Автоматическая регулировка температуры отопления: Автоматическая регулировка температуры отопления в многоквартирном доме

Содержание

Способы регулировки температуры систем отопления

Регулировка температуры отопления в собственных домах позволяет достигать более комфортного пребывания в помещениях в отопительный сезон.

Как делалось это раньше? Ни а какой регулировки температуры систем отопления и речи не было. Были печи, контрамарки и их растапливали до условного состояния «тепла». И как итог, зачастую в первый день после топки в доме было через чур жарко, на второй самый раз, а на третий день приходилось топить опять.

С появлением систем водяного отопления ситуация немного улучшилась и благодаря водяному отоплению получили свое развитие способы регулировки температуры систем отопления.

Точное регулирование температуры систем отопления решает две особо важные задачи:

  • Максимально комфортное пребывание в доме, где используется именно та температура, которую Вы задаете;
  • Экономия энергоносителей и Ваших денег за счет точной регулировки.

2 способа регулировки систем отопления

По сути, существует два метода регулировки температуры.

  1. Количественный. Это метод изменения скорости движения нагретой воды с помощью специальной запорной арматуры или же циркуляционного насоса. По факту мы ограничиваем подачу теплоносителя в систему через отопительное оборудование.

Самый простой пример реализации данного способа – это изменение скорости работы насоса. Чем холоднее, тем сильнее работает насос и тем с большей скоростью перемещает теплоноситель по системе отопления.

  1. Качественный. Данный метод подразумевает регулировку температуры всей системы на отопительном приборе (на котле и тд.)

Способы регулировки радиаторов отопления

Самый простой вариант регулировки температуры систем радиаторного отопления – это монтаж термоголовки непосредственно на радиатор.

Принцип работы термоголовки состоит в следующем: Головка заполнена жидкостью. Объем жидкости напрямую зависит от температуры теплоносителя. При нагреве объем жидкости увеличивается и клапан термоголовки закрывается. При остывании происходит обратный процесс.

Такой способ регулировки довольно простой  и надежный. К недостаткам можно отнести ручную регулировку термоголовки на каждом радиаторе.

Более продвинутый способ – это монтаж сервопривода вместо термоголовки с последующим монтажом термостата в помещении и соединения всех узлов в единую систему.

Звучит на первый взгляд сложно. Но на самом деле все достаточно просто реализуется. На сервопривод кидаете два кабеля. Один на питание, другой на подключение термостата. На термостате задаете нужную температуру и сервопривод автоматически ее регулирует.

Способы регулировки температуры теплых полов

Регулировки температуры отопления теплого пола посвящена уже не одна статья на нашем сайте. Если в кратце, то  есть следующие варианты:

  1. Регулировка температуры теплого пола в связвке с накладным термодатчиком на коллекторе и циркуляционным насосом. Датчик щупает температуру на коллекторе (изначально завышенную) и как только получает нужную, отключает питание у насоса.
  2. Монтаж насоса на подачу в паре с трехходовым клапаном. Благодаря трехходовому клапану происходит подмес теплого пола до нужной температуры.
  3. Монтаж теплого пола с помощью смесительного модуля. В смесительном модуле есть все необходимое для регулировки температуры системы отопления теплого пола.
  4. Аналогичный радиаторному. Монтаж на коллектор сервоприводов в связке с терморегуляторами.

Более подробно прочитайте в статье 4 способа регулировки температуры теплого пола

Как бонус. Вот Вам относительно бюджетный и точный способ регулировки температуры теплого пола:

 

Читайте так же:
Автор: Андрей Елфимов
http://eurosantehnik.ru

Автор проекта eurosantehnik.ru Автор youtube-канала: Технотерм

Для чего нужна автоматика систем отопления в частном доме


Примечательно, но автоматика для частного дома может быть установлена практически на любую систему отопления. Несмотря на это, многие до сих пор не понимают, зачем именно автоматизировать систему и что она вообще из себя представляет.

Для заказа установки автоматики для частного дома — позвоните по телефону +7 495 205-205-2

Уже исходя из названия можно сделать вывод, что автоматика предназначена для минимизирования вмешательства человека в процесс отопления. Таким образом, автоматическая программа освобождает человека от постоянной регулировки температуры внутри помещения. Но многие этим пренебрегают и полагаются на ручное управление. С одной стороны, это значительные затраты личного времени, а с другой – в большинстве случаев автоматика необходима для безопасного и надежного эксплуатирования системы.

Обычно под термином «автоматика» подразумевается целый список разных приборов, которые и следят за работой всей отопительной системы и котла в частности. Также следует отметить, что автоматический контроль в любом случае будет более точным.

Автоматика для отопления частного дома

Основная задача, за которую отвечает автоматика для отопления частного дома – это поддержание необходимой температуры внутри помещений. Как известно, регулировка происходит в зависимости от температуры снаружи. Таким образом, можно без проблем обеспечить себе комфортную обстановку внутри дома.

Еще одно преимущество автоматики заключается в экономии средств. Опять учитывая тот факт, что регулировка температуры происходит в зависимости от температуры воздуха снаружи, система самостоятельно снизит температуру отопления, если на улице внезапно потеплело.

Примечательно, но автоматическая система может увеличивать или наоборот уменьшать температуру внутри помещения в зависимости не только от погоды снаружи, но и от дней и часов недели. Для примера, если на выходные в доме мало людей или вообще нет, то можно настроить программу таким образом, чтобы она не так интенсивно обогревала помещение, но при этом поддерживала оптимальную температуру. Разумеется, что это положительным образом отразится на экономии средств.

К основным преимуществам автоматизации системы отопления можно отнести следующее:

  • Программа позволяет регулировать температуру внутри дома по желанию владельца. Если на улице стало намного теплее, то можно запрограммировать систему таким образом, чтобы она снизила температуру обогрева, тем самым поддерживая комфортную обстановку внутри помещения;
  • Есть возможность контролировать температуру в зависимости от дня недели или в определенные ее часы;
  • В подходящих условиях автоматика всегда будет снижать температуру отопления, тем самым экономив средства владельца;
  • Автоматизация системы отопления обеспечит надежную защиту от перегрева теплоноситель, будет следить за давлением внутри системы, а также проконтролирует подачу воды или газа в систему.

Тепловая автоматика определение, устройство, применение

Тепловая автоматика — комплекс устройств обеспечивающих тепловое потребление зданий и сооружений с наибольшей энергетической эффективностью. В систему автоматики входят следующие устройства:

  • контролеры и датчики температурных показаний теплового носителя;
  • датчики контроля температуры воздушных масс;
  • механизмы исполнительного значения (электрические клапаны, температурные регуляторы, устройство регулирующие давление), а также насосное оборудование.

Назначение тепловой автоматики.

Основной задачей систем тепловой автоматизации зданий является максимальное снижение тепловых потерь от потребленной электрической энергии. Основные функции таких систем:

  • Контроль и управление температурой теплового носителя в зависимости от внешних (уличных) температурных показателей.
  • При необходимости понижает или повышает температуру в здании, когда выполняется работа оборудования по заведенному в программу графику. Часто применяют понижение температуры в ночной период времени, при этом снижение всего на 1 градус дает около 5% экономии от всего отопительного сезона.
  • Контроль температурного режима в обратных трубопроводах, при необходимости принудительно утилизируется энергия тепла.
  • Следит за температурным режимом подачи ГВС в здание, при необходимости проводит регулирование при помощи смесительных клапанов быстрого реагирования, а также используя накопительные бойлеры.
  • Эффективно управляет работой тепловых насосов с учетом инерционных показателей в зависимости температурных режимов на улице и в помещении. Задействует в автоматическом режиме основную и резервную систему снабжения теплом зданий, для предотвращения возникновения коррозийных следов и прилипания подшипников в насосах.

В России хорошо зарекомендовала себя в работе продукция производства .

Лидер изготовления тепловой автоматики

В 1993 году был основан российский филиал датской компании Danfoss, с участием инвестиционного фонда Дании. С этого периода времени в России впервые выпускаются радиаторные температурные регуляторы. Концерн DANFOSS ─ лидер в изготовлении систем автоматики для разных инженерных систем (вентиляция и кондиционирование, теплоснабжение). Сегодня цеха этой компании предлагают:

  • температурные регуляторы для отопительных приборов, автоматическую запорную арматуру;
  • для систем водоснабжения (горячего и холодного) балансировочные клапана;
  • автоматизацию вентиляционных процессов в теплопунктах;
  • регулирующие устройства для температуры и давления;
  • электрические устройства управлением теплового режима в загородном доме, коттедже;
  • автоматизация напольного обогрева, устройства регулирования и контроля;
  • компоненты автоматизации тепловых процессов в горелках.

Контроль качества производимой продукции в компании на высоком уровне на всех заводах

Компания Danfoss вопросам точности и надежной работы всех изделий завода уделяет особенное внимание, они все проходят жесткий контроль и тестирование перед отгрузкой потребителю.

Автоматизация системы отопления частного дома

Помимо всех перечисленных преимуществ, автоматизация системы отопления частного дома имеет и несколько недостатков:

  • Основной минус заключается в ее цене. Если сравнивать стоимость автоматизацию со стоимостью обычного термостата, то последний обойдется буквально в «копейки»»;
  • Для того чтобы экономить на отоплении в определенное время суток, имея при этом ручное управление, необходимо самостоятельно проводить все манипуляции с системой, что не всегда удобно и возможно. Для того, чтобы полностью автоматизировать этот процесс, можно купить или заказать для определенной системы погодозависимое или программируемое оборудование. Но стоит отметить, что найти его недорого не получится, так как стоит оно немного дороже, чем обычное оборудование;
  • Если отопление будет осуществляться при помощи газового котла, то расход топлива увеличится при периодическом включении и выключении отопления. Экономить в данном случае топливо намного сложнее, чем с другими современными котлами отопления.

Услуги по автоматизации отопления


Для поддержания комфортных климатических условий в частном доме используется различное оборудование, включая котлы, радиаторы, термостаты и многое другое. Все эти агрегаты должны быть стабильными в работе и функционировать в соответствии с заданными параметрами отопительной системы. Уследить за работой оборудования без специальной автоматики практически невозможно, так как придется контролировать рабочие параметры в ручном режиме. Поэтому и нужна автоматизированная система управления отоплением, благодаря которой обеспечивается поддержка комфортной температуры внутри частного дома.
Важно, чтобы настройкой средств автоматики для отопительного оборудования занимались профессионалы, которые учитывают все особенности объекта и знают, какие следует выбирать устройства для решения поставленных задач. Компания Creative install имеет большой опыт в установке автоматики для отопительных систем частных домов. Мы знаем, какой необходимо сделать автоматизацию системы отопления, чтобы получить лучшие климатические условия для жильцов коттеджа. Наши специалисты подбирают максимально эффективное оборудование, удобное и экономичное в эксплуатации, учитывая все особенности самого дома и используемой автоматики.

Автоматика системы отопления в частном доме

Еще на этапе будущего строительства частного дома возникает вопрос, какое именно отопления выбрать, чтобы обеспечить и комфортную обстановку в доме и минимизировать затраты на содержание всей отопительной системы. Обычно выбор отопления частного дома сводится к трем основным аспектам выбора:

  • Какой выбрать котел;
  • Какая будет конфигурация отопительной системы;
  • Автоматика системы отопления в частном доме.

Что касается выбора котла, который является основным источником тепла в доме, то выделяют три его основных вида, которые больше всего пользуются популярностью среди потребителей. Каждый из видов имеет как преимущества, так и недостатки.

  • Газовый котел. Это будет самый выгодный вариант, если имеется магистральная линия подачи топлива. При отсутствии этой линии, можно использовать сжиженный газ в баллонах, но это не лучшим образом отражается на стоимости обслуживания отопительной системы;
  • Электрический котел. Это довольно дорогой вариант, который требует большого расхода электричества. Чтобы минимизировать затраты и обеспечить в помещении комфортную остановку, прибегают к установке электрических теплых полов, который значительно экономней;
  • Твердотопливные котлы. Пользуется большой популярностью среди потребителей, так как позволяет легко организовать автономную систему отопления. Но есть и некоторые нюансы: обслуживание такой системы вызывает некоторые неудобства. К тому же, такие котлы лучше всего использовать для обогрева небольших домов или же использовать его в зависимости от сезона.

Система автоматического управления отоплением, теплоснабжением здания.

Объект работает без постоянного обслуживающего персонала, а информация выводится на диспетчерский пульт управления либо на сотовый телефон.

Функция удалённого управления позволяет на расстоянии менять настройки системы корректировать её работу в ручном режиме. Видеть параметры системы в режиме онлайн.

Центральные тепловые пункты круглогодично обеспечивают жителей теплом в отопительный сезон. Основная Задача АСУ ИТП – это круглосуточный контроль и управление подачей теплоносителя с постоянным давлением, поддержание заданной температуры в помещении. Для эффективности обслуживания информация от исполнительных механизмов и датчиков собирается и передается на единый диспетчерский пульт по средствам проводной (кабельный интернет) и беспроводной (сотовой) связи. Это позволяет отслеживать работу оборудования АСУ теплового пункта в режиме реального времени и при необходимости выполнять корректировку рабочих параметров оборудования.

Регуляторы тепла, отопления, теплоснабжения.

Регуляторы предназначены для автоматического изменения расхода теплоносителя в системе отопления на центральных и индивидуальных тепловых пунктах, а также для автоматического регулирования температуры в системах приточной вентиляции путем воздействия на клапан с электрическим приводом. Приборами предусмотрено регулирование разности температур воды в подающем и обратном трубопроводах систем отопления либо температуры воды в подающем трубопроводе по графику отопительных систем в зависимости от температуры наружного воздуха. Причем регулятор при определенном значении температуры наружного воздуха и дальнейшем ее понижении поддерживает постоянное значение регулируемого параметра теплоносителя, исключая разрегулировку тепловых сетей, работающих по графику с верхней срезкой. Регулятором предусмотрена коррекция графика отпуска тепла при отклонениях температуры внутреннего воздуха от заданного значения.

Насосы циркуляционные, корректирующие.

Насосы в системе автоматики выполняют очень важную функцию:

  • Поддерживают расчётную циркуляцию теплоносителя в системе отопления на время закрытия регулирующего клапана.
  • Увеличивают скорость циркуляции теплоносителя в системе отопления, в случаях, когда теплоснабжающая организация не обеспечивает расчётные параметры теплоснабжения.

Автономность работы системы автоматики отопления, теплоснабжения.

В наших системах применяется специальная безаварийная схема, которая позволяет при аварийных ситуациях на теплосетях автоматически переводить систему в прежний режим работы (по-старому). Отключение электричества, связи не скажется на нормальном теплоснабжении системы отопления здания.

Автоматика для отопления

Для того чтобы увеличить эффективность отопления, а также удобство в эксплуатации всей отопительной системы, используется автоматика для отопления. Сюда входят следующие компоненты:

  • Термостатический вентиль;
  • Терморегулятор;
  • Комнатный регулятор с термовентилем и другое.

Использование такого оборудования позволит обеспечить более эффективную работу системы, а также снизит расходы энергии, при этом это не повлияет на комфорт жильцов. Благодаря таким приборам, управлять системой отопления становится очень просто, а температура внутри дома всегда будет соответствовать потребностям жильцов.

Автоматика отопления

Сегодня автоматика отопления в широком ассортименте представлена термостатическими вентилями. Это устройство создано специально для того, чтобы можно было регулировать температуру воздуха внутри каждой отдельной комнаты в доме. Устанавливать это устройство можно или на радиатор отопления или на контур теплого пола. Процесс его функционирования довольно простой. Владельцу достаточно будет повернуть термоголовку вентиля до той цифры, которая нужна и устройство быстро поднимет или опустит температуру до установленного уровня. На этом человеческое вмешательство в работу заканчивается.

Весь остальной процесс выполняется автоматикой. После того, как температура в помещении станет выше установленного показателя, то вентиль закроет циркуляцию воды в радиатор отопления. После того, как температура снизится ниже указанного уровня, подача теплоносителя снова восстановится. В таком случае, вентиль постоянно находится в процесс работы, а его действие довольно простое.

Стоит отметить, что такая схема будет продолжать функционировать независимо от того, регулируется подача теплоносителя в котле или нет. Не зависит это и от используемого котла. Такие вентили могут устанавливаться в те системы отопления, в которых используется газовый или твердотопливный котел. И даже если речь идет о электрическом котле, то здесь термовентили тоже не будут лишними. Лучше всего такое устройство проявляет себя с твердотопливными котлами. Известно, что регулировать температуру с такими котлами не только сложно, а порой невозможно.

Назначение и преимущества средств автоматизации

Автоматизированные системы отопления призваны поддерживать в зданиях и помещениях микроклимат, наиболее комфортный для работы и отдыха. Кроме того, благодаря возможности более рационально расходовать энергоресурсы, такие системы являются гораздо более эффективными, чем традиционные.

Установку комфортной температуры в помещениях обеспечивают термостаты или термодатчики, которые постоянно отслеживают её изменения и позволяют отопительной системе учитывать все текущие факторы, влияющие на температуру в помещении: человеческое тепло, солнечное тепло, нагрев от осветительных приборов, излучение других электроприборов и др.

Если непосредственно в тепловом пункте здания применяются средства автоматического регулирования подачи теплоносителя, которые отслеживают температуру наружного воздуха, то это дает экономию в энергопотреблении примерно 15–20%. Использование термостатических клапанов на радиаторах отопления дополнительно снижает энергопотребление ещё на 5–7%.

Автоматика также позволяет гибко изменять температурный режим в помещениях в различное время суток. В переходные календарные периоды (осень/весна), характеризующиеся нестабильностью температуры, автоматизированная система позволит снизить отпуск тепла в те часы/дни, когда температура воздуха существенно поднимается.

Если же система отопления оснащена GSM-модулями, то это дает возможность осуществлять мониторинг теплового режима здания/помещения удалённо, например, при помощи мобильных устройств.

Автоматизация отопления в частном доме

Стоит отметить, что в данном случае автоматизация отопления в частном доме не подразумевает экономию, так как термостатический вентиль просто не позволяет этого сделать. И для этого есть несколько основных причин:

  • Используя такое устройство, мощность отопительного прибора увеличивается приблизительно на 15%. Если же не использовать такое устройство, то есть возможность выбрать более слабый радиатор. Можно сказать, что в данном случае, устройство сыграло не лучшую шутку. Чем выше мощность, тем дороже отопительное устройство;
  • В данном случае, нагревательный котел будет находиться не в самых комфортных для него условиях. Это будет отражаться на увеличенном расходе топлива, а также на его эксплуатационном периоде. Очень сложно представить, сколько раз в день газовый котел может отключиться и включиться обратно. Разумеется, что это не лучшим образом отражается на сроке его службы. С твердотопливными котлами дела обстоят еще хуже, так как здесь значительно увеличивается вероятность того, что котел просто закипит;
  • Есть еще один момент, который требует уже вмешательства человека. Для того, чтобы сэкономить на топливе, необходимо будет вручную снижать температуру теплоносителя, когда в доме никого нет. Сделать это можно двумя способами: первый – урезать количество топлива для котла, а второй – установить сниженный показатель температуры на каждом отдельном термовентиле. Как показывает практика, многие об этом просто забывают, поэтому вопрос экономии здесь не разрешен;
  • Стоимость такого оборудования далеко не маленькая. К тому же, конечная сумма будет варьироваться и в зависимости отопительных батарей. Умножаем их количество на цену одного термостатического вентиля и получаем довольно солидную сумму.

Автоматика систем отопления

Если нужна более современная автоматика систем отопления, то сегодня производители предлагают довольно уникальные устройства, которые будут отличать всем требованиям современности. Сюда можно отнести комнатный регулятор температуры. В основном, такие устройства устанавливают прямо в комнате. Он монтируется к стене и позволяет контролировать температуру воздуха в помещении. Уникальность такого устройства заключается в том, что оно выполняет целый комплекс различных задач. Оно может включать или выключать подачу топлива, если речь идет о газовых или электрических котлах, а также включать и отключать наносы для циркуляции теплоносителя, если речь идет о твердотопливных котлах.

Автоматика системы отопления

Такая автоматика системы отопления, которая представлена комнатными регуляторами температуры, отличается следующими преимуществами:

  • Устройство отвечает за контролирование температуры в воздухе, а не внутри теплоносителя. Учитывая тот факт, что объема воздуха больше, чем объем воды, то резких скачков температуры не будет. Это положительным образом отразится на эксплуатационном периоде котла, так как отключений и включений его будет намного меньше. Специалисты отмечают, что использование такой автоматики позволяет обеспечить 30% экономию;
  • Устройство является программируемым. Его можно установить таким образом, что до вечера будет держаться одна температура воздуха, а перед приходом жильцов, она будет подниматься. Экономия в данном случае на лицо. Примечательно, что каждый пониженный градус температуры воздуха обеспечивает 6% экономию топлива;
  • Выделяют и более функциональные датчики, которые состоят из двух устройств, одно из которых устанавливается непосредственно внутри дома, второй на улице. Это нужно для того, чтобы температура в доме полностью зависела от температуры на улице. Такие устройства называются погодозависимыми;
  • С помощью такого устройства можно управлять процессом нагревания воды в бойлере, а также управлять циркуляцией теплоносителя по контурам на разных этажах, а также в системе теплого пола. Еще большой плюс такой системы – она может управлять через интернет или через смс-чат.

Типы устройств автоматизации

Для изменения температуры в системах отопления используют двухпозиционные устройства регулирования (термостаты) и устройства плавного регулирования (термодатчики).

Термостаты служат для поддержания в помещении постоянной заданной температуры. Работают они по принципу отключения нагрева котла системы отопления при достижении нужной температуры и соответственно — включения при снижении температуры ниже заданного уровня. Это самые простые и надежные устройства для управления микроклиматом в помещениях. Термостаты обеспечивают достаточно выс окий уровень комфорта и экономию топлива до 20%. Они идеальны для использования при отдельном отоплении квартир и других помещений небольшой площади.

Устройства плавного регулирования — термодатчики — позволяют поддерживать температуру в помещении на заданном уровне вне зависимости от изменения температуры на улице, а также снизить потребление энергоресурсов. Они подключаются к системе парового котла и передают ей значения температур, по которым автоматика самостоятельно выбирает необходимую температуру теплоносителя. Термодатчики обладают более высокой точностью, чем термостаты, а благодаря функции таймера с модулем дистанционного управления и программирования, также способны обеспечить повышенный уровень комфорта в помещении и экономию энергии.

