Управление частотным преобразователем, векторное, скалярное.
Компания Русэлком производит и поставляет преобразователи частоты для управления асинхронными двигателями. Поэтому для понимания принципа частотного управления рассмотрим более детально работу асинхронного двигателя и методы его частотного регулирования
Конструкция асинхронного двигателя схематически изображена на рис. 2. Двигатель состоит из неподвижной части, которая называется статор и подвижной (вращающейся) части называемой ротор.
В пазах статора уложены три группы обмоток А-В-С. Обмотки статора сдвинуты друг относительно друга в пространстве на угол 120°. Это является одним из двух обязательных условий для создания вращающегося магнитного поля статора.
Ротор двигателя изготовлен в виде цельного цилиндра из специальной электротехнической стали с короткозамкнутой обмоткой.
Рис.2. Схематический разрез асинхронного двигателя.
На обмотки статора от источника питания подается трехфазное напряжение uа, uв, uс с частотой
Напряжения uа, uв, uс сдвинуты друг относительно друга по фазе на 120°. Это является вторым обязательным условием для создания вращающегося магнитного поля статора.
При питании обмоток статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Угловая скорость вращения этого поля в радианах определяется по известной формуле
– число пар полюсов статора.
Переход от угловой скорости вращения поля измеряемой в радианах, к частоте вращения выраженной в оборотах в минуту, осуществляется по следующей формуле
где 60 – коэффициент пересчета размерности.
Подставив в это уравнение скорость вращения поля, получим, что
Из формулы видно, что частота вращения магнитного поля статора зависит от частоты напряжения питания и числа пар полюсов.
К примеру, в двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц частота вращения магнитного поля равна 3000 об/мин.
В синхронном электрическом двигателе частота вращения ротора на установившемся режиме равна частоте вращения магнитного поля статора
В асинхронном электрическом двигателе частота вращения ротора на установившемся режиме отличается от частоты вращения на величину скольжения . Для примера в асинхронном двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц и при скольжении 5% частота вращения ротора равна 2850 об/мин.
Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.
На этой зависимости и основан метод частотного регулирования.
Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.
В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.
При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.
В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.
При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.
Максимальный момент, развиваемый двигателем, определяется следующей зависимостью
где — постоянный коэффициент.
Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.
Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.
Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.
В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.
Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.
Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.
Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1: 40.
Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.
Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».
Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.
Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.
Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.
Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.
В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.
Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.
Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.
Принцип действия частотного управления асинхронным двигателем ~ Электропривод
Чтобы понять способ частотного управления асинхронным двигателем, а конкретно его угловой скоростью, при помощи регулирования частоты подводимого напряжения, необходимо рассмотреть формулу зависимости синхронной частоты вращения двигателя от частоты подводимого напряжения f1 и числа пар полюсов двигателя рn. Из формулы видно, что скорость вращения электромагнитного поля статора прямо пропорциональна частоте питающего напряжения.
По этому принципу возможно построение широкорегулируемых электроприводов с жесткими механическими характеристиками. Важным преимуществом частотного управления асинхронным двигателем являются благоприятные энергетические показатели. Это объясняется тем, что двигатель с частотным управлением работает при малых скольжениях, что обусловливает малые потери и высокий КПД во всем диапазоне регулирования скорости. Однако при изменении частоты возникает необходимость одновременного регулирования напряжения, подводимого к статору. С изменением частоты питающего напряжения изменяется и величина потока двигателя Ф1, поэтому одновременно с изменением частоты питающего напряжения необходимо регулировать и его амплитуду.
Необходимость уменьшения напряжения при уменьшении частоты питающего напряжения возникает из за того, что с уменьшением сопротивления обмоток двигателя, ток намагничивания возрастает. Это приводит к тому, что магнитопровод двигателя насыщается, что ведет к перегреву двигателя. При частотном управлении двигателем, необходимо следить, чтобы скольжение двигателя было минимальным.
