.
Различия между алюминиевым и медным радиатором
Радиаторы представляют собой материалы, созданные для эффективного регулирования температуры нагрева любого электронного или механического устройства. Они имеют основание, лежащее на поверхности чипа устройства, при этом имея расширенные «плавники». Они служат «теплообменником», передающим выделяющееся тепло теплоносителю или текучей среде. Радиаторы также часто встречаются в настройках компьютерного оборудования, что помогает охлаждать процессор, наборы микросхем, графические процессоры и оперативную память вашего компьютера.
Это также позволяет вашей системе максимизировать производительность без перегрева, что приводит к задержке и, как следствие, к фатальному повреждению. Это достигается за счет снижения его температуры с помощью достаточного количества воздуха. Наиболее часто используемыми материалами для радиаторов являются алюминиевые и медные сплавы.
Определение алюминиевых радиаторов
Алюминиевые радиаторы в основном используются из-за их высокой теплопроводности, которая измеряется на уровне 235 Вт/м·К. Они используются для чистой теплопроводности, поэтому они являются одним из наиболее широко применяемых металлов на земле. Они обладают низкой плотностью для проведения машин, сохраняя при этом хорошую прочность при передаче тепла и производительность устройства. Хотя его коррозионная стойкость впечатляет, он не так эффективен, как медный материал. Они также отлично подходят для вторичной переработки.
Определение медных радиаторов
С другой стороны, медные радиаторы применимы, поскольку они обладают коррозионной и противомикробной стойкостью благодаря эффективной теплопроводности более 400 Вт/м·К. Хотя их нелегко обрабатывать, они все же дороги и дороги, в зависимости от их чистоты. Вот почему медные сплавы используются для промышленных линий, таких как электростанции, солнечные системы и плотины.
Как они работают
Когда ваш чип работает, он нагревается от интенсивного использования. Работа радиатора, размещенного на нем, помогает правильно распределять тепло, излучаемое через ребра, поддерживая правильную рабочую температуру чипа.
Когда ваш чипсет, графический процессор или оперативная память нагреваются, тепловому излучению и теплопроводности способствует поток жидкости, который отводит тепло, что приводит к охлаждению. Не новость, что перегрев разрушит всю работу электроники, и это подчеркивает необходимость хорошего теплоотвода.
Общее использование радиаторов
Чтобы обеспечить эффективное управление тепловым излучением в вашем устройстве, важно использовать радиаторы для максимальной функциональности и эксплуатации. Как я уже упоминал ранее, более низкая температура поможет вашей электронике обеспечить превосходную функциональность при одновременном увеличении ожидаемого срока службы. Производительность вашего радиатора зависит от нашей скорости, конструкции ребер, обработки поверхности и, в конечном счете, от выбора материала.
Типы изготовленияРадиаторы включают в себя множество разновидностей конструкторских конструкций для компьютерных и электрических материнских плат. В этих формах бывают как алюминиевые, так и медные радиаторы. Есть:
- Экструдированные радиаторы
- Приклеенные радиаторы
- Кованые радиаторы
- Штампованные радиаторы
- Радиаторы с ЧПУ
- Ребристые радиаторы с застежкой-молнией
Ребра
В нашей электронике присутствует охлаждающая жидкость, и работа вашего радиатора заключается в рассеивании потока теплового излучения через нее. Это необходимо для того, чтобы ваши чипсеты работали с максимальной производительностью без перегрева или повреждения. Производительность ребра также можно измерить по его толщине и высоте. Когда тепло передается ребру, оно сочетается с тепловым сопротивлением, что приводит к уменьшению тепла и увеличению потока жидкости.
Форма и конструкция ребер радиатора всегда будут иметь значение, поскольку они являются основным каналом передачи тепла. Когда ребра радиатора плотно сконструированы, и между ними нет большого потока воздуха, производительность теплового излучения значительно снизится. Это приводит к страшному перегреву.
Различия между обоими типами радиаторов
Давайте рассмотрим некоторые различия между обоими материалами радиатора. А не ___ ли нам?
Тепловая динамика
Несмотря на то, что медные радиаторы излучают тепло намного лучше, чем обработка алюминия, последний также эффективно справляется со своей задачей. Основное отличие, которое я могу отметить здесь, заключается в том, что алюминиевые радиаторы делают это в меньшем масштабе. Для компьютеров большинство графических карт AMD, естественно, перегреваются больше, чем другие, такие как INTEL и HMD, поэтому ваше тестирование зависит исключительно от типа чипсетов.
Теплопроводность
Я знаю, вам может быть интересно, что отличает эту точку от динамики тепла. Ну, я бы сказал, что теплопроводность — это только часть всей истории. Медные радиаторы довольно хорошо справляются с теплопроводностью, поскольку они могут помочь генерировать больше энергии за счет максимального использования потенциала чипсета. Это еще одна причина, по которой они используются для мощных чипсетов, потому что они используют их мощность. Динамика тепла – это этап, на котором распределяется выделяемое тепло.
Охлаждение
Охлаждение для меня — это вопрос восприятия. Оба радиатора хорошо охлаждаются, но один должен работать лучше, чем другой. Причина, по которой я буду использовать медную конструкцию, заключается в том, что, поскольку она проводит больше тепла, она обеспечивает лучшее распределение тепла, когда чипсет или ЦП являются мощными. Совсем по-другому обстоят дела с более слабыми чипсетами.
Большинство владельцев маломощных компьютеров обратятся к алюминиевому чипсету, потому что он превосходно работает в этой среде. Медные поглотители могут даже дойти до перегрева более слабых чипсетов из-за высокого спроса на энергию и тепловое излучение.
Кроме того, производительность ввода сильно отличается от производительности вывода. Медь максимизирует теплопроводность и, возможно, производительность ваших графических процессоров. Но как насчет реальной производительности на экране? Существует также случай атмосферы, поскольку медь хорошо подходит для небольших помещений.
Сборка и штамповка
Алюминиевые сплавы мягче, легче и лучше взаимодействуют с воздухом, что делает их лучшим выбором для графических карт и процессоров. Медные радиаторы намного тяжелее по сравнению с ними, но это не означает лучшей производительности, потому что все зависит от конструкции и того, как она адаптируется к сборке электроники. Это следует учитывать при сравнении обеих сборок.
Пытаясь проанализировать плотность системы радиатора, вы должны иметь в виду, что необходимо рассчитать стоимость и эффективность. Чем плотнее радиатор, тем с большим тепловым потоком он должен справиться.
Экструзия
Я также обнаружил, что алюминиевые радиаторы просты в экструзии, анодировании и оребрении. Это связано с его более легкой конструкцией и возможностью изготовления из широкого спектра материалов. Все это становится чрезвычайно дорогостоящим для медных раковин, где экструзия затруднена и высока вероятность повреждения инструмента. Экструзия меди также требует высоких температур.
Медные материалы не так легко паяются или экструдируются, как алюминий, из-за эластичности. С ростом числа электронных сборок ежегодно внедряются современные мощные приложения, и вопрос все еще актуален? Могут ли более простые радиаторы, такие как алюминий, справиться с тепловым потоком? Медные радиаторы — лучший выбор для ресурсоемких рабочих нагрузок, таких как эффективные аккумуляторные батареи, высокотехнологичные игры и инверторы.
Определение и выбор правильного типа мойки
Как я неоднократно упоминал в этой статье, выбор правильного типа раковины для вас будет зависеть от многих факторов, которые мы рассмотрим здесь:
Тип теплопередачи
Тип теплопередачи зависит от трех режимов ; теплопроводность, конвекция и излучение. И ваши медные, и алюминиевые радиаторы хорошо работают с тремя модулями, потому что они оба имеют дело с более плотным движением и более высокими температурами. Это просто зависит от типа и положения электроники.
Температура окружающей среды
Что касается «типа теплопередачи», характер работы вашего устройства определяет способ и способ распределения тепла. Это работает как для алюминиевых, так и для медных раковин.
Вес и стоимость обоих типов радиаторов
Радиаторы из чистой меди имеют привлекательный дизайн вентилятора и обработаны антиоксидантами. Они довольно тяжелые и весят около 500 г для кухонных плит с усилителем и высокотехнологичных компьютеров. Стоимость приобретения обычно колеблется от 30 до 50 долларов в зависимости от размера и типа использования. Алюминиевые радиаторы имеют большее количество ребер и стоят от 10 до 30 долларов при среднем весе 275 г.
Заключение
Разница между алюминиевыми и медными радиаторами достаточно велика, несмотря на их поразительное сходство.