Батареи отопления с регулятором температуры как регулировать: Терморегулятор для радиатора отопления — принцип работы, монтаж и настройка — Портал о строительстве, ремонте и дизайне

Содержание

Как регулировать терморегулятор на батарее

Содержание

  1. Терморегулятор на батарею: принцип работы, настройка, установка
  2. Механический терморегулятор
  3. Составные элементы
  4. Факторы воздействия
  5. Как работает терморегулятор на батарее
  6. Электронные терморегуляторы
  7. Принцип работы
  8. Установка терморегулятора на батарею
  9. Терморегуляторы на электрических радиаторах
  10. Как выбрать терморегулятор для радиаторов отопления
  11. Принцип работы термостатического клапана
  12. Рекомендации по выбору
  13. Как установить терморегулятор на батарею
  14. Заключение
  15. Терморегулятор на батареи отопления
  16. Термостатические головки
  17. Механические
  18. Газовый или жидкостный
  19. С выносным датчиком
  20. Электронные
  21. Как правильно установить
  22. Как отрегулировать (перенастроить)

 

Терморегулятор на батарею: принцип работы, настройка, установка

January 17, 2016

Главной задачей отопительной системы является поддержание комфортной температуры воздуха в здании. Эта температура может быть различной, в зависимости от назначения помещения, но обязательным условием является ее неизменность на протяжении всего дня.

В помещение тепловая энергия поступает от системы отопления через радиаторы. Объем тепловой энергии, отдаваемый нагревательными приборами, регулируется количеством теплоносителя.

Устройством, осуществляющим регулирование поток жидкости, поступающей в радиатор, является клапан или вентиль, который может быть автоматическим или ручным.

В помещении всегда происходит теплообмен с окружающим пространством. Это приводит к оттоку или притоку из помещения тепла, и, следовательно, к понижению или повышению в нем температуры воздуха.

Для восстановления в помещении теплового баланса необходимо увеличить или уменьшить количество тепла, поступающего от нагревательных приборов. С этой задачей прекрасно справится терморегулятор на батарею, установленный на подводящих трубопроводах.

Механический терморегулятор

Данное устройство состоит из клапана и чувствительного элемента (термической головки). Они функционируют слаженно без посторонней внешней энергии. Термическая головка комплектуется приводом, регулятором и жидкостным элементом, который может заменяться упругим или газовым.

Выбирать терморегулятор на батарею необходимо с учетом всех факторов, которые в дальнейшем смогут оказать влияние на его работу. Важно произвести специальный расчет — только в этом случае данный прибор будет функционировать максимально эффективно.

Составные элементы

Механический терморегулятор на батарею состоит из следующих элементов:

  • Компенсационный механизм.
  • Шток.
  • Разъемное соединение.
  • Золотник.
  • Чувствительный элемент.
  • Термостатический элемент.
  • Клапан термостатический.
  • Шкала настройки.
  • Накидная гайка.
  • Кольцо, которое фиксирует заданный температурный режим.

Факторы воздействия

На температуру в помещении, а значит, и на работу механического терморегулятора способны воздействовать следующие факторы:

  • Наружная температура.
  • Проветривание или сквозняк.
  • Солнечный свет.
  • Дополнительные источники холода или тепла (холодильник, трубопровод с горячей водой, электрические нагревательные приборы и т. д.).

Как работает терморегулятор на батарее

При изменении в обогреваемом помещении температуры воздуха происходит изменение количества теплоносителя. Одновременно с этим изменяется объем сильфона, что приводит в действие регулирующий золотник. Перемещение золотника напрямую связано с изменением в комнате температуры воздуха. При изменении температуры чувствительный элемент реагирует и приводит в действие шток клапана регулятора. В результате изменение хода осуществляет регулирование подачи теплоносителя в нагревательный прибор.

Терморегулятор на батарею механического типа необходимо устанавливать на подающем трубопроводе. При этом головка терморегулятора должна располагаться горизонтально, не должна подвергаться влиянию прямых солнечных лучей и тепла. Если клапан закрыт занавеской или заставлен мебелью, то образуется нечувствительная зона, другими словами, термостат не контактирует с температурой окружающей среды, и по этой причине он не выполняет свои функции эффективно.

Если же иное размещение данного устройства не представляется возможным, применяются специальные датчики с накладным чувствительным элементом, предназначенные для дистанционного регулирования.

Электронные терморегуляторы

Электронный регулятор температуры отопления представляет собой автоматическое устройство регулирования, обеспечивающее поддержание заданного температурного режима в различном тепловом оборудовании.

В отопительной системе он осуществляет автоматическое управление котлом и остальными исполнительными механизмами (клапанами, насосами, смесителями и т. д.). Основная цель электронного терморегулятора – создание в помещении температурного режима, который был заранее определен пользователем.

Принцип работы

Регулятор температуры отопления электронного типа укомплектован термодатчиком, который устанавливается в месте, свободном от прямого воздействия нагревательных электроприборов, он обеспечивает прибор информацией о термическом состоянии помещения. На основании полученных данных электронный прибор управляет элементами отопительной системы.