Автоматика для управления отоплением

Что касается цены комнатного регулятора, то такая автоматика для управления отоплением напрямую будет зависеть от выбранной модели. Нужно понимать, что разница в стоимости довольно ощутима. Если выбирать погодозависимый терморегулятор, то он будет стоять в 5-6 раз дороже, чем обычный. Но есть эффективный способ решения данной задачи. Для этого в одной из комнат можно установить терморегулятор, а во всех остальных на радиаторах вмонтировать термостатические вентили. На терморегуляторе нужно выставить необходимую температуру, а вентили покрутить уже вручную.

Автоматика для системы отопления

В чем преимущество? Дело в том, что дорогая автоматика для системы отопления будет влиять на работу самого отопительного прибора, постоянно включая и выключая его. Что касается термовентилей, то они никакого дела к котлу не будут иметь, так как они будут только следить за температурой в той комнате, где были установлены. Но здесь есть один небольшой недостаток. Для примера, в одной комнате, где установлен комнатный регулятор температуры, собралось несколько людей. Разумеется, что температура в этом помещении начнет быстро расти. Соответственно на эти изменения отреагирует автоматика и подача топлива к котлу резко сократится. Естественно это приведет к тому, что температура по всему дому начнет снижаться. Если в той комнате, где собрались люди, будет довольно комфортно и тепло, то в других комнатах станет значительно прохладней.

Может возникнуть вполне логический вопрос – как быстро автоматика отреагирует на изменение температуры. Если учитывать тот факт, что человек выделяет около 100 ватт тепловой энергии, что нужно этот показатель умножить на количество людей и получим нужный результат. Как показывает практика, в среднем помещении, где собралось около 5 людей, за полчаса температура воздуха увеличится на 1 градус. Также стоит учитывать момент и с расположением комнаты, где установлен регулятор. Если комната находится с южной стороны, то в ней всегда будет теплей, чем в других помещениях. Все это необходимо учитывать перед тем, как будет покупаться автоматический терморегулятор.

Автоматика в частном доме

Помимо этого, автоматика в частном доме может одновременно быть представлена комнатным регулятором и термовентилем. О таком сочетании уже шлось немного выше. Но действительно ли такой «симбиоз» настолько эффективен, как об этом говорят? Практика говорит о том, что экономия действительно существенная. И на этот факт влияет не только снижение энергоносителя, но и более низкая стоимость термовентилей.

Функции в данном случае распределяются на основе важности каждого из используемых приборов. Комнатный регулятор температуры будет основной всей цепочки, который будет контролировать и регулировать работу котла. Простыми словами – он будет выполнять основную корректировку работы. Что касается тремических вентилей, то они будут являться своеобразными дополнениями, которые смогут подкорректировать температуру в тех помещениях, где они установлены.

Что касается стоимости автоматизации, то на нее влияет и тип отопления, а также наличие теплых полов и прочее. Используя комбинированный тип автоматизации, то цена на нее возрастет. Несмотря на это, ее наличие позволит сократить расходы, которые напрямую зависят от газовой магистрали, а также от места размещения всех необходимых инстанций. Прежде, чем сделать свой выбор в сторону того или иного устройства, необходимо хорошо ознакомиться со всеми видами автоматизации системы отопления. Это позволит подобрать правильный тип устройства, а также рассчитать приблизительную его стоимость и будущую экономию. Если самостоятельно сделать это сложно, то за помощью можно обратиться к специалисту, который выполнит всю работу за Вас. В таком случае значительно снижается риск потратить еще больше личных средств, которые выделялись для обустройства автоматики системы отопления.

Что нужно автоматизировать

Что надо автоматизировать в системе отопления многоквартирного или загородного дома? На самом деле автоматику систем отопления можно установить на все возможные параметры, но есть обязательный спектр, то на что обычно требуется много времени для управления в ручном режиме.

  • Работоспособность котла для нагревания должна быть автоматизированна в первую очередь.
  • Обеспечение подходящего температурного режима, соответственно это насосные механизмы и температурные датчики.
  • Работу в экономном режиме, когда в здании никто не находится и нужно поддерживать режим чуть выше, чем при замерзании отопительного оборудования, при этом значительно холоднее стандартной.

Система управления отоплением

Тут стоит обратить внимание на то, что производители котлов для отопления заранее думают о блоке автоматизации, поэтому и будущему владельцу своей котельной нужно позаботиться об этом моменте заранее.

Так как в его задачи входит и обеспечение безаварийной работы котла, он обладает следующим функционалом:

  • Защита теплоносителя обогрева от излишнего повышения собственной температуры.
  • Предотвращает перепады давления внутри оборудования.
  • Контролирует объем наполнения котельного бака водой.
  • Контролирует давление в отоплении.
  • Осуществляет контроль за отводящими газами.

Часть функционала котельной можно подключать или не подключать, тут уже по желанию самого владельца. А вот первые три пункта обязательны к автоматизации.

Регулирование температуры в системе отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

  • позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

  • оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

  1. Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

  2. Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

 Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Автоматическая регулировка температуры отопления — Дизайн интерьеров, фото журнал RemontGood.ru

Регулирование системы отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Температуре наружного воздуха

Температуре внутри помещения

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Все о регуляторах температуры отопления- что это такое и зачем они нужны

Основная функция регуляторов отопления – изменение степени обогрева помещения посредством изменения количества теплоносителя, проходящего через радиаторы. Грамотно установленные и правильно используемые термостатические регуляторы способны сделать более эффективным отопление в квартире, частном доме и других помещениях.

Основные составные части терморегуляторов для радиаторов – это:

  • терморегулирующий вентиль, или термоклапан;
  • с помощью которого осуществляется воздействие на шток клапана.

Регулятор отопления внешне похож на обычный кран, который устанавливается на входе и выходе труб из батарей, но вместо стандартного вентиля термостатические регуляторы оснащены быстросъемной гайкой, при помощи которой на корпусе закрепляется термоэлемент. Регулировка степени нагрева радиаторов и температурного режима в помещении становится более наглядной, благодаря градуировке, которая имеется на термостатической головке.

Почему использовать термостатические клапаны для батарей выгодно?

Во-первых, при помощи регулятора для батареи отопления происходит более тонкий контроль над микроклиматом в помещении, так как можно изменять температурный фон не во всей комнате сразу, а по отдельности в тех зонах, где установлены радиаторы.

Во-вторых, локальные термостатические регуляторы, в отличие от централизованной системы управления отоплением, учитывают и такой фактор, как нагрев помещения солнцем, что исключает возможность перегрева комнаты в солнечную погоду.

В-третьих, для каждой комнаты в доме или квартире регулировка обогрева может проводиться по особой программе. Для помещений с небольшой проходимостью и посещаемостью обычно выставляется минимальная теплоотдача радиаторов. Там, где члены семьи проводят больше времени, необходима более интенсивная работа батарей, то есть больший объем циркулирующего в них теплоносителя (воды).

Достойная альтернатива обычным запорным кранам

Для того чтобы сэкономить на организации обогрева помещения, вместо регулятора температуры батарей отопления на входе трубы в нагревательный элемент врезают обычный кран. Этот механический способ регулирования ухудшает качество отопления, потому что:

  • запорная арматура быстро выйдет из строя, если ее часто открывать и закрывать;
  • использование чревато «завоздушиванием» всего стояка;
  • после установки механического регулятора возможен будет только ручной контроль работы радиаторов, а это – лишние временные затраты;
  • с его помощью выставляется лишь приблизительная температура в помещении.

Особенности регулятора

Регулятор температуры отопления, который устанавливается на батарею, работает в автоматическом режиме – необходимо лишь вначале выбрать требуемую степень нагрева радиатора при помощи градуированной шкалы на термоголовке.

Современные термостатические регуляторы отопления работают таким образом, что никогда не перекрывают подачу теплоносителя в батареи полностью, а лишь увеличивают или уменьшают ее, в зависимости от температуры в помещении.

Термоклапан – это прибор для самого тонкого контроля над нагревом радиатора отопления. Погрешность при определении температурного режима в комнате будет минимальной.

По какому принципу работают?

Одна из ключевых деталей термоклапана – шток, оснащенный уплотнительной прокладкой из резины. Этот шток подвижный, он может опускаться и подниматься, при этом изменяя диаметр отверстия, через которое в батареи попадает вода.

Если открыть клапаны, в радиаторах будет циркулировать больший объем теплоносителя, и они будут сильнее обогревать. Регулятор температуры с опущенным штоком уменьшит количество проходящей воды. Для радиатора отопления это означает менее интенсивный нагрев.

Ручные и автоматические

Менять температуру в помещении термостатическим регулятором можно вручную (механический способ) или автоматически. Ручной термоклапан для изменения положения штока требует поворота маховика вентиля. Следует учитывать, что защитный колпачок, имеющийся на клапане, может выйти из строя вследствие частых поворотов вентиля.

Автоматический регулятор – это более эффективный способ изменения температуры на радиаторе отопления. В клапанах такого типа термоголовка оснащена сильфоном – резервуаром, стенки которого представляют собой «гармошку». Внутреннее содержимое сильфона (газ или жидкость) мгновенно реагирует даже на незначительные изменения температуры в помещении.

Когда воздух прогрелся до определенного уровня, газ или жидкость в сильфоне расширяется, растягивает «гармошку», которая, в свою очередь, выталкивает и опускает шток. Шток давит на вентиль, и подача теплоносителя в батарею уменьшается.

Когда воздух начинает остывать, регуляторы температуры работают по обратному алгоритму: содержимое сильфона уменьшается в объеме, «гармошка» сжимается, шток поднимается. Для батарей отопления это означает начало более интенсивной подачи теплоносителя. Следовательно, и температура в помещении начинает подниматься.

При выборе терморегуляторов необходимо учитывать, как именно расположены радиаторы в данном помещении. Инструкция по монтажу термоклапанов включает следующее обязательное условие: термоголовка должна устанавливаться горизонтально. Такое положение обеспечит наилучшую циркуляцию воздушных потоков вокруг нее, а терморегулятор будет работать более четко и тонко.

Существуют термоклапаны с прямой и угловой термоголовкой, благодаря чему в разных системах отопления удается установить регулятор так, чтобы он находился в горизонтальной плоскости.

Особенности для двухтрубных схем отопления

Регуляторы для двухтрубных систем отопления должны обязательно иметь устойчивость к перепадам давления. Гидравлическая балансировка в двухтрубной системе происходит посредством снижения давления в районе клапана, поэтому у него должно быть высокое гидравлическое сопротивление и проходное отверстие не слишком большого диаметра. К регуляторам для однотрубных систем столь жесткие требования не предъявляются.

Более эффективными в работе считаются те термоклапаны для двухтрубных систем, которые можно настраивать дополнительно, в зависимости от особенностей помещения. Так удастся минимизировать обогрев комнат. Следовательно, отопление дома или квартиры станет более рациональным и экономным.

Регулятор температуры отопления для радиатора

Как известно, для того, чтобы качественно отопить любое помещение, требуется правильно отрегулировать температурные показатели, чтобы нагрев соответствовал оптимально комфортным условиям и обеспечивал благоприятный микроклимат в жилище. Поэтому следует более подробно рассмотреть особенности такого прибора, как регулятор температуры для радиатора отопления, который призван выполнять все эти функции. Кроме того, следует разобраться с тем, как регулировать температуру батареи отопления в различных постройках, включая частные и многоквартирные дома.

Необходимость установки терморегуляторов

Подобные механизмы применяются для следующих целей:

  • экономия производимого отоплением тепла;
  • поддержание комфортного показателя температуры в жилище.

Многие хозяева для решения второй задачи до сих пор пользуются традиционными способами, например, накрывают радиаторы покрывалом или открывают окна для проветривания. Однако гораздо более современным решением будет установка такого прибора, как регулятор температуры отопления, влияющий на расход теплоносителя в отопительной системе и способный функционировать как в ручном, так и в автоматическом режиме.

Очень важно помнить, что при монтаже терморегулятора для радиатора отопления крайне необходимо наличие специальной перемычки, расположенной непосредственно перед прибором отопления. Если ее не будет, то расход теплоносителя не получится регулировать через радиатор, так как делать это придется через общий стояк.

Говоря об экономии, этот фактор является актуальным для тех хозяев, жилое помещение которых оборудовано автономной отопительной системой, а также для служб жилищно-коммунального хозяйства, использующих приборы учета для оплаты тепла, поступающего от его производителей.

Установка температурных регуляторов в домах многоквартирного типа

Чтобы установить регулятор температуры радиатора батарей отопления в многоквартирном доме, необходимо разобраться с тем, что представляет собой учет тепла в такой конструкции.

Трубопроводы подачи и отдачи оснащены специальными подпорными шайбами, перед и после каждой из которых располагаются регулирующие давление датчики. Благодаря тому, что диаметр этих датчиков известен, появляется возможность рассчитать расход теплоносителя, циркулирующего через датчики. Как результат, разница, полученная между расходом воды в трубопроводах подачи и отдачи, будет отображать объем израсходованной жильцами воды.

Контроль температуры теплоносителя в системе отопления на обоих участках призваны осуществлять температурные датчики. Поэтому, зная то, в каком объеме расходуется тепло и чему равна его температура, можно легко рассчитать то количество тепла, которое осталось в помещении.

Для того чтобы регулировать работу отопления было проще, требуется постоянно следить за состоянием температуры.
Сделать это поможет один из двух способов:

  1. Монтаж запорного клапана. Такое устройство призвано частично перекрывать систему трубопровода в том случае, если температура обратки является выше заданной. Представляет собой обычный электромагнитный клапан. Подобный вариант станет подходящим тех домов, где система отопления является относительно простой и не отличается большим объемом теплоносителя.
  2. Устройство клапана трехходового типа. Этот прибор также позволяет регулировать текущий расход теплоносителя, однако функционирует он несколько иначе: в том случае, если температура воды превышает норму, то она направляется сквозь открытый клапан в трубопровод подачи в большем количестве. Путем смешения с остывшей водой общая температура снизится, а необходимая скорость циркуляции сохранится.

Подобная конструкция может несколько отличаться в разных системах. Схема устройства может быть оснащена несколькими температурными датчиками, а также одним или двумя насосами циркуляции. Кроме того, могут присутствовать клапаны механического типа, с помощью которых можно осуществлять контроль над работой отопления без подачи какого-либо питания.

Монтаж механических регуляторов не несет в себе особой сложности. Чтобы установить такой прибор, требуется лишь соединить его с фланцем в узле элеватора. Немаловажным является и тот факт, что цена таких устройств является значительно более низкой по сравнению с электронными механизмами.

Монтаж регуляторов температуры в частных домах

Как правило, автоматический регулятор температуры отопления является неотъемлемой частью нагревательного котла в автономной системе отопления. Такой датчик может быть мобильным, то есть его можно переносить, а также способен измерять температуру в комнате.

В котлах электрического типа используются электронные датчики, которые непосредственно связаны с установленными ТЭНами (тепловыми электронагревательными элементами) либо с напряжением, возникающим на электродах или на обмотке котла.
Системы котлов, работающие как с помощью газа, так и с применением технологии пиролиза, зачастую оснащены механическими регуляторами, главное из преимуществ которых – независимость в плане энергии. Но такой вариант, безусловно, не подразумевает использования выносных температурных датчиков. Читайте также: «Какой регулятор температуры на радиаторе отопления лучше установить и как это сделать».

Температурные датчики для радиаторов

Иногда один датчик температуры имеет при себе несколько отопительных радиаторов. Влияет на это, в первую очередь, схема установки. Но гораздо чаще принято монтировать регулятор на каждый прибор отопления по отдельности.
Многие хозяева устанавливают привычную многим систему, именуемую «ленинградкой», принцип работы которой заключается в применении одной опоясывающей дом или один этаж трубы, имеющей довольно внушительный диаметр, а параллельно ей встраиваются батареи отопления или конвекторы.

Стоит отметить, что для того, чтобы отрегулировать температуру отопления, можно использовать не только стандартные устройства.

К распространенным механизмам этого типа относятся:

  • головка на термостатической основе. Представляет собой автоматический датчик, контролирующий температуру теплоносителя в батарее. Принцип ее функционирования заключается в следующем: в процессе нагрева жидкие и газообразные вещества расширяются (детальнее: «Какая термоголовка для радиатора отопления лучше – выбор и установка»). Это, как следствие, ведет к тому, что нагретый продукт выдавливает специальный шток, перекрывая, тем самым, доступ теплоносителя;
  • не менее часто применяются и приборы, именуемые дросселями. Они представляют собой специальные краны винтового типа, с помощью которых можно регулировать проходимость теплоносителя ручным образом. Стоимость их является более доступной, а кроме того, с их помощью можно контролировать двухтрубные отопительные системы;
  • наименее дорогостоящий и самый простой механизм, помогающий отрегулировать температуру – это традиционный вентиль. Безусловно, эксплуатировать в данном случае следует лишь современные модели, а не устаревшие винтовые приборы, так как в старых механизмах очень часто отрываются клапаны, а также существует риск протечки сальников. Совершенно иная ситуация обстоит с шаровыми вентилями: даже в полуоткрытой позиции они надежно и качественно функционируют на протяжении долгого периода времени.

Для того чтобы устройство регуляторов температуры прошло максимально удобно, многие специалисты рекомендуют предварительно изучить различные фото этих устройств и детальные видео по их правильному подключению.
Пример регуляторов температуры отопления на видео:

Регулятор температуры для котла отопления


Терморегуляторы для систем отопления, а также их подключение

Постоянный расход топлива или электроэнергии в нагревательных приборах невозможен при изменении температуры нагреваемой среды, как это происходит в отапливаемой квартире во время колебания климатических условий. Естественно, что при похолодании для поддержания комфортной температуры понадобится большая мощность системы отопления, которая достигается увеличением расхода энергии. Отслеживание допустимого диапазона температур обеспечивают специальные терморегуляторы для котлов отопления.

По-другому терморегуляторы называют термостатами, термодатчиками, термореле, но в независимости от названия, сложности, точности и функциональности приборов их основным предназначением является отслеживание изменения температуры теплоносителя или воздуха в отапливаемой комнате с выдачей сигнала на включение или выключения отопления в зависимости от измеряемых датчиками параметров и предустановленных температурных режимов работы.

Пример терморегулятора, предназначенного для регулировки температуры теплого пола

Основополагающий принцип терморегуляции систем отопления

Многие люди, жившие в эпоху социализма, помнят тарификацию газа по отапливаемой площади, без применения счетчика. При таком подходе котел отопления мог гореть на максимуме круглые сутки, а терморегулирование в доме осуществлялось путем сброса слишком жаркого воздуха через открытые окна. В наше время, когда на счету каждый кубометр газа или киловатт*час электричества, такое расточительное расходование энергоресурсов будет крайне невыгодным, поэтому существует необходимость в регулировке мощности систем отопления в зависимости от потребности.

Неэкономичная регулировка температуры в комнате при помощи открытого окна

Производители систем отопления издревле знали о зависимости температуры в отапливаемом помещении от расхода топлива, поэтому сразу начали устанавливать ручные регуляторы подачи энергоносителя и стали разрабатывать  термостат для котла, функционирующий в автоматическом режиме. Принцип работы подобного термостата с успехом используется до сих пор – это реакция на температуру теплоносителя, возвращающегося в котел после прохождения радиаторов отопления. Если вода после радиаторов возвращается горячей – значит, батареи отопления прогреты, а воздух в помещении достаточно теплый, и не оказывает существенного влияния на охлаждение теплоносителя, соответственно подачу топлива в котел можно уменьшить.

Пример термостата, регулирующего подачу газа в котел

Данные термостаты не используют электричества и работают благодаря неравномерному тепловому расширению в биметаллической пластине. При нагревании изгибающаяся пластина надавливает на заслонку газового клапана и подача газа в котел уменьшается, а при охлаждении происходит обратный процесс. При появлении интенсивного пламени или резкого роста температуры, биметаллическая пластина термостата сработает как термопредохранитель, полностью перекрывая подачу топлива или воздуха в твердотопливных котлах.

Термостат для твердотопливного котла. В комплект поставки входит рычаг и цепь для управления заслонкой

Контроль температуры в помещении

Современный терморегулятор для котла работает в системе управления нагревательного прибора, которая также отслеживает такие параметры, как наличие тяги в дымоходе, давление газа в газопроводе, обеспечивает циркуляцию теплоносителя, и т. п. Данный всеобъемлющий контроль параметров, и программирование работы котла возможно при использовании электронных систем управления. Но даже очень «умная» и «продвинутая» электроника, определяющая изменение температуры в котле не способна обеспечить комфортный нагрев помещения, если система отопления рассчитана неправильно, или изменились условия эксплуатации.

Электрический датчик тяги для газового котла

Например, при трескучем морозе за окном, в сопровождении порывистого ветра теплопотери через стены и щели помещения будут увеличены, что незамедлительно скажется на снижении температуры в доме, даже если батареи отопления и возвратная труба будет относительно горячей. При невозможности уменьшить теплопотери, единственным способом повысить температуру в помещении будет ручное увеличение мощности отопления.

Ручная регулировка температуры на встроенном в котел термостате

В данном случае в роли термодатчика для обогревателя выступают тепловые ощущения нервной системы человеческого организма, которые преобразуются в команду телу: встать и пойти перенастроить котел. Логично, что появились электрические устройства, контролирующие температуру в помещении, и связанные с системой управления котлом. Таким образом, вся система отопления будет работать для поддержания заданной температуры в зоне контроля независимо от изменения внешних условий.

Определение своими руками интенсивности обогрева батарей отопления

Применение удаленного терморегулятора

Принцип действия удаленного термодатчика практически не отличается от функционирования встроенного в котел термостата – при достижении пороговой температуры дается команда на увеличение или снижение мощности. Подключение терморегулятора к обогревателю может быть осуществлено при помощи кабеля или беспроводного соединения, при условии, что котел поддерживает данную возможность. Установка даже самого простого терморегулятора, отслеживающего лишь изменение температуры, позволит существенно снизить затраты на отопления, избегая излишнего перегрева в помещении, поддерживая заданный температурный режим.

Установка температурного режима на удаленном от котла терморегуляторе

Установка в детской комнате удаленного терморегулятора котла позволит поддерживать оптимальную температуру для детей, не опасаясь их переохлаждения вследствие изменяющихся погодных условий на улице. Также стабильность температуры очень важна для людей преклонного возраста, или страдающих различными заболеваниями, для лечения которых необходим постоянный комфорт в комнате пребывания.

