Датчик температуры электрический: Датчики температуры — подбор по характеристикам, продажа

Содержание

Термометры сопротивления. Термосопротивление

Термопреобразователи сопротивления оптимальны для высокоточных измерений в узких диапазонах измерения. Термосопротивления взаимозаменяемы и имеют практически линейные характеристики.

Выбрать и купить датчик температуры вы можете в интернет-магазине …


Области применения термосопротивлений

Термосопротивления обширно используются в промышленности  и их применение в той или иной среде зависит главным образом от корпуса прибора:

  • Нефтегазовый, топливно-энергетический комплекс
  • Машиностроение, автомобильная индустрия и спецтехника
  • Химическая промышленность, строительство
  • Сфера образования
  • Химические соединения
  • Вода, газ, пар
  • Жидкие, твердые, сыпучие продукты
  • Среды температурой от -200 до + 600°С (в среднем), требующие контроля температуры для систем автоматического управления, например:
    • Cистема контроля воды
    • Насосные системы
    • Системы охлаждения
    • Мониторинг температур масла, охлаждающей жидкости, топлива в подвижной технике и т.п.
  • Прочие АСУ


Назначение термопреобразователей сопротивления
  • Высокоточное (до тысячных долей градуса) и высокостабильное измерение температуры среды в средних температурных диапазонах (-200…+600 в большинстве случаев) с передачей сигнала в информационно-управляющую систему (+ используются 2, 3, и 4-х проводные схемы снятия данных)
  • Лабораторные стенды, эталонные измерения температур
  • Унифицированные системы, требующие высокой взаимозаменяемости датчиков


Преимущества

Основные достоинства термопреобразователей сопротивления:

  • Взаимозаменяемость (+ датчики стандартизированы по номинальным статическим характеристикам)
  • Высокая точность, а также стабильность измерений (может доходить до тысячных) + возможность исключения сопротивления линии связи из факторов, влияющих на точность (при 3 или 4-проводной схеме)
  • Близость характеристик к линейным (почти линейная зависимость)


Недостатки

Недостатки в основном исходят из принципа работы. Обращайте внимание:

  1. Требуется источник питания (тока) для запитывания резистора.
  2. Дороговизна относительно простых термопар.
  3. Малый в сравнении с термопарами диапазон измерений


Принцип работы термопреобразователей сопротивления

Термопреобразователи сопротивления представляют собой более сложные приборы, нежели простые резисторы. Их принцип работы основан на изменении электрического сопротивления полупроводниковых материалов либо металлов/сплавов под воздействием температуры окружающей среды. Для промышленных приборов выведены номинальные статические характеристики, на которые ориентируются производители.

На примере ТСП типовые схемы подключения выглядят так:

2-проводная схема. Питание и информационный сигнал имеют общую точку. Поэтому возникает небольшая погрешность из-за влияния сопротивления проводов.

3-проводная схема. Вход питания отдельный, но один из измерительных проводов имеет общую точку с минусом питания.

4-проводная схема. Вход питания и измерительные провода отделены друг от друга. В этой схеме обеспечивается наилучшая точность снятия сигнала.

разновидности, принцип работы, устройство и распиновка разъема

Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.

Виды, конструкция и принципы действия

Термопара

Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.

В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).

Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.

При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.

Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.

В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.

Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.

На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.

Терморезисторы

Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).

Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.

Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.

Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.

Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.

Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю

Комбинированные

Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.

Цифровые

В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.

Бесконтактные

Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.

Кварцевые преобразователи температуры

Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.

Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.

Шумовые

Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.

Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.

Ядерного квадрупольного резонанса

Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.

ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.

Объемные преобразователи

Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.

При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.

Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.

Канальный

Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.

Параметры выбора

Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.

Диапазон рабочей температуры

Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.

Условия проведения замеров

Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.

Время работы до калибровки или замены

Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.

Величина сигнала выхода

Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.

Другие технические данные

Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.

Погрешность

Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.

Разрешение

Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.

Напряжение

На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.

Время сработки

Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Применение

Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.

Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.

Датчики температуры охлаждающей жидкости — обзорная статья

Датчик температуры — деталь электрической системы автомобиля, которая может изменять свои электрические характеристики в зависимости от температуры.

По функции температурные датчики делятся на:
Датчики температуры для блока управления двигателем.
Датчики температуры для указателя (стрелки) приборной панели.
Датчики с несколькими функциями.
Датчики температуры на сигнальную лампу приборной панели (термовыключатели).
Датчики включения вентилятора (термовыключатели).

 

Датчики температуры для блока управления двигателем, датчики для указателя на приборной панели, датчики с несколькими функциями изменяют свое электрическое сопротивление в зависимости от температуры. В основе их работы лежит эффект изменения сопротивления различных электропроводящих веществ в зависимости от температуры. У большинства металлов с ростом температуры электрическое сопротивление возрастает то есть они обладают позитивным электрическим коэффициентом (PTC — positive temperature coefficient). Для полупроводников характерен отрицательный температурный коэффициент (NTC — negative temperature coefficient) — то есть уменьшение электрического сопротивления с ростом температуры.

В зависимости от конструкции датчика он может иметь один, либо несколько контактов. Если контакт один, то сопротивление измеряется между контактом и корпусом датчика (Рис.1). Если контактов 2, то сопротивление измеряется между ними (Рис.2, Рис.3). Если контактов много, то возможны самые различные варианты (Рис.4, Рис.5).

 

Подавляющее большинство температурных датчиков имеет резьбовое крепление (Рис.6-Рис.9), хотя, бывают исключения (Рис.10), соответственно датчики имеют шестигранный участок корпуса под ключ различных размеров. По форме резьба может быть цилиндрической или конической, отличаться диаметром и шагом, так же датчики могут иметь уплотняющую прокладку или же не иметь таковую. Форма электрических разъемов может быть самой разнообразной.

 

Датчики температуры на сигнальную лампу приборной панели работает по принципу замыкания либо размыкания цепи при достижении определенной температуры. Если датчик с одним контактом, то размыкание/замыкание происходит между контактом и корпусом. В этом случае датчики бывают разомкнутые в холодном положении (Рис.11) и замкнутые в холодном положении (Рис.12). Если у датчика два контакта, то размыкание/замыкание происходит между этими контактами. В этом случае датчики, так же бывают разомкнутые в холодном положении (Рис.13) и замкнутые в холодном положении (Рис.14). Так же встречаются двухконтурные датчики (Рис.15).

Датчики включения вентилятора по устройству, принципам работы и вариантов конструкции идентичны датчикам на сигнальную лампу.

Симптоматика выхода температурного датчика из строя зависит от того, какую функцию выполнял данный датчик. Если вышел из строя датчики температуры для блока управления двигателем, то может наблюдаться неустойчивый запуск двигателя (машина плохо заводится), неустойчивые обороты двигателя, снижение мощности двигателя. Если произошла поломка датчика температуры для указателя (стрелки) приборной панели, то наблюдаются неправильные показания этой стрелки. Если ломается датчик температуры на сигнальную лампу приборной панели или датчики включения вентилятора то наблюдается неправильная работа либо сигнальных ламп либо вентиляторов.

Температурные датчики, хотя и являются элементом электрической системы автомобиля, но от их правильной работы зависит в определенной степени и работоспособность системы охлаждения. Это касается датчиков включения вентиляторов охлаждения радиатора охлаждения двигателя. В ряде автомобилей при неисправном датчике включения вентилятора может произойти перегрев двигателя со всеми вытекающими неприятными последствиями.

При поломке температурного датчика его необходимо заменить на новый, так как ремонт старого датчика в кустарных условиях невозможен и нецелесообразен. При подборе датчика нужно быть очень внимательным и использовать только подходящий для данного случая датчик. Это связано с большим разнообразием используемых в автомобилях датчиков, которые даже при внешнем сходстве могут иметь различные электрические характеристики могут различаться зеркально.     

 

Как и зачем измерять температуру: датчики температуры


НОВИНКА!

  • Главная »
  • Статьи »
  • Как и зачем измерять температуру: датчики температуры

 

Датчики температуры широко применяются на различных промышленных предприятиях. С их помощью происходит измерение температуры в системах автоматического контроля и регулировка технологических процессов. Задача температурных датчиков состоит в получении данных об измеряемой величине, преобразовании и передаче полученных сигналов. Самым распространенным видом температурных датчиков являются термопары, кроме того, к датчикам температуры относят термисторы, пирометры, интегральные датчики и термостаты и т.п..

Зачем измерять температуру

О необходимости проведения измерений люди задумались очень давно. И чем дальше уходила наука, тем более точные измерения требовались ученым. Так постепенно возникали и усовершенствовались приборы для измерения температуры, влажности, давления, движения, скорости и многие другие.

Температура — один из основных параметров, который необходимо было научиться измерять и держать под контролем. Если не брать во внимание привычные домашние термометры, то гораздо более сложные и высокоточные измерители температуры можно встретить на любом промышленном предприятии.

Практически невозможно назвать технологический процесс, который люди не стремились бы автоматизировать. Но любая автоматизация требует контроля, который осуществляется путем измерения различных физических величин, будь то давление, скорость, влажность или температура. Кстати, на температурные измерения приходится добрая половина подобных измерений. Так, на средней атомной станции наберется около полутора тысяч контрольных точек, а на опасном химическом производстве таких измерителей температуры еще больше.

Безопасность превыше всего.

Как измеряют температуру

Температуру измеряют при помощи датчиков. Датчик — это специальное устройство, которое способно воспринимать внешние физические воздействия и преобразовывать их в электрический сигнал. В частности, температурные датчики являются преобразователями температуры.

Полученный в результате температурного воздействия на датчик электрический сигнал может быть преобразован через специальные электронные устройства в напряжение, ток или заряд, т.е. в определенный формат выходного сигнала.

Существует большое количество типов температурных датчиков, которые отличаются как физическими принципами работы, так и материалами, из которых они изготавливаются. Часто датчики температуры размещают в труднодоступных местах, например, в атомных реакторах или плавильных печах. Но при помощи температурных датчиков решаются и гораздо более простые повседневные задачи, например, с их помощью происходит регулировка температуры воды в отопительной системе, без них не обходятся даже современные стиральные машины, электрические духовые шкафы или варочные панели.

Такое разнообразие функций и задач, которые выполняют датчики температуры, сказывается на их ассортименте. В зависимости от назначения и области применения конкретного датчика он будет обладать определенным набором технических характеристик.

Датчики температуры могут существенно отличаться друг от друга, прежде всего, диапазоном измерений, точностью, помехоустойчивостью и быстродействием. Тем не менее, все температурные датчики работают по одному принципу: принципу преобразования. Другими словами, измеряемая температура при помощи первичного преобразователя преобразуется в электрическую величину.

Почему именно в электрическую? Во-первых, электрический сигнал можно довольно просто передавать на большие расстояния. Во-вторых, электрический сигнал легко обрабатывать, что обеспечивает высокую точность измерений.