Различают цифровые и аналоговые термореле с регулировкой температуры. Первые получили наибольшее распространение благодаря своей функциональности. Терморегуляторы электронного типа бывают:

  • С закрытой логикой.
  • С открытой логикой.

Закрытая логика – это постоянный алгоритм работы во времени и жесткая внутренняя структура, не зависящая от изменения факторов окружающей среды. Можно изменять лишь определенные программируемые параметры.

Терморегулятор с открытой логикой – это свободно программируемое устройство, характеризующееся большим диапазоном функций и настроек, его можно настроить на любую работу и условия окружающей среды.

В отличие от приборов с закрытой логикой, данные устройства не получили столь широкого распространения. Обосновано это тем, что их управление требует определенной квалификационной степени. Поэтому далеко не каждому рядовому гражданину под силу разобраться в режимах и настройках электронных терморегуляторов. Широкое применение получила открытая логика в индустриальном сегменте, однако со временем она может стать неотъемлемым элементом быта любого человека.

Установка терморегулятора на батарею

В процессе монтажа очень важно придерживаться инструкции и не размещать устройства данного типа в нишах, за декоративными решетками и шторами. Если же по какой-либо причине это не представляется возможным, устанавливается дистанционный датчик.

Неэффективно устанавливать терморегулятор для чугунных батарей, так как они очень долго нагреваются и остывают.

Прежде чем перейти к монтажу терморегуляторов необходимо отключить стояк и слить теплоноситель из отопительной системы.

Только после этого можно перейти к работам по установке данного прибора, их рекомендуется выполнять в следующей последовательности:

  • Горизонтальные подводки трубопроводов отрезаются на определенном расстоянии от нагревательного прибора.
  • Отсоединяется отрезанный трубопровод и запорное устройство.
  • Отсоединяются гайки и хвостовики совместно с гайками клапана или крана.
  • В пробки радиатора заворачиваются хвостовики.
  • На выбранное место устанавливается трубная обвязка.
  • Обвязка соединяется с горизонтальными трубопроводами.

Настройка термореле с регулировкой температуры производится следующим образом:

  • В помещении плотно закрываются все окна и двери, чтобы утечку тепла свести к минимуму.
  • В помещении, где требуется поддержание определенного значения температуры, необходимо установить комнатный термометр.
  • Клапан полностью открывается, для чего головка терморегулятора поворачивается до упора влево, в таком случае радиатор будет функционировать с максимальной теплоотдачей, в помещении начнет повышаться температура.
  • Как только температура станет выше первоначальной на 5-6 °C, нужно закрыть клапан, для этого его головка поворачивается до упора вправо, после чего в помещении начнет постепенно остывать воздух.
  • После того как температура достигнет желаемой величины, клапан медленно открывается посредством вращения головки регулятора в левую сторону. При этом необходимо внимательно прислушаться, как только услышите шум воды и ощутите резкое нагревание корпуса терморегулятора, прекратите вращение головки и запомните ее положение.
  • Настройка полностью завершена. Температура в помещении будет держаться с точностью до 1 °C.

Терморегуляторы на электрических радиаторах

В условиях современной работы коммунальных предприятий, когда в холодный период года в квартирах далеко не всегда температура имеет необходимую для комфортного ощущения величину, многие переходят на электрические нагревательные приборы. Они могут выполнять как функцию дополнительного, так и основного источника тепла.

Как правило, сегодня многие производители выпускают электрические батареи с терморегулятором, что позволяет устанавливать индивидуальную температуру в каждой комнате. Электрические радиаторы – это удобная альтернатива и отличное дополнение центральному отоплению.

Как выбрать терморегулятор для радиаторов отопления

В странах постсоветского пространства до 40% энергоресурсов уходит на нужды отопления и вентиляции зданий, это в несколько раз больше, чем у продвинутых европейских стран. Вопрос энергосбережения стоит остро, как никогда, особенно на фоне постоянного повышения стоимости энергоносителей. Одним из устройств, позволяющих экономить тепловую энергию в доме, является терморегулятор для батареи, чья установка может уменьшить расход тепла до 20%. Но для этого необходимо правильно подобрать регуляторы к системе отопления и выполнить их монтаж, о чем и будет рассказано в данной статье.

Первые термостаты для радиаторов, призванные поддерживать постоянную температуру в помещении, были изобретены еще в далеком 1943 году фирмой DANFOSS, ей же принадлежит первенство на рынке по производству и продаже подобных устройств. По этой причине наша статья будет опираться на материалы и рекомендации компании DANFOSS, чей многолетний опыт не подлежит сомнению.

За прошедшие с момента изобретения годы терморегуляторы для радиаторов видоизменились и стали такими, какими мы их знаем. Конструктивно они состоят из двух основных элементов: клапана и термоголовки, соединяющихся между собой фиксирующим механизмом. Назначение термоголовки – воспринимать температуру окружающей среды и для ее регулирования воздействовать на исполнительный механизм – клапан, он и перекрывает поток теплоносителя, поступающего в отопительный прибор.

Такой метод регулирования называется количественным, поскольку устройство влияет на расход проходящего в радиатор теплоносителя. Существует и другой метод – качественный, с его помощью меняется температура воды в системе. Это осуществляет регулятор температуры (смесительный узел), устанавливаемый в котельной или тепловом пункте.