Установка терморегулятора в детскую позволит избежать переохлаждения детей в холодное время суток

Более функциональные и дорогие терморегуляторы имеют возможность программирования различных температурных режимов отопления помещения в зависимости от времени суток или дней недели. Например, по будням в дневное время, когда дети в школе, а все взрослые на работе – незачем интенсивно топить детскую и весь дом, компенсируя теплопотери. Поэтому, на период отлучения членов семьи терморегулятор можно запрограммировать на понижение температуры, что снизит теплопотери и счета за энергоресурсы, а ко времени возвращения детей со школы автоматика снова повысит мощность отопления.

Программирование температурных режимов работы котла

Таким образом, при использовании программированного терморегулятора можно добиться существенной экономии энергоресурсов, комбинируя, в зависимости от потребности, различные режимы работы:

  • Отсутствие хозяев в доме – поддерживается минимальная температура, необходимая для жизнедеятельности растений и домашних животных;
  • Интенсивный разогрев системы отопления перед приходом жильцов в помещение, осуществляемый программно или с помощью дистанционной команды;
  • Установка и использование шаблонов управления отоплением в различное время суток в будничные и выходные дни.

Пример программируемого терморегулятора

Подключение и установка терморегуляторов

Производители современных котлов и систем отопления оснащают свои нагревательные приборы разъемами или беспроводными портами для подключения дополнительных термодатчиков, устанавливаемых в контрольных точках помещения. Также многие компании, выпускающие обогреватели, предлагают в качестве опции собственные дополнительные контрольные устройства различной функциональности. В этом случае узнать о том, как подключить терморегулятор к нагревательному прибору, можно из его инструкции по эксплуатации.

Подключение терморегулятора к котлу, поддерживающему данную возможность

На рисунке ниже показана обобщенная простая схема подключения термостата к нагревателю. Существует несколько общих правил и требований по установке и размещению терморегуляторов различной функциональности. Нужно помнить, что работа системы управления будет зависеть от нагрева и охлаждения небольшого термоэлемента, а быстрота реакции напрямую зависит от скорости изменения температуры.

Обобщенная схема подключения термостата

Очевидно, что заблокированный мебелью или шторами терморегулятор будет с опозданием реагировать на изменение параметров в помещении. Возможна и противоположная ситуация – при размещении термодатчика напротив дверей при их открывании будет каждый раз появляться сквозняк, интенсивно охлаждающий теплочувствительный элемент, что приведет к слишком частому увеличению мощности. Показания терморегулятора будут недостоверными, если он установлен слишком близко к излучающему тепло котлу.

Установка программируемого терморегулятора с проводным интерфейсом недалеко от теплого котла не позволит достоверно контролировать температуру в помещении

Поэтому, при выборе места установки терморегулятора рекомендуется опытным путем найти наиболее приемлемую точку, где влияние нагревающих и охлаждающих конвекционных потоков скомпенсировано, а тепловое излучение от различных бытовых электроприборов и Солнца сведено к минимуму. При установке терморегулятора на внешнюю стену, которая может промерзать, следует позаботиться о термоизоляционной прокладке, чтобы избежать ложных срабатываний системы отопления.

Рисунки, наглядно демонстрирующие подходящие и нежелательные места для установки терморегулятора

Реализация раздельной регулировки температуры в комнатах

Применение единичного терморегулятора позволит удерживать комфортную температуру в самой важной комнате в доме, а в остальных помещениях температурный режим будет отличаться от контрольного в зависимости от качества утепления и площади радиаторов. Для полноценной и независимой регулировки теплового климата во всех помещениях потребовалась бы установка индивидуального терморегулятора и котла (или отдельного контура) для каждой комнаты. Очевидно, что такой подход является слишком затратным, поэтому данную проблему решают при помощи терморегуляторов, устанавливаемых на радиаторы отопления.

Установка терморегулятора на радиатор отопления поможет сэкономить денежные средства

Более эффективным способом тепловой регулировки является смешивание горячего и холодного теплоносителя для достижения оптимальной температуры радиатора отопления. Данное смешивание теплоносителей осуществляется специальным трехходовым клапаном. Установка подобного клапана в систему отопления каждого помещения позволит контролировать в нем заданный температурный режим при контроле терморегулятора, установленного в данной комнате.

Установка и настройка индивидуального терморегулятора для каждого радиатора отопления

Таким образом, число комнат в доме с независимо регулируемой температурой будет зависеть от  количества терморегуляторов и смесительных трехходовых клапанов. Но, даже установка в систему отопления одного датчика и смесительного трехходового клапана поможет модернизировать устаревший котел, с все еще исправно работающим встроенным термостатом.

Принцип действия смесительного трехходового клапана

В данном случае схема подключения терморегулятора и трехходового клапана никак не затрагивает внутренние узлы котла, и сказывается на его работе лишь косвенно – при подаче со смесителя в возвратную трубу горячей воды встроенный термостат отреагирует и уменьшит подачу топлива. При охлаждении комнаты терморегулятор закроет клапан, и циркуляция горячего теплоносителя будет происходить во всей системе с интенсивной отдачей тепла.

Схема системы отопления с одним трехходовым клапаном

Советы по выбору терморегуляторов

Поскольку самовольное внедрение в работу газового оборудования опасно и преследуется по закону, применение терморегуляторов и смесительных клапанов позволит увеличить ресурс эксплуатации устаревшего котла, без изменений во внутренней системе, с возможностью автоматической регулировки температуры. В данном случае нужно подобрать совместимые терморегуляторы и электрические трехходовые клапаны.

При выборе любого терморегулятора нужно помнить – он будет малоэффективным при неправильном расчете системы отопления и плохом утеплении

Самые простые терморегуляторы имеют регулируемый диапазон температур, при преодолении которых устройство на выходе может иметь два состояния – включено, или выключено. На входе подключаются фаза, рабочий ноль и заземление (устройство должно иметь соответствующую маркировку клемм), а на выходе подключается нагрузка – смесительный клапан, инфракрасный излучатель или электрический ТЭН.

Модульный терморегулятор для электрокотла с цепями управления накалом и циркуляционным насосом

Терморегулятор для электрического котла работает по аналогичному описанному выше принципу, с той разницей, что должна быть обеспечена коммутация больших токов, ведь электрокотел потребляет значительно больше электроэнергии, чем системы клапанов. Поэтому при покупке терморегулятора для электрокотла в первую очередь следует проверить соответствие токов коммутации и потребления, а также убедиться в наличии выводов для подключения циркуляционного насоса.

Похожие статьи

infoelectrik.ru

Регулятор температуры для твердотопливного котла

Твердотопливный отопительный котел – это вариант для тех, кто хочет иметь в своем доме автономную, недорогую, не зависящую от газового обеспечения и электроэнергии, отопительную систему. Главное – запастись дровами, углем, древесными гранулами, опилками и другими твердыми продуктами горения, на котором и будет работать котел. И благодаря процессу длительного горения твердого топлива температура в доме будет всегда нужной, а, чтобы контролировать и регулировать температуру в доме, конечно, понадобится терморегулятор.

Виды котлов и необходимость терморегуляторов

В данном виде отопительной системы часто используют чугунные и стальные котлы. И те и другие имеют как положительные, так и отрицательные характеристики. Например, стальные  обладают высокой теплоотдачей, быстрым нагревом и сравнительно низкой ценой. Но могут подвергаться воздействию внешней среды. Тогда при коррозии или засорении может испортиться вся тепловая система. Чтобы этого не произошло, необходимо контролировать температуру в котле и регулировать температурные режимы.

Чугунные же, наоборот, имеют высокую прочность, практически не поддаются коррозии и воздействию внешней среды, надежны и стабильны в эксплуатации, долго держат тепло, состоят из легко заменяющихся секций.  Но котлы длительного горения твердого топлива из чугуна, по мнению специалистов, могут дать сбой лишь в случае резких перепадов температуры.  Поэтому при монтаже такого котла необходимо произвести правильно и профессионально обвязку котла. И, конечно, нужно постоянно отслеживать температурный режим и регулировать его по мере надобности.

Если верить специалистам, то при использовании терморегулятора экономится 15-20% топлива, тепло сохраняется в нужных параметрах, происходит при необходимости включение или выключение всей системы отопления.

Чем отличается термостат от терморегулятора

Термостат уже включен в систему теплонагревателя и отвечает за работу теплоносителя. Это механический прибор, который, как правило, продается уже вместе с котлом. Его плюс – вы можете постоянно отслеживать температурный режим в теплоносителе, этот процесс не зависит от наличия электроэнергии в доме. Минус – регулировать температуру будете вручную.

Терморегулятор – отдельно монтирующийся механизм, который автоматически отслеживает температуру теплоносителя, помещения, контролирует ее, регулирует правильную нужную подачу тепла. И делает это все в течение суток автоматически, без вмешательства пользователя.

Нюансы использования

Терморегуляторы для твердотопливных котлов должны быть настроены на среднюю температуру в доме +20 градусов Цельсия. Но есть нюансы:

  1. В детской комнате температура предпочтительна +22.
  2. В комнате, где проживают пожилые люди, люди с ограниченными возможностями +23.
  3. В случае проживания гипертоников лучше держать более низкий температурный режим +18,+19.
  4. В ночное время рекомендуется +19,+21.

Виды терморегуляторов

Выбор регуляторов температуры огромен – от механических термостатов до программируемых, на микропроцессорной основе.

  1. Так называемые комнатные регуляторы устанавливаются в любом помещении и реагируют на температуру в нем. Главное при установке – не закрывать приборы мебелью, шторами, любыми предметами. Тогда показатели могут не совпадать с реальностью, и вся система даст сбой.
  2. Регулятор вентильных устройств привязан к конкретной линии топлива и контролирует температурный режим не самого котла, а отрезка в определенном месте, где установлен вентиль, вмонтированный в трубе.
  3. Автоматический термостат цилиндра – самое простое приспособление для двухкамерного обычного котла. Этот прибор устанавливается на котле, программируется, как правило, только на максимальную температуру и заставляет котел отключиться, когда температура нагревательного элемента превышает запрограммированную.
  4. Зональные регуляторы – программируются на определенную зону помещения и предотвращают не только отключение или высокую температуру, но и сообщают все показатели, которые необходимо знать потребителю.

Кроме того, все терморегуляторы делятся на:

  1. Проводные.
  2. Дистанционные.

Основной критерий выбора – легкость монтажа. Также надо учитывать, чтобы котел и терморегулятор были совместимы. Для этого нужно покупать все оборудование одного производителя или обратиться за помощью специалистов.

(4 голосов, рейтинг: 4,75 из 5) Загрузка…

poluchi-teplo.ru

Терморегулятор для котла – автоматика позаботится о комфортной температуре в жилище!

Терморегулятор для котла позволяет управлять работой отопительного агрегата в автоматическом режиме, обеспечивая тем самым максимально комфортную температуру в жилище.

Существует несколько видов агрегатов, используемых для отопления жилых помещений. Потребители монтируют в домах и квартирах электрические, газовые, твердо- и жидкотопливные котлы. Все эти установки в части регулирования температуры имеют определенные особенности. Электрические агрегаты, например, снабжаются специальным механическим таймером. Он позволяет выбирать один из трех вариантов функционирования котла:

  1. 1. Оборудование выключено.
  2. 2. Подача горячей воды.
  3. 3. Запуск и отключение агрегата в заданное время.

Такой таймер в большинстве случаев выполняется в виде циферблата с 24 делениями. Пользователь устанавливает диск на определенную отметку. В заданное время котел автоматически включается и начинает обогревать помещение. Кроме того, таймер можно запрограммировать на включение/выключение агрегата через определенные промежутки времени (15, 30, 60 минут).

Отопительный котел

Жидко- и твердотопливные котлы, как правило, оснащаются специальным термоэлементом – элементарным по конструкции приспособлением для автоматического открытия и закрытия заслонки тяги. Здесь все просто. Горение будет тем сильнее, чем больше открыта заслонка. В более современные котлы на жидком и твердом топливе встраивают не термоэлемент, а контроллер. Он дает возможность точнее регулировать работу отопительного оборудования за счет управления воздушного потока, поступающего в камеру сгорания.

Установки, работающие на природном газе, получили наибольшее распространение. Они дешевы в эксплуатации, надежны, экономичны, могут быть одно- и двухконтурными. В первом случае агрегат располагает всего одним теплообменником. Подобные установки используются исключительно для отопления. Двухконтурные аппараты не только обогревают жилище, но еще и подают горячую воду. Газовые агрегаты всегда используются с терморегулятором, который нередко называют термостатом, программатором, термодатчиком или датчиком температуры. Это устройство мы и опишем максимально подробно. После прочтения статьи вы без проблем выберете и подключите терморегулятор для котла.

Интересующие нас приспособления бывают центральными, радиаторными, комнатными. Терморегуляторы для батарей отопления позволяют настраивать температуру в каждом помещении жилища. Подобные устройства очень просты. Они представляют собой клапан, с помощью которого можно снижать либо увеличивать подачу горячей воды на радиатор.

Центральные термостаты обычно устанавливаются в котельных, обеспечивающих отопление коттеджей на несколько семей, многоквартирных домов. А вот в отдельных квартирах с автономным обогревом на газовые агрегаты монтируются комнатные регуляторы температуры. Они постоянно поддерживают оптимальную температуру в жилище без необходимости вмешательства человека в работу системы отопления.

Регулятор температуры для газового котла имеет понятный принцип работы. Разобраться с ним несложно. Потребитель программирует определенную температуру в помещении (допустим, +22°) и включает отопительный агрегат. Котел начинает нагревать воду, которая поступает в радиаторы. Когда температура в доме (квартире) достигает показателя +22°, термостат отключает систему отопления. Котел не работает. При падении температуры воздуха в жилище на 0,5° терморегулятор снова запускает отопительное оборудование и выключает его при достижении +22°.

Важный момент! Термостат отключает не только горелку газового агрегата, но и его насос. А значит, потребитель уже начинает экономить электрическую энергию.

Здесь есть еще один момент. Теплоноситель в отопительной системе остывает ощутимо быстрее, чем температура в помещении. За счет этого мы снова экономим, так как котел будет включаться значительно реже (в 5–10 раз). Как результат – уменьшение цифр в счетах за оплату электроэнергии, увеличение долговечности отопительного газового агрегата и при этом всегда комфортная температура в доме.

При выборе термостата следует учитывать, что описываемые устройства подразделяют на:

Беспроводной терморегулятор

Беспроводные термодатчики состоят из двух блоков. Один из них располагает приспособлением, замеряющим температуру. Он ставится в помещении. Второй блок подключается к котлу. Между собой эти два элемента связываются радиосигналом. Главное достоинство такого терморегулятора – отсутствие необходимости в прокладке кабеля. Монтаж проводных устройств более сложный. Придется пускать провод от котла к блоку, установленному в комнате, демонтировать плинтуса, порожки под межкомнатными дверями и так далее.

Также термостаты делят на простые и программируемые. Они характеризуются разной функциональностью. К одноконтурным котлам обычно подключают простые устройства, которые выполняют одну задачу – удерживают температуру в жилище на заданном уровне. С двухконтурным агрегатом все сложнее. В данном случае рекомендуется подсоединение программируемого термостата к газовому котлу. Такое приспособление дает возможность:

  • выбирать дневную и ночную температуру;
  • программировать котел на несколько месяцев вперед и на каждый день недели;
  • задавать любые режимы функционирования отопительной установки.

Программируемый термостат может поддерживать температуру в жилище на требуемом уровне

Удобство применения программируемого устройства очевидны. С его помощью вы сможете поддерживать температуру в жилище на требуемом уровне вне зависимости от того, как долго вас не будет дома (неделю, месяц), а также придерживаться максимально приемлемых для вас нормативов отопления.

Чтобы правильно приобрести термодатчик и без проблем подключить его к котлу, следует получить консультацию профессионала в сфере отопления жилых помещений. Желательно покупать регулятор температуры того же производителя, который выпустил газовый агрегат. Тогда подключение термостата к отопительной установке пройдет по-настоящему просто. А сам процесс эксплуатации системы отопления будет надежным и безаварийным.

Подключение термодатчика

Теперь давайте разберемся, как подключить термостат к газовому котлу. Но прежде примите во внимание следующее. Запрещается закрывать датчик температуры шторками и занавесками, фальш-панелями и разнообразными декоративными элементами (полочками, навесами и так далее). Не монтируйте терморегулятор около предметов и конструкций, которые будут мешать свободной циркуляции воздуха в помещении, а также около кондиционеров, электропечей, нагревателей. Если не соблюдать этих требований, датчик не сможет точно замерить температуру в комнате.

Подключаются рассматриваемые нами устройства по далее приведенному алгоритму:

  1. 1. Тщательно изучаете инструкцию по монтажу термостата.
  2. 2. Отключаете отопительный агрегат от электросети.
  3. 3. Находите в котле контакты для подсоединения регулятора. Они указываются в схеме, прилагаемой к агрегату. Место подключения в котле хорошо видно визуально – производители монтируют на него специальную перемычку. Ошибиться трудно.
  4. 4. Демонтируете перемычку, подсоединяете терморегулятор. Никаких дополнительных действий с подключенными проводами выполнять не нужно.

Обратите внимание. Программируемые регуляторы температуры нередко подсоединяются к клеммам, имеющимся на газовом агрегате. Принцип выполнения работ в подобных случаях будет аналогичным.

Настройка термостата также не вызывает серьезных проблем. Изучаете инструкцию, пробуете разные режимы работы, выбираете те, которые вам подходят. И не забывайте – вы всегда можете выполнить повторную настройку терморегулятора в нужное вам время. Пусть в вашем доме всегда будет тепло и уютно!

obustroen.ru

Как выбрать термостат для котла?

Каждый человек для создания наиболее комфортного отопления своего жилища сталкивается с вопросами: как выбрать отопительную систему, какой способ контроля температуры предпочесть, какой терморегулятор для котла (термостат) выбрать.

Регулятор температуры отопительного прибора

Виды и типы котлов

На сегодняшний день основной выбор отопительной системы заключается в определении приоритета электрического или газового котла. Ввиду частых отключений электричества, по причине перегрузки сети – установка таких котлов менее распространена на территории нашего государства. Итак, следующим этапом при выборе отопительной системы для помещения является определение ее месторасположения: на полу или на стене.

Основным предназначением напольных котлов является нагрев технической воды, в то время как настенные – это универсальные обогревательные системы, которые служат для нагрева как технической, так и потребительской воды.

Типы газовых котлов

  • Газовые котлы бывают одноконтурные и двухконтурные. Основным отличием последних является возможность осуществлять нагрев не только помещения, но и проточной воды. Регулирование подачи горячей воды по батареям осуществляют термостаты для котлов, которые рекомендуется устанавливать в каждом помещении отдельно.
  • С открытой и закрытой камерой сгорания. Котлы с открытой камерой сгорания устанавливаются только в больших помещениях.
  • Напольные и настенные.

Основные отличия терморегуляторов и термостатов

Качественная работа отопительной системы позволяет не только осуществлять поддержку оптимальной комфортной температуры в помещении, исключая перегрев или переохлаждение, а также достигать значительной экономии финансовых средств по оплате за использованный газ. Для того чтоб отдать предпочтение в сторону того или иного устройства необходимо знать основные функциональные отличия, которые присущи обоим термостатам.

Комнатный беспроводный термостат

Основные функции, которые выполняют терморегуляторы для котлов — это контроль требуемого диапазона температуры воды на выходе из котла, предварительно установленного вручную.

Главным недостатком использования такого устройства является необходимость осуществлять регулирование температуры при изменении погодных условий или иных факторов. В этом случае нагрев/охлаждение воды происходит скачкообразно, в результате чего изменение температуры в помещении наблюдается по прошествии какого-то времени.

Следует заметить, что для поддержания заданного нагрева теплоносителя котел должен достаточно часто включать горелку в рабочее состояние, что, в свою очередь, ведет к дополнительным затратам горючего. Главным достоинством такого оборудования является невысокая стоимость прибора, которая обеспечивает качественный контроль работы котла.

Комнатные термостаты для газовых котлов работают по принципу снятия показаний температуры воздуха в помещении и соответствующего регулирования микроклимата. Отметим, что температура воздуха в помещении изменяется медленнее, чем жидкости в водных термостатах, а соответственно и необходимость подачи газа на горелку будет осуществляться реже.

Регулируемый термостат

Таким образом, используя термостаты воздушного контроля в помещениях, получаем экономию финансов и топлива в существенных объемах. Для установки комфортной температуры в нескольких помещениях с индивидуальными контурами отопления необходимо использовать комнатный термостат для котла и систему коллекторов, которая обеспечит подачу теплоносителя требуемого нагрева.

Виды домашних термостатов и вариации их настроек

На сегодняшний день существует 2 вида терморегуляторов для помещений:

  1. Проводные. Одним из основных условий хорошей работы проводных терморегуляторов является качественный монтаж проводников, который обеспечивает бесперебойную связь котла с контроллером, установленным в определенной точке помещения и подающим сигнал на подачу горячей воды в конкретный контур.
  2. Беспроводные. В таких терморегуляторах регулирование и корректировка рабочего процесса системы осуществляется при помощи радиосигнала, поступающего на датчик. Такой термостат для котла состоит из 2 блоков, один из которых устанавливается непосредственно возле котла и соединяется с его клеммами, а второй устанавливается в том помещении, из которого предполагается осуществлять управление и корректировку температуры. Связь между этими двумя блоками (исполнительным и контроллерным) осуществляется непосредственно по выделенному радиоканалу. Следует заметить, что блок-контроллер отличается от исполнительного блока наличием жидкокристаллического дисплея и мини-клавиатуры.

Относительно выполняемых функций комнатные терморегулирующие устройства разделяются на 2 вида:

  • простые термостаты;
  • программируемые комнатные термостаты для газовых котлов.

Основное назначение, которое выполняет простой комнатный термостат для газового котла, является контроль и поддержание предварительно заданной температуры. В случае с установкой программируемого термостата, владелец имеет ряд преимуществ, которые позволяют создать в заданном помещении наиболее комфортную температуру, используя:

  1. Дистанционное управление работой обогревательного котла;
  2. Возможность установки желаемой температуры в режимах «день» и «ночь».
  3. Быстрое дистанционное изменение существующих температурных параметров в помещении.
  4. Возможность осуществления программирования отопительной системы по дням недели.
  5. Осуществление автоматического контроля температурного режима в помещении, используя термостаты для котлов.
  6. Относительно быстрое изменение температуры в помещении после внесения корректировок.
  7. Низкий топливный расход.
  8. Долгое поддержание работы устройства за счет использования аккумуляторов.