Классификация датчиков температуры

Можно найти множество классификаций температурных датчиков разной степени дифференциации. Мы предлагаем разделить датчики на две группы: пассивные и активные.

Пассивный датчик не требует дополнительный источник энергии. Пассивные датчики, как правило, максимально просты с точки зрения конструкции. Основным функциональным элементом в них является сенсор (термосопротивление). В результате воздействия температуры, терморезистор меняет свое сопротивление.

Чтобы получить показания проведенных температурных измерений, к пассивным датчикам дополнительно подключают преобразователи температуры. Существует специальная тарировочная таблица, в которой указаны значения термосопротивлений в Ом относительно температуры. Прибор сопоставляет полученное значение терпосопротивления с указанным в таблице и отражает показания на своем дисплее или в виде аналогового, цифрового сигнала. К пассивным датчикам температуры, представленным на нашем сайте, прилагается руководство по эксплуатации, в котором можно посмотреть таблицу сопротивлений, например, здесь.

Стандартная таблица термосопротивлений выглядит так:

Temp, oC Pt100 Pt500 Pt1000 Ni1000

Ni1000

TK5000

Ohm

NTC

1kOhm

Ohm

NTC

1,8kOhm

Ohm

NTC

2kOhm

Ohm

NTC

3kOhm

Ohm

NTC

5kOhm

Ohm

NTC

8kOhm

kOhm

-50 80,31 401,55 803,10 743,00 790,88 32886,00   77977,20 200338,00 333914,00 537,83
-40 84,27 421,35 842,70 791,00 830,83 18641,00   43039,60 100701,00 167835,00 269,71
-30 88,22 441,10 882,20 842,00 871,69 10961,00   24651,20 53005,00 88342,00 141,72
-20 92,16 460,80 921,60 893,00 913,48 6662,00   14614,90 29092,00 48487,00 77,70
-10 96,09 480,45 960,90 946,00 956,24 4175,00 8400,00 8946,90 16589,00 27649,00 44,27
0 100,00 500,00 1000,00 1000,00 1000,00 2961,00 5200,00 5642,00 9795,20 16325,40 26,13
10 103,90 519,50 1039,00 1056,00 1044,79 1781,00 3330,00 3656,90 5971,12 9951,80 15,92
20 107,79 538,95 1077,90 1112,00 1090,65 1205,00 2200,00 2431,10 3748,10 6246,80 9,99
21 108,18 540,90 1081,80 1117,80 1095,32 1164,00 2120,00 2344,88 3598,48 5997,44 9,59
22 108,57 542,85 1085,70 1123,60 1099,99 1123,00 2040,00 2258,66 3448,86 5748,08 9,19
23 108,96 544,80 1089,60 1129,40 1104,65 1082,00 1960,00 2172,44 3299,24 5498,72 8,80
24 109,35 546,75 1093,50 1135,20 1109,32 1041,00 1880,00 2086,22 3149,62 5249,36 8,40
25 109,74 548,70 1097,40 1141,00 1113,99 1000,00 1800,00 2000,00 3000,00 5000,00 8,00
26 110,13 550,63 1101,26 1147,00 1118,71 966,84 1736,00 1930,90 2883,36 4805,60 7,69
27 110,51 552,56 1105,12 1153,00 1123,44 933,68 1672,00 1861,80 2766,72 4611,20 7,38
28 110,90 554,49 1108,98 1159,00 1128,26 900,52 1608,00 1792,70 2650,08 4416,80 7,06
29 111,28 556,42 1112,84 1165,00 1132,89 867,36 1544,00 1723,60 2533,44 4222,40 6,75
30 111,67 558,35 1116,70 1171,00 1137,61 834,20 1480,00 1654,50 2416,80 4028,00 6,44
40 115,54 577,70 1155,40 1230,00 1185,71 589,20 1040,00 1150,70 1597,50 2662,40 4,26
50 119,40 597,00 1194,00 1291,00 1234,97 424,00 740,00 816,40 1080,30 1800,49 2,88
60 123,34 616,20 1232,40 1353,00 1285,44 310,40 540,00 590,10 746,12 1243,53 1,99
70 127,07 635,00 1270,00 1417,00 1337,14 231,00 402,00 433,90 525,49 875,81 1,40
80 130,89 654,45 1308,90 1483,00 1390,12 174,50 306,00 324,20 376,85 628,09 1,01
90 134,70 673,50 1347,00 1549,00 1444,39 133,60 240,00 245,80 274,83 458,06 0,73
100 138,50 692,50 1385,00 1618,00 1500,00 103,70 187,00 189,00 203,59 339,32 0,54
110 142,29 711,00 1422,00 1688,00 1556,98 81,40 149,00 147,10 153,03 255,03 0,41
120 146,06 730,00 1460,60 1760,00 1615,36 64,70 118,00 115,90 116,58 194,30 0,31
130 149,82 749,10 1498,20 1883,00 1675,18 51,90 95,00   89,95 149,91 0,24
140 153,58 767,90 1535,80 1909,00 1736,47 42,10 77,00   70,22 117,04 0,19
150 157,31 786,55 1573,10 1987,00 1799,26 34,40 64,00   55,44 92,39 0,15

 

Temp. oC

NTC

10kOhm

kOhm

NTC

15kOhm

NTC

20kOhm

NTC

30kOhm

NTC

47kOhm

Ohm

NTC

50kOhm

Ohm

KTY81-210

Ohm

KTY11-6

Ohm

KTY81-110

Ohm

KTY81-121

Ohm

NTC

10kPRE

kOhm

LM235Z

mVoit

-50 667,83   1667,57 2497,83 3152,41 4168,93 1068,65 1035,91 515,00 510,00 441,30 2232,00
-40 335,67   813,44 1219,17 1595,52 2033,61 1158,95 1139,27 567,00 562,00 239,80 2332,00
-30 176,68   415,48 622,94 843,12 1038,70 1269,25 1250,39 624,00 617,00 135,20 2432,00
-20 96,97   221,30 331,88 463,40 553,24 1385,15 1396,25 684,00 677,00 78,91 2532,00
-10 55,30   122,47 183,70 264,03 306,18 1508,65 1495,86 747,00 740,00 47,54 2632,00
0 32,65   70,20 105,31 155,48 175,51 1639,60 1630,21 815,00 807,00 29,49 2732,00
10 19,90 30,40 41,56 62,35 94,38 103,90 1778,10 1772,32 886,00 877,00 18,79 2832,00
20 12,49 18,80 25,35 38,02 58,91 63,49 1924,15 1922,17 961,00 951,00 12,26 2932,00
21 11,99 18,12 24,28 36,42 56,53 60,79 1939,32 1937,74 968,80 958,80 11,81 2942,00
22 11,49 17,44 23,21 34,81 54,15 58,09 1954,49 1953,30 976,60 966,60 11,36 2952,00
23 11,00 16,76 22,14 33,21 51,76 55,40 1969,66 1968,87 984,40 974,40 10,90 2962,00
24 10,50 16,08 21,07 31,60 49,38 52,70 1984,83 1984,43 992,20 982,20 10,45 2972,00
25 10,00 15,40 20,00 30,00 47,00 50,00 2000,00 2000,00 1000,00 990,00 10,00 2982,00
26 9,61 14,72 19,18 28,77 45,15 47,94 2015,56 2015,95 1008,00 997,80 9,64 2992,00
27 9,22 14,04 18,36 27,53 43,29 45,88 2031,12 2031,91 1016,00 1005,60 9,28 3002,00
28 8,84 13,36 17,53 26,30 41,44 43,83 2046,68 2047,86 1024,00 1013,40 8,91 3012,00
29 8,45 12,68 16,71 25,06 39,58 41,77 2062,24 2063,82 1032,00 1021,20 8,55 3022,00
30 8,06 12,00 15,89 23,83 37,73 39,71 2077,80 2079,77 1040,00 1029,00 8,19 3032,00
40 5,32 7,80 10,21 15,32 24,75 25,53 2238,90 2245,17 1122,00 1111,00 5,59 3132,00
50 3,60 5,20 6,72 10,08 16,60 16,80 2407,60 2418,21 1209,00 1196,00 3,89 3232,00
60 2,49 3,60 4,52 6,78 11,36 11,30 2583,80 2599,06 1299,00 1286,00 2,76 3332,00
70 1,75 2,50 3,10 4,65 7,92 7,75 2767,50 2787,65 1392,00 1378,00 1,99 3432,00
80 1,26 1,80 2,12 3,25 5,63 5,42 2958,80 2983,99 1490,00 1475,00 1,46 3532,00
90 0,92 1,30 1,54 2,31 4,06 3,85 3152,50 3188,08 1591,00 1575,00 1,08 3632,00
100 0,68 1,00 1,12 1,67 2,98 2,79 3363,90 3399,91 1696,00 1679,00 0,82 3732,00
110 0,51   0,82 1,32 2,21 2,05 3577,75 3619,50 1805,00 1786,00 0,62 3832,00
120 0,39   0,61 0,91 1,67 1,52 3799,10 3846,83 1915,00 1896,00 0,48 3932,00
130 0,30   0,46 0,69 1,27 1,15 4028,05 4081,91 2023,00 2003,00 0,38 4032,00
140 0,23   0,35 0,53 0,98 0,88 4188,10 4324,74 2124,00 2103,00 0,30 4132,00
150 0,18   0,27 0,41 0,77 0,68 4397,70 4575,31 2211,00 2189,00 0,24 4232,00

Пассивные датчики, в свою очередь, делятся на два типа: датчики с положительным температурным коэффициентом и датчики с отрицательным температурным коэффициентом. В первом случае с увеличением температуры сопротивление повышается, а во втором, наоборот, снижается, т.е. чем выше становится температура, тем меньше становится сопротивление. Классическим примером первой группы датчиков являются датчики с элементами Pt100, Pt1000, Ni1000, Ni1000Tk5000 и др. Датчики, принадлежащие ко второй группе, имеют общее название NTC.

В нашем каталоге вы найдете множество пассивных датчиков температуры, среди них: контактные и накладные, наружные, байонетные, ввинчиваемые, кабельные, канальные. ручные прокалывающие, маятниковые, погружные и многие другие. Чтобы вам было проще определиться с выбором, скажем несколько слов о каждом из представленных видов датчиков.