Чтобы понять принцип работы термоголовки, предлагается изучить схему прибора, изображенного в разрезе:

Внутри корпуса элемента расположен сильфон, заполненный термочувствительной средой. Она бывает двух видов:

Жидкостные сильфоны проще в изготовлении, но проигрывают газовым по быстродействию, поэтому последние получили очень широкое распространение. Итак, при повышении температуры воздуха вещество в замкнутом пространстве расширяется, сильфон растягивается и нажимает на шток клапана. Тот, в свою очередь, перемещает вниз специальный конус, уменьшающий проходное сечение клапана. В результате расход теплоносителя уменьшается. При охлаждении окружающего воздуха все происходит в обратном порядке, количество протекающей воды растет до максимума, это и есть принцип работы терморегулятора.

Рекомендации по выбору

В зависимости от типа системы отопления и условий монтажа прибора, для управления потоком теплоносителя могут применяться комплекты клапан – термоголовка в различных сочетаниях. В однотрубных системах обогрева рекомендуется устанавливать клапаны с повышенной пропускной способностью и малым гидравлическим сопротивлением (маркировка изделия производства DANFOSS – RA-G, RA-KE, RA-KEW).

Та же рекомендация касается и двухтрубных самотечных систем, где теплоноситель циркулирует естественным образом, без принудительного побуждения. Если же схема обогрева – двухтрубная с циркуляционным насосом, то следует выбрать клапан с возможностью регулировки пропускной способности (маркировка DANFOSS – RA-N, RA-K, RA-KW). Эта регулировка производится достаточно просто и специальный инструмент для нее не нужен.

Когда вопрос с подбором клапана решен, нужно определиться с типом термоголовки. Они предлагаются в следующих исполнениях:

  1. С внутренним термоэлементом (как на схеме, представленной выше).
  2. С выносным температурным датчиком.
  3. С внешним регулятором.
  4. Электронные (программируемые).
  5. Антивандальные.

Обычный терморегулятор для радиаторов отопления с внутренним датчиком принимается к установке, если есть возможность расположить его ось горизонтально, чтобы воздух помещения свободно омывал корпус прибора, как показано на рисунке:

Внимание! Не допускается установка терморегулятора на батарею в вертикальном положении, тепловой поток, поднимающийся от подающего трубопровода и корпуса клапана, станет оказывать влияние на сильфон, в результате чего устройство будет работать некорректно.

Если горизонтальный монтаж головки невозможен, то лучше приобрести к ней выносной датчик температуры в комплекте с капиллярной трубкой длиной 2 м. Именно на таком расстоянии от радиатора можно расположить данное устройство, прикрепив его к стене:

Помимо вертикального монтажа для покупки выносного датчика бывают и другие объективные причины:

  • радиаторы отопления с регулятором температуры находятся за плотными шторами;
  • в непосредственной близости от термоголовки проходят трубы с горячей водой либо присутствует другой источник тепла;
  • батарея стоит под широким подоконником;
  • внутренний термоэлемент попадает в зону сквозняка.

В комнатах с высокими требованиями к интерьеру батареи зачастую прячут под декоративными экранами из различных материалов. В таких случаях попавший под кожух терморегулятор регистрирует температуру скапливающегося в верхней зоне горячего воздуха и может целиком перекрыть теплоноситель. Мало того, полностью закрыт доступ к управлению головкой. В этой ситуации выбор следует сделать в пользу выносного регулятора, совмещенного с датчиком. Варианты его размещения показаны на рисунке:

Электронные термостаты с дисплеем также бывают двух видов: со встроенным и съемным блоком управления. Последний отличается тем, чтоб электронный блок отсоединяется от термоголовки, после чего она продолжает функционировать в обычном режиме. Назначение подобных устройств — регулировка температуры в помещении по времени суток в соответствии с программой. Это позволяет снижать отопительную мощность в рабочее время, когда дома никого нет и в прочих подобных случаях, что приводит к дополнительной экономии энергоресурсов.

Когда в доме есть маленькие дети, которым все хочется попробовать своими ручками, лучше установить терморегулятор антивандального типа с кожухом, предохраняющим настройки прибора от неквалифицированного вмешательства. Это касается и термостатов, стоящих в других общественных зданиях: детских садах, школах, больницах и так далее.

Как установить терморегулятор на батарею

Первая рекомендация – не ставить термоголовки на все нагреватели в пределах видимости. Здесь правило следующее: регулированию должны подвергаться радиаторы, чья суммарная мощность составляет 50% и более от всех, находящихся в одной комнате. Например, когда в помещении имеется 2 отопителя, то термостатом должна быть оснащена 1 батарея, чья мощность больше.

Совет. Если в качестве отопительных приборов применены чугунные радиаторы, то поддержание микроклимата с помощью термостатических клапанов будет неэффективным. Дело в том, что работа чугунных батарей очень инерционна, после перекрытия потока теплоносителя они еще долго излучают тепло и наоборот, долго разгоняются. Монтаж клапанов не имеет смысла, вы только напрасно потратите свое время и средства.