Советы по эксплуатации

  1. Одним из наиболее приемлемых вариантов использования систем регулирования и отопления помещения является установка отопительного котла и автоматики от одного надежного производителя, который осуществляет выпуск продукции на длительный и безаварийный срок службы.
  2. Устанавливать проводной термостат для газового котла необходимо до начала осуществления ремонтных работ в помещении. В противном случае возникнет необходимость штробления стен, а соответственно и порчи внутреннего дизайна помещения.
  3. Установку контроллеров в помещении необходимо осуществлять на открытом пространстве, чтоб не загораживало устройство ни мебель, ни декоративная отделка помещения (шторы, ковры, картины и так далее).

Выбирая комнатный термостат, следует обратить внимание не только на его достоинства, но также на недостатки, чтоб окончательно определить приемлемость использования прибора в помещении для создания наиболее комфортной температуры.

klivent.biz

Способы регулировки температуры систем отопления

Регулирование системы отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении. На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры

оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

Температуре наружного воздуха

Температуре внутри помещения

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении. Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя. При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости. К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя. Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи. К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей. Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

При оценке качества работы системы и экономичности ее эксплуатации следует учитывать все параметры и особенности вашего отопления. Независимо от источника питания (электрический котел или газовый), система должна работать отлажено, поэтому правильное регулирование – залог теплого и уютного дома.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Регулировка системы отопления – подробности из практики

Без качественно выполненного монтажа отопительного оборудования невозможно создать условия для нахождения в здании в холодное время года. Каждый владелец частного дома должен иметь представление, как осуществляется регулировка системы отопления, иначе комфортные условия для отдыха и сна членов семьи обеспечить не удастся.

Необходимость обустройства отопления

Потребность обогревать собственный дом существовала всегда, но способы для достижения данной цели были самыми разными. Не одну сотню лет в России использовались классические русские печи, а чуть позже появились камины. На смену традиционным отопительным конструкциям пришли современные приборы и системы теплоснабжения, которые по качеству и эффективности превосходят своих предшественников.

В настоящее время система отопления представляет собой конструкцию, которая, как правило, состоит из следующих основных элементов:

  • нагревательный котел;
  • трубопровод;
  • отопительные приборы.

Внутри отопительной системы находится теплоноситель. В большинстве случаев для обогрева частных домовладений используют воду, поскольку в случае утечки она с экологической точки зрения не представляет опасности для людей и окружающей среды.
Из всех видов жидких теплоносителей именно вода лучше всего накапливает тепло и, остывая, отдает его.

Кроме этого, она хорошо течет и практически мгновенно передвигается внутри элементов системы. Вода всегда имеется в водопроводных трубах и ее в любой момент можно добавить в отопительную конструкцию.

Функционирование системы заключается в передвижении горячего теплоносителя по ней при помощи циркуляционного насоса. Вода сначала нагревается в котле, а затем распределяется по трубам, из которых поступает в радиаторы.

Способы регулировки системы отопления

Нередко происходит так, что ошибки, допущенные при монтаже системы отопления, можно обнаружить только после запуска оборудования в эксплуатацию. Среди причин возникновения сбоев в теплоснабжении дома значится неправильное определение требуемого количества теплоносителя. Когда жидкости в системе мало, в помещении будет холодно, а если много, воздух перегревается и не переходит в другие комнаты.

Для настройки работы требуется регулировка отопительной конструкции. Если ее не произвести, тогда срок эксплуатации оборудования значительно сократится.

Регулировка системы отопления выполняется одним из двух методов:

  • качественным способом – путем изменения температуры теплоносителя;
  • количественным способом – при нем меняют объем жидкости.

Качественная регулировка осуществляется на источнике теплоты, а количественная – непосредственно на отопительной конструкции. До того, как приступить к ее выполнению, определяют объем расходуемой жидкости и температуры теплоносителя, используя для этого специальные приборы – водомер и расходомер.

Когда подобных устройств нет, тогда сравнивают фактические величины расхода с расчетными данными.
Чаще всего монтируют двухтрубные системы обогрева, способные обеспечить в доме тепло и комфорт. Также потребуется запорно-регулирующая арматура для отопления.

Работы по регулировке отопления запорной арматурой

На протяжении всего процесса поступающая в систему вода должна иметь постоянную температуру. Регулировку, как правило, производят согласно перепадам температуры при помощи изменения объема подаваемой воды, что зависит от типа отопительной системы и теплового ввода.

Зависят перепады температуры от объема расходуемой воды и эта величина обратно пропорциональна. Таким образом, чтобы увеличить перепад до необходимого значения, следует уменьшить расход теплоносителя. Для этого или прикрывают задвижку, расположенную на вводе, или уменьшают сам расход.

Чем больше проходит воды через обогревательные приборы, тем скорость ее передвижения выше и соответственно теплоноситель меньше остывает. В итоге средняя температура в радиаторе повышается и увеличивается теплоотдача прибора.

После завершения регулировки в тепловом узле, наладке подлежат отдельные стояки конструкции. В случае возникновения проблем ремонт проводят так, чтобы можно было задействовать регулировочные краны для системы отопления на стояках или балансировочные вентили (подробнее: “Регулировочные краны для радиаторов отопления, установка вентиля”).

Один из способов регулировки системы отопления показан на видео:

Когда на отопительных стояках имеются лишь краны, производят только предварительную регулировку. При этом учитывают, что чем ближе расположен стояк к вводу, тем больше следует приоткрыть кран. Это необходимо, чтобы запорная арматура на отопление на самом близком стояке пропускала минимальный объем воды.

Одновременно на стояке, находящемся дальше всего нужно открыть кран, такой как на фото. Сначала проверяют качество прогрева самого дальнего по расположению стояка и заканчивают тем, который находится ближе всего.

Обычно в двухтрубных системах по причине напора перегреваются приборы на верхних этажах. Если этого недостатка нет на нижнем этаже, тогда необходима регулировка радиаторов отопления верхних.

При наличии крана двойной регулировки есть возможность уменьшить проходное сечение (прочитайте: “Как выполняется регулировка батарей отопления – варианты и способы регулирования теплоотдачи радиаторов”). При отсутствии таких кранов регулировка батарей отопления производится при помощи установки дроссельных шайб.

В двухтрубных системах теплоснабжения равномерность прогрева радиаторов будет повышаться при увеличении расхода воды. Важнейший параметр для отопительных конструкций – рабочее давление (прочитайте: “Потери и перепад давления в системе отопления – решаем проблему”). Чтобы его понизить используют регулятор давления в системе отопления, а для повышения – циркуляционные насосы.

Температура теплоносителя при выполнении регулирования прибора не может превышать 50-60 °С. После завершения наладки температуру воды необходимо довести до 90 °С, и проверить еще раз нагреваемость радиаторов при таком температурном режиме. Желательно для регулировки систем отопления обращаться за услугой к специалистам.

Как наладить, отрегулировать, отбалансировать систему обогрева

Нередкая ситуация – один радиатор горячее другого, чего не должно быть. Или в одном месте дома прохладно, а в другом жарко. Значит, систему отопления нужно как-то наладить, как говорят специалисты, – отбалансировать. Возможно, что для этого не нужно вовсе вызывать сантехника, а отрегулировать отопление можно и своими руками.

Для этого на каждом радиаторе или между плечами системы должны быть установлены регулировочные краны или (и) балансировочные клапаны.

Но в некоторых случаях систему нужно переделывать. Далее подробней о возможных неполадках в отоплении и правилах балансировки.

Если не хватает мощности радиаторов

Бывает и так, что отбалансировать систему отопления затруднительно, так как распределение мощности радиаторов совсем не соответствует теплопотерям комнат.

Рекомендации по подбору радиаторов следующие: на 10 м кв. площади – 1 кВт, но это значение умножают на 1,2 если в комнате одно окно, 1,3 если окно большое, 1,4 если два окна и комната угловая, 1,5 если там уже 3 окна или большая площадь остекления.

Кроме того мощность радиатора указывается для температуры 90 градусов, но ведь топить собираемся максимум на 70 градусов, не так ли? Значит, теплопотери умножаем еще на 1,3. А если применяется низкотемпературный обогрев – не более 50 градусов, то еще раз умножаем на 1,3.
Почему низкотемпературный обогрев самый комфортный и экономичный? Подробней об экономичных конденсационных котлах

Мощность одной секции алюминиевого, биметаталлического радиатора (толщиной и шириной примерно 80 мм), или чугунного радиатора (старого образца типа МС-140) составляет приблизительно 170 — 180 Вт. Наборку из 7 секций принято считать не менее чем киловатной.

Кроме того, радиаторы должны устанавливаться в характерных местах, чтобы создавать тепловую завесу источнику холода. Типично – под окнами, возле двери.

Лучше распределить количество секций батарей (размеров) в соответствии с теплопотерями и особенностями системы отопления, чем балансировать, прикрывать ток жидкости.

Простые причины неполадок системы отопления

Возможно, что в системе отопления находится воздух и по этой причине теплоноситель плохо поступает к одному или нескольким отопительным приборам.

В самых высоких местах в трубопроводе устанавливают воздушные краны (краны Маевского) которые можно открыть вручную. Или автоматические воздухоотводчики. Краны Маевского обычно устанавливают и на каждом радиаторе. Пройдитесь по системе, откройте краны, спустите воздух.

Еще причине плохой работы – засорение, в первую очередь, фильтрующего элемента. Открутите фильтр и прочистите его.
Перед любой балансировкой системы отопления прочистите фильтр.

В неправильно-собранных системах, кроме того, может быть засорение в нижних точках на перепадах уровня трубопровода, и завоздушивание в верхних точках, например трубопровод обведен вокруг двери без воздухоотводчика.

Балансировка системы с помощью кранов-регуляторов

Возможно, что самая конструкция системы требует балансировки. Например, используется одно длинное плечо, а второе короткое.

Или длина плеча тупиковой схемы слишком большая. Или применяется лучевая схема, которая требует настройки изначально. А бывает, что делают архаичные однотрубные системы с недостатками. В любом случае в итоге имеется значительный неравномерный нагрев.

Итак, на радиаторах установлены балансировочные клапаны, остается сделать так, чтобы температура всех радиаторов была бы примерно одинаковой.

Принцип балансировки простейший – не закрывать (максимально открыть) краны на самых холодных и немного «прикрутить» самые горячие. В результате на холодные пойдет больше теплоносителя, на горячие меньше, температура их выровняется.

Пример, как отрегулировать отопление в одноэтажном доме

Характерный пример – не удалось сделать два плеча тупиковой схемы, так как прокладке труб мешала дверь, сделали одно плечо и насадили на него «аж» 7 радиаторов.

В результате температура последнего в плече на 9 градусов меньше чем ближайшего к котлу. Можно сделать такие действия – на последних 3 радиаторах краны полностью оставить открытые. На первом балансировочный кран открыть из положения полного закрытия на 1,5 оборота, на втором – на 2 оборота, на 3 и 4 на 2,5 оборота.

Подразумевается, что всего балансировочный клапан регулируется в 4,5 оборота, а длина трубопроводов в пределах небольшого дома. Но регуляторы бывают разной конструкции, длины разные, поэтому в каждом случае – свое количество оборотов.

После балансировки нужно выждать минут 20 затем снова измерять температуру входящего патрубка радиатора, возможно придется дополнительно что-то регулировать на четверть оборота…

Принципы регулировки

Создавать значительные закрытия нельзя.
Основной принцип балансировки – максимально открыть путь для движения теплоносителя. Закрытие – это вынужденная мера.

Поэтому добиться в данном примере одинаковой температуры не стоит. Правильно согласиться с тем, что первый будет горячее на 3 – 4 градуса при температуре теплоносителя в 80 градусов и на пару градусов при низкотемпературном обогреве 50 градусов.

А чем мерить-то? Профессионалы посмотрели бы на каждый радиатор через тепловизор и сделали теплофото. Но можно обойтись и контактными термометрами – специальные приборы для монтажников-отопителей. Но в быту чаще меряют просто рукой и судят по ощущениям. Чувствительная в этом отношении мочка уха – но стоит ли ухом тереть по радиаторам…

Пример для двухэтажного дома

Еще характерный пример, когда проектировщики-монтажники сумели так сделать систему отопления, что установили и на первом и на втором этажах примерно равную мощность радиаторов (площади примерно равны), причем балансировку этажей относительно друг друга впаять забыли.

В результате на первом этаже все еще холодно, а на втором этаже уже жара.

Опять выручат балансировки установленные непосредственно на радиаторах. На втором этаже просто отрываем краны на 2 оборота вместо полных 4,5, уменьшив, таким образом ток жидкости процентов на 30. Снизив энергоотдачу, выравниваем температурный режим, при необходимости закрываем больше…

Схема на которой отсутствует возможность балансировки между двумя плечами — типичная ошибка в самодельных системах.

Наладка по проекту

При обычном грамотном монтаже современной системы отопления балансировка не нужна вовсе, схема делается так, что все радиаторы греют оптимально. К тому же зачастую их автоматизируют термоголовками, с помощью которых можно задать температуру в отдельной комнате.

Небольшую сумятицу в вопросы наладки отопления вносят проектировщики и проектные данные. В проекте закладывается количество проходящего теплоносителя и балансировка каждого радиатора – насколько оборотов должен быть повернут каждый балансировочный кран определенного типа.

Этим достигается некая точность выполнения проектных решений. Но для пользователя это практически не имеет значения, так как соблюдение проектной точности весьма мало влияет на конечный результат. А большие значения балансировки (как в примерах выше) в проекте заложены быть не могут. Поэтому на очень точное регулирование в соответствии с проектом можно не обращать внимания.

Шумящий радиатор

Еще один момент, который требует решения, – слишком большое количество теплоносителя проходящего через радиатор. При этом радиатор шумит и это неприятно. Причины – неправильная схема отопления, забалансированность (закрытость) других радиаторов, слишком мощный насос в системе. Все это нужно устранять.

Слишком мощный насос – болезнь самодельных систем отопления, потому как домашним мастерам «кажется», что кашу маслом не испортишь. Но здесь получается другое — немалые деньги на ветер и шум в радиаторах. Как подбирается насос к системе отопления…
Шумящий радиатор требует балансировки системы или ее переделки.

Сложный случай – закрытие проходного отверстия трубопровода во время монтажа. Выявить дефектное место сложно, бывает нужно переделывать целое плечо трубопровода. Подобное характерно для полипропиленовых труб, в которых возможны наплывы материала при пайке. Подробней – как паять полипропилен и не допустить брака

Блог об энергетике

энергетика простыми словами

Регулирование температуры теплоносителя

В этой статье я хочу рассказать каким образом и на основании чего производится регулирование температуры теплоносителя. Не думаю, что данная статья будет полезна или интересна работникам теплоэнергетики, так как ничего нового они из нее не почерпнут. А вот обычным гражданам она, надеюсь, окажется полезной.

4.11.1. Режим работы теплофикационной установки электростанции и районной котельной (давление в подающих и обратных трубопроводах и температура в подающих трубопроводах) должен быть организован в соответствии с заданием диспетчера тепловой сети.

Температура сетевой воды в подающих трубопроводах в соответствии с утвержденным для системы теплоснабжения температурным графиком должна быть задана по усредненной температуре наружного воздуха за промежуток времени в пределах 12 — 24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов.

Температурный график разрабатывается для каждого города, в зависимости от местных условий. В нем четко определено какая должна быть температура сетевой воды в тепловой сети при конкретной температуре наружного воздуха. Например, при -35° температура теплоносителя должна быть 130/70. Первая цифра определяет температуру в подающем трубопроводе, вторая — в обратном. Задает эту температуру диспетчер тепловых сетей для всех теплоисточников (ТЭЦ, котельные).

Правила допускают отклонения от заданных параметров:

4.11.1. Отклонения от заданного режима за головными задвижками электростанции (котельной) должны быть не более:

  • по температуре воды, поступающей в тепловую сеть, ±3%;
  • по давлению в подающих трубопроводах ±5%;
  • по давлению в обратных трубопроводах ±0,2 кгс/см2 (±20 кПа).

4.12.36. Для водяных систем теплоснабжения в основу режима отпуска тепла должен быть положен график центрального качественного регулирования. Допускается применение качественно-количественного и количественного графиков регулирования отпуска тепла при необходимом уровне оснащения источников тепловой энергии, тепловых сетей и систем теплопотребления средствами автоматического регулирования, разработке соответствующих гидравлических режимов.

При наличии нагрузки горячего водоснабжения минимальная температура воды в подающем трубопроводе сети должна быть:

  • для закрытых схем не ниже 70°С;
  • для открытых схем горячего водоснабжения не ниже 60°С.

Этой весной мне позвонил один мужик и стал мне рассказывать как жарко у него дома и, что приходится и днем и ночью держать окна открытыми и т. д. и т. п. На улице, действительно, было уже тепло, но постановления об окончании отопительного сезона еще не было. Я пытался ему объяснить, что прохладнее батареи не станут, т. к. на выходе из котельной температура теплоносителя составляет минимальные 70°С, согласно правилам. Мои доводы разбивались о стену непонимания этого «разогретого парня». Живет он недалеко от котельной, поэтому получал тепловую энергию практически без потерь. Я искренне сочувствовал ему, так как сам страдал от жары в квартире, но слушать меня он не хотел. «Убавьте температуру и точка!» Помочь я ему не мог, только и посоветовал обратиться к своим жилищникам, чтобы они «прижали» отопление в доме.

С такой проблемой люди сталкиваются в начале (в конце) отопительного сезона, т. к. на улице еще бывают (уже стали) теплые деньки, а батареи «жарят» по-полной. Как с этим можно бороться я рассказывал в статье «Регулирование температуры отопительных радиаторов (батарей)».

Так что, дорогие граждане, не пытайтесь как-то воздействовать на тепловые сети, если вам стало очень жарко весной. Они ничего для вас не сделают, т. к. не имеют ни права ни возможности. Жалуйтесь в администрацию, тогда, возможно, они прикажут прекратить отопительный сезон раньше. Но помните, что весной температура на улице изменчива и, если сегодня тепло и вы добились отключения отопления, то завтра может стать очень холодно, а отключать оборудование гораздо быстрее, чем включать его в работу.

Теперь поговорим о том, как бывает холодно в квартире зимой, особенно когда основательно «подморозит». Если в квартире холодно, то кто обычно виноват? Правильно — тепловые сети! Так думают большинство граждан. Отчасти, они правы, но не все так просто.

Начнем с того, что в сильные морозы газоснабжающие организации могут ввести ограничение на поставки газа. Из-за этого котельным приходится поддерживать температуру теплоносителя «сколько получится». Как правило, градусов на 10 ниже, чем заложено в температурном графике. Электростанциям проще — они переходят на сжигание мазута, а котельным, которые зачастую стоят чуть ли не посреди жилых кварталов, жечь мазут разрешают только в аварийных случаях (например, полное прекращение газоснабжения), чтобы люди не замерзли совсем. Из-за ограничений поставок газа могут даже отключить горячую воду, чтобы снизить расходы теплоносителя и тем самым поддерживать температуру в системах отопления на нужном уровне. Так что не удивляйтесь в случае чего.

Также причиной того, что зимой в квартирах холодно, является высокая степень изношенности самих тепловых сетей, а в частности тепловой изоляции трубопроводов. В результате, в дома, которые находятся довольно далеко от теплоисточника теплоноситель «доходит» уже порядком остывший.

Ну и последняя причина, о которой я расскажу — это неудовлетворительная теплоизоляция самих квартир и домов. Щели в окнах, дверях, отсутствие теплоизоляции самого дома — все это приводит к тому, что тепло уходит в окружающую среду и нам холодно. Эту причину устранить можете вы сами. Установите новые окна, сделайте теплоизоляцию квартиры, поменяйте радиаторы отопления на новые, ведь со временем чугунные батареи забиваются и теплоотдача значительно снижается. Кстати, если покрасить батарею в черный цвет, то она будет греть лучше. Это не шутка, опыты подтверждают этот факт.

Ну вот, кажется, и все, что я хотел рассказать в этой статье. Так же хочу оговориться, что я писал статью, основываясь во многом на личном опыте. В разных регионах нашей страны ситуация может быть разной и в корне отличаться от того, что я тут понаписал. Но в целом, думаю, обстановка схожа. По крайней мере в крупных городах.

Способы регулировки температуры теплого водяного пола

Выделив немалое количество средств на создание системы водяного теплого пола (ТП), пользователь порой не получает ожидаемого уровня комфорта или экономии, о которых наперебой твердят сторонники подобного отопления. И если расчет коммуникаций был выполнен верно, а монтаж проведен без ошибок, то, скорее всего, причина неэффективности тепловой установки в её некорректных функциональных настройках. К ним в первую очередь относится регулировка температуры теплого водяного пола. При этом она опирается на понятия температуры теплоносителя в системе и поверхности напольного покрытия, а также температурного режима в помещениях.

Разберем, как на практике связываются воедино эти понятия, при различных способах управления ТП.

Оптимальные температурные параметры

Предпочитаемая температура теплого пола подбирается под индивидуальные запросы. Ведь кому-то нравится бодрящая свежесть в доме, а кто-то желает нежиться в согревающих энергетических потоках. Тем не менее, существуют общепринятые нормы по подготовке теплоносителя, прогреву напольных покрытий и, соответственно, воздуха в помещениях. Они обуславливаются санитарными и технологическими требованиями. Об этих нормах уже упоминалось здесь, однако, напомним кратко:

  • оптимальной считается температура поверхности пола 28 0 С;
  • если помещение рассчитано на длительное пребывание жильцов или в нем имеются другие источники отопления, то целесообразно снизить температуру до 22-26 0 С – такой энергетический режим является оптимальным с медицинской точки зрения. Кроме того, нагрев покрытий незаметен при телесном контакте с ними, что не вызывает тактильного дискомфорта;
  • для помещений, где ТП является единственным источником отопления, а также, где жильцы находятся лишь периодически (ванная, туалет, прихожая, лоджия, крытая веранда), температуру поверхности напольного покрытия допустимо поднять до 32 0 С.

Способы управления температурой теплого пола

Для обеспечения указанных требований санитарных и технологических норм, предпочтений пользователей, настройка теплого пола может осуществляться способами регулировки:

  • температуры теплоносителя, поступающего на входе в систему ТП. Основное управление интенсивностью теплового потока осуществляется изменением установок теплогенератора (котла). Оно подходит только при подаче низкотемпературного теплоносителя, когда на компенсацию теплопотерь напольного обогрева работает отдельный котел. Этот метод регулирования является наиболее простым, хотя и низкоэффективным, поэтому в небольших частных системах ТП используется редко;
  • коллекторов и смесительных узлов. Подобная регулировка может быть ручной или автоматической, осуществляться индивидуально по каждому контуру или в целом по всей группе нагрева – на общей гребенке, через которую идет снабжение теплоносителем нескольких веток ТП.