Тип датчика Сфера использования
Контактный Для измерения температуры плоских поверхностей. Например, его применяют в теплицах, когда нужен постоянный контроль температуры оконного стекла во избежание его запотевания.
Накладной Также измеряет температуру твердой поверхности. Предназначен, в частности, для измерения температуры теплоносителя в трубах и контроля температуры обратной воды на выходе калорифера или охладителя.
Наружный Измеряет температуру воздуха вне помещения. Устойчив к изменениям погоды и воздействию окружающей среды.
Байонетный Датчик с байонетным соединением для подключения к промышленному оборудованию без дополнительных инструментов. Такие датчики могут быть использованы при производстве пластмасс и в других промышленных областях.
Ввинчиваемый Предназначен для контроля температуры жидкостей и газов в резервуаре или трубопроводе, в системах кондиционирования, отопления и охлаждения.
Ручной-прокалывающий Измеряет температуру вязкопластичных веществ, таких как укладываемый асфальт. Может использоваться в пищевой промышленности, сельском хозяйстве, производстве строительных материалов.
Кабельный Предназначен для измерения температуры в газовых средах в системах кондиционирования, отопления и охлаждения.
Канальный Измеряет температуру газовой среды. Чаще всего применяется в системах кондиционирования и вентиляции, крепится в резервуаре или трубе.
Маятниковый Измеряет температуру посекционно в больших помещениях и помещениях с высокими потолками, в том числе в галереях, хранилищах и конференц-залах.
Погружной Используется для измерения температуры газов и жидкостей в трубах и резервуарах, в частности, для контроля температуры в обратной линии. Обычно не предназначен для работы в агрессивной среде.

Контактные датчики температуры лучше всего подходят для измерения температуры на плоских поверхностях. Они могут быть оснащены магнитом или крепежным колпаком для более надежного крепления к поверхности.

Например:

Датчик температуры с магнитным держателем, кабельный

Модель: OF4/E

  • -40…+400°C
  • PT100, PT500, PT1000
  • мощный магнит 90N
  • силиконовый кабель
  • IP65
Контактный датчик температуры OF4/E идеально подходит для измерения температуры плоской металлической поверхности в диапазоне -40…+400°C.читать подробнее…

Накладные датчики также измеряют температуру поверхности. Чаще всего такие датчики применяются в сфере отопления и вентиляции. Как правило, они крепятся к поверхности при помощи винтового хомута, а прочный корпус обеспечивает работу датчика даже в жестких условиях эксплуатации.

Например:

Накладной датчик температуры, кабельный

Модель: LF1/E

  • -50…+180°C
  • Pt100, Pt1000, Ni1000, KTY, NTC, LM235Z
  • винтовой хомут в комплекте
  • силиконовый кабель
  • IP65
Накладной датчик температуры LF1/E предназначен для измерения температуры поверхности и широко применяется в сфере HVAC (отопление, вентиляция и климатизация).читать подробнее…

Наружные датчики измеряют температуру наружного воздуха, они также облачены в прочный корпус и устойчивы к воздействию окружающей среды. Крепятся такие датчики обычно прямо на стену здания с помощью винтов.

Например:

Датчик температуры наружного воздуха

Модель: AF2/E

  • -50…+190°C
  • Pt100, Pt1000, Ni1000, KTY, NTC, LM235Z
  • вынесенный изм. элемент
  • IP65
Датчик температуры наружного воздуха серии AF2/E имеет прочный, устойчивый к воздействию окружающей среды корпус и предназначен для использования как снаружи, так и внутри помещений. читать подробнее…

Байонетные датчики температуры чаще всего применяются на промышленных предприятиях, в частности, на предприятиях по производству пластмасс. С их помощью измеряют температуру в твердых телах и подшипниках скольжения.

Например:

Байонетный датчик температуры с заостренным 120° наконечником

Модель: BF1/E

  • -30…+350°C
  • Pt100, Pt500, Pt1000
  • 120° изм. наконечник
  • стекловолоконный кабель
  • IP54
Датчик температуры BF1/E имеет байонетное соединение и заостренный на 120° измерительный наконечник. Предназначен для измерения температуры в диапазоне от -30 до +350°C.читать подробнее…

Ввинчиваемые, кабельные, канальные, погружные температурные датчики и термометры сопротивления могут изготавливаться из различных материалов, они измеряют температуру жидкостей и газов в определенных диапазонах. Основная сфера их применения — отопление, вентиляция, климатизация.

Например:

Ввинчиваемый датчик температуры, кабельный

Модель: EF5/E

  • -50…+180°C
  • Pt100, Pt500, Pt1000, Ni1000, KTY, NTC…
  • силиконовый кабель
  • макс. давление 40 бар
  • резьба G1/2″
  • IP65
Предназначен для контроля температуры жидкостей и газов с максимальным рабочим давлением 20 бар. Диапазон измерения: -50…+180°C.читать подробнее…

Ручные прокалывающие датчики чаще всего можно встретить на предприятиях пищевой промышленности, при производстве строительных материалов или в сельском хозяйстве. Они идеально подходят для быстрого и точного измерения температуры вязкопластичных средств.

Например:

Ручной прокалывающий датчик температуры, рукоятка и кабель из ПТФЭ

Модель: HET/E

  • -50…+250°C
  • Pt100, Pt500, Pt1000
  • рукоятка/кабель из ПТФЕ
  • влаго/паронепроницаем
  • IP65
Ручной прокалывающий датчик температуры HEТ/E с диапазоном измерения -50…+260°C идеально подходит для быстрого и точного измерения температуры вязкопластичных средств.читать подробнее…

Датчик температуры маятникового типа и датчики теплового излучения способны измерять температуру в высоких и объемных помещениях. Это может быть необходимо для контроля температуры в выставочных залах, хранилищах и других подобных помещениях, где важно поддерживать определенных температурный режим.

Как и все измерители температуры, пассивные датчики классифицируются по точности. В качестве примера приведем таблицу классов точности самых распространенных сопротивлений:

Обозначение Диапазон Макс. отклонение
Сопротивление   Класс В DIN Класс А 1/5 DIN Класс В
Pt 100Ω при -200oC ±1,3 К    
  при -100oC ±0,8 К    
  при -50oC   ±0,25 К*  
  при 0oC ±0,3 К ±0,15 К ±0,06 К
  при +100oC ±0,8 К ±0,35 К ±0,16 К
  при +200oC ±1,3 К ±0,55 К ±0,26 К
  при +300oC ±1,8 К ±0,75 К ±0,36 К
  при +400oC ±2,3 К    
Обозначение Диапазон Макс. отклонение
NTC датчик (10К при 25 oC) -20…0oC ±0,4 К
  0…+70oC ±0,4 К
  +70…+125oC ±0,6 К

Каждый из представленных в каталоге датчиков имеет определенный набор технических характеристик, главной из которых является сопротивление терморезистора (сенсора). Наши специалисты с радостью помогут вам в выборе подходящего датчика.

Важно отметить, что немецкая компания FuehlerSysteme может изготовить для вас датчики по вашим чертежам и с учетом ваших пожеланий, в том числе в минимальных количествах, т.е. небольшими партиями. Например, это могут быть термопары, пассивные датчики и т.п. Мы уже не раз выполняли подобные заказы. Нам по силам: изменить диаметр и длину измерительной части, увеличить до необходимого длину кабеля и подобрать его изоляцию. Возможно изготовление индивидуальных модификаций по вашим чертежам.

Схема работы проста:

  • вы отправляете нам запрос на разработку датчика по вашим уникальным параметрам;
  • мы обсуждаем детали заказа и проясняем все детали;
  • мы делаем вам предложение на разработку датчика;
  • разрабатываем и утверждаем образцы;
  • изготавливаем требуемую партию товара по согласованным образцам.

Таким образом, выполнение индивидуального заказа делится на шесть этапов, это позволяет осуществлять постоянный контроль за ходом работ.

 

Вне зависимости от того, выберете ли вы типовую продукцию из нашего каталога или сделаете заказ на индивидуальную разработку, мы гарантируем немецкое качество товаров.

Эта статья была написана для того, чтобы вы смогли найти в ней полезную для себя информацию. Наши специалисты с радостью ответят на все ваши вопросы и помогут подобрать приборы, ориентируясь на стоящие перед вами задачи. Вы можете обратиться к нам по телефонам 812) 340-00-38, 340-00-57.

 

Термоэлектрический преобразователь: термопара и термометр сопротивления (датчик температуры Pt100 и Pt1000)

На протяжении многих лет компания WIKA является одним из лидирующих производителей высококачественных термоэлектрических преобразователей. Нашим главным отличием является огромный опыт и использование новых технологий для производства датчика температуры Pt100, Pt1000.

Что такое термоэлектрический преобразователь?

Термоэлектрический преобразователь – это узел, где есть или один датчик температуры Pt100, Pt1000, или более; со специальной защитой, которая может включать, например, соединительную головку, удлинительную шейку, защитную гильзу. Чувствительный элемент, встроенный в датчик температуры Pt100 или Pt1000, осуществляет фактическое измерение температуры и преобразовывает измеренную температуру в электрический сигнал.

Термоэлектрический преобразователь WIKA можно разделить по принципам измерения на следующие типы:

Термоэлектрический преобразователь — термопара

Термоэлектрический преобразователь типа термопара WIKA подходит для измерения высоких температур до +1 600 °C. Маленький диаметр зонда термопар обеспечивает быстрое время отклика, такое же как и для термометров сопротивления.

Данный термоэлектрический преобразователь имеет два провода из двух различных материалов, которые соединены в единую конструкцию. Точка соединения (горячий спай) представляет собой фактическую точку измерения температуры, а концы проводов называются холодным спаем. При изменении температуры на горячем спае из-за различной электронной плотности материалов и разницы температуры между горячим и холодным спаями образуется напряжение. Оно пропорционально температуре в точке измерения температуры (эффект Зеебека).

Термоэлектрический преобразователь — термометр сопротивления с датчиком температуры Pt100 и Pt1000

Термоэлектрический преобразователь типа термометр сопротивления преимущественно используется для измерения низкой и средней температуры в диапазоне от -200 … +600 °C. В промышленности главным образом применяются термометры с датчиком температуры Pt100 или Pt1000. Если чувствительный элемент датчика температуры Pt100 или Pt1000 обнаруживает повышение температуры, то повышается и его сопротивление (положительный температурный коэффициент).Сопротивление термометра с датчиком температуры Pt100 при 0 °C составляет 100 Ом, а типа Pt1000-1000 Ом.

Термоэлектрический преобразователь типа термометр сопротивления может иметь два типа сенсоров: тонкопленочный и проволочный. Преимуществами тонкопленочного сенсора являются его маленький размер и высокая виброустойчивость при надлежащей конструкции. Тонкопленочные сенсоры имеют стандартное исполнение, при условии, если они подходят для нужного диапазона температуры (диапазоны измерений для датчиков температуры с классом точности B: тонкопленочные сенсоры -50 … +500 °C, проволочные сенсоры -200 … +600°C).

Свяжитесь с нами

Вам нужна дополнительная информация? Напишите нам:

какие бывают, как выбрать и подключить

Когда речь заходит об установке теплого пола, большинство людей обращается к специалистам. Но есть и те, кто хочет выполнить монтаж своими руками.