Первую часть устройства – клапан – рекомендуется монтировать на подводящий подающий трубопровод в момент подключения радиатора к отопительной системе. В случае когда его требуется врезать в собранную систему, то подводку подачи придется демонтировать. Это доставит некоторые сложности, если подключение выполнено стальными трубами, понадобится инструмент для резки труб и нарезания резьбы.

После того как термостат на батарею отопления установлен, термоголовка монтируется без всякого инструмента. Достаточно просто совместить метки на корпусах и плавным нажатием зафиксировать головку в гнезде. Сигналом послужит щелчок фиксирующего механизма.

Немного сложнее устанавливать антивандальный терморегулятор, для этого понадобится шестигранный ключ размером 2 мм. Совместив требуемые метки, как показано на схеме, нужно прижать термоголовку, а шестигранником закрутить фиксирующий болт, находящийся сбоку.

Монтаж выносного датчика и регулятора осуществляется на свободном от деталей интерьера и мебели участке стены, разместив их на высоте 1.2—1.6 м от пола, как показано на схеме:

Сначала дюбелями к стене прикрепляется монтажная пластина, а потом на нее простым нажатием защелкивается корпус. Капиллярная трубка закрепляется к стене пластмассовыми хомутиками, как правило, они идут в комплекте с изделием.

Помимо штатной регулировки температуры в головках предусмотрена настройка терморегулятора на максимальный и минимальный пределы, дальше которых поворот колеса станет невозможным. Для этого предусмотрены ограничительные штифты, находящиеся в задней части изделия. Нужно вытащить один из них и после отладки системы вставить в отверстие под соответствующей меткой:

Заключение

Терморегулятор на батареи отопления

Термостатические элементы на терморегуляторы отопления есть трех типов — ручные, механические и электронные. Все они выполняют одни и те же функции, но по-разному, предоставляют разный уровень комфорта, имеют разные возможности.

Ручные термостатические головки работают как обычный кран — поворачиваете регулятор в ту или другую сторону, пропуская большее или меньшее количество теплоносителя. Самые дешевые и самые надежные, но не самые удобные устройства. Чтобы изменить теплоотдачу надо вручную крутить вентиль.

Ручная термоголовка — самый простой и надежный вариант

Данные устройства совсем недороги, их можно поставить на входе и на выходе радиатора отопления вместо шаровых кранов. Регулировать можно будет любым из них.

Механические

Более сложное устройство, которое поддерживает заданную температуру в автоматическом режиме. Основа термостатической головки этого типа — сильфон. Это небольшой эластичный цилиндр, который заполнен температурным агентом. Температурный агент — это газ или жидкость, которые имеют большой коэффициент расширения — при нагревании они сильно увеличиваются в объеме.

Устройство терморегулятора на радиатор отопления с механической термостатической головкой

Сильфон подпирает шток, перекрывающий проходное сечение клапана. Пока вещество в сильфоне не нагрелось, шток поднят. По мере повышения температуры, цилиндр начинает увеличиваться в размерах (расширяется газ или жидкость), он давит на шток, который все больше перекрывая проходное сечение. Через радиатор проходит все меньше теплоносителя, он понемногу остывает. Остывает и вещество в сильфоне, из-за чего цилиндр уменьшается в размерах, шток поднимается, теплоносителя через радиатор проходит больше, он начинает немного разогреваться. Далее цикл повторяется.

Газовый или жидкостный

При наличии такого устройства температура в помещении довольно поддерживается точно +- 1°C, но вообще дельта зависит от того, насколько инертным является вещество в сильфоне. Он заполняться может каким-то газом или жидкостью. Газы быстрее реагируют на изменения температуры, но технологически их производить сложнее.

Жидкостный или газовый сильфон — особой разницы нет

Жидкости чуть медленнее изменяют объемы, но их производить проще. В целом, разница в точности поддержания температуры — порядка полу градуса, что заметить практически невозможно. В результате большая часть представленных терморегуляторов для радиаторов отопления оснащена термоголовками с жидкостными сильфонами.

С выносным датчиком

Устанавливаться механическая термостатическая головка должна так, чтобы она была направлена в комнату. Так измеряется температура точнее. Так как имеют они довольно приличные размеры, такой способ установки возможен не всегда. Для этих случаев можно поставить терморегулятор для радиатора отопления с выносным датчиком. Температурный датчик соединяется с головкой при помощи капиллярной трубки. Расположить его можно в любой точке, в который вы предпочитаете измерять температуру воздуха.

С выносным датчиком

Все изменения теплоотдачи радиатора будут происходить в зависимости от температуры воздуха в комнате. Единственный минус такого решения — высокая стоимость таких моделей. Но температура поддерживается точнее.

Электронные

По размерам электронный терморегулятор для радиатора отопления еще больше. Термостатический элемент еще больше. В нем кроме электронной начинки устанавливаются еще и две батарейки.