Точками отсчета для изменения настроек системы могут стать замеры температуры теплоносителя в подающем или обратном распределителях. Ведь для водяного обогрева, в отличие от электрического, не характерна установка тепловых датчиков в конструкцию пола – их монтируют непосредственно на коллекторах. Чаще всего такие датчики или чувствительные элементы являются частями термостатических клапанов, посредством которых и осуществляется регулировка теплого пола.

Управляющие сигналы на автоматические устройства также могут поступать с воздушных термодатчиков, размещенных в отапливаемых помещениях.

Ручная регулировка коллекторов ТП

Наиболее простой, хотя и затратный по времени способ настройки – это регулировка температуры теплого пола с использованием ручных вентилей. Задача несколько упрощается с установкой на гребенку расходомеров (ротаметров).

Расходомеры упрощают дозировку количества циркулирующего теплоносителя (расхода) в одном отдельно взятом контуре системы теплого пола. В случае группового контроля температуры, по всему коллектору, ротаметр может также использоваться для балансировки поступления теплоносителя (сглаживания разницы в гидравлических сопротивлениях) по петлям различной длинны.

Основные элементы расходомерного клапана, это:

  • корпус с запорно-регулирующим клапаном. Он вкручивается в соответствующее техническое отверстие коллектора;
  • колба из прозрачного пластика или стекла с нанесенной шкалой;
  • поплавок указатель, позволяющий визуально контролировать расход жидкости через ротаметр.

Ручная регулировка коллектора теплого пола осуществляется путем прикручивания/откручивания ручных вентилей или настройкой пропускной способности расходомеров.

Важно! Улучшение эффективности работы системы напольного отопления, в результате её ручной настройки, будет заметно лишь в случае интенсивной циркуляции теплоносителя по ней. Добиться этого возможно только, при использовании отдельного теплонасоса.

Последовательность ручной настройки температуры теплого водяного пола

В начале настроечных операций необходимо убедиться, что трубопроводы системы ТП (вторичного контура) полностью заполнены теплоносителем и не имеют воздушных пробок. Их наполнение осуществляется вслед за основной системой отопления (первичным контуром). В это время вся запорно-регулирующая арматура на коллекторах должна быть закрыта.

После открытия коренных кранов на подачу и обратку распределителей для теплого пола, последовательно открываются запорные устройства на каждой из петель. Стравливание воздуха осуществляется через краны Маевского или автоматические воздухоотводчики гребенок. Заполнение очередной ветки рекомендуется выполнять, только после полного заполнения предшествующей и её гарантированного обезвоздушивания.

Завершив заполнения первой петли необходимо включить теплонасос вторичного контура отопления и прогнать теплоноситель по его системе. Эффективность циркуляции жидкости проверяется встроенными или накладными термометрами. В крайнем случае, можно просто одновременно приложить руки к трубам подачи и обратки – они должны быть теплым, но с небольшой разницей в нагреве.

Заполненную первую петлю, следует отсечь с обоих концов от коллекторов, используя локальную запорно-регулирующую арматуру. Затем, вышеперечисленные действия осуществляются со следующей петлей.

После последовательного заполнения всех контуров ТП, их запорные устройства открываются, а теплонасос включается в рабочий режим. Температура теплого водяного пола настраивается через подачу теплоносителя в каждую его ветку. Она устанавливается изменением расхода жидкости (вентилем либо ротаметром), а контроль осуществляется по изменению градиента температур между подающим и обратным потоком. В конечном итоге, эта разница для различных контуров должна оказаться одинаковой, в пределах 5-15 0 С. Чем длиннее петля, тем интенсивнее будет остывать теплоноситель и тем больший расход его требуется.

Важно! Теплообмен в напольных водяных системах отопления осуществляется с большой инерционностью. Задержка прогрева поверхности покрытия особенно заметна, если трубы уложены в слишком толстую бетонную заливку (свыше 60-70 мм). Иногда эффект от изменения интенсивности подачи теплоносителя становится заметным только через несколько часов.

Для контроля правильности регулировки теплого водяного пола рационально, использовать бесконтактные лазерные или контактные электрические термометры. Их монтаж для замера температуры труб подачи и обратки поможет сократить время получения результата изменения настроек с нескольких часов до 10-15 мин.

Автоматическая регулировка температуры ТП

Автоматическая регулировка теплого пола может осуществляться термомеханическим или электронным способом с применением электромеханических исполнительных устройств, управляющих работой запорной арматуры.

Термомеханическая система управления

Основывается на работе термостатических клапанов или кранов с термоголовками, реагирующих на изменение температуры теплоносителя. Различные модели подобной запорно-регулирующей арматуры сегодня предлагает множество производителей, например, Oventrop. Однако независимо от названия и типа используемого в них термореактивного вещества (жидкости или газа), это термомеханические саморегулирующиеся механизмы, которые наиболее целесообразно устанавливать для контроля температуры одного, отдельно взятого контура.

Принцип действия термоклапанов прост, что делает их весьма надежными и отказоустойчивыми. Медный, латунный или бронзовый сердечник, установленный в корпусе устройства, разогреваясь проходящим потоком теплоносителя, передает температуру термореактивному наполнителю. В свою очередь, увеличивающийся в объеме термореактивный элемент толкает сердечник, который перемещая клапан, постепенно блокирует циркуляцию нагретой жидкости.

Термостатический клапан для теплого пола, помимо установки на распределительной гребенки, может монтироваться в отдельную сборку типа «унибокс». Подобные сборки включают также автоматические воздухоотводчики, которые совместно с термостатами помещаются в компактные коробки (боксы). Использование «унибокса» позволяет для регулировки температуры в отдельно взятой ветке ТП не привязываться к громоздким коллекторным шкафам, что особенно удобно при небольшом количестве контуров.

Кроме того, термомеханические регуляторы тёплого пола могут иметь выносные воздушные чувствительные элементы. Они позволяют настраивать их на управление потоком теплоносителя не по его температуре, а по температуре воздуха в помещениях. Принцип их действия тот же, только термореактивное вещество гораздо чувствительней. Воздушную термоголовку целесообразно устанавливать для одновременного контроля нескольких контуров в одном помещении, где водяной напольный обогрев является единственным источником отопления.

Электронная система управления

В ее состав входят электронные термометры, контроллер и электроприводы (исполнительные устройства, сервоприводы). Механизмы электроприводов могут крепиться к смесительным головкам обычных регулировочных вентилей (клапанов) или являться частью их конструкции. Изменение интенсивности подачи теплоносителя осуществляется в соответствии с заданными пороговыми значениями. Средой измерения для датчиков температуры автоматического регулятора температуры теплого пола может служить как теплоноситель, так и воздух в помещениях.

Важно! Подобная регулирующая аппаратура является достаточно дорогим удовольствием, но при этом она способна обеспечить оптимальные режимы работы напольного обогрева и максимальную экономию энергоресурсов. Кроме того, электронные регуляторы позволяют программировать ТП с привязкой режимов его работы к различным временным периодам, что гарантирует пользователю максимальный тепловой комфорт.

Влияние способа подачи теплоносителя на выбор технологии регулировки

Контроль разогрева водяных теплых полов, оборудованных собственными теплонасосами, происходит в условиях непрерывной подачи теплоносителя с большой скоростью и в больших объемах. Такие системы используют подмес охлажденной жидкости к потоку подачи, чтобы привести его энергетические параметры к заданным. Подмес осуществляется в насосно-смесительных узлах (НСУ), которые понижают температуру теплоносителя из первичного высокотемпературного контура отопления до расчетных. Дальнейшая регулировка температуры теплого пола осуществляется на гребенках и уже была описана выше. НСУ блоки обеспечивают оптимальные условия работы напольного обогрева, а также позволяют устанавливать его на неограниченных площадях.

Тем не менее, при небольшой квадратуре ТП имеется возможность уйти от использования дорогих смесительных узлов. Температура теплоносителя для теплого пола, в этом случае, поддерживается способом ограничения потоков или по RTL схеме. Функциональный принцип действия схемы заключается в порционной подаче теплоносителя в контуры. В каждой ветке активный элемент термостатического клапана, установленный на обратке, разогревшись до установленного температурного максимума, перекрывает поток рабочей жидкости. Тепло, постепенно отдаваемое теплоносителем, рассеивается в бетонной стяжке. После охлаждения системы до минимального температурного порога, клапан открывается, и цикл порционной подачи повторяется.

Простота RTL регулировки нагрева теплого пола делает её особенно привлекательной. Ведь для неё достаточно использования набора термомеханических клапанов, установленных на гребенке, либо компактных сборок типа «унибокс». Однако, выбирая RTL схему, не стоит забывать и о её ограничениях:

  • она применима только в теплых полах, выполненных под толстую бетонную стяжку, играющую роль теплового аккумулятора;
  • для эффективного функционирования, помимо хорошего теплоотвода, трубопроводы контуров должны обладать минимальным гидравлическим сопротивлением. Это необходимо для быстрого обновления теплоносителя. С учетом отсутствия теплонасоса в системе ТП подобные условия соблюдаются, если длина веток не превышает 50 м при диаметре трубопроводов 16 мм. Если же необходимо несколько увеличить длину прокладки контуров, то рекомендуется использовать трубы Ø 20 мм.

Важно! Использование труб разных диаметров в одной системе (на одном коллекторе) теплого пола с RTL регулированием настоятельно не рекомендуется.

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления – проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования – поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
– обеспечение расчетного расхода теплоносителя через приборы отопления;
– задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это – так называемый, открытый контур.

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина – это температура наружного воздуха, регулируемая – температура теплоносителя, подаваемая в контур теплого пола.

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола.

Автоматическая температура отопления. комфорт и экономия тепла

Установка термостата

Чтобы устройство правильно работало, нужно знать, как поставить регулятор на батарее отопления и как им пользоваться. Его помещают в отверстие, закрывающее пробку на радиаторе по ходу циркуляции горячей жидкости. Монтаж осуществляют так, чтобы термостатический элемент оказался закрепленным горизонтально. При этом будет скомпенсировано влияние нагрева на клапан и трубы.

Установку регуляторов температуры на батареи в однотрубных конструкциях  производят исключительно при наличии байпаса. Так называется трубная перемычка, обеспечивающая независимое передвижение теплоносителя от труб, которые подводят его к радиаторам.

На клапане терморегулятора можно увидеть стрелку, указывающую на направление движения нагретой жидкости. Когда термостат помещают на функционирующую отопительную систему, тогда этот нюанс определяют относительно вертикальных трубопроводов.

Работа терморегуляторов механического типа зависит от ряда факторов:

  • движения воздушных потоков в помещении;
  • прямого солнечного света;
  • наличия в комнате источников холода или тепла;
  • температуры снаружи помещения.

Конструкция

привод регулирующих клапанов ВД

Серводвигатель состоит из следующих функциональных частей:

Voith управляющий магнит VRM (A)

С интегрированной регулировкой положения и магнитной силы

Управляющая гидравлическая задвижка, состоящая из компонентов:

Корпус задвижки (B1)

Управляющий поршень (B2)

Регулирующая пружина (B3)

Стержень (B4)

Крышка (B5)

Блок привода, состоящий из компонентов:

Силовой цилиндр (D1)

Демпфер (D2)

Прижимная пружина (D3)

Поршневой стержень(D4)

Электронное определение положения, состоящее из компонентов:

Датчик положения (E1)

Магнит датчика (E2)

Крышка (E3)

(Visited 1 217 times, 1 visits today)

Изменение способа подключения радиатора

Знакома ли вам ситуация, когда половина батареи имеет высокую температуру, а половина холодная? Чаще всего в этом случае виноват способ подключения. Взгляните как работает прибор при одностороннем подключении радиатора с подачей теплоносителя сверху.

Обратите внимание, насколько хуже работают дальние секции

Теперь взглянем на схему одностороннего подключения с подачей теплоносителя снизу.

Видим тот же самый эффект

А вот двухстороннее подключение с подачей сверху и снизу.

Видим тот же самый эффектВидим тот же самый эффект

Если вы обнаружили у себя одну из представленных выше схем, то вам не повезло. Самым рациональным с точки зрения эффективности работы является диагональное подключение с подачей сверху.

Вся теплообменная площадь радиатора прогревается равномерно, радиатор работает на полную мощность

И как же быть в том случае, когда разводку труб менять не хочется или же невозможно? В этом случае мы можем посоветовать приобрести радиаторы, имеющие в своей конструкции некоторую хитрость. Эта специальная перегородка между первой и второй секцией, меняющая направление движения теплоносителя.

Специальная заглушка превращает нижнее двухстороннее подключение в нужное нам диагональное с верхней подводкойА этот вариант подходит для верхнего двухстороннего подключения

В случае одностороннего подключения показали свою эффективность специальные удлинители потока.

Принцип работы удлинителя потока

Существуют устройства и для оптимизации одностороннего нижнего подключения, но думаем общий принцип вам теперь стал ясен.

Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «Способ подключения является одним из самых эффективных способов повысить теплоотдачу батареи или, если точнее выразиться, заставить радиатор работать так, как он должен. По понятным причинам такие вещи лучше всего предусматривать на этапе проектирования отопительной системы, чтобы не ломать голову потом. Ведь любая переделка потребует отключения стояка, навыков слесаря или денежных затрат, а в некоторых случаях и согласования с ЖЭКом.»

Вывод: эффективно на 100%.

Регулировка отопления подачей или обраткой

Частично отрегулировать нагрев всех отопительных приборов в квартире или доме можно с помощью так называемой гидравлической балансировки. Для более равномерного распределения воды в системе применяют установку терморегуляторов и кранов на всех батареях. При настройке системе проверяется температура «обратки» в радиаторах. Она должна иметь разницу +\- 1 градус Цельсия.

Балансировка проводится при полностью (на максимум) открытых термоголовках. Для проверки температуры обратки используется контактный термодатчик, например, в мультиметре.

Для радиаторов с повышенной температурой выходной трубы уменьшают сечение входной и проверяют систему еще раз.

5 Рекомендации домовладельцам

Ручные вентили имеют доступную стоимость, что положительно сказывается на их популярности у отечественных домовладельцев. Это надежная и простая в использовании запорная аппаратура, которая позволит упростить регулировку радиаторов отопления.

Сегодня в продаже можно найти десятки различных видов запорной арматуры для радиаторов отопления. Предпочтение следует отдавать немецким и итальянским клапанам и регуляторам, которые будут отличаться надежностью, долговечностью и великолепным качеством сборки. А вот недорогие вентили от отечественных или китайских производителей имеют посредственное качество и прослужат от силы один-два отопительных сезона, после чего потребуют замены.

Регулирующие краны устанавливаются с использованием обжимных фитингов. Резьбовой вид соединения с трубами позволит гарантировать отсутствие протечек, а при необходимости можно с легкостью выполнить замену и обслуживание термостата. Для уплотнения фитингов используют лен или фум-ленту.

Регулировка тепла в батареях отопления в квартире и в частном доме позволяет не только обеспечить максимально возможный комфорт проживания, но и экономит расходы домовладельца на оплату коммунальных услуг. Для управления работой радиаторов могут использоваться ручные, механические и электронные клапаны.

Необходимо правильно подобрать запорную арматуру, а в последующем грамотно смонтировать ее, что позволит обеспечить беспроблемность эксплуатации терморегуляторов, которые будут работать в полностью автономном режиме.

Рекомендации по монтажу устройств

Для возможности изменять температуру батарей в помещении можно использовать несколько различных видов клапанов. Устройства могут быть прямыми или угловыми. Монтаж такого прибора достаточно простой, главное при установке не запутаться с его положением. На корпусе обязательно должно быть указано правильное направление потока жидкости, которые должно совпадать с током циркуляции жидкости внутри сети.

Обычно такие приборы требуется располагать на входных отделах прибора для отопления. Если возникает необходимость, клапан может быть врезан и на выходе радиатора. Это осуществляется для возможности самостоятельно сбросить из системы теплоносителя. Установкой заниматься можно только при уверенности, какая из батарей является подающей.

Проведение изменений параметров обогрева может потребоваться в доме для экономии, снижения температуры или раздельного микроклимата в разных комнатах. Это может быть осуществлено за счет  механических или автоматических устройств. При этом важным фактором является правильный выбор и установка с учетом направления тока жидкости, скорости циркуляции и других параметров.

Стоит заметить, что автоматические устройства, назначенные чтобы убавить температуру, требуют питания от аккумулятора или сети. Наладка их работы в квартире или доме может занять время. Однако, с учетом наличия дисплея, настроить нужные показатели и сделать проживание комфортным, проще нежели с механическими видами клапанов.

Средняя оценка

оценок более 0

Поделиться ссылкой

Термоклапан — строение, назначение, виды

Клапан в терморегуляторе по строению очень похож на обычный вентиль. Имеется седло и запорный конус, который открывает/закрывает просвет для протекания теплоносителя. Температура радиатора отопления регулируется именно таким образом: количеством проходящего через радиатор теплоносителя.

Термостатический клапан в разрезе

На однотрубную и двухтрубную разводку клапана ставят разные. Гидравлическое сопротивление вентиля на однотрубную систему намного ниже (как минимум, в два раза) — только так можно ее сбалансировать. Перепутать вентили нельзя — греть не будет.  Для систем с естественной циркуляцией подходят вентили для однотрубных систем. При их установке гидравлическое сопротивление, кончено, возрастает, но работать система сможет.

На каждом клапане есть стрелка, указывающая движение теплоносителя. При монтаже его устанавливают так, чтобы направление потока совпадало со стрелкой.

Из каких материалов

Изготавливают корпус вентиля из стойких к коррозии металлов, часто дополнительно покрывают защитным слоем (никелируют или хромируют). Есть клапана из:

Понятное дело, что нержавейка — лучший вариант. Она химически нейтральна, не корродирует, не вступает в реакции с другими металлами. Но стоимость таких клапанов велика, найти их сложно. Бронзовые и латунные вентили примерно одинаковы по сроку службы

Что в этом случае важно — это качество сплава, а за ним тщательно следят известные производители. Доверять или нет неизвестным — вопрос спорный, но есть один момент, который лучше отследить

На корпусе обязательно должна присутствовать стрелка, указывающая направление потока. Если ее нет — перед вами совсем дешевое изделие, которое лучше не покупать.

По способу исполнения

Так как радиаторы устанавливаются разными способами, клапана делают прямыми (проходными) и угловыми. Выбираете тот тип, который в вашу систему станет лучше.

Прямой (проходной) клапан и угловой

Название/фирма Для какой системы Ду, мм Материал корпуса Рабочее давление Цена
Данфос, угловой RA-G с возможностью настройкой однотрубной 15 мм, 20 мм Никелированная латунь 10 Бар 25-32 $
Данфос, прямой RA-G с возможностью настройкой однотрубной 20 мм, 25 мм Никелированная латунь 10 Бар 32 – 45 $
Данфос, угловой RA-N с возможностью настройкой двухтрубной 15 мм, 20 мм. 25 мм Никелированная латунь 10 Бар 30 – 40 $
Данфос, прямой RA-N с возможностью настройкой двухтрубной 15 мм, 20 мм. 25 мм Никелированная латунь 10 Бар 20 – 50 $
BROEN , прямой с фиксированной настройкой двухтрубной 15 мм, 20 мм Никелированная латунь 10 Бар 8-15 $
BROEN , прямой с фиксированной настройкой двухтрубной 15 мм, 20 мм Никелированная латунь 10 Бар 8-15 $
BROEN ,угловой с возможностью настройкой двухтрубной 15 мм, 20 мм Никелированная латунь 10 Бар 10-17 $
BROEN ,угловой с возможностью настройкой двухтрубной 15 мм, 20 мм Никелированная латунь 10 Бар 10-17 $
BROEN , прямой с фиксированной настройкой однотрубной 15 мм, 20 мм Никелированная латунь 10 Бар 19-23 $
BROEN , угловой с фиксированной настройкой однотрубной 15 мм, 20 мм Никелированная латунь 10 Бар 19-22 $
OVENTROP , осевой 1/2″ Никелированная латунь, покрытая эмалью 10 Бар 140 $

Настройка температуры в многоквартирном доме на обратке и подаче

Установка регулятора отопительной системы будет зависеть от её общего устройства. Если СО смонтирована индивидуально для конкретного помещения, процесс совершенствования проходит благодаря следующим факторам:

  • система работает от котла индивидуальной мощности;
  • установлен специальный трехходовый кран;
  • прокачка теплоносителя происходит в принудительном порядке.

В целом для всех СО, работы по регулировке мощности будут заключаться в установке специального вентиля на саму батарею.

С его помощью можно не только регулировать уровень тепла в нужных помещениях, но и исключить отопительный процесс вовсе на тех площадях, которые слабо используются или не функционируют.

Существуют следующие нюансы в процессе регулировки уровня тепла:

  1. Системы центрального отопления, которые устанавливаются в многоэтажных домах, основываются зачастую на теплоносителях, где подача происходит строго вертикально сверху вниз. В таких домах на верхних этажах жарко, а на нижних — холодно, соответственно отрегулировать уровень отопления не получится.
  2. Если в домах используется однотрубная сеть, то тепло от центрального стояка подаётся в каждую батарею и возвращается обратно, что обеспечивает равномерное тепло на всех этажах здания. В таких случаях проще установить клапаны регулировки тепла — установка происходит на подающую трубу и тепло продолжает распространяться также равномерно.
  3. Для двухтрубной системы стояков монтируется уже два — тепло подаётся к радиатору и в обратном направлении, соответственно клапан регулировки можно установить в двух местах — на каждой из батарей.

Типы регулировочных клапанов для батарей

Современные технологии далеко не стоят на месте и позволяют для каждого радиатора отопления установить качественный и надёжный кран, который будет контролировать уровень тепла и нагрева. Подсоединяется он к батарее специальными трубами, что не займёт большого количества времени.

По типам регулировки выделяю два вида клапанов:

  1. Обычные терморегуляторы с прямым действием. Устанавливается рядом с радиатором, представляет собой небольшой цилиндр, внутри которого герметично расположен сифон на основе жидкости или газа, который быстро и грамотно реагирует на любые изменения температуры. В случае если температура батареи повысится, жидкость или газ в таком клапане расширятся, произойдёт давление на шток клапана регулятора тепла, который переместится и перекроет поток. Соответственно если температура понизится — процесс будет обратным.

Фото 1. Схема внутреннего устройства терморегулятора для батареи. Указаны основные части механизма.

  1. Терморегуляторы на основе электронных датчиков. Принцип работы аналогичен с обычными регуляторами, отличаются только настройки — все можно сделать не в ручном режиме, а в электронном — заложить функции заранее, с возможной отсрочкой времени и контролем температур.