Именно для таких людей мы подготовили небольшую инструкцию «Теплый пол своими руками».

В этой статье давайте рассмотрим один из этапов этого процесса – установку и подключение термодатчика.

Виды датчиков

Назначение датчика температуры – определять температуру и передавать ее регулятору, который сравнивает текущий показатель с заданным и либо включает, либо отключает нагрев.

Основной тип датчика электрического теплого пола – датчик температуры пола. Как следует из названия, он отслеживает уровень нагрева напольного покрытия и передает это значение на терморегулятор.

Термодатчик воздуха отслеживает значение температуры воздушной среды. Особенно полезен, если теплый пол используется для обогрева помещения, а не только для прогрева напольного покрытия. Чаще всего такой датчик встроен в терморегулятор, который в этом случае монтируется на стену, свободную от прямого солнечного излучения и сквозняков – тогда показания будут более точными;

Некоторые термостаты (например, Grand Meyer HW-500) используют в работе два датчика, что повышает надежность, точность и экономичность обогрева.

Монтаж термодатчика пола

Датчик помещается непосредственно под напольное покрытие и закрепляется монтажной лентой – желательно на расстоянии 50-60 см от ближайшей стены.

Лучше размещать датчик в гофрированной трубке – это позволит менять неисправный элемент без вскрытия пола. С одной стороны гофра закрывается пробкой либо изолентой (для защиты датчика от пыли, клея или раствора), а другой конец подводится к стене для соединения с терморегултором.

  1. Если теплый пол монтируется в стяжку, то монтаж гофры выполняется между двух витков нагревательного кабеля (или карбоновых стержней) на одинаковом удалении от них.
  2. При использовании нагревательных матов гофрированная трубка помещается в штробу чернового пола.
  3. При использовании инфракрасной пленки датчик помещается под пленку на ее черную полосу. При этом для того чтобы под пленкой не создавалось неровностей, требуется сделать вырез в подложке для теплого пола – под датчик и под провод, идущий от датчика к стене с терморегулятором. Кроме того, если датчик помещается в гофрированную трубку, то для нее на полу потребуется сделать штробу.

Датчики тепературы и выключатели MOTOMETER

Варианты датчиков температуры:

— Датчики температуры от 40 градусов С до 120 градусов С;

— Датчики температуры от 50 градусов С до 150 градусов С;

— Датчики температуры с предупредительным контактом от 40 градусов С до 120 градусов С;

— Температурный выключатель.

Датчики температуры

В корпусе датчика температуры Motometer установлен измерительный терморезистор с негативным температурным коэффициентом (NTC), который регистрирует температуру масла, охлаждающей жидкости или воздуха и выдает данные на указатель температуры.

Использование специального геля внутри датчика температуры в совокупности с медной оболочкой дает возможность быстрой передачи данных с минимальными потерями.

Работа возможна как с 12 V , так и с 24 V напряжением бортовой сети.

Температурный режим работы от 40градусов С до 120 градусов С или 50 градусов С до 150 градусов С, в зависимости от исполнения датчика.

Датчики температуры от 40градусов С до 120 градусов С

Заданные значения для всех датчиков:

60 градусов С — 134 Ohm

90 градусов С — 51,2 Ohm

100 градусов С — 38,5 Ohm

Совместимость с указателями давления MOTOMETER:

641.011 ХХХХ

641.012 ХХХХ

Так же име.тся датчики без заземления.

Датчики температуры от 50градусов С до 150 градусов С

Заданные значения для всех датчиков:

60 градусов С — 221,2 Ohm

90 градусов С — 83 Ohm

100 градусов С — 36,5 Ohm

Совместимость с указателями давления MOTOMETER:

641.011 ХХХХ

641.012 ХХХХ

Датчики температуры с предупредительным контактом (40 градусов С — 120 градусов С)

Датчики температуры с предупредительным контактом используются в транспортных средствах, ДВС и машиностроении для измерения температуры масла, охлаждающей жидкости или воздуха, и выдачи данных измерения на указатель температуры.

Метод работы — при достижении заданной температуры, электрический контакт замыкается и отправляет предупредительный сигнал. Предварительно натянутые биметаллические ленты расслабляются, когда достигается заданная температура.

В корпусе датчика температуры MOTOMETER установлен измерительный терморезистор с негативным температурным коэффициентом (NTC).

Использование специального геля внутри датчика температуры в совокупности с медной оболочкой дает возможность быстрой передачи данных с минимальными потерями.

Работа возможна как с 12 V, так и с 24V напряжением бортовой сети.

Температурный режим работы от 40 градусов С до 120 градусов С, диапазон работы предупредительного контакта от 80 градусов С до 118 градусов С.

Размыкающая/коммутационная способность контактов — 3Вт.

Версия с заземлением.

Заданные значения для всех датчиков:

60 градусов С — 134 Ohm

90 градусов С — 51,2 Ohm

100 градусов С — 38,5 Ohm

Совместимость с указателями давления MOTOMETER:

641.011 ХХХХ

641.012 ХХХХ

 

Селектор продуктов для датчиков температуры

— ifm electronic

Датчики температуры

Промышленные машины часто требуют постоянного измерения температуры для обеспечения качества производства и понимания состояния машины. Компания ifm разработала линейку надежных датчиков температуры, отвечающих потребностям различных отраслей промышленности. Если вашей машине требуется переключатель температуры для простого включения / выключения или датчик температуры / датчик температуры для получения точных и надежных значений температуры, ifm предоставит решение.

Используя технологию устойчивых датчиков температуры (RTD) и проходя строгие экологические испытания, ifm помещает датчики температуры в герметичные конструкции из нержавеющей стали, чтобы обеспечить высочайшее качество работы в самых суровых условиях.

ifm предлагает полный спектр датчиков температуры, протестированных для производства продуктов питания и напитков, со степенью защиты IP69K для щелочных и кислотных растворов, часто используемых в циклах промывки и в санитарных средах. Для станков и автомобилей ifm предлагает ряд датчиков температуры, которые могут противостоять шлаку и остаткам сварочного шва.Для сталелитейной, металлургической и стекольной промышленности ifm предлагает мониторинг температуры с помощью инфракрасных датчиков температуры, которые могут выдерживать высокие температуры благодаря бесконтактным принципам инфракрасного измерения.

Имея в виду эти различные области применения, ifm предлагает датчики температуры, подходящие для диапазона глубин установки, условий окружающей среды, типов среды, рабочего диапазона и диапазонов температур, включая высокотемпературные. Просто нажмите кнопку «Выбрать по приложению», чтобы сравнить группы продуктов ifm по средам и принципам измерительной техники, чтобы найти лучший датчик для вашего приложения.

Почти все датчики температуры ifm оснащены технологией IO-Link уже почти десять лет, что позволяет вам увеличивать объем доступных вам данных процесса и регистрировать эти данные с течением времени для анализа тенденций. Эта технология действительно работает по принципу plug and play, когда вы хотите использовать ее возможности. Просто подключите датчик к мастерам IO-Link ifm и отправьте данные датчика напрямую в системы SCADA, MES, ERP или CMMS для анализа через порт IoT, не мешая существующей инфраструктуре ПЛК.IO-Link является основой четвертой промышленной революции, обычно называемой промышленным Интернетом вещей (IIoT), в основе которой лежат такие концепции, как профилактическое обслуживание.

Датчики температуры

: типы, принцип работы и применение | by Encardio rite

Датчики температуры: типы, принцип работы и применение

10 июля 2019 г.

Мы все используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи и т. д. или холодильники.Обычно датчики температуры имеют широкий спектр применения, в том числе в области геотехнического мониторинга.

Датчики температуры — это простой прибор, который измеряет степень тепла или холода и преобразует ее в считываемые единицы. Но задумывались ли вы, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Что ж, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярного контроля бетонных конструкций, мостов, железнодорожных путей, грунта и т. Д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где он используется и какие бывают его типы.

Что такое датчики температуры?

Датчик температуры — это устройство, обычно термопара или резистивный датчик температуры, которое обеспечивает измерение температуры в читаемой форме с помощью электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени жара и прохлады.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, почвы, воды, мостов и т. Д. На предмет структурных изменений в них из-за сезонных колебаний.

Термопара (Т / С) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение прямо пропорционально изменению температуры. RTD (резистивный датчик температуры) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Что делают датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени жара или прохлады объекта. Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление на диоде измеряется и преобразуется в считываемые единицы температуры (Фаренгейт, Цельсий, Цельсия и т. Д.)) и отображается в числовой форме над блоками считывания. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры таких конструкций, как мосты, плотины, здания, электростанции и т. Д.

Для чего используется датчик температуры? | Каковы функции датчика температуры?

Ну, существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на режиме подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают в себя термопары и термисторы, поскольку они находятся в прямом контакте с объектом, который они должны измерять. А бесконтактные датчики температуры измеряют тепловое излучение, выделяемое источником тепла. Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания.Одна из наиболее распространенных областей, где они используются, — это время отверждения бетона, потому что он должен быть относительно теплым, чтобы схватиться и затвердеть должным образом. Сезонные колебания вызывают расширение или сжатие конструкции, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на выводах диода. Если напряжение увеличивается, температура также повышается, за чем следует падение напряжения между выводами транзистора базы и эмиттера в диоде.

Кроме того, Encardio-Rite имеет датчик температуры с вибрирующей проволокой, работающий по принципу изменения напряжения из-за изменения температуры.

Измеритель температуры с вибрирующей проволокой разработан по принципу, согласно которому разнородные металлы имеют разный линейный коэффициент расширения при изменении температуры.

Он в основном состоит из магнитной растянутой проволоки с высокой прочностью на разрыв, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры напрямую влияет на натяжение проволоки и, следовательно, на ее собственную частоту вибрации. .

В случае измерителя температуры Encardio-Rite разнородным металлом является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). Поскольку сигнал температуры преобразуется в частоту, используется тот же блок считывания. другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры регистрируется специально созданным датчиком вибрирующей проволоки Encardio-rite и преобразуется в электрический сигнал, который передается в виде частоты на устройство считывания.

Частота, которая пропорциональна температуре и, в свою очередь, напряжению σ в проволоке, может быть определена следующим образом:

f = 1/2 [σg / ρ] / 2l Гц

Где :

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина проволоки

Какие существуют датчики температуры?

Доступны датчики температуры различных типов, форм и размеров.Существует два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень нагрева или охлаждения объекта, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Бесконтактные датчики температуры : Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень тепла или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры подразделяются на:

Термостаты

Термостат — это датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель. , или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение, когда они подвергаются нагреву.

Термисторы

Термисторы или термочувствительные резисторы — это те, которые меняют свой внешний вид при изменении температуры.Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытого стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов с положительным температурным коэффициентом (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

RTD — это точные датчики температуры, которые состоят из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку.Электрическое сопротивление RTD изменяется аналогично сопротивлению термистора.