Электронные терморегуляторы на батареи отличаются большими размерами

Движением штока в клапане в этом случае управляет микропроцессор. Данные модели имеют довольно большой набор дополнительных функций. Например, возможность по часам выставлять температуру в помещении. Как это модно использовать? Врачи давно доказали, что спать лучше в прохладном помещении. Потому на ночь можно запрограммировать температуру пониже, а к утру, когда придет время просыпаться, ее можно выставить выше. Удобно.

Как правильно установить

Ставят терморегулятор для радиатора отопления на входе или на выходе отопительного прибора — разницы нет, работают с одинаковым успехом в обоих положениях. Как выбрать место, где установить?

По рекомендуемой высоте установки. Такой пункт есть в технических характеристиках. Каждое устройство проходит на заводе настройку — их калибруют под контроль температуры на определенной высоте и обычно это — верхний коллектор радиатора. В таком случае теплорегулятор установлен на высоте 60-80 см, его удобно при необходимости регулировать вручную.

Схемы установки теплорегуляторов для радиаторов

Если у вас нижнее седельное подключение (трубы подходят только снизу), есть три варианта — искать устройство с возможностью установки внизу, поставить модель с выносным датчиком или перенастроить термоголовку. Процедура несложная, описание должно быть в паспорте. Всего-то и нужно, что иметь термометр и покрутить в определенные моменты головку в одну, потом в другую сторону.

Установка стандартная — на фум-ленту или льняную подмотку с упаковочной пастой

Сам процесс установки стандартный. На клапане имеется резьба. Под нее подбираются соответствующие фитинги или на металлической трубе нарезается ответная резьба.

Один важный момент, о котором должны помнить те, кто хочет поставить терморегулятор для радиатора отопления в многоквартирных домах. Если у вас однотрубная разводка, их можно установить только при наличии байпаса — участка трубы, который стоит перед батареей и соединяет две трубы между собой.

Если у вас похожая разводка (трубы справа может не быть) наличие байпаса обязательно. Терморегулятор ставить ставят сразу за радиатором

В противном случае вы регулировать будете весь стояк, что точно не понравится вашим соседям. За такое нарушение могут выписать очень даже солидный штраф. Потому, лучше поставить байпас (если нет).

Как отрегулировать (перенастроить)

Все терморегуляторы проходят на заводе настройку. Но установки у них стандартные и могут не совпадать с вашими желаемыми параметрами. Если вас что-то не устраивает в работе — хотите, чтобы было теплее/холоднее, можно терморегулятор для радиатора отопления перенастроить. Делать это надо при работающем отоплении. Понадобиться термометр. Его вешаете в той точке, где будете контролировать состояние атмосферы.

  • Закрываете двери, ставите головку термостата в крайнее левое положение — полностью открыто. Температура в помещении начнет повышаться. Когда она станет на 5-6 градусов выше желаемой вами, поворачиваете регулятор до упора вправо.
  • Радиатор начинает остывать. Когда температура упадет до того значения, которое вы считаете комфортным, начинаете медленно поворачивать регулятор вправо и прислушиваться. Когда услышите, что теплоноситель зашумел, а радиатор начал прогреваться, останавливайтесь. Запомните какая цифра выставлена на рукоятке. Ее и надо будет выставлять для достижения требуемой температуры.

Источники: http://fb.ru/article/224805/termoregulyator-na-batareyu-printsip-rabotyi-nastroyka-ustanovka, http://cotlix.com/termoregulyator-dlya-radiatorov, http://stroychik.ru/otoplenie/termoregulyator-dlya-radiatora

 

 

Как вам статья?

Как регулировать температуру радиатора

При правильном расчете мощности системы отопления, наличие регулятора температуры на радиаторах является необязательным, ведь каждое помещение будет прогреваться до нужной температуры. В случае с многоквартирными жилыми домами, где отопительные системы были подвержены кардинальной переработке и переоснащению, вентиль, позволяющий прибавить или снизить температуру, может стать незаменимым дополнением к радиатору.

Несмотря на то, что большинство современных отопительных приборов оборудованы подобным регулятором, большинство отечественных потребителей даже не догадываются о том, как регулировать температуру радиатора и совершенно не знают о назначении «загадочного» крана, торчащего у изголовья батареи.

Особенности использования регуляторов


Регулирование теплоотдачи радиаторов обладает несколькими особенностями.

  • Во-первых, при помощи регулятора можно снизить расходы на отопление за счет отключения радиаторов в отдельных не посещаемых комнатах.
  • Во-вторых, наличие вентиля позволяет установить разный температурный режим в разных комнатах: к примеру, в ночное время суток температуру в гостиной снизить до +18 oC, а в спальне и детской поддерживать до +26 oC без особых проблем, вне зависимости от местоположения батарей.

Ручная или автоматическая регулировка?


На данный момент, рынок теплового оборудования предлагает массу дополнительных устройств для радиаторных батарей в различной ценовой категории. Говоря о вентилях стоит отметить, что в настоящее время их можно разделить на:

  • электронные термостаты;
  • механические вентили.

В отличие от механического управления, автоматический электронный термостат оборудован интеллектуальными системами управления, а также рядом заложенных температурных программ. Но в большинстве случаев, ручное управление оказывается гораздо надежнее современной автоматики.