В настоящее время в качестве преобразователей частоты используются полупроводниковые статические преобразователи частоты. Если пренебрегать величиной активного сопротивления статора (r1=0), то, для того чтобы при частотном управлении (уменьшении частоты вниз от номинальной) сохранять критический момент постоянным, нужно величину напряжения изменять пропорционально изменению частоты.
Механические характеристики, соответствующие частотному регулированию при выполнении соотношения показаны на рисунке сплошными линиями.
Для того чтобы реализовать принцип частотного управления двигателем, необходимо управлять напряжением и током в статоре асинхронной машины при изменении частоты питания. Поэтому в разомкнутых системах ПЧ — АД не удается достичь большого диапазона регулирования скорости, так как в сильной степени проявляется статизм (влияние изменений момента нагрузки) на механические характеристики привода. Кроме того, при снижении скорости может возникать область статической неустойчивости, которая затрудняет практическое использование таких приводов. Существует несколько алгоритмов одновременного изменения частоты и напряжения статора в статическом режиме. Чаще всего стремятся сохранить постоянной перегрузочную способность двигателя, т.е. сделать так, чтобы при всех режимах отношение максимального момента к моменту сил сопротивления оставалось постоянным:
Таким образом, напряжение необходимо регулировать не только в функции частоты, но и в функции нагрузки. Критический момент трехфазного АД:
где ω0- синхронная скорость; Rj — активное фазное сопротивление обмотки статора; XK=XJ+X’2 — индуктивное фазное сопротивление к.з. Пренебрегая величиной Ri по сравнению с Xk и учитывая, что Xk=2f1Lf, можно получить
Следовательно, критический момент прямо пропорционален квадрату напряжения и обратно пропорционален квадрату частоты, поэтому
Таким образом, для сохранения постоянной перегрузочной способности необходимо изменять напряжение пропорционально частоте и корню квадратному от момента нагрузки. Этот общий принцип регулирования может быть уточнен для конкретных режимов работы механизма.
Применение преобразователей частоты в подъемно-транспортном оборудовании (ПТО)
В подъемно-транспортном оборудовании (все виды кранов, тельферы, кран-балки) для перемещения устройства захвата, подъема и опускания грузов используются несколько типов электродвигателей. Это двигатели с фазным ротором, двигатели постоянного тока и асинхронные двигатели с короткозамкнутым ротором. Рассмотрим особенности использования всех выше перечисленных двигателей в различных механизмах кранов.
В моторах с фазным ротором используется реостатный пуск. За счет наличия сопротивления в цепи ротора пусковые токи имеют небольшие значения. Разгон двигателей происходит с помощью специального реле времени. Недостатками такого типа двигателей являются отсутствие возможности плавной регулировки скорости, большие габариты, значительное тепловыделение резисторов, большое количество контактной аппаратуры, которая со временем требует обслуживания.
Двигатели постоянного тока используются в тех случаях, когда нужен плавный подъем груза и точное регулирование скорости вращения вала мотора. В этом случае скорость регулируется с помощью тиристорного преобразователя. Общие недостатки двигателя этого типа – большая масса и стоимость самого мотора, сложность конструкции, необходимость в регулярном обслуживании щеточного узла мотора.
Асинхронные двигатели с короткозамкнутым ротором имеют много достоинств, в частности к ним относятся надежность в эксплуатации, простота конструкции и отсутствие необходимости регулярного обслуживания. Общим недостатком асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи, которые в 6-7 раз превышают номинальные.
Внедрение преобразователей частоты (ПЧ) для питания и управления асинхроннымидвигателями с короткозамкнутым ротором позволяет более эффективно регулировать скорость вращения электродвигателей, значительно снизить их пусковые токи и потребление электроэнергии. Эти особенности привели к постепенному вытеснению из использования двигателей постоянного тока и двигателей с фазным ротором в качестве приводов в подъемно-транспортном оборудовании и их замене на асинхронные двигатели с короткозамкнутым ротором, управляемые преобразователем частоты. Применение частотных преобразователей в механизмах кранов позволяет регулировать скорость подъема груза, перемещения самого крана или тележки в процессе работы, улучшает эксплуатационные характеристики кранов, снижает затраты и упрощает техническую эксплуатацию оборудования.