Термопары

Один из наиболее распространенных датчиков температуры включает термопары из-за их широкого диапазона рабочих температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух соединений разнородных металлов, таких как медь и константан, которые сварены или обжаты вместе. Один из этих спайов, известный как холодный спай, поддерживается при определенной температуре, а другой — измерительный спай, известный как горячий спай.

Под воздействием температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор в основном является чувствительным к температуре .. (Подробнее)

Типы, принцип работы и применение

Все мы используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи или холодильники. Обычно датчики температуры имеют широкий спектр применения, в том числе в области геотехнического мониторинга.

Датчики температуры — это простой прибор, который измеряет степень тепла или холода и преобразует ее в считываемые единицы. Но задумывались ли вы, как измеряется температура почвы, скважин, огромных бетонных дамб или зданий? Что ж, это достигается с помощью некоторых специализированных датчиков температуры.

Датчики температуры предназначены для регулярного контроля бетонных конструкций, мостов, железнодорожных путей, грунта и т. Д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где он используется и каковы его типы.

Что такое датчики температуры?

Датчик температуры — это устройство, обычно термопара или резистивный датчик температуры, которое обеспечивает измерение температуры в читаемой форме с помощью электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени жара и прохлады.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, почвы, воды, мостов и т. Д.на структурные изменения в них из-за сезонных колебаний.

Термопара (Т / С) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение прямо пропорционально изменению температуры. RTD (резистивный датчик температуры) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Для чего нужны датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени нагрева или прохлады объекта.Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление на диоде измеряется и преобразуется в считываемые единицы измерения температуры (Фаренгейта, Цельсия, Цельсия и т. Д.) И отображается в числовой форме над единицами считывания. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры таких конструкций, как мосты, плотины, здания, электростанции и т. Д.

Для чего используется датчик температуры? | Каковы функции датчика температуры?

Ну, существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на режиме подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают в себя термопары и термисторы, потому что они находятся в прямом контакте с объектом, который они должны измерять. А бесконтактные датчики температуры измеряют тепловое излучение, выделяемое источником тепла.Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания. Одна из наиболее распространенных областей, где они используются, — это время отверждения бетона, потому что он должен быть относительно теплым, чтобы схватиться и затвердеть должным образом. Сезонные колебания вызывают расширение или сжатие конструкции, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на выводах диода. Если напряжение увеличивается, температура также повышается, за чем следует падение напряжения между выводами транзистора базы и эмиттера в диоде.

Кроме того, Encardio-Rite имеет датчик температуры с вибрирующей проволокой, работающий по принципу изменения напряжения при изменении температуры.

Измеритель температуры с вибрирующей проволокой разработан по принципу, согласно которому разнородные металлы имеют разный линейный коэффициент расширения при изменении температуры.

Он в основном состоит из магнитной, растянутой проволоки с высокой прочностью на растяжение, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры напрямую влияет на натяжение проволоки и, следовательно, на ее собственную частоту колебаний.

В случае измерителя температуры Encardio-Rite разнородным металлом является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). Поскольку сигнал температуры преобразуется в частоту, тот же блок считывания используется для другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры регистрируется специально созданным датчиком с вибрирующей проволокой Encardio-rite и преобразуется в электрический сигнал, который передается в виде частоты на считывающее устройство.

Частота, которая пропорциональна температуре и, в свою очередь, напряжению «σ» в проволоке, может быть определена следующим образом:

f = 1/2 [σg / ρ] / 2l Гц

Где:

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина провода

Какие бывают типы датчиков температуры?

Доступны датчики температуры различных типов, форм и размеров.Два основных типа датчиков температуры:

Датчики температуры контактного типа : Есть несколько измерителей температуры, которые измеряют степень тепла или холода в объекте, находясь в непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Бесконтактные датчики температуры : Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень нагрева или холода посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры делятся на:

Термостаты

Термостат — это датчик температуры контактного типа, состоящий из биметаллической полосы, состоящей из двух разнородных металлов, таких как алюминий, медь, никель или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение, когда они подвергаются нагреву.

Термисторы

Термисторы или термочувствительные резисторы — это те, которые меняют свой внешний вид при изменении температуры.Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытого стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов с положительным температурным коэффициентом (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

ТС

— это точные датчики температуры, которые состоят из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку.Электрическое сопротивление RTD изменяется аналогично сопротивлению термистора.

Термопары

Один из наиболее распространенных датчиков температуры включает термопары из-за их широкого рабочего диапазона температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух спаях разнородных металлов, таких как медь и константан, которые сварены или обжаты вместе. Один из этих спайов, известный как холодный спай, поддерживается при определенной температуре, а другой — измерительный спай, известный как горячий спай.

Под воздействием температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор — это, по сути, чувствительный датчик температуры, который точно реагирует даже на незначительные изменения температуры. Он обеспечивает огромную стойкость при очень низких температурах. Это означает, что как только температура начинает повышаться, сопротивление начинает быстро падать.

Из-за большого изменения сопротивления на градус Цельсия даже небольшое изменение температуры точно отображается термистором с отрицательным температурным коэффициентом (NTC).Из-за этого экспоненциального принципа работы требуется линеаризация. Обычно они работают в диапазоне от -50 до 250 ° C.

Полупроводниковые датчики

Датчик температуры на основе полупроводника работает с двойными интегральными схемами (ИС). Они содержат два одинаковых диода с температурно-чувствительными характеристиками напряжения и тока для эффективного измерения изменений температуры.

Однако они дают линейный выходной сигнал, но менее точны при температуре от 1 ° C до 5 ° C. Они также демонстрируют самую медленную реакцию (от 5 до 60 с) в самом узком температурном диапазоне (от -70 ° C до 150 ° C).

Датчик температуры вибрирующей проволоки модели ETT-10V

Измеритель температуры с вибрирующей проволокой Encardio-rite Model ETT-10V используется для измерения внутренней температуры в бетонных конструкциях или в воде. Он имеет разрешение лучше 0,1 ° C и работает аналогично термопарным датчикам температуры. Он также имеет диапазон высоких температур от -20 o до 80 o C.

Технические характеристики измерителя температуры с вибрирующей проволокой ЭТТ-10В
Тип сенсора Pt 100
Диапазон-20 o до 80 o C
Точность ± 0.Стандарт 5% полной шкалы; ± 0,1% полной шкалы опционально
Размер (Φ x L) 34 x 168 мм
Зонд
термистора сопротивления модели ЭТТ-10ТХ

Температурный датчик сопротивления Encardio-rite модели ETT-10TH представляет собой водостойкий температурный датчик малой массы для измерения температуры от –20 до 80 ° C. Благодаря низкой тепловой массе он имеет быстрое время отклика.

Датчик температуры сопротивления модели

ETT-10TH специально разработан для измерения температуры поверхности стали и измерения температуры поверхности бетонных конструкций.ETT-10TH может быть встроен в бетон для измерения объемной температуры внутри бетона и даже может работать под водой.

Температурные датчики сопротивления

ETT-10TH полностью взаимозаменяемы. Показания температуры не будут отличаться более чем на 1 ° C в указанном диапазоне рабочих температур. Это позволяет использовать один индикатор с любым датчиком ETT-10TH без повторной калибровки.

Индикатор с вибрирующей проволокой EDI-51V модели

Encardio-rite при использовании с ETT-10TH напрямую показывает температуру зонда в градусах Цельсия.

Как работает зонд термистора сопротивления модели ETT-10TH?
Датчик температуры

ETT-10TH состоит из терморезисторной эпоксидной смолы с согласованной температурной кривой, заключенной в медную трубку для более быстрого теплового отклика и защиты окружающей среды. Трубка сплющена на конце, так что ее можно прикрепить к любой достаточно плоской металлической или бетонной поверхности для измерения температуры поверхности.

Плоский наконечник зонда можно прикрепить к большинству поверхностей с помощью легко доступных двухкомпонентных эпоксидных клеев.При желании зонд также можно прикрепить болтами к поверхности конструкции.

Датчик температуры снабжен четырехжильным кабелем, который используется в качестве стандарта во всех тензодатчиках Encardio-rite с вибрирующей проволокой. Провода белого и зеленого цвета используются для термистора, как и другие датчики с вибрирующим проводом Encardio-rite.

Пара красных и черных проводов не используется. Единая цветовая схема для разных датчиков упрощает безошибочное соединение с терминалом регистратора данных.

Технические характеристики модели ETT-10TH
Тип датчика Кривая R-T согласована с термистором NTC, эквивалентным YSI 44005
Диапазон-20 o до 80 o C
Точность 1 o С
Материал корпуса Медь луженая
Кабель 4-х жильный в ПВХ оболочке
Датчик температуры RTD, модель ETT-10PT

Датчик температуры RTD (резистивный датчик температуры) ETT-10PT состоит из керамического резистивного элемента (Pt.100) с европейским стандартом калибровки кривой DIN IEC 751 (бывший DIN 43760). Элемент сопротивления заключен в прочную трубку из нержавеющей стали с закрытым концом, которая защищает элемент от влаги.

Как работает датчик температуры RTD модели ETT-10PT?

Температурный датчик сопротивления работает по принципу, согласно которому сопротивление датчика является функцией измеренной температуры. Платиновый RTD обладает очень хорошей точностью, линейностью, стабильностью и воспроизводимостью.

Датчик температуры сопротивления модели ETT-10PT снабжен трехжильным экранированным кабелем.Красный провод обеспечивает одно соединение, а два черных провода вместе — другое. Таким образом, достигается компенсация сопротивления проводов и температурных изменений сопротивления проводов. Показания резистивного датчика температуры легко считываются с помощью цифрового индикатора температуры RTD.

Нажмите кнопку редактирования, чтобы изменить этот текст. Lorem ipsum dolor sit amet, conctetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Технические характеристики датчика RTD модели ETT-10PT
Тип сенсора Pt 100
Диапазон-20 o до 80 o C
Точность ± (0.3 + 0,005 * t) o C
Калибровка DIN IEC 751
Кривая (европейская) 0,00385 Ом / Ом / o C
Размер (Φ x L) 8 x 135 мм
Кабель 3-жильный экранированный
Термопара Encardio-Rite

Encardio-rite предлагает термопару Т-типа (медь-константан) для измерения внутренней температуры в бетонных конструкциях.Он состоит из двух разнородных металлов, соединенных одним концом. Когда соединение двух металлов нагревается или охлаждается, создается напряжение, которое может быть обратно соотнесено с температурой.

Измерение с помощью термопары состоит из провода термопары с двумя разнородными проводниками (медь-константан), соединенными на одном конце для образования горячего спая. Этот конец защищен от коррозии и помещен в требуемые места для измерения температуры.