Как увеличить теплоотдачу батарей


Возможность повышения теплоотдачи труб зависит от рассчитанного заранее запаса мощности. В случаях, когда радиатор выдает свой максимум, никакой кран или иное устройство для регулировки не сможет помочь разогреть его за предел.

Тем не менее, повысить температуру оформления можно за счет:

  • Чистки фильтров и труб от засоров;
  • Увеличения температуры теплоносителя;
  • Изменения типа подключения батареи;
  • Повышения количества используемых секций.

Возможно, что после чистки или изменения подключения, он станет работать намного лучше!

Куда устанавливать регулятор?


В идеале, терморегулятор устанавливается на прибор, не закрытый шторами, декоративными экранами или другими предметами интерьера. Но в последние годы, это правило можно обойти при помощи дистанционных термостатов, позволяющих контролировать температурный режим с места расположения устанавливаемых датчиков. В случае соблюдение инструкций, норм и правил монтажа, можно устанавливать температуру в диапазоне +5…+30 oC, в зависимости от производителя и модели отопительного прибора!

Так же мы предоставляем следующие услуги:

замена батарей отопления
замена батарей отопления в квартире
цена замены радиатора в квартире
замена радиаторов отопления
установка батарей отопления
установка радиаторов отопления

Исследование характеристик контроля температуры системы управления температурой батареи, состоящей из многоканального параллельного жидкостного и воздушного охлаждения

  • Li JW, Zhang HY (2020) Тепловые характеристики модуля силовой батареи с композитным материалом с фазовым переходом и внешним жидкостным охлаждением. Int J Heat Mass Tran 156, 119820

  • Wang JX, Guo W, Xiong K, Wang (2020) Обзор аэрокосмической технологии распылительного охлаждения. Прог Аэросп Наука 116, 100635

  • Yang Y, Xu XM, Zhang YG, Li C (2020) Синергический анализ характеристик рассеивания тепла аккумуляторной батареи при воздушном охлаждении. Ионика 26:5575–5584

    Статья КАС Google Scholar

  • Ян В., Чжоу Ф., Чжоу Х.Б., Ван К.З., Конг Дж.З. (2020) Тепловые характеристики системы терморегулирования цилиндрической литий-ионной батареи, интегрированной с мини-канальным жидкостным охлаждением и воздушным охлаждением. Appl Therm Eng 175:115331

    Артикул КАС Google Scholar

  • Park CJA (2003 г.) Динамическая тепловая модель литий-ионной батареи для прогнозирования поведения гибридных автомобилей и автомобилей на топливных элементах. SAE tech pap 112:1835–1842

    Google Scholar

  • Лян Дж.Л., Ган Ю.Х., Ли И. (2018) Исследование тепловых характеристик системы управления температурой батареи с использованием тепловых трубок при различных температурах окружающей среды. Energy Convers Manag 155: 1–9

    Артикул Google Scholar

  • Wang JX, Li YZ, Yu XK, Li GC, Ji XY (2018) Исследование механизма теплопередачи распылительного охлаждения большого пространства с низким давлением окружающей среды для систем ближнего космического полета. Int J Heat Mass Transf 119:496–507

    Статья Google Scholar

  • Lu L, Han X, Li J, Hua J, Ouyang M (2013) Обзор ключевых вопросов управления литий-ионными батареями в электромобилях. J Источники питания 226: 272–288

    Артикул КАС Google Scholar

  • «>

    Chen FF, Huang R, Wang CM, Yu X, Liu H, Wu Q, Qian K, Bhagat R (2020) Воздушное и PCM-охлаждение для управления температурой батареи с учетом срока службы батареи. Appl Therm Eng 173:115154

    Артикул КАС Google Scholar

  • Wang JX, Li YZ, Zhang Y, Li JX, Mao YF, Ning XW (2018 г.) Гибридная система охлаждения, сочетающая в себе самоадаптирующийся однофазный контур жидкости с механической накачкой и двухфазный модуль распыления, защищенный от гравитации. Energy Convers Manag 176:194–208

    Артикул Google Scholar

  • Yang NX, Zhang XW, Li GJ, Hua D (2015) Оценка производительности принудительного воздушного охлаждения для цилиндрических литий-ионных аккумуляторных батарей: сравнительный анализ между выровненными и расположенными в шахматном порядке элементами. Appl Therm Eng 80:55–65

    Статья КАС Google Scholar

  • «>

    JQ E, Han D, Qiu A et al (2018) Ортогональный экспериментальный дизайн конструкции с жидкостным охлаждением на охлаждающем эффекте системы управления температурой батареи с жидкостным охлаждением. Appl Therm Eng 132: 508–520

    Артикул Google Scholar

  • Zou D, Ma X, Liu X, Zheng P, Hu Y (2018) Повышение тепловых характеристик композитных материалов с фазовым переходом (PCM) с использованием графена и углеродных нанотрубок в качестве добавок для потенциального применения в литий-ионных батареях. Int J Heat Mass Transf 120:33–41

    Статья КАС Google Scholar

  • Wu WX, Wang SF, Wu W, Chen K, Hong SH, Lai YX (2019) Критический обзор тепловых характеристик аккумуляторов и управления температурным режимом аккумуляторов на жидкой основе. Energy Convers Manag 182:262–281