Преобразователи частоты, применяемые в крановом оборудовании, должны обеспечивать динамичную работу привода и поддерживать требуемый момент на валу двигателя даже при низких частотах вращения. Так как все электродвигатели монтируются непосредственно на конструкциях кранов, подверженных вибрациям, частотные преобразователи должны быть виброустойчивы. Кроме того, ПЧ должны иметь высокую перегрузочную способность, возможность работы в широком диапазоне температур. Всем эти требованиям соответствуют векторные преобразователи частоты ERMAN, их использования для управления приводами в подъемно-транспортном оборудовании позволяет решать следующие характерные задачи.
- Организация простой системы управления приводами.
Для управления преобразователем частоты используются стандартные аналоговые и дискретные сигналы, а также последовательный интерфейс RS485 с типовым протоколом информационного обмена MODBUS, используя который все ПЧ можно объединить в одну сеть.
- Плавное увеличение, уменьшение и программируемое изменение скорости механизмов крана.
Алгоритм разгона, торможения и программируемого изменения скорости прописывается в самих частотных преобразователях исходя из технологических требований. Это позволяет значительно снизить ударные и механические нагрузки на конструкцию крана.
- Управление электромеханическим тормозом.
ПЧ управляет электромеханическим тормозом двигателя и другим сопряженным оборудованием посредством дискретных и релейных выходов Преобразователи частоты ERMAN для кранового и подъемно-транспортного оборудования зарекомендовали себя самым наилучшим образом. На все частотные преобразователи ERMAN предоставляется гарантия 18 месяцев, при этом мы осуществляем сервисную и техническую поддержку наших клиентов в течение всего срока эксплуатации выпускаемой нами продукции.
Для подбора преобразователя частоты для вашего ПТО заполните форму «Получить коммерческое предложение».
Получить коммерческое предложениеДвигатели с частотным регулированием АДЧР. Преобразователь частоты позволяет регулировать скорость работы двигателя. Подбор и характеристики.
На основе частотно-регулируемого привода создаются энергосберегающие системы во многих производственных, коммунальных и других обслуживающих отраслях. Преобразователь частоты, интегрированный с электродвигателем, позволяет манипулировать номинальной мощность, плавно регулировать скорость работы.
Интеграция двигателя и преобразователя частоты дает преимущества:
- Сбережение электроэнергии.
- Увеличение срока эксплуатации двигателя.
- Автоматическое управление производственными процессами.
Эффективность работы привода с частотным регулироваением
Эффективность работы привода обеспечивают асинхронные двигатели частотного регулирования, купить которые можно в интернет-магазине ЭлРе, выбрав из линеек как:
- BESEL. Польский производитель в составе группы компаний Cantoni предлагает двигатели общего назначения для эксплуатации в умеренном климате, со стандартными параметрами пуска. Ассортимент двигателей частотного регулирования в каталоге выдержан в диапазоне типоразмеров с 56 по 90 мм. Линейка предназначается для управления насосами, вентиляторами и другой обслуживающей техникой. Производитель рекомендует правильно подбирать крыльчатку вентилятора для эффективной работы двигателя, т.к. слишком маленький вентилятор не обеспечивает должный контроль скорости вращения.
- ЭЛРЕ (ДАР). Компания ЭлРе предлагает модифицированные регулируемые по частоте двигатели собственного производства с маркировкой ДАР всех типоразмеров, с 56 по 132 мм. Производство АДЧР – двигателей частотного регулирования общего назначения компания – выполняет как по производственному плану, так и по конкретным заказам с предоставлением технического задания. Эти двигатели могут работать в одиночном или групповом приводе ЧРП либо от стандартной питающей сети.
Преимущество двигателей, выпускаемых в диапазоне SS(K,L), состоит в том, что мощность, потребляемая ими, прямо пропорциональна производительности по вращению и в связи с этим при низкой скорости вентилятора уменьшается энергопотребление двигателя.