Как отрегулировать радиаторы отопления

Стандартный процесс регулирования температуры радиаторов отопления состоит из четырёх этапов — стравливания воздуха, регулировки давления, открытия вентилей и прокачки теплоносителя.

  1. Стравливание воздуха. На каждом радиаторе есть специальный клапан, открыв который можно выпустить лишний воздух и пар, мешающий нагреву батареи. В течение получаса после такой процедуры необходимая температура нагрева должна быть достигнута.
  2. Регулировка давления. Чтобы давление в СО распределялось равномерно — можно повернуть запорные вентили разных батарей, закреплённых за одним отопительным котлом, на разное количество оборотов. Такая регулировка радиаторов позволит нагреть помещение как можно быстрее.
  3. Открытие вентилей. Установка специальных трёхходовых клапанов на радиаторах позволит убрать тепло в неиспользуемых помещениях или ограничить нагрев, допустим, на время вашего отсутствия в квартире днём. Достаточно просто закрыть вентиль полностью или частично.

Фото 2. Трехходовой клапан с терморегулятором, позволяющий легко настраивать температуру радиатора отопления.

  1. Прокачка теплоносителя. Если СО принудительная — прокачка теплоносителя осуществляется с использованием регулировочных вентилей, с помощью которых сливается некоторое количество воды, чтобы дать радиатору отопления возможность для нагрева.

Запорные устройства

Краны, используемые для установки в систему обогрева помещения, следует условно разделить на две группы – запорные и регулирующие. Деление это во многом условно, поскольку и запорная арматура позволяет регулировать движение теплоносителя. Естественно, в этом случае точность регулировки получается довольно низкой, однако отсечь батарею от источника воды можно.

Схема шаровой конструкции

Самой простой и часто используемой разновидностью кранов являются шаровые:

Шаровой кран предназначен для отключения радиатора. Его конструкция позволяет устанавливать устройство либо в открытое, либо в закрытое положение, так что регулировка осуществляется довольно по принципу «есть тепло – нет тепла».

Шаровые краны для радиаторов отопления обеспечивают двухпозиционную регулировку

Обратите внимание!В принципе, можно зафиксировать вентиль и в промежуточном положении, но тогда скорость его износа возрастет многократно за счет трения взвешенных в воде частиц о запорный элемент.Так что лучше этого не делать без крайней необходимости

  • Блокировка потока теплоносителя осуществляется за счет движения металлического шара с отверстием, соосным трубному просвету. При повороте рукоятки крана в действие приходит шток, который проворачивает сферу внутри корпуса, совмещая отверстие в ней с просветом трубы.
  • Как правило, детали кранов производятся из стали, бронзы или латуни. За герметизацию соединений и запорной части отвечают фторопластовые прокладки, которые при необходимости можно заменить своими руками.
  • Присоединение к радиатору осуществляется либо с помощью обычной гайки, либо с помощью «американки».

Шаровая конструкция с американкой

В отличие от шаровых кранов, конусные вентили дают возможность регулировать поток теплоносителя более плавно. Это обеспечивается особенностями их конструкции:

Устройство в разрезе

  • Запорным элементом выступает конусный шток, на поверхность которого наносится резьба.
  • Когда мы вращаем маховик, шток двигается по резьбе, смещаясь в вертикальной плоскости.
  • В крайнем нижнем положении просвет трубы полностью перекрывается. Герметичность перекрытия обеспечивается эластичными прокладками, которые надеваются на кольцевые канавки штока.
  • Поднимая запорную часть, мы приоткрываем просвет, и теплоноситель начинает поступать в радиатор.

Обратите внимание!Регулировать микроклимат в помещении можно лишь приблизительно, уменьшая или увеличивая количество горячей воды в каждой батарее

Модель в полипропиленовом корпусе

На практике чаще всего используются бронзовые или латунные конусные краны для радиаторов отопления: полипропиленом комплектуются только системы, часть труб в которых тоже сделана из пластика. Это объясняется сравнительно небольшой прочностью и износостойкостью полимеров по сравнению с сантехническими сплавами.

С другой стороны, полипропиленовые краны для радиаторов отопления стоят несколько дешевле, потому в условиях дефицита бюджета их вполне можно использовать.

Кран Маевского

При заливке теплоносителя в систему отопления внутрь вместе с водой или антифризом попадает и воздух.

Для его удаления используются специальные устройства – так называемые краны Маевского:

Устройство для выпуска воздуха

  • Конструкция такого изделия достаточно проста: его основу составляет запорный шток, установленный в корпусе с резьбой под радиаторную пробку.
  • Шток приводится в движение либо отверткой, либо специальным ключом, открывая просвет трубы в седловине.

Обратите внимание!Если есть возможность, покупайте вентили под отвертку, поскольку ключ вы будете регулярно терять, что и неудивительно – пользоваться им придется один-два раза в год. Нужно иметь в виду, что пропускная способность у такого крана невелика, так что, например, на расширительный бак его ставить не стоит: стравливать лишний воздух придется около часа. В такой ситуации больше подойдет обычный вентиль или водоразборный кран, установленный изливом вверх

В такой ситуации больше подойдет обычный вентиль или водоразборный кран, установленный изливом вверх

Нужно иметь в виду, что пропускная способность у такого крана невелика, так что, например, на расширительный бак его ставить не стоит: стравливать лишний воздух придется около часа. В такой ситуации больше подойдет обычный вентиль или водоразборный кран, установленный изливом вверх.

Фото установленного клапана

4 Советы перед началом установки

Термоголовка на радиаторе отопления работает благодаря физическому явлению расширения веществ под воздействием температуры. Монтаж можно осуществить своими руками, не прибегая к помощи специалистов. Главное, правильно установить оборудование. Основные рекомендации:

1. Перед началом монтажа механизма желательно ознакомиться с инструкцией от производителя.

2

Во время работы следует соблюдать особую осторожность, так как конструкция имеет уязвимые места. Механические нагрузки могут повредить элемент

3

Поставить термостат необходимо так, чтобы он находился в горизонтальном положении.

4. На корпусе имеются подсказки, которые указывают необходимое направление движения воды. Это обязательно следует учитывать во время установки.

5. Если отопительная система является однотрубной, то следует установить байпасы. Это позволяет демонтировать один радиатор без отключения всего обогрева.

Полуэлектронные устройства обычно устанавливают на батареях, которые не закрываются шторами или различными декоративными элементами. В противном случае оборудование может неправильно работать. Электронные приборы не рекомендуется монтировать в кухне, холле или вблизи котельной, так как они более чувствительные.

Если батареи слишком горячие

В этом случае возникает вопрос о том, как отрегулировать батареи отопления в квартире. Изменить температуру в сети пользователь не может, остается только уменьшать скорость потока жидкости в отопительных приборах. Для этого используют специальные ручные или автоматические устройства.

Вентиль с ручным управлением – самый простой и давно известный способ. Уменьшая с помощью штока доступное сечение трубы, мы уменьшаем поступление нагретой жидкости в радиатор и тем самым уменьшаем ее теплоотдачу. При этом следует проверять, не окажется ли такая «регулировка тепла» невыгодным предприятием: при параллельном подключении всех батарей уменьшение потока в первой автоматически вызывает охлаждение остальных. Таким образом, если первый в цепочке радиатор расположен в спальне и он слишком горячий, можно уменьшить его нагрев. Но тогда последний радиатор – например, в кухне – окажется почти холодным и отопление в помещении будет недостаточным.

Важно: если жарко в квартире, но система отопления однотрубная – регулировку можно устраивать только при наличии байпасов (перемычек). В противном случае, «прикрутив» батареи у себя, можно получить неприятности с соседями, живущими «дальше по стояку» или с сотрудниками коммунальных служб

При двухтрубной схеме таких проблем не возникает.

Для регулировки батарей отопления устанавливают либо вентиль и шаровой кран на подводящей и отводящей трубах соответственно, либо термостат на батарее отопления.

Важно: на подающей трубе должен устанавливаться именно вентиль, а не шаровой кран! Кран является чисто запорной арматурой с двумя рабочими положениями – «открыто» и «закрыто». Промежуточные положения шара приводят к его постепенному разрушению твердыми частицами теплоносителя, поэтому «время жизни» такого крана гораздо меньше, чем у вентиля

Вентиль же считается запорно регулирующей арматурой для отопления и имеет более широкий диапазон рабочих положений между крайними.

Для ручной регулировки системы отопления в квартире используют специальные регулировочные вентили с прямым или угловым подключением.

Выбор желаемого положения штока в этом случае зависит от температуры на улице, нагрева подаваемой в отопительную систему воды и пожеланий пользователей. Как регулировать батареи отопления с регулятором? Внимательно отслеживать температуру в квартире (доме) и «подкручивать» вентиль до желаемого результата. Интересно, что ручных вентилях встроен термоклапан и можно сравнительно легко превратить устройство для ручной регулировки в автоматическое, купив и закрепив на нем термоголовку.

Автоматические регуляторы

Автоматические устройства состоят из термоклапана и термоголовки.

Клапан позволяет менять сечение в подводящей трубе, термоголовка на основании выносных или встроенных датчиков температуры, а также дополнительных контроллеров, дает команду на изменение положения штока в клапане.

В наиболее простом (и дешевом) варианте устройства содержится капсула с газом или жидкостью, которая под действием изменения температуры расширяется и сжимается. Расположенный рядом с этой капсулой поршень штока смещается в сторону уменьшения или увеличения проходного сечения трубы. Более сложные приборы имеют питание от батарейки или аккумулятора, передают усилие на шток с помощью электротока. Некоторые варианты подключаются к домовой электросети, например, термостаты, встроенные в общую систему «умный дом».

Вопрос, как регулировать температуру батареи отопления с помощью термостата – в полностью автоматизированном режиме или с контролем владельца жилья – решается в зависимости от общей схемы системы «умный дом» и особенностей ее работы.

Важный нюанс: для нормальной работы устройства с вынесенным датчиком температуры необходимо обеспечить постоянную и свободную циркуляцию воздуха возле термометра. Если датчик находится непосредственно в термоголовке, ее лучше монтировать горизонтально (перпендикулярно основной плоскости радиатора), поскольку именно в этом положении нагревательные элементы меньше всего влияют на термометр.

На качество работы вынесенных датчиков температуры также влияют:

  • плотные шторы, закрывающие его;
  • слишком малое расстояние между подоконником и датчиком;
  • установка отопительного прибора в нише.

Процесс регулировки батарей

Зачастую в начале строительства настройку системы отопления производят за счет одной лишь разводки труб различной толщины от котла по радиаторам. Однако, такого подхода для эффективного управления системой отопления недостаточно.

Даже если котел запрограммирован на определенную температуру, батареи могут быть холоднее, чем требуется. Это происходит от того, что в трубах находится большое количество воздуха. Если его спустить, вода сможет свободнее течь по трубам. Следственно, помещение начнет прогреваться более быстро и с повышенной эффективностью. Поэтому при регулировке батарей в первую очередь следует спустить воздух из радиаторов. (См. также: Обвязка радиаторов отопления )

Непосредственно для этих целей абсолютно на каждой батарее с одной из сторон расположен специальный кран, при повороте которого вы сможете выпустить ненужный воздух. Однако, будьте при этом осторожны и открывайте его медленно, чтобы избежать резкого выброса горячего пара, так как он находится там под высоким напором.

Чтобы правильно регулировать батареи отопления, только лишь открывать и закрывать специальный регулировочный кран на батарее, конечно же, недостаточно. В зависимости от того, сколько батарей присоединено к котлу, открывайте их на определенное количество оборотов. Например, у вас есть три радиатора, подсоединенных к котлу. Чтобы давление равномерно распределялось по всей системе отопления, первую батарею откройте на пару оборотов, вторую – на три, третью – на четыре. Такая регулировка батарей отопления в квартире позволит нагреть помещения за более короткий срок.

В том случае, если у вас в системе присутствует функция принудительной прокачки воды, появляется возможность на каждом радиаторе установить так называемые трехходовые краны. При наличии в котле достаточной мощности отрегулировать температуру батареи отопления не составит труда. Вообще, чтобы упростить процесс настройки необходимой температуры, каждый радиатор должен иметь специальные вентили. (См. также: Схема подключения батарей отопления )

Их наличие позволит контролировать поступление тепла и рациональное расходование мощностей отопительного оборудования. К примеру, если в комнате стало слишком жарко, либо она не используется и стоит закрытой, то поступление горячей воды в радиатор можно при помощи такого крана понизить либо полностью перекрыть.

Комфортная экономия тепла. Плюсы и минусы регулировки температуры отопления.

Мы рассказали Вам основные принципы  автоматического контроля  температуры отопления.  Результатом использования таких систем является комфорт и экономия тепла. Термоголовки постепенно уходят с ниши экономного отопления. Причиной тому служит то, что эти устройства обладают большой погрешностью в работе. Они чувствительны к качеству окон, и наличию открытых форточек. А установка непосредственно вблизи радиатора отопления сильно загрубляет диапазон регулирования в эксплуатации. Электронные средства регулирования температуры отопления более надежны и требуют смекалки c навыком в интеграции. Конечно же, если Вы задумались экономить на отоплении, и хотите комфортного и уютного тепла. Тогда Вам не составит сильного труда интегрировать все это в имеющеюся систему отопления. Поверьте нам, установка хронотермостата в систему отопления – это уже важный шаг в экономию. Разбив 24 часа отопления помещения на промежутки с разной температурой и выставив отдельно температуру в выходные дни на хронотермостате – Вы станете экономить порядка 20% в доме, а в офисе можно достичь и всех 40%. 

 Вы забудете про такую проблему, когда становится очень жарко или тепло в течение дня.

Автоматизация поддержания температуры – это комфорт и экономия. Почему отопление становится экономным? Давайте посмотрим логически на этот вопрос. Самый большой потребитель тепла в системе отопления – это дом, квартира или помещения предприятия. Когда наступает период зимних морозов, температуру системы отопления увеличивают, чтобы стабилизировать теплопотери дома, квартиры и т.д. Но всегда существует момент, когда помещение меньшей площади прогревается быстрее больших. В таком помещении становится жарко, и тепло, которое могло бы пойти на прогрев других помещений, задерживаясь кушает энергоресурсы из бюджета. Когда же все помещения прогреются, то котел  выключится, а “задержавшееся тепло”  начнет распространяться уравнивая температуру в доме. В результате в остальных помещениях тоже станет жарковато. Затем, душно и следом потребуется проветривание помещения. Установка системы автоматического поддержания температуры убирает этот момент. Автоматика определяет, когда наступает именно этот момент и заблаговременно отключает зону, это повышает экономичность и скорость обогрева других площадей. Вы получаете комфортное и экономное тепло. В наши дни умные системы отопления позволяют суммарно экономить на отоплении дома порядка 70-75% бюджета. Это очень высокий результат!!! И это не сказки.

На этом мы заканчиваем свой рассказ и надеемся, что теперь Ваш дом станет теплым и уютным. 

.Вы можете позвонить нашим менеджерам по телефону +7 (351) 222-10-92 и проконсультироваться по интересующим Вас вопросам. Сайт компании ВИКО: www.td-viko74.ru “ВИКО” – инженерная сантехника в Челябинске

Lux WIN100 Автоматический программируемый выходной термостат на 5–2 дня для обогрева и охлаждения, совместимый с переносными кондиционерами, вентиляторами и обогревателями — Программируемые бытовые термостаты

Цвет: Один цвет

Описание товара

Программируемый выходной термостат позволяет управлять любым устройством на 120 вольт до 15 ампер. Используйте с вентилятором или кондиционером для охлаждения. Также может использоваться с обогревателем для обогрева.Отдельные программы для нагрева и охлаждения. Диапазон настройки от 45 до 90 градусов по Фаренгейту (от 7 до 32 градусов по Цельсию) с возможностью выбора DegreeF / DegreeC. Временное отключение температуры и ручное удержание. Регулируемый перепад температур / частота цикла. Ползунковый переключатель режимов и положительный переключатель включения / выключения. Питание от розетки 120 В переменного тока. Только 12-часовые часы. В комплект входят 2 щелочные батареи G13A размером 1,5 В (только для часов). Экранный индикатор низкого заряда батареи. Память без батареи. 5-минутная защита от короткого цикла. На дисплее попеременно отображаются время и температура.

Amazon.com

Предназначенный для использования с обогревателями и кондиционерами, которые автоматически перезапускаются после повторного включения питания, программируемый выходной термостат Lux WIN100 на 5-2 дней для обогрева и охлаждения предлагает комфорт, удобство и преимущества полного программирования. Чтобы использовать, просто подключите WIN100 к розетке, подключите портативный нагревательный или охлаждающий блок к термостату, и все готово.


WIN100 5-2 Day
Нагрев и охлаждение
Программируемый выходной термостат
Кратко:

  • Программируемый термостат для переносных кондиционеров и обогревателей
  • Установите отдельные программы выходных / будних дней
  • Подключите к стандартной розетке на 120 вольт бытовая розетка (с заземлением)
  • Простое управление — запатентованный Lux Speed ​​Dial, выключатель и память
  • Экономия денег и энергии без ущерба для комфорта
  • Электронная точность; 100% без ртути

WIN100 можно запрограммировать до того, как он будет подключен к стене.
Запатентованный Lux Speed ​​Dial упрощает программирование. Создавайте различные программы для будних и выходных дней.
WIN100 позволяет вам пользоваться преимуществами программируемого термостата для вашего нагревательного или охлаждающего устройства. Эта модель предлагает удобство программирования на 5–2 дней, поэтому вы можете создавать разные программы для будних и выходных дней.

WIN100 также может похвастаться положительным переключателем включения / выключения и переключателем нагрева / охлаждения, который позволяет использовать этот продукт в течение двух сезонов: летом и зимой.

Удобное управление
WIN100 отличается простотой управления и имеет запатентованный Lux Speed ​​Dial для легкого программирования, положительный переключатель включения / выключения для упрощения работы и хранение в памяти без батарей.

Для дополнительного удобства этот термостат, одобренный ETL, можно запрограммировать перед подключением к стене. После программирования он работает от стандартной 120-вольтовой розетки (с заземлением) и поставляется с двумя 1,5-вольтовыми щелочными батарейками G13 для часов.

Экономия денег и окружающей среды
Как и все программируемые термостаты, WIN100 помогает снизить потребление энергии, но это эффективное устройство позволяет сэкономить еще больше. Чтобы максимально повысить энергоэффективность вашего дома, WIN100 поставляется с предварительно запрограммированными графиками нагрева и охлаждения по умолчанию, которые предназначены для экономии до 33% затрат на электроэнергию в течение года, а также помогают сократить выбросы углекислого газа.Поскольку WIN100 на 100% не содержит ртути, вы можете быть уверены, что это безопасный и экологически безопасный выбор для вашего дома.

О Lux: инновации, качество и ценность
С 1914 года Lux Products Corporation производит качественную продукцию для дома. Все началось с устройств хронометража рубежа веков, предшественников всемирно известных 60-минутных таймеров Lux. Основываясь на успехе этих простых и практичных предметов, Lux превратилась в многогранного производителя и продавца, которым она является сегодня.Имя Lux всегда олицетворяло инновации, качество и ценность. Полная линейка электронных и механических термостатов компании предлагает модели практически для любого применения в отоплении и охлаждении. Узнайте, как можно сэкономить деньги и сэкономить энергию с помощью Lux.

Комплектация
Lux WIN100 5–2-дневный программируемый выходной термостат для нагрева и охлаждения, руководство по установке, руководство по эксплуатации и две щелочные батарейки типа «таблетка» G13 на 1,5 В.



Не уверены, какая модель вам подходит?
Щелкните здесь для полного сравнения программируемых термостатов LUX.

Лучший обогреватель для помещений с регулируемой температурой — отчеты потребителей

Насколько благоприятной может быть среда, в которой обитает человек, зависит от многих факторов; существенным является его температура. Когда температура слишком низкая, становится трудно вести активный образ жизни, что также может привести к серьезным проблемам со здоровьем. Чтобы получить такую ​​благоприятную температуру для вас, когда становится холодно, лучшим решением будет обогреватель с регулируемой температурой. Читайте дальше и найдите лучший для себя обогреватель с регулируемой температурой.

Обогреватели — это устройства, используемые для выработки тепла в помещениях и на территориях, меньших, чем весь дом. (например, отдельные небольшие участки дома или в офисе). Лучший тип обогревателя обычно работает на электричестве или на воспламеняемом топливе, таком как пропан, природный газ, мазут и т. Д.

Переносные обогреватели обычно работают на электричестве и, возможно, являются лучшими обогревателями помещений. С другой стороны, обогреватели, работающие на топливе, требуют постоянного выхлопа; таким образом, они неподвижны.

Зачем вам нужен обогреватель с регулируемой температурой?

Как мы уже говорили ранее, температура — очень важный фактор, который необходимо учитывать при создании благоприятной среды. И зачастую нам не удается достичь желаемой комнатной температуры; Следовательно, комнатный обогреватель с регулируемой температурой крайне необходим для регулирования температуры, производя необходимое тепло в холодное время года в ваших домах или офисах.

Можно ли оставлять обогреватель с регулируемой температурой без присмотра?

Учитывая, что обогреватель обладает некоторыми особенностями, можно и вполне безопасно оставить обогреватель с регулируемой температурой без присмотра, в том числе во время сна.Эти функции должны включать;

  • Сертификация одной из крупных испытательных организаций,
  • Автомат отключения,
  • Защита от опрокидывания,
  • Таймер отключения и
  • Регулируемый термостат.

Современные обогреватели очень безопасны, когда их оставляют без присмотра даже на длительное время.

Все нагреватели мощностью 1500 Вт излучают одинаковое количество тепла?

Фактически, все обогреватели мощностью 1500 ватт излучают одинаковое количество тепла.Кроме того, они также потребляют одинаковое количество энергии независимо от удельной стоимости. Как правило, эти электронагреватели вырабатывают 3,4 БТЕ тепла на один ватт электроэнергии.

Топ 5 лучших обогревателей с регулируемой температурой

1) Электрический обогреватель — Настенный комнатный обогреватель с подставкой

Настенный с подставкой

Этот настенный обогреватель поставляется с подставкой и приспособлениями для настенного монтажа, который идеально подходит и очень прост в установке в спальнях или офисных помещениях.Использование переносного стационарного обогревателя предпочтительнее, если есть необходимость время от времени перемещаться.

Это также один из лучших обогревателей для подвальных помещений. Этот электрический настенный обогреватель также рекомендуется использовать в ванных комнатах для теплого и теплого душа зимой. Возможность настенного монтажа этого обогревателя помогает максимизировать площадь пола, уменьшая потери пространства.