Другой конец провода термопары подсоединяется к подходящему разъему термопары для образования холодного спая.Показания термопары отображают прямое считывание температуры в месте установки и автоматически компенсируют температуру на холодном спайе.

Технические характеристики термопары Encardio-Rite
Тип провода Т-медь-константан
Изоляция проводов PFA тефлон C
Температура горячего спая до 260 o C (макс.)
Тип разъема Миниатюрный Стеклонаполненный нейлон
Рабочая температура-20 o до 100 o C
Температура холодного спая Окружающий

Где используется датчик температуры?

Область применения датчика температуры:

  1. Датчики температуры используются для проверки проектных предположений, что способствует более безопасному и экономичному проектированию и строительству.
  2. Они используются для измерения повышения температуры в процессе твердения бетона.
  3. Они могут измерять температуру горных пород возле резервуаров для хранения сжиженного газа и при проведении операций по замораживанию грунта.
  4. Датчики температуры также могут измерять температуру воды в резервуарах и скважинах.
  5. Его можно использовать для интерпретации температурных напряжений и изменений объема в плотинах.
  6. Их также можно использовать для изучения влияния температуры на другие установленные приборы.

Преимущества датчиков температуры Encardio-Rite

  1. Датчик температуры Encardio-Rite точный, недорогой и чрезвычайно надежный.
  2. Они подходят как для поверхностного монтажа, так и для встраиваемых систем.
  3. Низкая тепловая масса приводит к более быстрому времени отклика.
  4. Датчик температуры вибрирующей проволоки полностью взаимозаменяемый; один индикатор может считывать данные со всех датчиков.
  5. Имеет водонепроницаемый корпус со степенью защиты IP-68.
  6. Они поставляются с индикаторами, которые легко доступны для прямого отображения температуры.
  7. Датчики температуры обладают отличной линейностью и гистерезисом.
  8. Технология вибрирующей проволоки обеспечивает долгосрочную стабильность, быстрое и легкое считывание.
  9. Датчики герметично закрыты электронно-лучевой сваркой с вакуумом внутри около 1/1000 Торр.
  10. Они подходят для удаленного чтения, сканирования, а также регистрации данных.

Часто задаваемые вопросы

В чем разница между датчиком температуры и преобразователем температуры?

Датчик температуры — это прибор, используемый для измерения степени нагрева или прохлады объекта, тогда как датчик температуры — это устройство, которое сопрягается с датчиком температуры для передачи сигналов в удаленное место для мониторинга и управления.

Это означает, что термопара, RTD или термистор подключены к регистратору данных для получения данных в любом удаленном месте.

Как измеряется температура в бетонной плотине?

За исключением процедуры, принятой во время строительства, наибольший фактор, вызывающий напряжение в массивном бетоне, связан с изменением температуры. Следовательно, для анализа развития термического напряжения и управления искусственным охлаждением необходимо отслеживать изменение температуры бетона во время строительства.

Для этого необходимо точно измерить температуру во многих точках конструкции, в воде и в воздухе. Должно быть встроено достаточное количество датчиков, чтобы получить правильную картину распределения температуры в различных точках конструкции.

В большой бетонной плотине типичная схема заключается в размещении датчика температуры через каждые 15-20 м по поперечному сечению и через каждые 10 м по высоте. Для небольших плотин интервал может быть уменьшен. Температурный зонд, установленный в верхней части плотины, оценивает температуру водохранилища, поскольку она меняется в течение года.

Это намного проще, чем то и дело ронять термометр в резервуар, чтобы проводить наблюдения. Во время эксплуатации бетонной плотины суточные и сезонные изменения окружающей среды наносят ущерб развитию термических напряжений в конструкции. Эффект более выражен на стороне нисходящего потока. Несколько датчиков температуры должны быть размещены рядом и в нижней части бетонной плотины для оценки быстрых суточных и еженедельных колебаний температуры.

Какой датчик температуры самый точный?

RTD — самый точный датчик температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость по сравнению с термопарами или термисторами.

Что такое термопара?

Термопара — это тип датчика температуры, который используется для измерения внутренней температуры объекта.

Существует три закона для термопар, как указано ниже:

Закон однородного материала

Если все провода и термопара сделаны из одного материала, изменения температуры в проводке не влияют на выходное напряжение.Следовательно, необходимы провода, изготовленные из различных материалов.

Закон промежуточных материалов

Сумма всех термоэлектрических сил в цепи с несколькими разнородными материалами при постоянной температуре равна нулю. Это означает, что если третий материал добавляется при той же температуре, новый материал не генерирует никакого сетевого напряжения.

Закон последовательных или промежуточных температур

Если два неоднородных однородных материала создают термоэдс 1, когда переходы находятся в точках T1 и T2, и создают термоэдс 2, когда переходы находятся в точках T2 и T3, то ЭДС, генерируемая, когда переходы находятся в точках T1 и T3, будет равна ЭДС1 + ЭДС2

Как проверить датчик температуры?

В Encardio-Rite есть специализированные камеры для испытания температуры (с уже известными системами контроля температуры и температуры) для проверки точности и качества наших датчиков температуры.

Это все о датчиках температуры, их различных типах, областях применения, использовании, а также принципах работы. Сообщите нам свои вопросы в разделе комментариев ниже.

Датчики температуры — Термистор — RTD Датчики и сборки

Датчик температуры — это устройство, которое определяет и измеряет среднюю тепловую или тепловую энергию в среде и преобразует ее в электрический сигнал. Сегодня доступно большое количество устройств для измерения температуры.Littelfuse предлагает широкий ассортимент термисторов, резистивных датчиков температуры (RTD), цифровых индикаторов температуры, а также датчиков и узлов для измерения температуры по всему миру.

Каждый тип датчика температуры имеет свой собственный набор принципов работы, функций, преимуществ, соображений и ограничений для оптимального использования.

  • Термисторы (NTC и PTC): Термисторы — это термочувствительные резисторы, основная функция которых — показывать большое, предсказуемое и точное изменение электрического сопротивления при соответствующем изменении температуры тела.Термисторы с отрицательным температурным коэффициентом (NTC) демонстрируют снижение электрического сопротивления при повышении температуры тела. Термисторы с положительным температурным коэффициентом (PTC) демонстрируют увеличение электрического сопротивления при повышении температуры тела.
  • RTD: платиновые резистивные датчики температуры (Pt-RTD) — это датчики температуры, которые имеют положительное, предсказуемое и почти линейное изменение сопротивления при соответствующем изменении температуры их тела.
  • Цифровые указатели температуры : Цифровые указатели температуры имеют положительную взаимосвязь между сопротивлением и температурой. Отклик очень похож на цифровой сигнал; ниже температуры срабатывания сопротивление будет низким, выше температуры срабатывания сопротивление будет очень высоким. Этот цифровой отклик идеально подходит для приложений, где требуется знать, что температура превысила определенное значение. Благодаря цифровому отклику аналого-цифровое преобразование не требуется, что позволяет разработчикам экономить время и пространство.

Доступны модификации существующих стандартных пакетов продуктов, такие как добавление соединителей или изменение размера или длины провода, а также предложения специальных кривых зависимости сопротивления от температуры (R-T), согласования кривой R-T, а также индивидуального формирования и гибки выводов для дискретных термисторов. Кроме того, доступны следующие опции и услуги.

  • Полные пользовательские пакеты датчиков, включая влагостойкие конструкции
  • Пользовательские характеристики сопротивления-температуры (R-T)
  • Специализированный допуск сопротивления или точность температуры в указанных диапазонах температур
  • Конструкция чувствительного элемента для лучшей долгосрочной стабильности
  • Быстрое прототипирование и концептуальные детали с быстрым поворотом, включая детали, напечатанные на 3D-принтере
  • Опытные образцы агрегатов с использованием прототипов инструментов
  • Варианты тестирования надежности / валидации
  • Полностью спроектированный, пригодный для производства датчик и инструмент

Как работают датчики температуры?

Как работают датчики температуры? Это устройства для измерения температуры с помощью электрических сигналов.Датчик состоит из двух металлов, которые генерируют электрическое напряжение или сопротивление при изменении температуры. Датчик температуры играет решающую роль в поддержании определенной температуры в любом оборудовании, используемом для приготовления чего угодно, от лекарств до пива. Для производства таких типов контента точность и оперативность контроля температуры и температуры имеют решающее значение для обеспечения идеального конечного продукта. Температура — это наиболее распространенный вид физических измерений в промышленных приложениях.Точные измерения жизненно важны для обеспечения успеха этих процессов. Есть много не столь очевидных приложений, в которых используются датчики температуры. Плавление шоколада с использованием доменной печи, управление воздушным шаром, замораживание веществ в лаборатории, управление автомобилем и обжиг печи.

Датчики температуры бывают разных форм, которые используются для различных методов управления температурой. Существует две категории датчиков температуры: контактные и бесконтактные.Контактные датчики используются в основном во взрывоопасных зонах.

Ниже приведены контактные датчики температуры:

Датчик температуры сопротивления (RTD) известен как термометр сопротивления и измеряет температуру по сопротивлению элемента RTD температуре. Металл может быть изготовлен из разных материалов, включая платину, никель или медь. Однако платина является наиболее точной и поэтому требует более высокой стоимости.

Термопара — это датчик, состоящий из двух проводов с двумя разными металлами, соединенными в двух точках.Напряжение между двумя проводами отражает изменение температуры. Хотя точность может быть немного ниже, чем у RTD, они имеют самый широкий диапазон температур от -200 ° C до 1750 ° C и, как правило, более экономичны.

Термистор показывает точное, предсказуемое и большое изменение изменения различных температур. Это большое изменение означает, что температура отражается очень быстро, но при этом очень точно. Термистор NTC с таким большим и быстрым дизайном требует линеаризации, поэтому здесь требуется некоторая математика.

Термометр — это обычно то, о чем мы думаем, когда думаем о температуре, особенно о стеклянной трубке, наполненной ртутью. Однако существует несколько типов термометров: Стеклянный термометр: как указано выше, стеклянная трубка из ртути / этанола. В настоящее время этанол является основной жидкостью, используемой в этих термометрах.
Биметаллический термометр: термометр этого типа состоит из соединенного датчика и стержня. Наконечник датчика имеет пружину, которая прикреплена к стержню, ведущему к стрелке датчика.Пружина находится внутри чувствительного конца стержня. Когда к чувствительной катушке прикладывается тепло, в катушке создается движение, которое заставляет стрелку манометра перемещаться, тем самым отображая температуру.
Газонаполненный и жидкостный термометр: Эти термометры похожи по принципу действия. Есть колба, наполненная газом или жидкостью. Он расположен внутри чувствительного конца зонда. При нагревании газ расширяется / жидкость нагревается, что дает сигнал прикрепленному стержню, чтобы переместить иглу до измеряемой температуры.
Цифровой термометр. В цифровом термометре используется зонд, например термопара или резистивный датчик температуры (RTD). Температура измеряется с помощью зонда (чувствительный конец) и отображается в цифровом виде.