Каталоги и подбор электродвигателей
Частотное регулирование асинхронных электроприводов. — РОСЭЛЕКТРО
Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2πf1 (1 — s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U1 ≈ Е1 = kФf1. Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастет, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.Для наилучшего использования асинхронного двигателя при регулировании угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки.
Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.
Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).
Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.
Для осуществления частотного регулирования угловой скорости находят применение преобразователи, на выходе которых по требуемому соотношению или независимо меняется как частота, так и амплитуда напряжения. Преобразователи частоты можно разделить на электромашинные и вентильные. В свою очередь электромашинные преобразователи могут быть выполнены с промежуточным звеном постоянного тока и непосредственной связью. В последних используют коллекторную машину переменного тока, на вход которой подают переменное напряжение с постоянной частотой и амплитудой, а на выходе ее получают напряжение с регулируемой частотой и амплитудой. Электромашинные преобразователи с непосредственной связью практического применения не получили.
Способы регулирования асинхронного двигателя.
Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.
Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.
Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:
Рис.1. Классификация способов регулирования асинхронных двигателей Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0:
Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя. Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).
В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:
плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;
— экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных;
Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.
Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.
Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.
Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.
2. Частотное регулирование асинхронных электроприводов:
Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2π f1 (1 — s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U1 ≈ Е1 = kФf1. Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастет, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.
Для наилучшего использования асинхронного двигателя при регулировании угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки. Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.
Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).
Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.
Для осуществления частотного регулирования угловой скорости находят применение преобразователи, на выходе которых по требуемому соотношению или независимо меняется как частота, так и амплитуда напряжения. Преобразователи частоты можно разделить на электромашинные и вентильные. В свою очередь электромашинные преобразователи могут быть выполнены с промежуточным звеном постоянного тока и непосредственной связью. В последних используют коллекторную машину переменного тока, на вход которой подают переменное напряжение с постоянной частотой и амплитудой, а на выходе ее получают напряжение с регулируемой частотой и амплитудой. Электромашинные преобразователи с непосредственной связью практического применения не получили.
Системы частотного регулирования с линейными электродвигателями.
Frequency control systems with linear motors
Разнообразие линейных электродвигателей столь же велико, как и электрических машин с вращающимся ротором. Наиболее просты по конструкции линейные трехфазные асинхронные двигатели, в которых поступательное движение рабочего органа происходит под действием «бегущего» поля индуктора.
Если индуктор выполнен в виде цилиндра, а внутри него находится токопроводящая жидкая среда, то цилиндрический линейный асинхронный двигатель (ЛАД) может работать в качестве насоса.
Регулирование производительности такого насоса осуществляется изменением частоты тока индуктора и, соответственно, скорости движения магнитного поля.
Особенности частотного регулирования МГД-насоса обусловлены конструкцией цилиндрического линейного асинхронного двигателя, в том числе краевыми эффектами и большими потоками рассеивания. Коэффициент мощности таких двигателей значительно ниже, чем у обычных электрических машин, и может составлять 0,3 – 0,4.
Система управления линейным электродвигателем строится на базе преобразователя частоты обычной конструкции, но со специальным программным обеспечением. Для оптимизации рабочих характеристик ЛАД может потребоваться раздельное и независимое управление выходной частотой преобразователя и выходным напряжением.
Диапазон частот двигателя МГД-насоса определяется требуемым напором и может достигать 200 Гц и выше.
Ниже показано оборудование системы частотного регулирования цилиндрического линейного асинхронного двигателя на базе преобразователя частоты Vacon NXP. Рабочие параметры — Uл=380 В, Iл=180 А, f=200 Гц, Cosφ=0,2.
Пример оборудования СЧР линейного асинхронного двигателя.
Управление преобразователем частоты выполняется с поста местного или дистанционного управления. Контроль работы привода, измерение и регистрация параметров выполняются штатным сервисным программным обеспечением NCDrive, установленным на персональном компьютере.
Пример переходных процессов линейного асинхронного двигателя при изменении частоты от 0 до 200 Гц.
Частота ШИМ выходного напряжения может изменяться в широком диапазоне (от 1 кГц до 12 кГц).
Форма напряжения и тока линейного асинхронного двигателя (дискретность считывания – 1 миллисекунда).
Предложения Инженерного центра «АРТ» по системам частотного регулирования с линейными электродвигателями.
Полный комплекс работ по созданию систем частотного регулирования для линейных электродвигателей, включая:
- разработку проектно-сметной документации, программного обеспечения;
- поставку оборудования и материалов;
- выполнение монтажных и пусконаладочных работ;
- организацию технического обслуживания.
Отправить запрос.
Новая упрощенная модель асинхронной машины с учетом частотной характеристики
При цифровом моделировании энергосистем следует учитывать частотную характеристику электрооборудования. Традиционная модель переходного процесса третьего порядка асинхронной машины исключает не только переходный процесс статора, но также и частотные характеристики, тем самым сужая область применения модели и приводя к большой ошибке при некоторых особых условиях. Основываясь на физической эквивалентной схеме и модели Парка для асинхронных машин, в этом исследовании предлагается новая асинхронная модель переходной машины третьего порядка с учетом частотной характеристики.В новых определениях переменных напряжения за реактивным сопротивлением переопределяются как линейное уравнение потокосцепления. Таким образом, уравнение напряжения ротора не связано с производными по частоте. Однако при применении традиционной модели переходных процессов третьего порядка не всегда следует игнорировать производные по частоте. По сравнению с традиционной моделью переходных процессов третьего порядка новая упрощенная модель переходных процессов третьего порядка с учетом частотной характеристики является более точной без увеличения порядка и сложности.Результаты моделирования показывают, что новая модель переходных процессов третьего порядка для асинхронной машины является подходящей, эффективной и более точной, чем широко используемая традиционная упрощенная модель переходных процессов третьего порядка в некоторых особых условиях с резкими колебаниями частоты.
1. Введение
Падение напряжения — обычное явление при отказе энергосистемы, тогда как системная частота остается постоянной в крупномасштабных энергосистемах. Следовательно, традиционное моделирование и моделирование энергосистемы сосредоточено на характеристиках напряжения силового оборудования с меньшим учетом частотной характеристики.Однако при большом распространении распределенной генерации [1, 2] частота системы будет колебаться, когда существует случайный дисбаланс между производством электроэнергии и потреблением. Например, неисправность или внезапное изменение мощности нагрузки в микросети [3–5] вызовут относительно большие колебания частоты, потому что инерция системы мала. Кроме того, в некоторых изолированных сетях (например, в электросетях Синьцзян и Хайнань в Китае) системные сбои также вызывают проблемы с частотой [6–9]. Таким образом, частотные характеристики оборудования следует учитывать при моделировании и моделировании энергосистемы.
Асинхронные машины, в состав которых входят асинхронные асинхронные двигатели и индукционные генераторы, являются важным оборудованием в энергосистемах. Динамическая нагрузка включает асинхронные двигатели [6–15] и большое количество ветряных генераторов, таких как индукционные генераторы или индукционные генераторы с двойным питанием (DFIG) [16–22]. Электромеханическая переходная модель третьего порядка для асинхронных машин широко используется при моделировании энергосистем. Традиционная форма этой модели не может представить частотную характеристику асинхронных машин, потому что эта упрощенная модель только предполагает, что частота постоянна, и игнорирует первую производную частоты во время вывода.Результаты моделирования приемлемы при использовании традиционной модели переходных процессов третьего порядка в условиях незначительных колебаний частоты или без учета колебаний частоты. Однако при изучении энергосистемы с высоким уровнем проникновения распределенной генерации использование традиционной модели переходных процессов третьего порядка приведет к значительной ошибке в результате моделирования в отличие от измерения поля. Моделирование нагрузки с учетом частоты и напряжения обсуждается в [8].Улучшенное моделирование нагрузки на основе измерений может хорошо отражать динамические характеристики реальной нагрузки. Новое регулирование частоты с помощью ветряных турбин (WT) на основе DFIG, используемых для координации инерционного управления, управления скоростью ротора и управления углом тангажа, изучается в [23]. Скоординированное управление улучшает возможность регулирования частоты и гасит колебания частоты. Способность WT участвовать в управлении первичной частотой и обеспечивать первичный резерв обсуждается в [24], в котором также исследовались переходная частотная поддержка и постоянная частотная характеристика.
Чтобы представить характеристики напряжения и частоты асинхронной машины во время моделирования, в этой статье предлагается новая упрощенная модель переходных процессов третьего порядка путем переопределения переменных и параметров традиционной модели. В этой новой упрощенной модели третьего порядка определение переходной переменной дает четкую физическую интерпретацию. Новая упрощенная модель третьего порядка может точно представить частотную характеристику асинхронных машин. Между тем, эта переменная не увеличит порядок и сложность модели.Наконец, результаты моделирования подтверждают эффективность и точность новой упрощенной модели переходных процессов третьего порядка при моделировании энергосистемы.
2. Парковая модель асинхронной машины
На рисунке 1 показаны схемы, применимые к анализу асинхронной машины. Цепи статора содержат трехфазные обмотки и распределены в пространстве на 120 ° друг от друга. Цепи ротора содержат три распределенных обмотки, и.
Пренебрегая насыщением, гистерезисом и вихревыми токами и принимая чисто синусоидальное распределение магнитных волн, уравнения машины можно записать следующим образом [25].
Уравнения напряжения статора и ротора задаются формулой где представляет напряжение, представляет ток, представляет поток, связывающий обмотку, обозначенную нижним индексом, представляет собой сопротивление фазы статора, представляет собой сопротивление фазы ротора, а нижние индексы и представляют собой обмотки статора и ротора, соответственно.
определяется как угол, на который ось фазной обмотки ротора опережает ось фазной обмотки статора в направлении вращения с постоянной угловой скоростью ротора: и с постоянной пробуксовкой:
На рисунке 2 показано, что электрическая угловая скорость системы отсчета и вращающейся системы отсчета находится в пределах, ось намотки ведет к оси намотки в направлении вращения, а ось совпадает с осью фазной обмотки статора в начальный момент.
Применяя уравнение преобразования, мы получаем следующие выражения для преобразованных составляющих напряжения, потоковых связей и токов [25].
Уравнения напряжения статора:
уравнения напряжения ротора: Термины и являются напряжениями трансформатора, аналогичными и.
Уравнения потокосцепления статора следующие:
Уравнения рассеяния магнитного потока ротора следующие: где и, где, и — утечка статора, утечка ротора и взаимные индуктивности соответственно.
Исключая фазное напряжение и ток по компонентам, получаем
Крутящий момент в воздушном зазоре получается делением мощности, передаваемой через воздушный зазор, на скорость ротора в механических радианах в секунду: где нижние индексы и обозначают ротор и статор соответственно.
3. Традиционная упрощенная модель асинхронной машины
За исключением переходных процессов статора, Следующие переменные и параметры [25] определены как Переписывая (7), получаем
Напряжение на роторе компонента (5) можно записать как
Из приведенного выше уравнения можно записать как Таким образом, (13) можно записать как
Аналогичным образом составляющая напряжения ротора определяется выражением
Этот термин обычно исключается при моделировании системы в предыдущих исследованиях, и уравнения переходной модели асинхронной машины можно переписать следующим образом:
По сравнению с (15) и (16), и исключены в (17), что указывает на то, что частота рассматривается как константа в переходной модели третьего порядка асинхронной машины.Однако это предположение приведет к ошибкам, поскольку частота значительно изменится.
4. Новая модель упрощенной асинхронной машины
4.1. Переопределение переменных и параметров
Чтобы представить эффект флуктуации частоты и сохранить простоту переходной модели третьего порядка асинхронной машины, переменные и параметры должны быть переопределены следующим образом:
По сравнению с (11) и имеют линейную связь с потокосцеплением, в результате чего угловые частоты, и исключены.
4.2. Уравнения напряжения ротора
Из (12) и (18) напряжение ротора компонента может быть записано как куда Таким образом, (19) можно записать как
На основе аналогичного принципа мы можем получить уравнение напряжения ротора компонента. Уравнения переходной модели асинхронной машины затем можно переписать следующим образом: не появляется в процессе вывода, что указывает на то, что частота не исключена в новой упрощенной переходной модели третьего порядка.В новом определении не учитываются и угловая частота, и индуктивности, и являются параметрами переходной модели, которые могут лучше отражать физические характеристики асинхронной машины в модели.
4.3. Уравнения напряжения статора
Чтобы сократить уравнения и сделать модель пригодной для программы стабилизации, мы исключаем токи ротора и выражаем взаимосвязь между током статора и напряжением относительно напряжения за переходным реактивным сопротивлением.Таким образом, из (12) и (6) получаем
Подставляя приведенное выше уравнение для в (4), уравнение напряжения статора компонента можно переписать как
Аналогичным образом мы можем получить компонент уравнения напряжения статора, в результате чего уравнения напряжения статора могут быть записаны как
Из (13) и (9) уравнение электромагнитного момента может быть выражено как
4.4. Уравнения модели в системе координат
Уравнения модели переходных процессов должны быть преобразованы в общедоступную систему координат при моделировании системы.На рисунке 2 показана взаимосвязь между системой отсчета и системой отсчета с аналогичной угловой скоростью в. — угол, на который ось опережает ось в направлении вращения. Уравнение преобразования: В результате переходная модель получается следующим образом.
Уравнения переходных процессов:
уравнения напряжения статора:
уравнение электромагнитного момента:
Уравнение ускорения ротора: где на единицу и — начальное скольжение асинхронной машины.Если асинхронная машина потребляет энергию, то; в противном случае, если асинхронная машина производит мощность.
5. Анализ модели
Известно, что асинхронные машины содержат асинхронные асинхронные двигатели и асинхронные генераторы; разница между ними заключается в уравнениях ускорения и напряжения ротора.
5.1. Асинхронный асинхронный двигатель Модель
Асинхронный двигатель — это обычная асинхронная машина, которая преобразует электрическую энергию в механическую на основе принципа электромагнитной индукции.Напряжение на роторе асинхронного двигателя равно нулю, поэтому новая упрощенная модель переходных процессов третьего порядка для асинхронного двигателя с учетом частотных характеристик показана следующим образом.
Уравнения переходных процессов:
уравнение ускорения:
уравнения напряжения статора:
5.2. Асинхронный генератор Модель
Асинхронные генераторы широко используются в ветроэнергетике. Большинство ранних ветряных генераторов представляют собой генераторы WT с фиксированной скоростью, а индукционный генератор работает с постоянной скоростью.Использование генераторов WT с переменной скоростью и постоянной частотой, таких как DFIG, является основным направлением в недавно построенных ветряных электростанциях. Однако модели разных индукционных генераторов похожи, что можно записать следующим образом.
Уравнения переходных процессов:
уравнение ускорения:
уравнения напряжения статора: где и — эквивалентное напряжение ротора при следующих условиях: для генераторов WT с фиксированной частотой вращения — напряжение ротора, а для генераторов WT с регулируемой частотой вращения — с постоянной частотой, которые могут подавать напряжение на ротор через преобразователь на стороне ротора, — напряжение ротора.
6. Анализ моделирования
Упрощенная электросеть, которая содержит составную нагрузку и ветрогенератор, как показано на рисунке 3, построена в Matlab / Simulink для тестирования производительности новой упрощенной модели асинхронной машины с учетом частотных характеристик. В таблицах 1 и 2 перечислены параметры этой системы моделирования. Электросеть представляет собой изолированную энергосистему мощностью 300 кВт. Нагрузка этой энергосистемы состоит из статической нагрузки (ЗИП) и асинхронного асинхронного двигателя, которые потребляют всю выходную мощность ветрогенератора во время нормальной работы.Синхронный генератор используется в качестве фазового преобразователя для поддержания напряжения в системе. Конденсаторы общей емкостью 75 квар используются для выработки реактивной мощности.
|
|