    Статья Google Scholar

  • «>

    Hallaj SA, Selman JR (2000) Новая система терморегулирования для аккумуляторов электромобилей с использованием материала с фазовым переходом. J Electrochem Soc 147:3231–3236

    Статья КАС Google Scholar

  • Jiang G, Huang J, Fu Y и др. (2017) Термическая оптимизация композитного материала с фазовым переходом/расширенного графита для управления температурой литий-ионных аккумуляторов. Appl Therm Eng 108:1119–1125

    Статья Google Scholar

  • Zhang Z, Fang X (2006) Исследование композитного материала для хранения тепловой энергии парафин/расширенный графит с фазовым переходом. Energy Convers Manag 47:303–310

    Статья КАС Google Scholar

  • Cai Y, Song L, He Q, Yang D, Hu Y (2008) Получение термических и воспламеняющихся свойств новых формостабильных материалов с фазовым переходом на основе полиэтилена высокой плотности/поли(этилен-со-винилацетата) /органофильные монтмориллонитовые нанокомпозиты/парафиновые соединения.

    Energy Convers Manag 49:2055–2062

    Статья КАС Google Scholar

  • Зариер М.А., Динсер И., Розен М.А. (2019) Новый подход к повышению производительности систем охлаждения аккумуляторов на основе жидкостного и парового режимов. Energy Convers Manag 187:191–204

    Артикул Google Scholar

  • Wu WX, Yang XQ, Zhang GQ, Chen K, Wang SF (2017) Экспериментальное исследование тепловых характеристик системы терморегулирования батареи на основе материалов с фазовым переходом с помощью тепловых трубок. Energy Convers Manag 138:486–492

    Статья Google Scholar

  • Fan YQ, Bao Y, Chen L, Chu Y, Tan XJ, Yang ST (2019) Экспериментальное исследование характеристик терморегулирования воздушного охлаждения для цилиндрических литий-ионных аккумуляторов с высокой плотностью энергии. Appl Therm Eng 155: 96–109

    Артикул Google Scholar

  • Wang JX, Birbarah P, Docimo D, Yang TY, Alleyne A, Miljkovic N (2021) Наноструктурированный тепловой выпрямитель с прыгающими каплями. Phys Rev E 10E3, 023110

  • Wang T, Tseng KJ, Zhao JY, Wei ZB (2014) Тепловое исследование модуля литий-ионной батареи с различными структурами расположения ячеек и стратегиями принудительного воздушного охлаждения. Appl Energy 134:229–238

    Статья Google Scholar

  • JQ E, Yue M, Chen JW et al (2018) Влияние различных стратегий воздушного охлаждения на эффективность охлаждения модуля литий-ионной батареи с перегородкой. Appl Therm Eng 144:231–241

    Статья Google Scholar

  • Дэн Ю, Фэн С, Дж. К. Э., Чжу Х, Чен Дж, Вэнь М, Инь Х (2018) Влияние различных охлаждающих жидкостей и стратегий охлаждения на эффективность охлаждения системы мощных литий-ионных аккумуляторов: обзор. Appl Therm Eng 142: 10–29

    Артикул КАС Google Scholar

  • Wang JX, Li YZ, Zhong ML, Zhang HS (2020) Исследование распыления газовым распылением на плоской и микроструктурированной поверхности. Int J Therm Sci 161,106751

  • Wang C, Zhang GQ, Meng LK, Li X, Situ W, Lv Y, Rao M (2017) Жидкостное охлаждение на основе термокремниевой пластины для системы управления температурой батареи. Int J Energy Res 41:2468–2479

    Статья КАС Google Scholar

  • Jin LW, Lee PS, Kong XX, Fan Y, Chou SK (2014) Ультратонкий миниканальный LCP для управления температурой батареи электромобиля. Appl Energy 113:1786–1794

    Статья КАС Google Scholar

  • Huo Y, Rao Z, Liu X, Zhao J (2015) Исследование терморегулирования силовой батареи с использованием мини-канальной охлаждающей пластины. Energy Convers Manag 89:387–395

    Статья Google Scholar

  • Чжао Ч.Р., Цао Дж.В., Донг Т., Цзян Ф.М. (2018) Исследование тепловых характеристик разрядки/зарядки модуля цилиндрической литий-ионной батареи, охлаждаемого направленным потоком жидкости. Int J Heat Mass Transf 120:751–762

    Статья КАС Google Scholar

  • Йорис Дж., Джоэри В.М. (2020 г.) Всесторонний обзор будущих систем управления температурным режимом для электромобилей. J Хранилище энергии 31, 101551

  • Ling ZY, Wang FX, Fang XM, Gao XN, Zhang ZG (2015) Гибридная система терморегулирования для литий-ионных аккумуляторов, сочетающая материалы с фазовым переходом и принудительное воздушное охлаждение. Appl Energy 148:403–409

    Статья КАС Google Scholar

  • «>

    Song LM, Zhang HY, Yang C (2019) Термический анализ конфигураций сопряженного охлаждения с использованием материала с фазовым переходом и методов жидкостного охлаждения для модуля батареи. Int J Heat Mass Transf 133: 827–841