Быстрый и сбалансированный нагрев

Этот настенный обогреватель мощностью 1500 Вт может охватывать помещения среднего размера до 160 квадратных футов при использовании в качестве дополнительного источника тепла.Этот электрический обогреватель со встроенным турбовентилятором и кварцевой трубкой быстро и равномерно вырабатывает достаточно тепла для всей комнаты. Кроме того, этот инфракрасный блок является одним из лучших комнатных обогревателей, который может способствовать естественной перекрестной конвекции в вашей комнате зимой.

Энергосбережение и безопасность

Обеспокоены экономией энергии и поддержанием низких затрат на отопление? Тогда этот обогреватель с контролем температуры — лучший обогреватель на 1500 Вт. Он предотвращает чрезмерные расходы на ваши счета за электроэнергию благодаря своим особым функциям, таким как режимы энергосбережения, регулируемые термостаты и программируемый таймер, которые помогают свести к минимуму потребление энергии и повысить экономичность работы.

Интересно, что этот настенный обогреватель также оснащен защитой от перегрева, что обеспечивает безопасность вас и всех одновременно.

Функция таймера

Этот электрический обогреватель мощностью 1500 Вт разработан с функцией интеллектуального таймера, который можно установить как на таймер включения, так и на таймер выключения. Автоматическое включение нагревает комнату в запрограммированное время, когда вас нет дома, чтобы включить обогреватель.

Автоматическое отключение питания, с другой стороны, удобно в тех случаях, когда кто-то забывает выключить обогреватель, особенно ночью, сводя к минимуму потери энергии.

Светодиодный индикаторный экран и пульт дистанционного управления

Настенный обогреватель управляется как с помощью светодиодного экрана, так и с пульта дистанционного управления. Светодиодная индикация экрана разработана с индикациями и кнопками управления, такими как; «Повышение / понижение температуры, таймер, режимы и т. Д.» Эта функция упрощает управление температурой в помещении прямо на панели и позволяет узнать текущую ситуацию, отображаемую на экране. В дополнение к этому есть пульт дистанционного управления, который также идеально подходит для удобного управления настенным обогревателем.

Специальная система замков

С этим электрическим настенным обогревателем не нужно беспокоиться о том, что дети будут играть и испортят настройку обогревателя. Этот обогреватель оснащен функцией блокировки экрана, что делает его недоступным для детей или третьих лиц.

Водонепроницаемый переключатель «Вкл.»

Обогреватель идеально подходит для использования в ванной, поскольку он совершенно безопасен благодаря водонепроницаемому корпусу на переключателе «Вкл.».

Плюсы
  • Поставляется с функцией таймера
  • Специальная система замков
  • Выключатель с водонепроницаемым корпусом
  • ТРДД встроенный
  • Система быстрого и сбалансированного отопления
  • Светодиодная индикация экрана и пульта ДУ
  • Электрический обогреватель с двумя подставками, на которых установлен обогреватель.

2) Инфракрасный обогреватель переносной обогреватель с увлажнителем воздуха

Потрясающий дизайн

Dr. Инфракрасный обогреватель Портативный обогреватель с увлажнителем, мощностью 1500 Вт — впечатляющее устройство и один из лучших обогревателей для вашего дома.

Этот портативный обогреватель спроектирован с бесшумным ультразвуковым увлажнителем, встроенным в обогреватель, что обеспечивает очень высокий уровень комфорта. Увлажнитель добавляет влагу, необходимую для осушения зимнего воздуха, и в то же время рассеивает тепло по всей комнате.

Являясь недавно разработанным обогревателем, разработанным в США, это один из самых эффективных источников тепла и лучший электрический обогреватель для помещений. Инфракрасный обогреватель Dr.Infrared Heater также уникален своей усовершенствованной системой двойного обогрева с комбинацией компонентов PTC и кварцевого инфракрасного излучения.

Помимо двойной системы обогрева, этот электрический обогреватель также оснащен высокоскоростным малошумным вентилятором, который нагревает комнату до комфортной температуры с очень высокой скоростью.

Безопасная работа с энергосбережением и автоматическим режимом

При использовании Dr.Инфракрасный обогреватель сертифицирован лабораторией Underwriters Laboratories (UL) США и Канады. Этот портативный обогреватель очень безопасен для детей и домашних животных и нагревается только на ощупь.

Кроме того, он не имеет открытых нагревательных элементов, которые могут вызвать пожар. Инфракрасный портативный обогреватель для помещений разработан с автоматическим энергосберегающим режимом, который позволяет устройству циклически включаться и выключаться и переключаться между высокими и низкими настройками для поддержания желаемой настройки температуры.

Высокая выходная мощность

Доктор.Инфракрасный обогреватель Портативный обогреватель может обогреть комнату размером до 1000 квадратных футов. Высококачественная инфракрасная кварцевая трубка внутри нагревателя также способна производить даже больше тепла, чем многие другие модели. Благодаря способности этого обогревателя производить больше тепла, чем у многих других обогревателей, эта модель обеспечит тепло и комфорт в любой комнате. Его мощность составляет 52 000 БТЕ.

Производство с низким уровнем шума

Разработанный с вентилятором высокого давления и низким уровнем шума, встроенным в его корпус, он, несомненно, будет эффективно производить и распределять тепло по комнате, не беспокоясь о нежелательном шуме.

Высокая портативность

Этот обогреватель имеет 4 колесика в основании шкафа, что позволяет легко и удобно перемещаться из одной комнаты в другую. Кроме того, эти ролики очень прочны и долговечны.

Легко чистится
Инфракрасный обогреватель

Dr. Infrared Heater Portable Space Heater имеет съемный фильтр, который легко и удобно чистить. Фильтр можно снять с задней части корпуса, а затем пропылесосить или промыть теплой водой. Перед возвращением в обогреватель необходимо дать ему полностью высохнуть.

Дистанционное управление

Переносной обогреватель с увлажнителем и инфракрасным обогревателем Dr. Infrared Heater оснащен функцией дистанционного управления, которая позволяет легко контролировать температуру обогревателя, а также другими функциями, такими как автоматическое отключение и функция осциллирующего вентилятора. Всем этим можно управлять с вашего удобства как пользователя.

Плюсы
  • Инфракрасное тепло не сушит воздух
  • Оснащен увлажнителем, который дополнительно увлажняет воздух зимой.
  • Имеет качающийся вентилятор, который можно использовать с функцией обогрева или без него.
  • Поставляется с пультом дистанционного управления для упрощения работы
  • Работает тихо, исключая неприятные звуки
  • Легко перемещается благодаря 4 колесикам
  • Цифровой передний дисплей, показывающий настройку обогревателя
Минусы
  • Использует много электроэнергии, если все функции работают одновременно
  • Требуется высококачественный удлинитель, чтобы предохранитель не сгорел

3) Переносной электрический обогреватель FLAMEMORE CH-3003

Думаете о лучшем обогревателе для подвала? Переносной электрический обогреватель FLAMEMORE поможет вам.Этот обогреватель мощностью 1500 Вт имеет прекрасную конструкцию и обладает множеством выдающихся функций, направленных на обеспечение идеальной температуры в помещении.

6-элементный инфракрасный обогреватель
В переносном электронагревателе

FLAMEMORE используются 6-элементные трубки, которые нагреваются за несколько секунд. Это делает его быстрым и долговечным. Этот деревянный шкаф для внутреннего электрического инфракрасного обогрева производит достаточно энергии для эффективного обогрева вашей комнаты или офиса.

Три режима и дистанционное управление
Обогреватель

FLAMEMORE CH-3003 имеет три режима нагрева: 1500 Вт, 750 Вт и эко-режим.Эко-режим снижает потребление энергии, экономя до 300 Вт энергии. Он также оснащен функцией дистанционного управления, что позволяет легко управлять обогревателем из любой точки комнаты.

Низкий уровень шума

Благодаря бесшумности этого обогревателя, шум никогда не будет проблемой во время сна или работы. Это устройство очень тихое и достаточно приличное, чтобы его можно было использовать дома, не отвлекая его. Он работает в фоновом режиме.

Встроенная защитная защита

Этот портативный электрический обогреватель не только сертифицирован ETL, но и имеет встроенную защиту от опрокидывания и перегрева.Когда этот инфракрасный обогреватель опрокидывается или перегревается, он автоматически отключается, обеспечивая постоянную безопасность вас и вашей семьи. Этот обогреватель также поставляется с замком, который не позволяет детям по ошибке управлять им.

Простота использования и передвижения

Этот электрический обогреватель оснащен регулируемым термостатом и 12-часовым таймером, позволяющим легко установить желаемую температуру в помещении. Он сохраняет желаемую настройку даже при выключении и перезапуске. Кроме того, он оснащен четырьмя несущими колесами, и его можно перемещать куда угодно.

Плюсы
  • Разработан с 6-элементным инфракрасным обогревом
  • Поставляется с 3 режимами и пультом дистанционного управления
  • Простота использования и перемещения
  • Отключение при опрокидывании и перегреве
Минусы
  • Были жалобы на низкую точность работы термостата некоторых продуктов. Однако это, скорее всего, связано с конкретными неисправностями производителя, а не с общей проблемой данного нагревателя.

4) AmazonBasics Portable Eco-Smart Space Heater — Wood

Потрясающий дизайн

AmazonBasics Portable Eco-Smart Space Heater — Wood — еще один обогреватель. Идеален для дома и офиса.Этот портативный обогреватель эффективно и эффективно обогревает комнату площадью до 1000 кв. Футов (стандартная высота потолка 9 футов) и экономит энергию благодаря настройке ECO-smart.

Это переносной обогреватель с регулируемым электронным термостатом, легко читаемым светодиодным дисплеем, включая пульт дистанционного управления и датчик перегрева, обеспечивающий безопасную работу. Он также оснащен 12-часовым таймером с автоматическим отключением, что позволяет пользователю меньше беспокоиться.

Система двойного нагрева

Eco-Smart Space Heater имеет систему двойного нагрева электронагревателя, состоящую из кварцевой трубки и PTC (положительный температурный коэффициент).Это увеличивает его способность эффективно выделять тепло, поскольку он отводит тепло с двух сторон.

Высокая производительность

Этот переносной обогреватель имеет режим ожидания и три режима мощности; Авто, Низкий (1000 Вт) и Высокий (1500 Вт). В нем есть термостат, который регулирует нагреватель, включая и выключая его для поддержания заданной температуры, а затем бесшумный 7-дюймовый вентилятор нагревателя распределяет тепло в комнату. Этот обогреватель использует мощность 12,5 ампер, нагревает до 1000 квадратных футов и может работать в течение 80 000 часов.

Плюсы
  • Портативный с регулируемым электронным термостатом и легко читаемым светодиодным дисплеем
  • Датчик перегрева для безопасной работы
  • 12-часовой таймер с автоматическим отключением для спокойствия
  • Система двойного нагрева (кварцевая трубка и PTC) с двумя настройками мощности: 1000 Вт и 1500 Вт
  • Настройка ECO-Smart для экономии энергии
  • Включает пульт дистанционного управления (батарейки в комплект не входят)
  • Обогрев помещений площадью до 1000 кв. Футов (стандартная высота потолка 9 футов)
Минусы
  • Он потребляет большое количество энергии.

5) Вихревой нагреватель Vornado AVh20 с автоматическим климат-контролем

Потрясающий дизайн

Вихревой обогреватель с автоматическим климат-контролем АВх20 — один из лучших обогревателей с регулируемой температурой для всей комнаты. Он стильно и современно построен, что придает ему элегантный вид. Он также разработан с расширенными функциями, такими как; автоматический климат-контроль для автоматической регулировки и поддержания сбалансированной температуры в помещении.Хотя обогреватель с автоматическим климат-контролем vortex производит достаточно тепла, чтобы всем в комнате было комфортно, снаружи он остается прохладным на ощупь.

Простота управления

Благодаря светодиодному экрану и кнопке управления этого обогревателя регулировка и регулировка настройки становится довольно простой. Он находится в вашем распоряжении и манит, поскольку вам нужно только нажимать кнопки, переключая его элементы управления по вашему желанию.

Энергосбережение

AVh20 может обогревать весь дом или несколько комнат одновременно, но при этом экономит энергию.С помощью этого обогревателя можно отапливать определенную комнату, в которой находится человек, и понижать температуру на термостате, чтобы отводить меньше тепла в другие части дома.

Автоматический климат-контроль

AVh20 — лучший обогреватель с датчиком температуры, который точно определяет количество тепла, необходимое в помещении, и распределяет его. Это очень полезно для поддержания заданной температуры, а также для автоматического выполнения необходимых регулировок.

Расширенные функции безопасности
Нагреватель

AVh20 также разработан с расширенными функциями безопасности, включая приятный на ощупь внешний вид, который постоянно поддерживает охлаждение обогревателя, защиту от опрокидывания и автоматическую систему аварийного отключения.

Плюсы
  • Автоматический климат-контроль для автоматической регулировки и поддержания температуры в помещении.
  • Система автоматического аварийного отключения
  • Cool-touch экстерьер
  • Защита от опрокидывания
  • Светодиодный экран и функция управления кнопками
Минусы
  • Нагреватель AVh20 разработан в соответствии с требованиями США к напряжению и может не работать должным образом при использовании с внешними устройствами, которые преобразуют или изменяют напряжение / частоту электричества.
  • Неправильное использование или доставка нагревателя AVh20 за пределы США приведет к аннулированию всех гарантий

Особенности, которые следует учитывать при выборе обогревателя с оптимальной температурой

Когда дело доходит до покупки обогревателя, на ум приходят несколько основных вопросов, например: будет ли этот обогреватель адекватно обогревать мое пространство? И какова будет стоимость операции? Чтобы получить ответы на эти вопросы, вам следует обратить внимание на некоторые важные факторы, связанные с обогревателем.Они включают;

Первый фактор, который следует учитывать перед выбором обогревателя, — это тип необходимого обогревателя. Несмотря на то, что существует множество стилей обогревателей, в основном существует три технологии обогрева, на которые подпадает каждый обогреватель: лучистый, конвекционный и принудительный.

Конвекционные обогреватели в основном обеспечивают равномерное отопление всей комнаты, лучистые обогреватели обеспечивают быстрое точечное обогревание небольших помещений; Нагреватель с принудительной подачей вентилятора использует внутренний вентилятор, который обдувает нагревательный элемент; Микатермические обогреватели обеспечивают быстрое и равномерное распределение тепла при экономии места.Выбор наиболее подходящего типа обогревателя — лучший способ обеспечить эффективную работу.

При выборе личного обогревателя еще одна важная вещь, на которую следует обратить внимание, — это размер помещения, которое он будет покрывать. Это может определить номинальная мощность нагревателя. Как правило, комнатному обогревателю требуется 10 Вт тепловой мощности для обогрева каждого квадратного фута пространства.

Таким образом, типичный обогреватель мощностью 1500 ватт будет охватывать помещения среднего размера до 150 квадратных футов при использовании в качестве дополнительного источника тепла.В зависимости от технологии обогрева, условий в помещении и области применения некоторые портативные обогреватели могут занимать больше места.

Обеспокоены экономией энергии и поддержанием низких затрат на отопление? Тогда рассмотрение эффективности перед выбором обогревателя является идеальным. Чтобы избежать резкого роста счетов за электроэнергию, необходимо выбрать наиболее энергоэффективный обогреватель, соответствующий размеру комнаты или офиса.

Особые особенности, на которые следует обратить внимание в этом отношении: энергосберегающие режимы, регулируемые термостаты, низкая мощность и программируемый таймер.Эти функции помогают свести к минимуму потребление энергии и способствуют экономичной эксплуатации.

Переносные обогреватели могут стать причиной пожара, если за ними не следить. Поэтому при выборе наилучшего типа комнатного обогревателя очень важно учитывать характеристики безопасности обогревателя. Функции безопасности, на которые следует обратить внимание в обогревателе, включают; холодные на ощупь поверхности, внутренний выключатель, который автоматически отключает питание, нагреватель случайно опрокидывается или сбивается. Защита от перегрева — еще одна бесценная функция безопасности.Этот переключатель служит датчиком температуры, который автоматически отключает нагреватель, если внутренние компоненты достигают опасной температуры.

Как и большинство электроприборов, многие портативные обогреватели во время работы издают некоторый шум. Однако некоторые модели издают больше звука, чем другие, поэтому рекомендуется выбрать обогреватель с низким уровнем шума, особенно при выборе обогревателей для спальни или офиса.

Окончательный приговор

Обогреватели — это необходимые устройства, необходимые для контроля температуры и создания более благоприятной атмосферы в домах и офисах.Поэтому при принятии решения о покупке очень важно выбрать лучший обогреватель с регулируемой температурой.

В связи с этим мы рекомендуем электрический обогреватель Air choice , как лучший обогреватель помещений с регулируемой температурой.

Это касается его выдающихся характеристик, которые включают в себя: его эффективность при быстром и равномерном обогреве небольших и средних помещений, возможность установки на стене или переносных стационарных обогревателей. Этот водостойкий переключатель «включено» имеет большое значение среди многих других функций.

Вихревой обогреватель Vornado AVh20 определенно заслуживает внимания. Он также предназначен для эффективного генерирования тепла в любом помещении. Помимо этого, он также обладает особыми качествами, такими как датчик автоматического климат-контроля, который определяет точную температуру, необходимую для комнаты.

Что такое система контроля температуры?

Система контроля температуры

Существует множество коммерческих процессов, которые могут требовать, чтобы температура материала контролировалась для получения приемлемого продукта.Этот контроль может выполняться вручную или автоматически.

Ручное управление температурой

При ручном управлении оператор периодически считывает температуру технологического процесса и регулирует подачу тепла или холода вверх или вниз в таком направлении, чтобы довести температуру до желаемого значения. Ручное управление может использоваться в некритических приложениях, где небольшие изменения в управляемой переменной заставляют процессы изменяться медленно и на небольшую величину.

Этот процесс показан на рисунке 1.1.

Это практично, только если есть несколько процессов с редкими сбоями в процессе. Ручное регулирование температуры требует значительных ресурсов, так как для того, чтобы это сработало, оператор должен иметь достаточно времени для внесения коррекции до того, как температура процесса превысит допустимый допуск.

Когда точность является обязательной, когда задействовано несколько процессов или изменения температуры слишком быстрые для исправления оператора, рекомендуется использование автоматической системы управления.Обычно в наши дни возможность упростить процессы и повысить эффективность означает, что большинство систем контроля температуры являются автоматическими.

Автоматическая система контроля температуры

Управляемая переменная, в данном случае «температура», измеряется подходящим датчиком, таким как термопара, RTD, термистор или инфракрасный пирометр, и преобразуется в сигнал, приемлемый для контроллера.

Контроллер сравнивает сигнал температуры с желаемой температурой (уставкой) и включает конечное устройство управления.Конечное устройство управления изменяет управляемую переменную, чтобы изменить количество тепла, добавляемого или отбираемого из процесса. Общие управляемые переменные в процессах с регулируемой температурой — это воздух, вода, пар, электричество, нефть и газ.

Схема обобщенной системы автоматического регулирования температуры показана на рисунке 1.2.

Другие устройства контроля температуры

Конечные устройства управления — это контакторы, воздуходувки, электродвигатели или пневматические заслонки и клапаны, вариаторы с электроприводом, SCR с пропорциональным распределением времени или по фазе и реакторы с насыщаемым сердечником.

Существует несколько типов автоматических регуляторов температуры, которые можно использовать для любого данного процесса, однако достижение приемлемого контроля температуры зависит от

  • Характеристики процесса
  • Определение допустимого отклонения температуры от заданного значения и при каких условиях (запуск, работа, холостой ход)
  • Выбор оптимального типа регулятора и его правильная настройка

ОСНОВЫ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ — Электроника длины волны

Источник тока регулятора температуры: Одним из ключевых звеньев регулятора температуры является регулируемый двунаправленный источник тока.Его также можно назвать выходным каскадом. Эта секция отвечает за секцию системы управления, управляя током на исполнительный механизм температуры (термоэлектрический или резистивный нагреватель). Направление тока имеет решающее значение для термоэлектриков. На блок-схеме термоэлектрический элемент подключен между двумя выводами на контроллере. Для резистивного нагревателя может потребоваться специальная проводка, чтобы ограничить ток через резистивный нагреватель только в одном направлении.

Система управления : Пользовательские входы включают предельную уставку (в терминах максимального тока, разрешенного для термоэлектрического или резистивного нагревателя) и рабочую уставку.Кроме того, если требуется удаленная уставка, обычно доступен вход удаленной уставки.

  • Уставка : это аналоговое напряжение в системе. Его можно создать путем сочетания встроенной регулировки подстроечного резистора и ввода удаленной уставки. В некоторых случаях эти входы суммируются. Некоторые действуют самостоятельно.
  • Прецизионный источник тока смещения датчика: Этот источник тока управляет датчиком температуры на известном уровне, делая фактическое напряжение датчика стабильным и точным.Напряжение на датчике определяется законом Ома: V = I * R, где V — напряжение, I — ток, а R — сопротивление датчика. Напряжение ограничено максимумом и минимумом (указанным в паспорте контроллера температуры). Следует использовать минимально возможный ток, чтобы свести к минимуму эффекты самонагрева. Термистор нагревается при более высоких уровнях тока и ложно сообщает о более высокой температуре.
  • Генерация ошибки : Чтобы узнать, как работает система, фактическая температура сравнивается с заданной температурой.Эти два напряжения вычитаются, и результат называется «Ошибка». Выходной сигнал регулируемого источника тока будет изменяться, чтобы сигнал обратной связи по температуре оставался неизменным.
  • Система ПИД-регулирования : Преобразует сигнал ошибки в сигнал управления для регулируемого источника тока. Более подробное обсуждение ПИД-регулирования можно найти в Техническом примечании TN-TC01
  • .
  • Limit Circuit: Один из способов повредить термоэлектрик — пропустить через него слишком большой ток.В каждом техническом описании привода указывается максимальный рабочий ток. Превышение этого тока приведет к повреждению устройства. Чтобы этого избежать, в терморегулятор включен ограничительный контур. Пользователь определяет максимальную настройку, и выходной ток не должен превышать этот уровень. Большинство цепей ограничения ограничивают ток на максимальном уровне и продолжают работать.
  • Функции безопасности : Термоэлектрики и резистивные нагреватели чувствительны к избыточной мощности, но они устойчивы к быстрым изменениям тока или напряжения.Функции безопасности могут включать индикатор состояния «теплового разгона». Температурные пределы — как высокие, так и низкие — также могут быть доступны для включения индикаторов или отключения выходного тока.

Питание : питание должно подаваться на управляющую электронику и источник тока. Это может быть источник питания постоянного тока (некоторые драйверы используют входы с одним источником питания, другие используют два источника питания) или входной разъем переменного тока и кабель. В некоторых случаях, когда требуется более высокое напряжение для термоэлектрического или резистивного нагревателя, могут быть доступны отдельные входы источника питания постоянного тока для питания управляющей электроники от источника низкого напряжения +5 В и термоэлектрического элемента от источника более высокого напряжения.

В чем разница между инструментом, модулем и компонентом?

Обычно цена, набор функций и размер. Прибор обычно имеет переднюю панель с ручками и кнопками для регулировки, а также какой-либо дисплей для отслеживания датчика. Все они могут быть автоматизированы с помощью компьютерного управления через USB, RS-232, RS-485 или GPIB. Инструмент обычно питается от сети переменного тока, а не от источника постоянного тока. По нашему определению, модуль не включает в себя дисплей или источник питания и имеет минимально необходимые настройки.Для контроля состояния вольтметр измеряет напряжение, а в таблице данных модуля предусмотрена передаточная функция для преобразования напряжения в фактическое сопротивление датчика. В паспорте датчика сопротивление датчика преобразуется в температуру. Некоторые устройства выделяют память для калибровки отклика датчика. Компонент дополнительно урезан, без движущихся частей. Внешние резисторы или конденсаторы задают рабочие параметры. Функции безопасности являются общими для всех трех форм. Обычно модули можно разместить на столе или интегрировать в систему с помощью кабелей.Компоненты монтируются непосредственно на печатную плату (PCB) с помощью выводов для сквозного монтажа или поверхностного монтажа (SMT). Два ряда контактов называются DIP-упаковкой (двухрядный), а один ряд контактов называется SIP-упаковкой (одинарный ряд).

Разнообразные стандартные контроллеры доступны как в приборной, так и в OEM-упаковке. Некоторые производители стирают границы, например, предлагая USB-управление компонентами в качестве мини-инструментов.

Упаковка компонентов и модулей включает надлежащий теплоотвод элементов схемы (или инструкции о том, как устройство должно быть теплоотводом) и обычно включает соответствующие кабели для термоэлектрического элемента, датчика и источника питания.Инструменты включают шнур питания, и доступ пользователя внутрь корпуса не требуется.

Типовая терминология:

Термоэлектрик: Это устройство, состоящее из двух керамических пластин, соединяющих металлические соединения двух разнородных металлов. Если ток протекает через соединение разнородных металлов, тепло генерируется с одной стороны, а поглощается с другой. Пропуская ток через термоэлектрик, тепло передается от одной керамической пластины к другой.Направление тока определяет, какая пластина станет «горячей», а какая — «холодной» относительно друг друга. Изменение направления тока немедленно меняет эффект. Контроллер температуры работает, оптимально контролируя величину и направление тока через переход, чтобы поддерживать фиксированную температуру устройства, подключенного к «холодной» стороне. Термоэлектрики можно накладывать друг на друга, чтобы создать более широкий температурный перепад. Их называют многоступенчатыми или каскадными термоэлектриками. Термоэлектрик также может преобразовывать перепад температур в электричество.Это называется эффектом Зеебека. Термоэлектрик также известен как термоэлектрический охладитель, устройство Пельтье или твердотельный тепловой насос.

Q MAX: Спецификация термоэлектрика. Это максимальная мощность, которую он может поглотить холодной пластиной.

Delta T MAX: Спецификация термоэлектрика. Это максимальный перепад температур, который может создать термоэлектрик между своими пластинами. Он указан в IMAX и VMAX и для определенной температуры «горячей» пластины.

I MAX и V MAX: Максимальные характеристики тока и напряжения термоэлектрика соответственно. Не превышайте эти условия эксплуатации.

Резистивный нагреватель: Обычно эти нагреватели гибкие, с резистивным элементом, зажатым между двумя изоляторами. Материалы резистивного элемента и изоляторов сильно различаются в зависимости от области применения. Некоторым требуется питание переменного тока, а не постоянного тока, который вырабатывается обычным контроллером температуры. В резистивном нагревателе при протекании тока в любом направлении выделяется тепло; следовательно, активная функция охлаждения отсутствует.Охлаждение достигается за счет снижения тока до нуля и рассеивания тепла в окружающую среду. Стабильность обычно не так хороша, как та, которая достигается с помощью термоэлектрика, если только рабочая температура не превышает температуру окружающей среды.

Температура окружающей среды: Обычно это температура воздуха / условий окружающей среды вокруг нагрузки.

Отключить: Когда выходной ток отключен, все механизмы безопасности обычно устанавливаются на начальное состояние включения, и на термоэлектрик подается только остаточный ток утечки.

DVM: Цифровой вольтметр , измеритель напряжения.

Амперметр: Измеритель, контролирующий ток.

ESD: Электростатический разряд. Чувство «взрыва», которое возникает при переходе по ковру и прикосновении к металлической ручке двери, является наиболее распространенным примером электростатического разряда. Лазерные диоды чувствительны к электростатическому разряду. «Взрыва», которого не чувствует человек, по-прежнему достаточно, чтобы повредить лазерный диод. При обращении с лазерным диодом или другим электронным оборудованием, чувствительным к электростатическому разряду, следует соблюдать соответствующие меры предосторожности.

Внутреннее рассеяние мощности: При использовании линейного источника тока часть мощности, передаваемой источником питания, поступает на термоэлектрический или резистивный нагреватель, а часть используется в контроллере температуры. Максимальное внутреннее рассеивание мощности контроллера — это предел, при превышении которого возможно тепловое повреждение внутренних электронных компонентов. Проектирование системы контроля температуры включает выбор напряжения питания. Если для управления термоэлектриком с напряжением 6 В выбрано питание 28 В, на выходном каскаде регулятора температуры (или источнике тока) будет падать 22 В.Если драйвер работает на 1 А, внутренне рассеиваемая мощность будет V * I или 22 * ​​1 = 22 Вт. Если внутренняя мощность рассеивания составляет 9 Вт, компоненты источника тока будут перегреваться и необратимо повреждены. Wavelength предоставляет онлайн-калькуляторы безопасной рабочей зоны для всех компонентов и модулей, чтобы упростить выбор конструкции.

Напряжение соответствия: Источник тока имеет соответствующее падение напряжения на нем. Соответствующее напряжение — это напряжение источника питания за вычетом этого внутреннего падения напряжения.Это максимальное напряжение, которое может подаваться на термоэлектрический или резистивный нагреватель. Обычно указывается при полном токе.

Предел тока: В технических характеристиках термоэлектрического или резистивного нагревателя максимальный ток указывается при температуре окружающей среды. Выше этого тока устройство может выйти из строя. При более высоких температурах это максимальное значение будет уменьшаться. Current Limit — это максимальный ток, который подает источник тока. Предел тока можно установить ниже максимального термоэлектрического тока и использовать в качестве инструмента для минимизации внутреннего рассеивания мощности терморегулятора.При более высоком пределе тока термоэлектрик будет быстрее передавать больше тепла, поэтому время достижения температуры может быть уменьшено (если система управления оптимизирована, чтобы избежать перерегулирования и звона).

Нагрузка: Для регулятора температуры нагрузка состоит из регулятора температуры (термоэлектрического или резистивного нагревателя) и датчика температуры.

ACTUAL TEMP MON: Это аналоговое напряжение, пропорциональное сопротивлению датчика температуры. Функции перехода к сопротивлению представлены в отдельных технических паспортах контроллеров.Для преобразования сопротивления в температуру используются передаточные функции из таблицы данных датчика. Его также можно назвать монитором ACT T или монитором температуры.

VSET: Это общий термин, используемый для обозначения входного сигнала удаленной уставки. V указывает на сигнал напряжения, в то время как SET указывает его цель: заданное значение системы управления. Его также можно назвать MOD, MOD IN или ANALOG IN.

Каковы типичные спецификации и как их интерпретировать для моего приложения?

В настоящее время каждый производитель проводит собственное тестирование, и стандарта для измерения не существует.После того, как вы определите решение для своего приложения, критически важно протестировать продукт в своем приложении, чтобы проверить его работу. Вот некоторые из определений, которые использует длина волны, и способы интерпретации спецификаций в вашем дизайне.

Входное сопротивление: Указывается для аналоговых входов напряжения, таких как VSET или MOD IN. Он используется для расчета силы тока, которую должен выдавать внешний генератор сигналов. Например, если VSET управляется цифро-аналоговым преобразователем с максимальным напряжением 5 В и входным сопротивлением 20 кОм, цифро-аналоговый преобразователь должен выдавать не менее 5 В / 20000 Ом или 0 Ом.25 мА.

Стабильность: Для регулятора температуры, насколько стабильной может быть система, обычно является критическим параметром. Испытания на длину волны с использованием термисторов, поскольку они обеспечивают максимальное изменение сопротивления на градус C. Испытательная нагрузка также хорошо спроектирована, с датчиком, расположенным рядом с управляемым устройством, и термоэлектрическим датчиком, теплоотводом надлежащего размера и компонентами, соединенными с помощью высококачественной термопастой, чтобы минимизировать тепловое сопротивление между ними. Стабильность указывается в градусах Кельвина или Цельсия.Типичная стабильность может достигать 0,001 ° C. Более подробное техническое примечание TN-TC02, описывающее тестирование, доступно в Интернете.

Диапазон рабочих температур: Электроника разработана для правильной работы в указанном диапазоне температур. За пределами минимальной и максимальной температуры может произойти повреждение или измениться поведение. Рабочий диапазон, который определяет длина волны, связан со спецификацией максимального внутреннего рассеивания мощности. Выше определенной температуры окружающей среды (обычно 35 ° C или 50 ° C) максимальное внутреннее рассеивание мощности снижается до нуля при максимальной рабочей температуре.

Диапазон рабочего напряжения: В некоторых регуляторах температуры можно использовать два напряжения питания — одно для питания управляющей электроники (VDD), а второе для обеспечения более высокого напряжения согласования с термоэлектрическим или резистивным нагревателем (VS). Обычно управляющая электроника работает при более низких напряжениях: от 3,3 до 5,5 В. Превышение этого напряжения может повредить элементы в секциях управления или питания. Источник тока (или выходной каскад) разработан для более высоких напряжений (например, 30 В для контроллеров температуры семейства PTC).Эту спецификацию необходимо рассматривать в сочетании с приводным током и мощностью, подаваемой на нагрузку, чтобы гарантировать, что конструкция не превышает спецификацию максимального внутреннего рассеивания мощности. Например, PTC5K-CH рассчитан на работу до 5 А и может принимать входное напряжение 30 В. Максимальная внутренняя рассеиваемая мощность составляет 60 Вт. Если 28 В используется для питания термоэлектрика, который падает на 4 В, 24 В будет падать на PTC5K-CH. При 24 В максимальный ток в пределах безопасного рабочего диапазона составляет менее 60/24 или 2.5 ампер. Использование большего значения тока приведет к перегреву компонентов выходного каскада и необратимому повреждению контроллера. Максимальные характеристики тока и напряжения связаны, а не достижимы независимо.

Монитор в сравнении с фактической погрешностью: Сигнал ACT T MON представляет собой аналоговое напряжение, пропорциональное сопротивлению датчика. Точность фактического сопротивления по отношению к измеренным значениям указана в отдельных технических паспортах драйвера. Для обеспечения этой точности в длине волны используется откалиброванное оборудование, отслеживаемое NIST.

Отдельное заземление монитора и питания: Одно заземление высокой мощности предназначено для подключения к источнику питания на любом контроллере температуры. Несколько слаботочных заземлений расположены среди сигналов монитора, чтобы минимизировать смещения и неточности. Несмотря на то, что заземления с высоким и низким током связаны внутри, для достижения наилучших результатов используйте заземление с низким током с любым монитором.

Линейные или импульсные источники питания для компонентов и модулей: Линейные источники питания относительно неэффективны и имеют большие размеры по сравнению с импульсными источниками питания.Однако они малошумные. Если шум критичен для вашей системы, вы можете попробовать импульсный источник питания, чтобы увидеть, влияет ли частота переключения на производительность в любом месте системы.

Thermal Runaway: Если термоэлектрик отводит тепло от устройства (охлаждает его до температуры ниже окружающей), это тепло должно отводиться из системы. Дополнительное тепло из-за неэффективности термоэлектрика также должно рассеиваться. Если конструкция радиатора подходящая, удаляется достаточно тепла, чтобы устройство могло работать при температуре ниже окружающей среды.Однако, если конструкция является предельной, тепло остается в нагрузке, а температура датчика повышается вместо того, чтобы оставаться на желаемой температуре. Система управления реагирует, пропуская больше охлаждающего тока через термоэлектрический элемент. Это приводит к увеличению количества тепла, выделяемого нагрузкой, и продолжающемуся повышению температуры датчика. Это называется «тепловым разгоном». Температура системы не контролируется, но определяется недостаточным отводом тепла в окружающую среду.

Wavelength разрабатывает регуляторы температуры и производит их на предприятии в Бозмане, штат Монтана, США.Чтобы просмотреть список текущих вариантов регуляторов температуры, щелкните здесь.

Полезных сайтов:

Что такое термоэлектрик?

Что такое термистор?

Внешние ссылки предназначены для справочных целей. Wavelength Electronics не несет ответственности за содержание внешних сайтов.

Программирование контроля температуры ПЛК

| Релейная логика ПЛК для чайников

Контроль температуры ПЛК : В емкости есть три нагревателя, которые используются для контроля температуры емкости.

Программирование контроля температуры ПЛК

Мы используем три термостата для измерения температуры на каждом нагревателе. также еще один термостат для безопасного отключения в случае неисправности или аварийной ситуации или во избежание перегрева.

Все эти нагреватели имеют разные уставки или разные диапазоны температур, в которых нагреватели могут быть включены соответствующим образом (в таблице ниже показаны диапазоны температур).

  1. Система контроля температуры состоит из четырех термостатов.В системе работают три отопительных агрегата. Термостаты (TS1 / TS2 / TS3 / TS4 настроены на 55 ° C, 60 ° C, 65 ° C и 70 ° C.
  2. Ниже 55 ° C три нагревателя (h2, h3, h4) должны быть в Состояние ВКЛ.
  3. Между 55 ° C — 60 ° C два нагревателя (h3, h4) должны быть во включенном состоянии.
  4. Между 60 ° C — 65 ° C один нагреватель (h4) должен быть во включенном состоянии.
  5. При температуре выше 70 ° C все нагреватели должны быть в состоянии ВЫКЛЮЧЕНО, имеется защитное отключение (реле CR1) на случай, если какой-либо нагреватель сработает по ошибке
  6. Главный выключатель включает и выключает систему.

Решение:

  • Есть четыре термостата; предположим, что они находятся в состоянии NC, когда уставка не достигнута.
  • Пусть будет управляющее реле (CR1) для работы в качестве защитного отключения.
  • Главный выключатель: Пусковой выключатель — нормально разомкнутый, а стопорный — нормально замкнутый.

В приведенной ниже таблице показаны диапазоны температур, в которых состояние термостатов (TS1, TS2, TS3, TS4) будет отображаться в соответствии со значением температуры.

Также состояние нагревателей (h2, h3, h4), в котором эти нагреватели будут включены или выключены в соответствии со значением температуры.

Релейная логика ПЛК

Операция релейной логики:

Первая ступень:

Имеет кнопку СТАРТ (замыкающий контакт по умолчанию) и кнопку СТОП (замыкающий контакт по умолчанию). Реле CR1 используется для управления нагревателями в зависимости от состояния термостатов.

Термостат TS4 подключен между СТОП и реле, если TS4 активирован (означает, что контакт TS4 переключается с нормально замкнутого на нормально разомкнутый), то все нагреватели будут выключены.

НО контакт реле CR1 используется на кнопке START для фиксации или удержания команды START.

Вторая ступень:

НО контакт реле CR1 используется для управления нагревателями (h2, h3, h4) со статусом термостатов (TS1, TS2, TS3).

После подачи команды СТАРТ этот нормально разомкнутый контакт становится нормально замкнутым контактом. если температура ниже 55 ° C, TS1, TS2 и TS3 будут в закрытом состоянии, поэтому все нагреватели будут включены.

, если температура находится в диапазоне от 55 до 60 ° C, тогда TS1 будет открыт, поэтому нагреватель h2 будет выключен.

тогда, если температура находится в диапазоне от 60 до 65 ° C, тогда TS2 также будет открыт, поэтому нагреватель h3 будет выключен

, если температура находится в диапазоне от 65 до 70 ° C, тогда TS3 также будет открыт, поэтому нагреватель h4 будет выключен

Имеется предохранительное отключение, которое используется для предотвращения неисправностей термостатов или перегрева.

, если температура достигает 70 ° C, TS4 активирует и обесточивает реле, таким образом, все нагреватели будут выключены.

Примечание. Здесь нагреватели h2, h3, h4 являются либо реле, либо контакторами, которые мы запитываем. таким образом, замыкающий контакт этих реле подключен к цепям фидера электрического нагревателя (MCC). Эти цепи фидера электрического тока будут управляться в соответствии с этими сигналами, и, соответственно, нагреватели будут либо включаться, либо выключаться.

Если вам понравилась эта статья, подпишитесь на наш канал YouTube с видеоуроками по ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

Языки программирования ПЛК

Программное обеспечение для обучения ПЛК Загрузить

Программирование ПЛК Mitsubishi

Программирование последовательности ПЛК

RSLogix 5000 Программирование ПЛК

Elitech Предварительно подключенный контроллер температуры ATC-1550 Охлаждение Отопление — Elitech Technology, Inc.

Политика возврата

Вы можете вернуть большинство новых неоткрытых товаров в течение 30 дней с момента доставки для получения полного возмещения.Мы также оплатим стоимость обратной доставки, если возврат является результатом нашей ошибки (вы получили неправильный или бракованный товар и т. Д.). Вы должны рассчитывать на получение возмещения в течение четырех недель с момента передачи вашей посылки отправителю, однако во многих случаях вы получите возмещение быстрее. Этот период времени включает в себя транзитное время, в течение которого мы получим ваш возврат от грузоотправителя (от 5 до 10 рабочих дней), время, необходимое нам для обработки вашего возврата после его получения (от 3 до 5 рабочих дней), и время, необходимое для этого. ваш банк для обработки нашего запроса на возврат (от 5 до 10 рабочих дней).Если вам нужно вернуть товар, просто войдите в свою учетную запись, просмотрите заказ, используя ссылку «Завершить заказы» в меню «Моя учетная запись», и нажмите кнопку «Вернуть товар (ы)». Мы сообщим вам по электронной почте о вашем возмещении, как только мы получим и обработаем возвращенный товар.

Адрес обратной доставки

Elitech Technology, Inc.
2528 Qume Drive # 2, Сан-Хосе,
CA 95131, Соединенные Штаты
Тел .: (+1) 4088444070

Доставка
Мы можем отправить товар практически по любому адресу в мире.Обратите внимание, что существуют ограничения на некоторые товары, и некоторые товары не могут быть отправлены в другие страны. Когда вы размещаете заказ, мы рассчитаем для вас сроки доставки и доставки в зависимости от наличия ваших товаров и выбранных вами вариантов доставки. В зависимости от выбранного вами поставщика доставки, приблизительные даты доставки могут отображаться на странице сметы доставки. Также обратите внимание, что стоимость доставки для многих товаров, которые мы продаем, зависит от веса. Вес любого такого предмета можно узнать на его странице с подробными сведениями.Чтобы отразить политику используемых нами транспортных компаний, все веса будут округлены до следующего полного фунта.
США: доставка в течение 24 часов.
Бесплатная стандартная доставка в США: 3-5 дней для доставки.
Услуга доставки на следующий день Доступна в США: заказы, размещенные до 12:00 по тихоокеанскому стандартному времени, будут отправлены в тот же день!
по всему миру: быстрая доставка DHL по всему миру.
Примечание. Регистраторы данных версии, сертифицированной по стандарту ISO 17025, доступны только для ПРЕДПРОДАЖИ. Срок выполнения: 2 недели.

Proheat Тепловая пушка с контролем температуры поверхности

Тепловая пушка для измерения и контроля температуры поверхности

Вам нужна качественная тепловая пушка для широкого спектра применений? У Master Appliance может быть именно то решение, которое вам нужно для простого и быстрого выполнения проектов по изготовлению или ремонту.Пистолет для измерения температуры поверхности Proheat не похож ни на одно другое устройство с жидкокристаллическим дисплеем, представленное на рынке, поскольку это единственный в мире тепловой пистолет с функцией измерения и контроля температуры. Каждая тепловая пушка Proheat STC позволяет измерять, отображать и контролировать фактическую температуру поверхности. Эти особенности, безусловно, позволят вам ускорить процесс нагрева и работать с верхними пределами зоны отверждения.

С пистолетом для измерения температуры поверхности Proheat вы получаете возможность отображать температуру рабочей поверхности, устанавливать заданные значения температуры и наблюдать за тем, как температура, отображаемая на тепловом пистолете, увеличивается до тех пор, пока не будет достигнута заданная температура.Каждая тепловая пушка STC, которую мы поставляем, тщательно проверяется и проверяется перед отправкой с завода. Мы также гарантируем, что все термочувствительные тепловые пушки не имеют дефектов материалов и изготовления при нормальном использовании и обслуживании в течение одного года с даты покупки. Мы уделяем пристальное внимание тому, что нужно профессионалам и как мы можем улучшить нашу технологию тепловых пушек. Если у вас есть какие-либо вопросы о тепловом пистолете Proheat STC или вам нужна помощь специалиста при покупке, свяжитесь с нами сегодня, чтобы узнать больше.

Основные характеристики и преимущества

  • Ускорить процесс нагрева — работать за верхние пределы зоны отверждения
  • Встроенный датчик температуры поверхности и ЖК-дисплей — отображение целевой температуры и температуры поверхности в реальном времени
  • LTS ™ Система лазерного наведения — обеспечивает точное поле обзора и рабочий диапазон
  • Регуляторы температуры и расхода воздуха с возможностью набора номера
  • Функция блокировки Proloc ™ Supervisor — предотвращает изменение температуры или воздушного потока для повторяемости
  • Светодиодные индикаторы выполнения — зеленый, желтый и красный светодиоды указывают на прогресс в процессе нагрева
  • STC ™ Автоматический контроль температуры поверхности — автоматически регулирует нагреватель для поддержания заданной температуры поверхности
  • НОВАЯ возможность двойного режима — все модели тепловых пушек STC теперь имеют возможность переключаться между режимом температуры поверхности и обычным режимом тепловой пушки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*