Ниже приведен Бесконтактный датчик температуры.

Инфракрасные датчики определяют температуру на расстоянии, измеряя тепловое излучение, испускаемое объектом или источником тепла. Они часто применяются при высоких температурах или в опасных средах, когда вам необходимо поддерживать безопасное расстояние от определенного тела.Тепловизионные и инфракрасные датчики являются наиболее распространенным типом бесконтактных датчиков температуры и используются в следующих случаях: Обнаружение лихорадки или когда целевой объект движется (например, на конвейерной ленте или в движущемся оборудовании), если это большое расстояние, если есть опасная окружающая среда (например, высокое напряжение) или при очень высоких температурах, когда контактный датчик не будет работать должным образом.

Чтобы упростить, датчик температуры делает именно это: он определяет температуру любого содержимого, которое необходимо измерить, будь то твердые вещества, жидкости или газы.

Датчики температуры | Прикладные датчики Technogies

ДАТЧИКИ ТЕМПЕРАТУРЫ

ТИП

ОПИСАНИЕ

РДТ Датчики температуры RTD используют тот факт, что электрическое сопротивление материала изменяется при изменении его температуры.Самый распространенный тип RTD (стандарт прикладных сенсорных технологий) — платиновый, с характеристиками, которые были стандартизированы в соответствии с европейским стандартом IEC 751. Можно применить множество различных вариантов.
Термопара От подшипников до котла, датчиков температуры, термопар. и RTD производства Applied Sensor Технологии рассчитаны на надежность и долговечность и проверены на практике.У нас есть разработанные датчики выхлопа вашей газовой турбины и ваша система электрообогрева для потока газа компьютеры, на которые вы полагаетесь, и охлаждающая вода отток.
Защитные гильзы и гильзы Мы предлагаем широкий выбор конструкций защитных гильз, из множества различных материалов, для приложений от линий подачи природного газа к ПГРТ. Из скважин с резьбой для очистки воды оборудования, к фланцевым колодцам, сварным раструбам и способы сварки различных углеродистых сталей, нержавеющие стали и сплавы с высоким содержанием никеля.
Датчики Во многих приложениях невозможно подключить датчик температуры прямо в блок управления системы из-за расстояния или качества сигнала. Один наших преобразователей температуры — это идеальный выбор для преобразования выходного сигнала датчика в надежный протокол 4-20 мА или HART®.
Датчик измерения газа Для большинства газопроводов вычислители расхода используются для измерения объема проходящего газа через линию.Это позволяет им правильно заряжать своих клиентов за доставленный продукт. Один из необходимые входы, необходимые для вычислителя расхода вычислить объем — это температура материала. Для этого измерения обычно используются резистивные датчики сопротивления 100 Ом, благодаря их точности, производительности и доступности. Поскольку неточность или сбой могут означать потерю дохода, это очень важно иметь надежные измерения.
Принадлежности

Датчики температуры — Аксессуары.

Sensor Box ™ SENSOR BOX ™ — это модульный датчик температуры. система для профессионального обслуживания КИПиА. Это может быть вашим решением для ускорения работы, больших запасов и дорогостоящих простоев. Одной из проблем при обслуживании промышленных датчиков температуры является их разнообразие. На типичном технологическом предприятии до сих пор сложно иметь на складе все конфигурации датчиков, которые им может потребоваться заменить.Объединяя общие детали в модульную систему, относительно небольшое количество складских запасов может быть преобразовано в необходимое вам разнообразие — быстро и без ускорения.

Как выбрать и использовать правильный датчик температуры

Вернуться на предыдущую страницу

Введение

За 20 лет работы в области разработки, производства и применения датчиков температуры я провел ряд обучающих семинаров по датчикам температуры.После длинных объяснений того, как сконструированы и используются резистивные датчики температуры (RTD) и термопары, люди обычно задают вопрос: «Хорошо, а как мне определить, какой датчик использовать в моем приложении?». Настоящая статья призвана ответить на этот вопрос.

После краткого обзора конструкции и использования RTD и термопар для измерения температуры, мы обсудим, что отличает эти датчики друг от друга. Мы обсудим темы температурного диапазона, допусков, точности, взаимозаменяемости, а также относительные сильные и слабые стороны каждого типа.Изучив эти темы, вы лучше поймете, когда следует использовать каждый тип датчика и почему.

Обзор основ RTD и термопар

RTD:
ТС

содержат чувствительный элемент, представляющий собой электрический резистор, сопротивление которого изменяется в зависимости от температуры. Это изменение сопротивления хорошо изучено и воспроизводимо. Чувствительный элемент в RTD обычно содержит либо катушку с проводом, либо сетку из проводящей пленки, в которой вырезан рисунок проводника (см. Рисунок 1).Удлинители прикрепляются к чувствительному элементу, поэтому его электрическое сопротивление можно измерить на некотором расстоянии. Затем чувствительный элемент упаковывается, чтобы его можно было разместить в процессе, где он будет достигать той же температуры, которая существует в процессе (см. Рисунок 2).

Термопары:
С другой стороны, термопары

содержат два электрических проводника, изготовленных из разных материалов, которые соединены одним концом. Конец проводов, который будет подвергаться воздействию технологической температуры, называется измерительным переходом.Точка, в которой заканчиваются проводники термопары (обычно там, где проводники подключаются к измерительному устройству), называется опорным спаем (см. Рисунок 3).

Когда измерительный и эталонный спая термопары находятся при разных температурах, внутри проводников образуется милливольтный потенциал. Знание типа используемой термопары, величины милливольтного потенциала внутри термопары и температуры эталонного спая позволяет пользователю определять температуру на измерительном спай.

Милливольтный потенциал, создаваемый проводниками термопары, различается в зависимости от используемых материалов. Некоторые материалы делают термопары лучше, чем другие, потому что милливольтные потенциалы, создаваемые этими материалами, более воспроизводимы и хорошо известны. Этим термопарам присвоены определенные обозначения типа, такие как Тип E, J, K, N, T, B, R и S. Различия между этими типами термопар будут объяснены ниже.

Ограничения температуры для RTD и термопар:

Материалы, используемые в RTD и термопарах, имеют температурные ограничения, которые могут быть важным фактором при их использовании.

RTD

Как указывалось ранее, RTD состоит из чувствительного элемента, проводов для подключения чувствительного элемента к измерительному прибору и какой-то опоры для позиционирования чувствительного элемента в процессе. Каждый из этих материалов устанавливает пределы температуры, которой может подвергаться RTD.

Таблица 1: Материалы чувствительного элемента и пределы температуры
Материал Рабочий диапазон температур
Платина от -450 ° F до 1200 ° F
Никель от -150 ° F до 600 ° F
Медь от -100 ° F до 300 ° F
Никель / железо От 32 ° F до 400 ° F

Чувствительный элемент в RTD обычно содержит платиновый провод или пленку, керамический корпус и керамический цемент или стекло для герметизации чувствительного элемента и поддержки провода элемента.Обычно платиновые чувствительные элементы могут подвергаться воздействию температур примерно до 1200 ° F. Также можно использовать другие материалы, такие как никель, медь и сплав никель / железо, однако их полезные температурные диапазоны несколько ниже, чем для платины. Температуры использования для всех этих материалов показаны в Таблице 1.

Провода, соединяющие чувствительный элемент с контрольно-измерительными приборами, обычно изготавливаются из таких материалов, как никель, никелевые сплавы, луженая медь, посеребренная медь или никелированная медь.Используемая изоляция провода также напрямую влияет на температуру, которой может подвергаться RTD. В таблице 2 представлены обычно используемые провода и изоляционные материалы, а также их максимальные температуры использования.

Таблица 2: Пределы температуры соединительного провода
Провода / изоляционные материалы Максимальная рабочая температура
Луженая медь / изоляция ПВХ 221 ° F
Посеребренная медь / FEP с тефлоновой изоляцией 400 ° F
Посеребренная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / изоляция из стекловолокна 900 ° F
Сплошная никелевая проволока 1200 ° F

Размещение чувствительного элемента в технологическом процессе также требует использования материалов.Наиболее распространенная компоновка заключается в помещении резистора и присоединенных проводов в металлическую трубку с закрытым концом, заполнение трубки демпфирующим вибрацию и / или теплопередающим материалом, например керамическим порошком, и герметизация открытого конца трубки эпоксидной смолой или керамический цемент. Металлические трубки, которые чаще всего используются в RTD, изготовлены из нержавеющей стали (используется при температуре примерно 900 ° F) или инконеля (используется примерно до 1200 ° F). Используемые материалы для гашения вибрации / теплопередачи широко различаются по температурному диапазону.Эти материалы выбираются производителем для обеспечения оптимальных характеристик в зависимости от максимальной температуры, ожидаемой при использовании. Эпоксидные герметики обычно никогда не используются при температуре выше 400-500 ° F. Керамический цемент может подвергаться воздействию температур 2000 ° F и более, но для этого требуются герметики, чтобы не допустить попадания влаги в цемент и материал, поглощающий вибрацию / теплопередачу под ним.

Материалом платинового RTD с наименьшими температурами обычно являются провод и изоляция, используемые для подключения чувствительного элемента к приборам.Производители обычно предлагают две конструкции: низкотемпературную и высокотемпературную. В низкотемпературных конструкциях используется никелированная или посеребренная медная проволока с тефлоновой изоляцией и эпоксидное уплотнение. Эта конструкция обычно ограничивается температурой от 400 до 500 ° F.

В высокотемпературных конструкциях обычно используются никелированные медные провода с изоляцией из стекловолокна и керамический цемент с максимальной температурой от 900 ° F до 1200 ° F. Некоторые производители также предлагают линейку RTD, в которых используется проволока из никеля или никелевого сплава с керамической изоляцией для работы при температуре до 1200 ° F.

Термопары:
Материалы для термопар

доступны в типах E, J, K, N, T, R, S и B. Эти типы термопар можно разделить на две категории: термопары из недрагоценных металлов и термопары из благородных металлов.

Термопары типа E, J, K, N и T известны как термопары из недрагоценных металлов, потому что они сделаны из обычных материалов, таких как медь, никель, алюминий, железо, хром и кремний. Каждый тип термопары имеет предпочтительные условия использования, например, использование голых термопар типа J (железо / константан) обычно ограничивается максимальной температурой 1000 ° F и не рекомендуется для использования в окислительной или сернистой атмосфере из-за разрушения железа. дирижер.Термопары типа T без оболочки (медь / константан) не используются при температуре выше 700 ° F из-за износа медного проводника. Температурные диапазоны для этих типов термопар включены в Таблицу 3, а дополнительная информация о применении — в Таблице 4.

Термопары

типа R, S и B известны как термопары из благородных металлов, потому что они сделаны из платины и родия. Эти термопары используются в приложениях, которые превосходят возможности термопар из недрагоценных металлов. Термопары типов R и S рассчитаны на использование при температурах от 1000 ° F до 2700 ° F, а термопары типа B рассчитаны на использование от 1000 ° F до 3100 ° F.Если ожидается длительное воздействие при температурах выше 2500 ° F, разумно указать термопары типа B для увеличения срока службы термопар. В термопарах типа R&S может наблюдаться значительный рост зерна, если они удерживаются около их верхнего предела использования в течение длительных периодов времени.

Поскольку термопары не имеют чувствительных элементов, они не содержат многих материалов для ограничения температуры, которые есть в RTD. Термопары обычно конструируются с использованием неизолированных проводников, которые затем изолируются спрессованным керамическим порошком или формованными керамическими изоляторами.Такая конструкция позволяет использовать термопары при гораздо более высоких температурах, чем термометры сопротивления.

Допуск, точность и взаимозаменяемость:

Допуск и точность — это наиболее неправильно понимаемые термины при измерении температуры. Термин толерантность относится к определенному требованию, которое обычно составляет плюс или минус некоторая сумма. С другой стороны, точность относится к бесконечному количеству допусков в указанном диапазоне.

Например, RTD содержат чувствительный элемент, который изготовлен так, чтобы иметь определенное электрическое сопротивление при определенной температуре.Самый распространенный пример этого требования — так называемый стандарт DIN. Чтобы соответствовать требованиям стандарта DIN, RTD должен иметь сопротивление 100 Ом — 0,12% (или 0,12 Ом) при 32 ° F (0 ° C), чтобы считаться датчиком класса B (датчик класса A имеет сопротивление 100 Ом. — 0,06%). Допуск — 0,12 Ом применяется только к сопротивлению при 32 ° F и не может применяться к любой другой температуре. Многие поставщики предоставят таблицу взаимозаменяемости для

.
Таблица 3: Типы термопар, диапазоны температур, пределы погрешности
Стандартный Специальный
Тип Материалы Диапазон температур Пределы ошибки Диапазон температур Пределы ошибки
Дж Утюг / константан 32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (от 0 до 275 ° C) 2F (1.1C)
550 до 1400F (от 293 до 760 ° C) 0,75% 527 до 1400F (от 275 до 760 ° C) 0,40%
К Хромель / Алюмель от -328 до -166F (от -200 до -110C) 2%
-166 до 32F (-110 до 0C) 4F (2.2C)
32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (от 0 до 275 ° C) 2F (1.1C)
559 до 2282F (от 293 до 1250C) 0,75% 527 до 2282F (от 275 до 1250 ° C) 0,40%
т Медь / константан от -328 до -89F (от -200 до -67C) 1.50%
-89 до 32F (-67 до 0C) 1,8F (1C)
32 до 271F (0 до 133C) 1,8F (1C) от 32 до 257F (от 0 до 125 ° C) 0,9F (0,05 ° C)
271 до 662F (от 133 до 350 ° C) 0,75% 257 до 662F (от 125 до 350 ° C) 0,40%
E Хромель / Константин от -328 до -89F (от -200 до -67C) 1%
-274 до 32F (-170 до 0C) 3.1F (1,7 ° C)
32 до 644F (от 0 до 340 ° C) 3,1F (1,7 ° C) 32 до 482F (от 0 до 250 ° C) 1,8F (1C)
644 до 1652F (от 340 до 900C) 0,50% 482 до 1652F (от 250 до 900 ° C) 0,40%
Никросил / Нисил 32 до 559F (от 0 до 293C) 4F (2.2C)
559 до 2300F (от 293 до 1260 ° C) 0,75%
R Платина / Платина — 13% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0.10%
S Платина / Платина-10% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0,10%
B Платина / Платина-30% родий 1472 до 3092F (от 800 до 1700 ° C) 0.50% 1472 до 3092F (от 800 до 1700 ° C)

Таблица 4: Информация о применении термопары

Тип Информация о приложении
E Рекомендуется для постоянно окислительной или инертной атмосферы. Минусовые пределы погрешности не установлены. Самый высокий термоэлектрический выход из распространенных типов термопар.
Дж Подходит для вакуума, восстановительной или инертной атмосферы, окислительной атмосферы с сокращенным сроком службы.Железо быстро окисляется при температуре выше 1000 ° F (538 ° C), поэтому для высоких температур рекомендуется использовать только толстую проволоку. Открытые элементы не должны подвергаться воздействию сернистой атмосферы выше 1000 ° F (538 ° C).
К Рекомендуется для непрерывной окислительной или нейтральной атмосферы. В основном используется при температуре выше 1000 ° F (538 ° C). Возможны поломки при контакте с серой. Предпочтительное окисление хрома в положительной ветви при определенных низких концентрациях кислорода вызывает «зеленую гниль» и большие отрицательные отклонения калибровки, наиболее серьезные в диапазоне 1500–1900 ° F (816 1038 ° C).Этому может помешать вентиляция или инертное уплотнение защитной гильзы.
N Может использоваться в приложениях, где элементы типа K имеют более короткий срок службы и проблемы со стабильностью из-за окисления и развития «зеленой гнили».
т Может использоваться в окислительной, восстановительной или инертной атмосфере, а также в вакууме. Не подвержен коррозии во влажной атмосфере. Пределы погрешности опубликованы для диапазонов отрицательных температур.
R&S Рекомендуется для высоких температур. Должен быть защищен неметаллической защитной трубкой и керамическими изоляторами. Продолжительное использование при высоких температурах вызывает рост зерна, что может привести к механическому повреждению. Отрицательный калибровочный дрейф, вызванный диффузией родия в чистую часть платины, а также испарением родия. Тип R используется в промышленности, тип S — в лаборатории.
B То же, что и R&S, но имеет меньшую мощность.Также имеет более высокую максимальную температуру и менее подвержен росту зерна.

RTD, которые предоставляют пользователю таблицу допусков при определенных температурах (см. Таблицу 5):

Таблица 5: Типовая таблица взаимозаменяемости RTD
Температура Допуск при температуре
Температура Сопротивление
-200 ° С –1.3 ° С –0,56 Ом
-100 ° С — 0,8 ° С — 0,32 Ом
0 ° С — 0,3 ° С — 0,12 Ом
100 ° С — 0,8 ° С — 0,30 Ом
200 ° С — 1,3 ° С — 0.48 Ом
300 ° С — 1,8 ° С — 0,64 Ом
400 ° С — 2,3 ° С — 0,79 Ом
500 ° С — 2,8 ° С — 0,93 Ом
600 ° С — 3,3 ° С — 1,06 Ом

С другой стороны, термопары специфицированы иначе, чем термометры сопротивления, потому что они изготавливаются по-другому.В отличие от чувствительного элемента в RTD, милливольтный потенциал, генерируемый термопарой, является функцией состава материала и металлургической структуры проводников. Следовательно, термопарам не присваивается значение при определенной температуре, а задаются пределы погрешности, которые охватывают весь температурный диапазон.

Эти пределы, присвоенные термопарам, известны как стандартные или специальные пределы погрешности. Таблица 3 содержит стандартные и специальные пределы характеристик погрешности для каждого стандартного типа термопары.Следует отметить, что пределы значений погрешности, перечисленные в таблице 3, относятся к новым термопарам перед использованием. Когда термопары подвергаются воздействию технологических условий, изменения в проводниках термопары могут привести к увеличению ошибок. Пользователям рекомендуется периодически выполнять тесты для определения состояния термопар, используемых в приложениях с высокой надежностью или высокой точностью.

Сильные и слабые стороны

У каждого типа датчика температуры есть свои сильные и слабые стороны.

RTD Сильные стороны:
ТС

обычно используются в приложениях, где важны повторяемость и точность. Правильно сконструированные платиновые термометры сопротивления имеют очень стабильные характеристики сопротивления в зависимости от температуры с течением времени. Если процесс будет выполняться при определенной температуре, удельное сопротивление RTD при этой температуре может быть определено в лаборатории, и оно не будет существенно меняться с течением времени. RTD также допускают более легкую взаимозаменяемость, поскольку их первоначальная вариация намного ниже, чем у термопар.Например, термопара типа K, используемая при 400 ° F, имеет стандартный предел погрешности — 4 ° F. Платиновый резистивный датчик температуры DIN 100 Ом класса B имеет взаимозаменяемость — 2,2 ° F при той же температуре. RTD также могут использоваться со стандартным измерительным кабелем для подключения к дисплею или контрольному оборудованию, где термопары должны иметь соответствующий провод термопары для получения точных измерений.

Слабые стороны RTD:

В той же конфигурации вы можете рассчитывать заплатить от 4 до 10 раз больше за RTD, чем за термопару из недрагоценных металлов.RTD дороже, чем термопары, потому что для его изготовления требуется более сложная конструкция, включая изготовление чувствительного элемента, подключение удлинительных проводов и сборку датчика. RTD не работают так же хорошо, как термопары в условиях сильной вибрации и механических ударов из-за конструкции чувствительного элемента. RTD также ограничены по температуре примерно до 1200 ° F, а термопары могут использоваться до 3100 ° F

.
Прочность термопары:
Термопары

можно использовать при температурах до 3100 ° F, как правило, они стоят меньше, чем RTD, и их можно сделать меньше по размеру (примерно до 30 ° C).020 дюймов в диаметре), чтобы обеспечить более быструю реакцию на температуру. Термопары также более долговечны, чем RTD, и поэтому могут использоваться в приложениях с высокой вибрацией и ударами.

Слабые стороны термопары:
Термопары

менее стабильны, чем термометры сопротивления, при воздействии умеренных или высоких температур. В критических случаях применения термопары следует снимать и испытывать в контролируемых условиях, чтобы проверить работоспособность. Удлинительный провод термопары должен использоваться для подключения датчиков термопары к прибору термопар или контрольному оборудованию.Использование измерительного провода (покрытого медью) приведет к ошибкам при изменении температуры окружающей среды.

Резюме:

И термопары, и термометры сопротивления являются полезными приборами для определения температуры процесса. RTD обеспечивает более высокую точность, чем термопары в своем температурном диапазоне, поскольку платина является более стабильным материалом, чем большинство материалов для термопар. В RTD также используется стандартный измерительный провод для подключения к измерительному или контрольному оборудованию.

Термопары

, как правило, дешевле, чем термометры сопротивления, они более долговечны в условиях сильной вибрации или механических ударов и могут использоваться при более высоких температурах.Термопары могут быть меньше по размеру, чем большинство RTD, чтобы их можно было подобрать для конкретного применения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*