    Артикул Google Scholar

  • Wei YY, Chaab MA (2018) Экспериментальное исследование нового гибридного метода охлаждения литий-ионных аккумуляторов. Appl Therm Eng 136:375–387

    Статья Google Scholar

  • Бернарди Д., Павликовски Э., Ньюман Дж. (1985) Общий баланс энергии для аккумуляторных систем. J Electrochem Soc 132:5–12

    Статья КАС Google Scholar

  • Чой Ю.С., Канг Д.М. (2014) Прогнозирование теплового поведения литий-ионной аккумуляторной системы с воздушным охлаждением для гибридных электромобилей. J Power Sources 270:273–280

    Артикул КАС Google Scholar

  • «>

    Пила Л.Х., Йе Й., Тай А.А., Чонг В.Т., Куан С.Х., Ю М.С. (2016) Вычислительный гидродинамический и тепловой анализ литий-ионного аккумуляторного блока с воздушным охлаждением. Appl Energy 177:783–792

    Статья Google Scholar

  • Сахель Д., Амер Х., Бензегир Р., Камла И. (2016) Повышение теплопередачи в прямоугольном канале с перфорированными перегородками. Appl Therm Eng 101:151–164

    Статья Google Scholar

  • Сахель Д., Амер Х., Бензегир Р., Камла И. (2018) Прогноз развития теплообмена в гладкой трубе. J Eng Phys Thermophys 91(3):682–687

    Статья КАС Google Scholar

  • LMS Представьте. Руководство пользователя Lab AMESim

  • WTC32ND-HB Контроллер температуры литий-ионной батареи 2,2 А – Электроника длины волны

    Компактная конструкция контроллера температуры WTC32ND-HB обеспечивает температурную стабильность 0,0009°C. Эта адаптация стандарта WTC32ND работает от литий-ионных аккумуляторов 3,6 В. Диапазон датчика ограничен 1,6 В (при питании 3,3 В). Не работайте с входным напряжением выше 8 В.

    В его комплект можно интегрировать радиатор WHS302, термошайбу WTW002 и вентиляторы WXC303 (+5 В) или WXC304 (+12 В) для упрощения прототипирования. Линейный контур ПИ-регулирования обеспечивает максимальную стабильность, а биполярный источник тока обеспечивает более высокую эффективность. WTC32ND-HB управляет током до 2,2 А для термоэлектрических (биполярных) или резистивных нагревателей (униполярных).

    Контроллер температуры WTC32ND легко настраивается для любой конструкции. Калькулятор цепей ускоряет выбор значений внешних компонентов (см. вкладку Инструменты проектирования). С ним можно использовать практически любой тип датчика температуры, а встроенный источник тока смещения датчика упрощает использование с резистивными датчиками температуры. Пропорциональный коэффициент усиления (P) и постоянная времени интегратора (I) задаются внешними резисторами и могут быть изменены для оптимизации выбросов температуры и стабильности.

    Другие функции обеспечивают дополнительную гибкость. Независимые ограничения тока нагрева и охлаждения устанавливаются отдельными резисторами. Встроенное опорное напряжение упрощает потенциометрическое управление заданным значением температуры. Вы также можете выбрать удаленную работу с внешним заданным напряжением. Контролируйте фактическое напряжение датчика на контакте 9.

    Прочный и надежный датчик WTC32ND-HB предназначен для портативных электрооптических систем, безопасных для глаз атмосферных лидаров, бортовых приборов, рамановских спектрометров и медицинского диагностического оборудования. WTC особенно подходит для приложений, в которых измеряется температура окружающей среды.

    Wavelength предоставляет бесплатный исполняемый файл LabVIEW Virtual Instrument для использования с оценочной платой WTC32ND-EV. Нажмите здесь, чтобы загрузить. Для исполняемого ВП также требуется LabVIEW Run-Time Engine 2017, который можно бесплатно загрузить с веб-сайта National Instruments: https://www. ni.com/en-us/support/downloads/software-products/download.labview-runtime. .html#369481, а также средство просмотра DAQmx Viewer, также доступное бесплатно на веб-сайте NI: http://joule.ni.com/nidu/cds/view/p/id/2604/lang/en.

    Исходный код модуля LabVIEW Virtual Instrument доступен бесплатно, если вы хотите изменить программу самостоятельно. Кроме того, Wavelength может настроить виртуальный инструмент в соответствии с вашим приложением. Обратитесь за помощью к инженеру по продажам.

    WTC32ND по сравнению с WHY56ND:
    — WTC32ND включает дистанционное управление напряжением и монитор температуры. WHY56ND этого не делает.
    — WTC32ND поддерживает AD590 и LM335.
    — WHY56ND требует внешних цепей для управления чем-либо, кроме резистивных датчиков.
    — два или более WHY56ND можно использовать вместе для увеличения выходного тока.
    — если вам не нужны все функции WTC32ND, WHY56ND — более дешевое решение.
    ПРИМЕЧАНИЕ. WHY56ND и WTC32ND имеют НЕодинаковую конфигурацию контактов.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *