Для чего нужен конденсатор в схеме: Страница не найдена

Содержание

Что такое конденсатор и для чего он нужен?

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы), а на другой отрицательно заряженные частицы (электроны). Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока.  Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:
  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф), на практике часто встречаются мкФ (1мкФ = 0,000001 Ф), нФ (1нФ = 0,000000001 Ф), пФ (1пФ = 0,000000000001 Ф), так как емкость в 1Ф очень велика. Но  есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже).
  2. Номинальное напряжение —
     это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В). При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения —  допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее).
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры 
    (особенно ниже 0°C)
     повышается вязкость электролита и его ESR (удельное электрическое сопротивление), что ведет к уменьшению емкости конденсатора.
Для чего же нужны конденсаторы и с чем их «едят».
  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах), он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Как вам статья?

Мне нравитсяНе нравится

( Пока оценок нет )

Понравилась статья? Поделиться с друзьями:

Для чего нужен конденсатор в люминесцентном светильнике

Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а – с индуктивным балластом, б – с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л – люминесцентная лампа, Д – дроссель, Ст – стартер, С1 – С3 – конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 – 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 – 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л – люминесцентная лампа, Ст- стартер, С – конденсатор, r – разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л – люминесцентная лампа, Д – дроссель, НТ – накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 – 25%, в бесстартерных – 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

При расчете сетей освещения с люминесцентными лампами, то необходимо учитывать, что даже при компенсированных схемах без пускорегулирующих устройств нельзя полностью уничтожить сдвиг фаз. Поэтому необходимо при определении расчетного тока сетей с люминесцентными лампами принимать для схем с компенсацией реактивной мощности косинус фи = 0,9, а при отсутствие конденсаторов в схемах косинус фи = 0,5. Кроме того, необходимо учесть потери мощности в пускорегулирующей аппаратуре.

При выборе сечений проводов четырехпроводных сетей с люминесцентными лампами следует учитывать некоторые особенности таких сетей. Дело в том, что нелинейность вольтамперной характеристики люминесцентных ламп, а также наличие в их цели катушки индуктивности со стальным сердечником и конденсаторов выливают несинусопдалькость кривой тока и вследствие этого появление высших гармоник, существенно изменяющих ток нулевого провода даже при равномерной нагрузке фаз.

Ток в нулевом проводе может достигать значений, близких к току в фазном проводе 85—87% от I ф. Отсюда вытекает необходимость выбирать сечение нулевого провода в четырехпроводных сетях люминесцентного освещения равным сечению фазных проводов, а при прокладке проводов в трубах допустимую токовую нагрузку надо принимать как для четырех проводов в одной трубе.

Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а – с индуктивным балластом, б – с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л – люминесцентная лампа, Д – дроссель, Ст – стартер, С1 – С3 – конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 – 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 – 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л – люминесцентная лампа, Ст- стартер, С – конденсатор, r – разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Бесстартерные схемы включения люминесцентных ламп

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л – люминесцентная лампа, Д – дроссель, НТ – накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 – 25%, в бесстартерных – 35%

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

При расчете сетей освещения с люминесцентными лампами, то необходимо учитывать, что даже при компенсированных схемах без пускорегулирующих устройств нельзя полностью уничтожить сдвиг фаз. Поэтому необходимо при определении расчетного тока сетей с люминесцентными лампами принимать для схем с компенсацией реактивной мощности косинус фи = 0,9, а при отсутствие конденсаторов в схемах косинус фи = 0,5. Кроме того, необходимо учесть потери мощности в пускорегулирующей аппаратуре.

При выборе сечений проводов четырехпроводных сетей с люминесцентными лампами следует учитывать некоторые особенности таких сетей. Дело в том, что нелинейность вольтамперной характеристики люминесцентных ламп, а также наличие в их цели катушки индуктивности со стальным сердечником и конденсаторов выливают несинусопдалькость кривой тока и вследствие этого появление высших гармоник, существенно изменяющих ток нулевого провода даже при равномерной нагрузке фаз.

Ток в нулевом проводе может достигать значений, близких к току в фазном проводе 85—87% от I ф. Отсюда вытекает необходимость выбирать сечение нулевого провода в четырехпроводных сетях люминесцентного освещения равным сечению фазных проводов, а при прокладке проводов в трубах допустимую токовую нагрузку надо принимать как для четырех проводов в одной трубе.

Для освещения гаража решил собрать лампу дневного света, посмотрел схемы в сети есть схемы с конденсатором

Конденсатор большой ёмкости в вашем случае предназначен для сдвига по фазе пульсации второй лампы, чтобы не было стробоскопического эффекта. Устанавливается обычно в двухламповых светильниках. (Или с числом ламп кратно двум)Ёмкость конденсатора приблизительно 3-4 микрофарады. Можно не ставить, но будет здорово давить на глаза.

Во втором случае на схеме одна лампа, там очевидно что конденсатор не требуется.

Я так понял речь об люминисцентных лампах дневного света.

Что бы понять зачем нужен конденсатор, надо разобраться как всё это работает.

Напрямую от сети 220-ь Вольт лампа дневного света не заработает (не включится).

Для их запуска используется специальный пуско-регулирующий блок, аппаратуру (ПРА).

Данная аппаратура состоит из трёх составляющих (частей, элементов).

Дроссель конденсатор и стартер.

У каждого своё предназначение.

Конденсатор снижает помехи электродов стартера (во время их замыкания и размыкания).

Увеличивает длительность импульса при размыкании тех самых электродов.

Предотвращает «залипание» (спаивание) электродов, это происходит за счёт высокого импульсного напряжения.

Если это двухламповый светильник, то конденсатор предотвращает (точней снижает) пульсацию светового потока, за счёт сдвига фазы одной лампы относительно другой.

Выпрямитель и простейший блок питания, как это сделать самому

Выпрямитель и простейший блок питания, как это сделать самому

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Полная версия даташита https://www.jameco.com/Jameco/Products/ProdDS/889305.pdf

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что компании Nissan Energy и OPUS Campers представили любопытную новинку — концептуальный автомобиль-кемпер Nissan x OPUS. Главная идея Nissan x OPUS заключается в том, чтобы обеспечить путешественников электроэнергией вдали от цивилизации. Для этого предлагается использовать отработанные аккумуляторные батареи электромобилей.

По материалам: electrik.info.

Конденсаторы. Что это и для чего они нужны.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.

ПРИНЦИП ДЕЙСТВИЯ

Назначение конденсатора и принцип его работы – это распространенные вопросы, которыми задаются новички в электротехнике. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, такое устройство получает электрический ток, сохраняет его и впоследствии передает в цепь. Для лучшего понимания принципа работы посмотрите статью про то, как сделать простой конденсатор своими руками.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток, поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

1.    Бумага;

2.    Фольга;

3.    Изолятор из стекла;

4.    Крышка;

5.    Корпус;

6.    Прокладка из картона;

7.    Оберточная бумага;

8.    Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

НАЗНАЧЕНИЕ И ИСПОЛЬЗОВАНИЕ КОНДЕНСАТОРОВ

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В светильниках применяется  для компенсации реактивной мощности.

 

 

Электрическая энергия, вырабатываемая генераторами электростанций, характеризуется их активной и реактивной мощностью. Активная мощность потребляется электроприемниками, преобразуясь в тепловую, механическую и другие виды энергии. Реактивная мощность характеризует электроэнергию, преобразуемую в энергию электрических и магнитных полей. В электрической сети и ее электроприемниках происходит процесс обмена энергией между электрическими и магнитными полями. Устройства, которые целенаправленно участвуют в этом процессе, называют источниками реактивной мощности(ИРМ). Такими устройствами могут быть не только генераторы электрических станций, но и синхронные компенсаторы, реакторы, конденсаторы, реактивной мощностью которых управляют по определенному закону регулирования с помощью специальных средств.

Реактивная мощность снижает эффективность использования всей энергосистемы, ее пытаются максимально снизить с помощью конденсаторных установок.

Конденсаторы в электрических и электронных схемах: назначение, устройство, принцип действия

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Назначение установок КРМ

Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.

Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.

Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами. Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.

Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.

Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения. В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.

максимальное рабочее напряжение конденсатора

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Расчёт необходимой ёмкости

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя. На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70—72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Ср=2800 I / U

Если обмотки образуют треугольник:

Ср=4800 I / U

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

I = P / (3 U).

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

При пуске двигателя со значительной нагрузкой на валу параллельно с рабочей ёмкостью необходимо включить пусковую.

Её значение рассчитывают по формуле:

Сп=(2,5÷3,0) Ср

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Очень важен правильный выбор значения напряжения для конденсатора. Этот параметр, так же как и ёмкость, влияет на цену и габариты прибора. Если напряжение сети больше номинального значения конденсатора, пусковое приспособление выйдет из строя. Но и использовать оборудование с завышенным напряжением также не стоит. Ведь это приведёт к неэффективному увеличению габаритов конденсаторной батареи. Оптимальным является значение напряжения конденсатора в 1,15 раз превышающее значение напряжения сети: Uk =1,15 U с.

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Расчёт необходимой ёмкости.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники. Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Конденсатор переменного тока.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

Снабберы – это устройства, предназначенные для защиты полупроводниковых ключей и контактов реле от нагрузок, возникающих при коммутации. В современных импульсных высокочастотных БП нашли применение снабберы из резистора и конденсатора, таким образом улучшаются основные параметры в цепи и снижаются нагрузки на ключи, как и потери мощности на его нагрев. Принцип действия снаббера состоит в замедлении фронтов роста и спада напряжения на ключе за счет использования постоянной времени заряда ёмкости.

Принцип действия и для чего нужен конденсатор

Из обозначения и схематического изображения можно сделать заключение, что в качестве простейшего конденсатора могут выступить даже две металлические пластины, расположенные рядом. В качестве диэлектрика при этом справится воздух. Теоретически нет никакого ограничения на площадь пластин и расстояние между ними. Поэтому даже при разводе на огромные расстояния и уменьшении их размера, пускай и незначительная, но какая-то емкость сохраняется.

Такое свойство нашло использование в высокочастотной технике. Так, их научились делать даже в виде обычных дорожек печатного монтажа, а также просто скручивая два провода, которые находятся в полиэтиленовой изоляции. При использовании кабеля емкость конденсатора (мкф) увеличивается вместе с длиной. Но следует понимать, что если передаваемый импульс короткий, а провод длинный, то он может просто не дойти до точки назначения. Может использоваться конденсатор в цепи постоянного и переменного тока.

Работа конденсатора в электрической цепи

Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

Зарядка конденсатора

Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.


Конденсатор: принцип действия

εc  – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель  

Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.


Конденсатор

Разрядка конденсатора

Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.


Процессы внутри конденсатора

У ситуации, описанной в этих двух случаях, есть интересные особенности:

  1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
  2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
  3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

Формула

Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах. 

Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.


Временная диаграмма разрядки конденсатора через резистор

Uc  – напряжение  на конденсаторе (вольт), U – первоначальное напряжение заряженного конденсатора, t – время (сек)

На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.). Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF). Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов;
  • 450 В – 5000 часов;
  • 500 В – 1000 часов.

Неполярные конденсаторы

К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.

обозначение конденсатора на схеме

Конденсаторы переменной емкости

Эти виды конденсаторов имеют воздушный диэлектрик и могут менять свою емкость под действием внешней силы, например, такой как рука человека. Ниже на фото советские типы таких переменных конденсаторов.

переменные конденсаторы

Современные выглядят чуточку красивее

подстроечные конденсаторы

Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)

На схемах обозначаются так.

переменный конденсатор обозначение на схеме

Слева -переменный, справа – подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.

к73-9 советский конденсатор

Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой

что внутри конденсатора

Керамические конденсаторы

Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:

керамические конденсаторыкерамические каплевидные конденсаторы

SMD конденсаторы

smd конденсаторы

SMD конденсаторы – это керамические конденсаторы, которые построены по принципу бутерброда.

строение SMD конденсатора

Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора это емкость.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратиться. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. НО если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный.Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Конденсатора.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

Таблица сравнения характеристик.

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы. Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные. Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды.

Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

Установка диммера

Установка электросчетчика в квартире

Установка и монтаж ГРЩ

Установка солнечных батарей

Установка подрозетников

Установка распаечных коробок

Принцип работы и назначение

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь. При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд. В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.

Таблица типовых обозначений и маркировки конденсаторов.

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах  (mF), пикофарадах  (nF), нанофарадах ( nF).

Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.  Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя. Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.

Подстроечный конденсатор — это… Что такое Подстроечный конденсатор?

Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.

Различные конденсаторы для объёмного монтажа

Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора —
r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Эквивалентное последовательное сопротивление —
R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

Эквивалентная последовательная индуктивность —
L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
  • ИП влажности древесины
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

Внешние ссылки

Смотри также

Ссылки

  1. Частота в радианах в секунду.
  2. ГОСТ 2.728-74 (2002)

Конденсатор переменной емкости (Переменный конденсатор)

Предназначение конденсатора – это использование их в электронных схемах с постоянным током. Здесь они играют роль фильтрующих емкостей. Также нужны они в транзисторных каскадах и стабилизаторах. Для работы в схемах с переменным током были созданы неполярные конденсаторы. В этом случае нужна стабильность рабочих параметров. Они должны иметь высокую точность, маленький температурный коэффициент ТКЕ. Подобные конденсаторы устанавливаются в колебательных контурах практически любой радиоаппаратуры.

В данной статье описаны все особенности конденсаторов переменного тока, а также в качестве бонуса приведены видеоролик и скачиваемая статья по рассматриваемой теме.

Конденсатор переменного тока.

Основные величины и единицы измерения

Существует несколько основных величин, определяющих конденсатор. Одна из них — это его емкость (латинская буква С), а вторая – рабочее напряжение (латинская U). Электроемкость (или же просто емкость) в системе СИ измеряется в фарадах (Ф). Причем как единица емкости 1 фарад – это очень много – на практике почти не применяется. Например, электрический заряд планеты Земля составляет всего 710 микрофарад. Поэтому в большинстве случаев из-меряется в производных от фарада величинах: в пикофарадах (пФ) при очень маленьком значении емкости (1 пФ=1/10 6 мкФ), в микрофарадах (мкФ) при достаточно большом ее значении (1 мкФ = 1/10 6 Ф).

Для того чтобы рассчитать электроемкость, необходимо разделить величину заряда, накопленного между обкладками, на модуль разницы потенциалов между ними (напряжение на конденсаторе). Заряд конденсатора в данном случае – это заряд, накапливающийся на одной из обкладок рассматриваемого устройства. На 2-х проводниках устройства они одинаковы по модулю, но отличаются по знаку, поэтому сумма их всегда равняется нулю. Заряд конденсатора измеряется в кулонах (Кл), а обозначается буквой Q.

Интересно почитать: принцип действия и основные характеристики варисторов.

Как они проводят переменный ток

Чтобы убедиться в этом воочию, достаточно собрать несложную схему. Сначала надо включить лампу через конденсаторы C1 и C2, соединенные параллельно. Лампа будет светиться, но не очень ярко. Если теперь добавить еще конденсатор C3, то свечение лампы заметно увеличится, что говорит о том, что конденсаторы оказывают сопротивлению прохождению переменного тока. Причем, параллельное соединение, т.е. увеличение емкости, это сопротивление снижает.

Отсюда вывод: чем больше емкость, тем меньше сопротивление конденсатора прохождению переменного тока. Это сопротивление называется емкостным и в формулах обозначается как Xc. Еще Xc зависит от частоты тока, чем она выше, тем меньше Xc. Об этом будет сказано несколько позже.

Другой опыт можно проделать используя счетчик электроэнергии, предварительно отключив все потребители. Для этого надо соединить параллельно три конденсатора по 1мкФ и просто включить их в розетку. Конечно, при этом надо быть предельно осторожным, или даже припаять к конденсаторам стандартную штепсельную вилку. Рабочее напряжение конденсаторов должно быть не менее 400В.

После этого подключения достаточно просто понаблюдать за счетчиком, чтобы убедиться, что он стоит на месте, хотя по расчетам такой конденсатор эквивалентен по сопротивлению лампе накаливания мощностью около 50Вт.

Конденсатор в цепи переменного тока

Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю. В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим.

По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора. Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Материал в тему: описание и область применения подстроечного резистора.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда ,один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится. Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.

Конденсатор в цепи

Рассматриваемый прибор в цепи постоянного тока проводит ток только в момент включения его в сеть (при этом происходит заряд или перезаряд устройства до напряжения источника). Как только конденсатор полностью заряжается, ток через него не идет. При включении устройства в цепь с процессы разрядки и зарядки его чередуются друг с другом. Период их чередования равен приложенного синусоидального напряжения.

Характеристики конденсаторов

Конденсатор в зависимости от состояния электролита и материала, из которого он состоит, может быть сухим, жидкостным, оксидно-полупроводниковым, оксидно-металлическим. Жидкостные конденсаторы хорошо охлаждаются, эти устройства могут работать при значительных нагрузках и обладают таким важным свойством, как самовосстановление диэлектрика при пробое. У рассматриваемых электрических устройств сухого типа достаточно простая конструкция, немного меньше потери напряжения и ток утечки. На данный момент именно сухие приборы пользуются наибольшей популярностью. Основным достоинством электролитных конденсаторов являются дешевизна, компактные габариты и большая электроемкость. Оксидные аналоги – полярные (неверное подключение приводит к пробою).

Как подключается

Подключение конденсатора в цепь с постоянным током происходит следующим образом: плюс (анод) источника тока соединяется с электродом, который покрыт окисной пленкой. В случае несоблюдения этого требования может произойти пробой диэлектрика. Именно по этой причине жидкостные конденсаторы нужно подключать в цепь с переменным источником тока, соединяя встречно последовательно две одинаковые секции. Или нанести оксидный слой на оба электрода. Таким образом, получается неполярный электроприбор, работающий в сетях как с постоянным, так и с Но и в том и в другом случаях результирующая емкость становится в два раза меньше. Униполярные электрические конденсаторы обладают значительными размерами, зато могут включаться в цепи с переменным током. Маркировка производится цветом и цифровым кодом. Цифровая маркировка емкости конденсаторов приведена ниже.

Таблица цифровой маркировки емкости конденсаторов.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники. Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Конденсатор переменного тока.

Основное применение конденсаторов

Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная.

При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).

Более подробно о работе переменных конденсаторов можно узнать, прочитав статью справочник по конденсаторам. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electricalschool.info

www.sxemotehnika.ru

www.jelektro.ru

www.sibay-rb.ru

www.alprof.info

Следующая

КонденсаторыЧто такое танталовый конденсатор

Введение в конденсаторы, емкость и заряд

Конденсатор — это компонент, который имеет способность или «емкость» накапливать энергию в виде электрического заряда, создающего разность потенциалов ( статического напряжения ) на своих пластинах, что очень похоже на небольшую перезаряжаемую батарею.

Существует множество различных типов конденсаторов, от очень маленьких бусинок конденсаторов, используемых в резонансных цепях, до конденсаторов коррекции большого коэффициента мощности, но все они делают одно и то же — накапливают заряд.

В своей основной форме конденсатор состоит из двух или более параллельных проводящих (металлических) пластин, которые не соединены и не касаются друг друга, но электрически разделены либо воздухом, либо каким-либо видом хорошего изоляционного материала, такого как вощеная бумага, слюда. , керамика, пластик или жидкий гель в какой-либо форме, используемый в электролитических конденсаторах. Изолирующий слой между пластинами конденсатора обычно называют диэлектриком .

Типичный конденсатор

Из-за этого изолирующего слоя постоянный ток не может протекать через конденсатор, поскольку он блокирует его, позволяя вместо этого присутствовать на пластинах напряжения в виде электрического заряда.

Проводящие металлические пластины конденсатора могут быть квадратными, круглыми или прямоугольными, либо они могут иметь цилиндрическую или сферическую форму с общей формой, размером и конструкцией конденсатора с параллельными пластинами, в зависимости от его применения и номинального напряжения.

При использовании в цепи постоянного или постоянного тока конденсатор заряжается до напряжения питания, но блокирует прохождение тока через него, потому что диэлектрик конденсатора непроводящий и в основном является изолятором.Однако, когда конденсатор подключен к переменному току или цепи переменного тока, поток тока, кажется, проходит прямо через конденсатор с небольшим сопротивлением или без него.

Есть два типа электрических зарядов: положительный заряд в форме протонов и отрицательный заряд в форме электронов. Когда на конденсатор подается постоянное напряжение, положительный (+ ve) заряд быстро накапливается на одной пластине, в то время как соответствующий противоположный отрицательный (-ve) заряд накапливается на другой пластине.Для каждой частицы с положительным зарядом, попадающей в одну пластину, от пластины -ve отойдет заряд того же знака.

Затем пластины остаются заряженными, и между двумя пластинами возникает разность потенциалов из-за этого заряда. Когда конденсатор достигает своего установившегося состояния, электрический ток не может протекать через сам конденсатор и вокруг цепи из-за изолирующих свойств диэлектрика, используемого для разделения пластин.

Поток электронов на пластины известен как конденсаторы Зарядный ток , который продолжает течь до тех пор, пока напряжение на обеих пластинах (и, следовательно, на конденсаторе) не станет равным приложенному напряжению Vc.В этот момент говорят, что конденсатор «полностью заряжен» электронами.

Сила или скорость этого зарядного тока достигает максимального значения, когда пластины полностью разряжены (начальное состояние), и медленно уменьшается до нуля, когда пластины заряжаются до разности потенциалов на пластинах конденсатора, равной напряжению источника.

Величина разности потенциалов, присутствующей на конденсаторе, зависит от того, сколько заряда было нанесено на пластины в результате работы, выполняемой напряжением источника, а также от того, сколько емкости имеет конденсатор, что показано ниже.

Конденсатор с параллельными пластинами — это простейшая форма конденсатора. Он может быть сконструирован с использованием двух металлических пластин или пластин из металлизированной фольги, расположенных на расстоянии друг от друга, при этом значение емкости в Фарадах определяется площадью поверхности проводящих пластин и расстоянием между ними. Изменение любых двух из этих значений изменяет значение его емкости, и это формирует основу работы переменных конденсаторов.

Кроме того, поскольку конденсаторы хранят энергию электронов в виде электрического заряда на пластинах, чем больше пластины и / или меньше их расстояние, тем больше будет заряд, который конденсатор удерживает при любом заданном напряжении на своих пластинах.Другими словами, чем больше пластины, тем меньше расстояние, тем больше емкость.

При подаче напряжения на конденсатор и измерении заряда на пластинах отношение заряда Q к напряжению V даст значение емкости конденсатора и, следовательно, дается как: C = Q / V это уравнение также может быть перестроен, чтобы дать знакомую формулу для количества заряда на пластинах как: Q = C x V

Хотя мы сказали, что заряд накапливается на пластинах конденсатора, точнее сказать, что энергия внутри заряда хранится в «электростатическом поле» между двумя пластинами.Когда электрический ток течет в конденсатор, он заряжается, поэтому электростатическое поле становится намного сильнее, поскольку оно накапливает больше энергии между пластинами.

Аналогичным образом, когда ток, вытекающий из конденсатора, разряжает его, разность потенциалов между двумя пластинами уменьшается, а электростатическое поле уменьшается по мере того, как энергия выходит из пластин.

Свойство конденсатора накапливать заряд на своих пластинах в форме электростатического поля называется емкостью конденсатора.Более того, емкость — это еще и свойство конденсатора, который сопротивляется изменению напряжения на нем.

Емкость конденсатора

Емкость — это электрическое свойство конденсатора и мера способности конденсатора накапливать электрический заряд на своих двух пластинах с единицей измерения емкости Фарад (сокращенно F), названной в честь британского физика Майкла Фарадея.

Емкость

определяется как емкость конденсатора Один Фарад , когда на пластинах накапливается заряд Один кулон с напряжением Один вольт .Обратите внимание, что емкость C всегда имеет положительное значение и не имеет отрицательных единиц. Однако фарад — очень большая единица измерения, которую можно использовать отдельно, поэтому обычно используются суб-кратные фарады, такие как, например, микрофарады, нано-фарады и пикофарады.

Единицы измерения емкости

  • Микрофарад (мкФ) 1 мкФ = 1/1000000 = 0,000001 = 10 -6 F
  • Нанофарад (нФ) 1 нФ = 1 / 1,000,000,000 = 0,000000001 = 10 -9 F
  • Пикофарад (пФ) 1 пФ = 1/1000000000000 = 0.000000000001 = 10 -12 F

Затем, используя информацию выше, мы можем построить простую таблицу, которая поможет нам преобразовать пикофарады (пФ) в нанофарады (нФ), в микрофарады (мкФ) и в фарады (F), как показано на рисунке.

Пико-Фарад (пФ) нанофарад (нФ) Микрофарад (мкФ) Фарады (ж)
1 000 1,0 0,001
10 000 10.0 0,01
1 000 000 1 000 1,0
10 000 10,0
100 000 100
1 000 000 1 000 0,001
10 000 0,01
100 000 0.1
1 000 000 1,0

Емкость параллельного пластинчатого конденсатора

Емкость конденсатора с параллельными пластинами пропорциональна площади, A в метрах 2 наименьшей из двух пластин, и обратно пропорциональна расстоянию или разделению, d (то есть толщине диэлектрика), заданной в метрах между этими двумя токопроводящими пластинами. тарелки.

Обобщенное уравнение емкости конденсатора с параллельными пластинами имеет следующий вид: C = ε (A / d), где ε представляет собой абсолютную диэлектрическую проницаемость используемого диэлектрического материала.Диэлектрическая проницаемость, ε o , также известная как «диэлектрическая проницаемость свободного пространства», имеет значение постоянной 8,84 x 10 -12 Фарад на метр.

Чтобы упростить математику, эта диэлектрическая проницаемость свободного пространства, ε o , которую можно записать как: 1 / (4π x 9 × 10 9 ), также может иметь единицы пикофарады (пФ). на метр как постоянная величина, дающая: 8,84 для стоимости свободного пространства. Однако обратите внимание, что результирующее значение емкости будет в пикофарадах, а не в фарадах.

Обычно проводящие пластины конденсатора разделены каким-то изолирующим материалом или гелем, а не идеальным вакуумом. При расчете емкости конденсатора мы можем рассматривать диэлектрическую проницаемость воздуха, и особенно сухого воздуха, как то же значение, что и вакуум, поскольку они очень близки.

Пример емкости №1

Конденсатор состоит из двух проводящих металлических пластин размером 30 см x 50 см, расположенных на расстоянии 6 мм друг от друга, и использует сухой воздух в качестве единственного диэлектрического материала.Рассчитайте емкость конденсатора.

Тогда номинал конденсатора, состоящего из двух пластин, разделенных воздухом, рассчитывается как 221 пФ или 0,221 нФ

Диэлектрик конденсатора

Помимо общего размера проводящих пластин и их расстояния или разнесения друг от друга, еще одним фактором, влияющим на общую емкость устройства, является тип используемого диэлектрического материала. Другими словами, «диэлектрическая проницаемость» (ε) диэлектрика.

Проводящие пластины конденсатора обычно изготавливаются из металлической фольги или металлической пленки, обеспечивающей поток электронов и заряда, но используемый диэлектрический материал всегда является изолятором. Различные изоляционные материалы, используемые в качестве диэлектрика в конденсаторе, различаются по своей способности блокировать или пропускать электрический заряд.

Этот диэлектрический материал может быть изготовлен из ряда изоляционных материалов или комбинаций этих материалов, наиболее распространенными из которых являются: воздух, бумага, полиэстер, полипропилен, майлар, керамика, стекло, масло или множество других материалов.

Фактор, на который диэлектрический материал или изолятор увеличивает емкость конденсатора по сравнению с воздухом, известен как диэлектрическая проницаемость , k , и диэлектрический материал с высокой диэлектрической проницаемостью является лучшим изолятором, чем диэлектрический материал. с более низкой диэлектрической проницаемостью. Диэлектрическая проницаемость является безразмерной величиной, поскольку она относится к свободному пространству.

Фактическая диэлектрическая проницаемость или «комплексная диэлектрическая проницаемость» диэлектрического материала между пластинами тогда является произведением диэлектрической проницаемости свободного пространства (ε o ) и относительной диэлектрической проницаемости (ε r ) материала, используемого в качестве диэлектрика. и дается как:

Комплексная разрешительная способность

Другими словами, если мы возьмем диэлектрическую проницаемость свободного пространства ε o в качестве базового уровня и сделаем ее равной единице, когда вакуум в свободном пространстве заменен каким-либо другим типом изоляционного материала, их диэлектрическая проницаемость его диэлектрика относится к базовому диэлектрику свободного пространства, давая коэффициент умножения, известный как «относительная диэлектрическая проницаемость», ε r .Таким образом, значение комплексной диэлектрической проницаемости ε всегда будет равно относительной диэлектрической проницаемости, умноженной на единицу.

Типичные единицы диэлектрической проницаемости, ε или диэлектрической проницаемости для обычных материалов: чистый вакуум = 1,0000, воздух = 1,0006, бумага = 2,5–3,5, стекло = 3–10, слюда = 5–7, дерево = 3–8 и металл. Оксидные порошки = от 6 до 20 и т. Д. Это дает нам окончательное уравнение для емкости конденсатора как:

Одним из методов увеличения общей емкости конденсатора при сохранении его небольшого размера является «чередование» большего количества пластин в одном корпусе конденсатора.Вместо одного набора параллельных пластин конденсатор может иметь множество отдельных пластин, соединенных вместе, тем самым увеличивая площадь поверхности А пластин.

Для стандартного конденсатора с параллельными пластинами, как показано выше, конденсатор имеет две пластины, обозначенные A и B. Таким образом, поскольку количество пластин конденсатора равно двум, мы можем сказать, что n = 2, где «n» представляет количество пластин.

Тогда наше уравнение выше для конденсатора с одной параллельной пластиной действительно должно быть:

Однако конденсатор может иметь две параллельные пластины, но только одна сторона каждой пластины контактирует с диэлектриком в середине, поскольку другая сторона каждой пластины образует внешнюю часть конденсатора.Если мы возьмем две половины пластин и соединим их вместе, мы получим только «одну» целую пластину, контактирующую с диэлектриком.

Что касается конденсатора с одной параллельной пластиной, n — 1 = 2-1, что равняется 1, поскольку C = (ε o * ε r x 1 x A) / d — это в точности то же самое, что и выражение: C = (ε o * ε r * A) / d, которое является стандартным уравнением выше.

Теперь предположим, что у нас есть конденсатор, состоящий из 9 чередующихся пластин, тогда n = 9, как показано.

Многопластинчатый конденсатор

Теперь у нас есть пять пластин, подключенных к одному выводу (A) и четыре пластины к другому выводу (B).Тогда ОБЕ стороны четырех пластин, подключенных к выводу B, контактируют с диэлектриком, тогда как только одна сторона каждой из внешних пластин, подключенных к A, контактирует с диэлектриком. Тогда, как и выше, полезная площадь поверхности каждого набора пластин составляет всего восемь, и его емкость, следовательно, дается как:

Современные конденсаторы можно классифицировать по характеристикам и свойствам их изоляционного диэлектрика:

  • Низкие потери, высокая стабильность, такие как слюда, керамика с низким содержанием K, полистирол.
  • Средние потери, средняя стабильность, такие как бумага, пластиковая пленка, керамика с высоким содержанием K.
  • Поляризованные конденсаторы, такие как электролитические, танталовые.

Номинальное напряжение конденсатора

Все конденсаторы имеют максимальное номинальное напряжение, и при выборе конденсатора необходимо учитывать величину напряжения, подаваемого на конденсатор. Максимальное значение напряжения, которое может быть приложено к конденсатору без повреждения его диэлектрического материала, обычно указывается в технических характеристиках как: WV (рабочее напряжение) или WV DC (рабочее напряжение постоянного тока).

Если напряжение, приложенное к конденсатору, станет слишком большим, диэлектрик выйдет из строя (известный как электрический пробой), и возникнет дуга между пластинами конденсатора, что приведет к короткому замыканию. Рабочее напряжение конденсатора зависит от типа используемого диэлектрического материала и его толщины.

Рабочее напряжение постоянного тока конденсатора — это просто максимальное напряжение постоянного тока, а НЕ максимальное напряжение переменного тока, поскольку конденсатор с номинальным напряжением постоянного тока 100 вольт постоянного тока не может безопасно подвергаться переменному напряжению 100 вольт.Поскольку переменное напряжение со среднеквадратичным значением 100 вольт будет иметь пиковое значение более 141 вольт! (√2 х 100).

Тогда конденсатор, который должен работать при 100 вольт переменного тока, должен иметь рабочее напряжение не менее 200 вольт. На практике конденсатор следует выбирать так, чтобы его рабочее напряжение постоянного или переменного тока было по крайней мере на 50 процентов больше, чем самое высокое действующее напряжение, которое должно быть приложено к нему.

Еще одним фактором, влияющим на работу конденсатора, является Утечка диэлектрика .Утечка диэлектрика происходит в конденсаторе в результате нежелательного тока утечки, протекающего через диэлектрический материал.

Обычно предполагается, что сопротивление диэлектрика чрезвычайно велико, а хороший изолятор блокирует прохождение постоянного тока через конденсатор (как в идеальном конденсаторе) от одной пластины к другой.

Однако, если диэлектрический материал повреждается из-за чрезмерного напряжения или перегрева, ток утечки через диэлектрик станет чрезвычайно высоким, что приведет к быстрой потере заряда на пластинах и перегреву конденсатора, что в конечном итоге приведет к преждевременному выходу конденсатора из строя. .Никогда не используйте конденсатор в цепи с более высоким напряжением, чем рассчитано на конденсатор, в противном случае он может нагреться и взорваться.

Общие сведения о конденсаторах

В этом руководстве мы видели, что задача конденсатора — накапливать электрический заряд на своих пластинах. Количество электрического заряда, которое конденсатор может хранить на своих пластинах, известно как значение емкости и зависит от трех основных факторов.

  • Площадь поверхности — площадь поверхности A двух проводящих пластин, составляющих конденсатор, чем больше площадь, тем больше емкость.
  • Расстояние — расстояние d между двумя пластинами, чем меньше расстояние, тем больше емкость.
  • Диэлектрический материал — тип материала, который разделяет две пластины, называемый «диэлектриком». Чем выше диэлектрическая проницаемость диэлектрика, тем больше емкость.

Мы также видели, что конденсатор состоит из металлических пластин, которые не соприкасаются друг с другом, но разделены материалом, называемым диэлектриком. Диэлектриком конденсатора может быть воздух или даже вакуум, но обычно он представляет собой непроводящий изоляционный материал, такой как вощеная бумага, стекло, слюда, различные типы пластмасс и т. Д.Диэлектрик дает следующие преимущества:

  • Диэлектрическая постоянная является свойством диэлектрического материала и изменяется от материала к материалу, увеличивая емкость в k раз.
  • Диэлектрик обеспечивает механическую опору между двумя пластинами, позволяя пластинам быть ближе друг к другу, не касаясь друг друга.
  • Диэлектрическая проницаемость диэлектрика увеличивает емкость.
  • Диэлектрик увеличивает максимальное рабочее напряжение по сравнению с воздухом.

Конденсаторы могут использоваться во многих различных приложениях и схемах, таких как блокировка постоянного тока при прохождении аудиосигналов, импульсов, переменного тока или других изменяющихся во времени форм волн. Эта способность блокировать постоянный ток позволяет использовать конденсаторы для сглаживания выходных напряжений источников питания, чтобы удалить нежелательные выбросы из сигналов, которые в противном случае имели бы тенденцию вызывать повреждение или ложное срабатывание полупроводников или цифровых компонентов.

Конденсаторы

также можно использовать для регулировки частотной характеристики аудиосхемы или для соединения отдельных каскадов усилителя, которые должны быть защищены от передачи постоянного тока.

При постоянном токе конденсатор имеет бесконечное сопротивление (разомкнутая цепь), на очень высоких частотах конденсатор имеет нулевое сопротивление (короткое замыкание). Все конденсаторы имеют максимальное рабочее напряжение, его WV DC, поэтому выбирайте конденсатор с номиналом как минимум на 50% больше, чем напряжение питания.

Существует большое разнообразие стилей и типов конденсаторов, каждый из которых имеет свои преимущества, недостатки и характеристики. Включение всех типов сделало бы этот раздел учебника очень большим, поэтому в следующем учебном пособии «Введение в конденсаторы» я ограничу их наиболее часто используемыми типами.

Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

Какова роль конденсатора в цепях переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет местами свои заряды по мере того, как ток меняется, и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единица измерения его емкости в системе СИ — Фарад «Ф», где Фарад — большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба накапливают электрическую энергию. Конденсатор — гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для накопления заряда и быстрого разряда в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента для различных типов конденсатора приведен ниже:

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость — это способность конденсатора накапливать в нем заряд. На емкость влияют несколько факторов.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Есть три способа подключения конденсатора в электронной схеме:

  • Конденсатор в серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Связанный пост: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку до тех пор, пока конденсатор полностью не разрядится.

Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость — это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда к его клемме подключен источник питания на один вольт.

Математически

Уравнение емкости:

C = Q / V

Где,

  • C = емкость в фарадах (F)
  • Q
  • 10 = электрический заряд в кулонах 9 V = Напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения — объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

Связанные сообщения:

Конденсаторы в серии

Как последовательно соединить конденсаторы?

Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже:

При последовательном соединении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T = Q T = + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости указанной выше цепи, мы применим закон Кирхгофа по напряжению (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th no.конденсаторов, соединенных последовательно,

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость приведенная выше схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4.7) / (10 + 4.7)

C T = 47 / 14,7

C T = 3,19 мкФ

Параллельно конденсаторов

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключается к источнику, как вы можете видеть на изображении ниже,

Когда вы подключаете конденсаторы параллельно, общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как,

I = C (dV / dt)

Итак,

Решив приведенное выше уравнение

C T = C 1 + C 2 + C 3

И, для n th no.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Связанные сообщения:

Полярный и неполярный конденсатор
Неполярный конденсатор: (используется в системах переменного и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и на их емкость не влияет изменение полярности.

Полярный конденсатор: (используется только в цепях и системах постоянного тока)

Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода в сети переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и ниже мы обсудим несколько вариантов использования конденсатора в сетях переменного тока.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле к нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

Асинхронные двигатели с расщепленной фазой:

Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе, чтобы поймать это поле.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Есть много преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он обеспечивает реактивную мощность, которая ранее передавалась из энергосистемы, следовательно, снижает потери и повышает эффективность системы.

Конденсаторы в цепи переменного тока

Как подключить конденсатор в цепи переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки.

И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за непрерывного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как:

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

Как мы знаем, I = dQ / dt и Q = CV

И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

V = V m Sin wt

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференцирования)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I m = 1 / wC (где w = 2π f и V m / I m = X C )

Емкостное реактивное сопротивление (X C ) =

Теперь, для расчета емкостного реактивного сопротивления вышеуказанной цепи

X C = 1 / [2π (50 Гц) (10 -6 F)]

XC = 3183.09 Ом

Связанный пост: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока
Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование — преобразование источника питания переменного тока в постоянный при выпрямлении (например, мостовой выпрямитель). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивое состояние с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока), чтобы сгладить и отфильтровать эти пульсации и колебания, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения в системе и потребляемого тока нагрузки.

Конденсатор развязки:

Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземляется разделительным конденсатором и не влияет на работу другой схемы.

Конденсатор связи:

Как мы знаем, Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, чтобы его реактивное сопротивление было минимизировано на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как фильтры RC) для разделения сигналов переменного и постоянного тока и удаления пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое переменное напряжение после выпрямления.

Вы также можете прочитать:

Capacitor tutorial: Working and How to use in Circuits

Конденсаторы

— один из наиболее часто используемых компонентов электронной схемы.Будет справедливо сказать, что практически невозможно найти работающую схему без использования конденсатора. Это руководство написано, чтобы дать хорошее представление о работе конденсаторов и их использовании в практических схемах. В этом руководстве рассматриваются три важных вопроса о конденсаторах, которые могут возникнуть у новичка.

  1. Что такое конденсатор?
  2. Работа конденсатора?
  3. Как использовать конденсаторы в схемах?

К концу этого руководства вы лучше поймете принцип работы конденсаторов.Также из этого туториала Вы узнаете, как использовать конденсатор в практических схемах. Вы можете ознакомиться с предыдущим учебным пособием «Резисторы: работа и использование в схемах»

.

ЧТО ТАКОЕ КОНДЕНСАТОР:

Конденсатор — один из пассивных компонентов (не может генерировать энергию самостоятельно) в электронике. Этот конденсатор способен накапливать в нем электрический заряд, что приводит к развитию напряжения или, другими словами, потенциальной энергии на его выводах. Проще говоря, это похоже на аккумулятор, но он может сохранять заряд только временно.Чтобы сделать вещи интересными, он по-разному реагирует на постоянный ток (постоянный ток) по сравнению с переменным током (переменный ток). Мы объясним это далее в разделе «Работа с конденсаторами», а теперь давайте посмотрим, как устроен конденсатор.

ВНУТРИ КОНДЕНСАТОРА:

Конструкция конденсатора довольно проста. Он состоит из двух проводящих пластин, подобных тем, что показаны на диаграмме выше (пластина 1 и пластина 2), где эти две пластины разделены небольшим расстоянием и с изоляторами между ними, также известными как диэлектрики.Это очень похоже на сэндвич, где у нас есть две проводящие пластины и изолирующий материал или диэлектрик, зажатый между ними.

Каждая крышка имеет определенную емкость. Мы уже знаем, что конденсатор способен накапливать электрический заряд на своих пластинах. Эта емкость определяет максимальное количество заряда, которое он может хранить. Чем больше пластины и меньше расстояние между ними, тем выше будет значение емкости. Эта емкость определяется формулой

.

C = Q / V

, где Q — количество заряда, а V — напряжение, приложенное к нему.

ФАРАДОВ:

Таким образом, каждый конденсатор имеет определенное значение емкости. Единица измерения емкости измеряется в фарадах. Когда мы указываем значение емкости как 1 фарад, это означает, что конденсатор удерживает заряд в 1 кулон на своих проводящих пластинах, когда на его выводы подается одно напряжение.

РАБОТА КОНДЕНСАТОРА:

А теперь пора глубже погрузиться в работу конденсатора. Как указано выше, конденсатор действует иначе, чем переменный и постоянный ток.

КОНДЕНСАТОР ПОСТОЯННОГО ТОКА:

Давайте сначала рассмотрим DC и посмотрим, как он реагирует на DC.Первоначально конденсатор будет в разряженном состоянии, что означает, что на его пластинах будет нулевой заряд. Когда на его клеммы подается постоянное напряжение, ток течет и заряжает его. Первоначальный поток этого зарядного тока через конденсатор будет очень высоким. Это приводит к накоплению положительного заряда на одной пластине и отрицательного заряда на другой пластине. По мере увеличения заряда на пластинах конденсатора зарядный ток постепенно уменьшается из-за накопления заряда на пластинах конденсатора, и он сопротивляется протеканию тока.Также заряд, накопленный на пластинах, создает разность потенциалов на пластинах.

Поток зарядного тока продолжает заряжать конденсатор до тех пор, пока развиваемое напряжение не сравняется с приложенным к нему напряжением. В этот момент зарядный ток перестает течь из-за развиваемого напряжения на конденсаторе. В этом случае конденсатор полностью заряжен положительным зарядом на одной пластине, а эквивалентный отрицательный заряд существует на другой. Напряжение, развиваемое на конденсаторе, обычно обозначается как Vc.Конденсатор будет удерживать это напряжение Vc до тех пор, пока на нем не появится напряжение. Как только поданное напряжение прекращается, через конденсатор начинает течь разрядный ток. В этот момент напряжение Vc начинает падать, и заряд, накопленный на его пластинах, уменьшается.

Через некоторое время ток разряда замедляется, в этот момент скорость, с которой также замедляется падение напряжения. Через некоторое время напряжение Vc конденсатора достигнет нуля и заряд, накопленный на его пластинах, станет нулевым.Это состояние называется состоянием разряда конденсатора. Теперь вы можете понять причину, по которой мы сравнили конденсатор с батареей.

КОНДЕНСАТОР ПЕРЕМЕННОГО ТОКА:

Как было сказано ранее, конденсатор по-разному реагирует при подаче переменного напряжения. При подаче постоянного напряжения конденсатор заряжается только в одном направлении. Однако, когда применяется переменный ток, конденсатор заряжается и разряжается поочередно в зависимости от его частоты. И поэтому с переменным напряжением конденсатор будет продолжать пропускать ток через него бесконечно, в отличие от постоянного тока, где конденсатор блокирует ток по прошествии определенного периода времени.

Здесь интересно то, что зарядный ток и ток разряда через конденсатор при воздействии переменного напряжения зависят от изменения напряжения, приложенного к его пластинам. Ток, протекающий в конденсаторе при подаче переменного тока, имеет тенденцию опережать напряжение на 90 °. Взгляните на график ниже.

Предположим, что на конденсатор подается переменное напряжение, начальное напряжение будет минимальным, а в этот момент зарядный ток будет максимальным, как вы можете видеть на приведенном выше графике.Когда напряжение достигнет своего пикового значения, зарядный ток будет равен нулю. После достижения пикового значения напряжение начнет уменьшаться, и ток разряда также начнет течь от конденсатора. Когда напряжение переменного тока достигает нуля, завершая положительный полупериод сигнала, ток разряда будет максимальным. Как только сигнал начинается с отрицательного цикла, ток разряда постепенно начинает уменьшаться и достигает нуля, когда напряжение достигает максимума в отрицательном полупериоде. Таким образом, мы можем сделать вывод, что ток опережает напряжение на 90 ‘или напряжение отстает от тока на 90 ° в цепях переменного тока.Обычно это описывается как не совпадающие по фазе напряжение и ток.

РЕАКТИВНОСТЬ ЕМКОСТИ:

Еще одна важная вещь, которую нужно знать о конденсаторах в цепях переменного тока, заключается в том, что они обеспечивают сопротивление току, протекающему в цепях переменного тока. Это относится к реактивному сопротивлению, а точнее к емкостному сопротивлению. Это реактивное сопротивление определяется формулой

.

Xc = 1 / 2πFC или 1 / ωC (ω = 2πF)

Из приведенной выше формулы мы можем вывести, что емкостное реактивное сопротивление уменьшается с увеличением частоты сигнала переменного тока и емкости конденсатора.Когда частота сигнала высока или близка к Inifinity, реактивность будет близка к нулю. Здесь конденсатор действует как идеальный проводник. Кроме того, когда частота сигнала переменного тока становится меньше или близка к нулю, реактивное сопротивление будет очень высоким, и оно будет действовать как очень большое сопротивление или разрыв цепи для входящего сигнала.

ПРИМЕНЕНИЕ КОНДЕНСАТОРА:

Теперь, когда мы поняли, что такое конденсатор и как он работает. Давайте перейдем к самому важному разделу этой статьи «Применение конденсатора».

КОНДЕНСАТОР РАЗЪЁМА:

Это конденсаторы, которые очень важно использовать во всех цифровых схемах. Цифровым микросхемам или микросхемам для работы в идеале требуется стабильное напряжение. Любые всплески или колебания напряжения могут привести к неработоспособности микросхемы, а иногда микросхема может быть разрушена. Именно здесь в игру вступает развязывающий конденсатор. Это конденсаторы, которые обычно устанавливаются рядом с микросхемами, соединяющими выводы VCC и GND микросхемы, как показано на приведенной выше принципиальной схеме.

Когда схема включена, развязка Конденсатор начинает заряжаться через Vcc и прекращает зарядку, когда напряжение Конденсатора достигает подаваемого напряжения. В этот момент, когда есть колебания напряжения питания, конденсатор будет подавать питание на ИС в течение короткого периода времени, чтобы поддерживать стабильное напряжение на ИС. Также при скачке входного напряжения питания конденсатор начинает заряжаться до нового напряжения питания. Это при этом поддерживает стабильное напряжение на входе IC1. В больших схемах с большим количеством ИС часто советуют использовать большой конденсатор рядом с источником питания и малый конденсатор рядом с каждой ИС, используемой в цепи.Большой конденсатор будет обеспечивать стабильное напряжение по всей цепи. Маленькие колпачки удовлетворяют потребности используемых с ними микросхем.

КОНДЕНСАТОР МУФТЫ:

Мы видели, что развязывающие конденсаторы используются для блокировки колебаний напряжения или, другими словами, они помогают блокировать сигналы переменного тока, поскольку колебания или падение напряжения являются формой сигнала переменного тока, поскольку напряжение сигнала изменяется со временем. Конденсатор связи, с другой стороны, блокирует сигнал постоянного тока, позволяя проходить сигналу переменного тока.Другими словами, эти конденсаторы используются для соединения или связи входного сигнала переменного тока со следующим этапом схемы путем блокировки нежелательных сигналов постоянного тока.

Эти конденсаторы широко используются в усилителях и аудио приложениях, где нас интересуют только сигналы переменного тока. Возьмем, к примеру, звуковую цепь, питаемую от источника постоянного тока напряжением 9 В. Схема принимает голосовой ввод с микрофона, и этот голосовой ввод (сигнал переменного тока) является нашей достопримечательностью. Существует большая вероятность того, что сигнал постоянного тока от источника питания 9 В может смешаться с этим входным голосовым сигналом.И чтобы исключить этот элемент постоянного тока из нашего голосового входа, используется конденсатор связи C1 (показанный на схеме выше), где он блокирует сигнал постоянного тока и пропускает сигнал с переменной частотой. Помните, мы узнали, что конденсатор предлагает очень высокое сопротивление или блокирует сигнал постоянного тока.

Не только постоянный ток, при правильном выборе значений конденсатора мы можем успешно блокировать нежелательные низкие частоты и разрешать только желаемые высокие частоты. Это регулируется реактивным сопротивлением конденсатора, которое задается формулой Xc = 1 / 2πFC (мы видели это ранее в этом руководстве).Помните, мы уже знаем, что конденсатор обеспечивает высокую реактивность на низких частотах, тогда как для высоких частот значение реактивного сопротивления будет низким. Поэтому для того, чтобы конденсатор связи допускал низкочастотные сигналы, нам необходимо использовать конденсаторы более высоких значений, а для высокочастотных сигналов будет достаточно более низких значений конденсаторов.

ФИЛЬТРЫ:

Это схемные блоки, используемые для фильтрации нежелательных частот из входного сигнала. Конденсаторы являются неотъемлемой частью при создании фильтров наряду с резисторами и индукторами.Фильтры имеют расширенные функциональные возможности по сравнению с разделительными конденсаторами. В основном есть три разных типа фильтров, о которых вам нужно знать.

ФИЛЬТР НИЗКОГО ПРОХОДА:

Фильтры нижних частот используются для разрешения частотных составляющих ниже частоты среза и блокируют частотные составляющие выше этой. Вот как это работает, когда входящий сигнал имеет низкую частоту. Конденсатор демонстрирует высокое реактивное сопротивление (высокое сопротивление) по сравнению с резистором. Следовательно, напряжение на конденсаторе будет очень высоким по сравнению с падением напряжения на резисторе.Таким образом, мы получим входящий сигнал без ослабления или с низким затуханием. Между тем, когда входящий сигнал имеет высокую частоту, реактивное сопротивление конденсатора будет низким. Таким образом, падение напряжения на резисторе будет очень большим по сравнению с напряжением конденсатора, что не позволит сигналу достичь следующего каскада.

ФИЛЬТР ВЫСОКОГО ПРОХОДА:

Это фильтры, которые пропускают только сигнал с частотами выше частоты среза и блокируют сигнал с более низкими частотами. Здесь происходит то, что входящий сигнал имеет низкую частоту. Конденсатор демонстрирует высокое реактивное сопротивление и действует как разомкнутая цепь для сигнала.С другой стороны, когда входящий сигнал высокочастотного конденсатора показывает низкое реактивное сопротивление (сопротивление). Это очень мало по сравнению с резистором R1. Здесь падение напряжения на конденсаторе будет очень минимальным по сравнению с резистором, что позволяет выводить высокочастотный сигнал без ослабления или с низким затуханием.

БАНДПАСНЫЙ ФИЛЬТР:

Это комбинация фильтров верхних и нижних частот. Этот фильтр пропускает только сигнал определенной полосы частот и блокирует сигнал за пределами этого диапазона частот.Этот тип фильтра в идеале должен иметь две частоты среза: верхнюю и нижнюю частоту среза. Этот фильтр блокирует сигнал, частота которого меньше нижней частоты среза и выше верхней частоты среза. Как вы можете видеть в приведенной выше схеме, она построена с использованием фильтров высоких и низких частот. Комбинация из них позволит использовать только полосу частот между верхними и нижними частотами среза и блокирует сигнал за пределами этих частот.

ЦЕПИ ГРМ:

Из того, что мы видели до сих пор, мы знаем, что при использовании конденсатора с постоянным током требуется время для зарядки и достижения приложенного напряжения.Эти схемы синхронизации используют эту характеристику конденсатора и используют ее для создания необходимых временных задержек. Но здесь, наряду с конденсатором, вместе с ним используется резистор для управления скоростью зарядки конденсатора, что, в свою очередь, влияет на временную задержку.

Показанная выше схема представляет собой RC-схему синхронизации, в которой на конденсатор C1 подается постоянный источник постоянного напряжения 9 В. Задержка времени, генерируемая с помощью этой схемы, задается с помощью постоянной времени T. Постоянную времени можно рассчитать по формуле

T = RC

Конденсатору требуется 5Т или 5-кратная постоянная времени для полной зарядки.Таким образом, применение вышеуказанного значения резистора и конденсатора в этом уравнении даст 5 секунд задержки по времени. Пятисекундная задержка для достижения конденсатором напряжения питания 9 В на его выводах с момента включения питания.

5 зуб. = 5 x R x C

= 5 x 10 кОм x 100 мкФ

Время задержки = 5 сек.

Интересная вещь происходит за работой этой схемы, чтобы генерировать требуемую задержку времени. Чтобы понять это, давайте взглянем на кривую зарядки на графике конденсатора.

На приведенном выше графике показано соотношение между напряжением, током и временем, затрачиваемым на зарядку конденсатора. В момент времени t = 0 конденсатор будет в разряженном состоянии, и на цепь будет подаваться постоянное напряжение. После подачи напряжения зарядный ток течет через конденсатор, накапливая одинаковые и противоположные заряды на пластинах. Это приводит к увеличению напряжения конденсатора Vc. В начале зарядный ток будет максимальным. Конденсатор будет заряжен на 63% от напряжения питания, когда время достигнет постоянной T, которая отмечена 1 на графике выше.

В связи с вышеупомянутой схемой T будет составлять 1 секунду, и к тому времени напряжение конденсатора будет 63% от 9 В, что составляет 5,67 В. И из графика вы можете вывести на 5T (постоянная времени), конденсатор будет заряжен до подаваемого напряжения, полностью остановив ток зарядки. Теперь говорят, что конденсатор полностью заряжен.

Используя уравнение 5T = 5RC, вы можете зафиксировать значения конденсатора и резистора, чтобы заставить эту RC-цепь генерировать требуемую временную задержку для любого приложения.

БАК ИЛИ НАСТРОЕННЫЕ ЦЕПИ:

Цепи этого типа чаще всего используются в радиопередатчиках, приемниках и приложениях выбора частоты. Конденсатор работает вместе с индуктором в этих цепях, чтобы выполнять свою работу. Резервные или настроенные схемы будут использоваться, когда нам нужно сгенерировать сигнал или получить сигнал определенной частоты из сложного сигнала с несколькими частотными компонентами в нем, и отсюда появилось слово «настроенный». Элементы в этой цепи C и L могут быть настроены в соответствии с нашими потребностями.

Работа вышеуказанной схемы основана на реактивном сопротивлении как конденсатора, так и индуктора. Как и конденсатор, индуктор демонстрирует реактивное сопротивление. Но в отличие от конденсатора индуктор демонстрирует высокое реактивное сопротивление к высокочастотным сигналам, тогда как конденсатор демонстрирует высокое реактивное сопротивление к низкочастотным сигналам. Этот контур резервуара будет построен таким образом, чтобы реактивное сопротивление обоих элементов конденсатора и индуктора было одинаковым на частоте, тем самым достигая резонанса. В резонансе этот контур резервуара способен генерировать сигналы заданной частоты или принимать сигналы этой частоты.

Вот как это работает: когда конденсатор, подключенный к этой схеме, заряжен, он накапливает заряды между пластинами. Затем ток от конденсатора переместится в индуктор, который, в свою очередь, создаст вокруг него магнитное поле. Это приводит к истощению зарядов на пластинах, и напряжение на них падает до нуля. Индуктор имеет свойство сопротивляться изменению протекания через него тока. Как только ток от конденсатора прекращается, магнитное поле индуктора схлопывается, позволяя току течь через цепь.Этот ток достигает конденсатора и снова заряжает его, создавая заряды на его пластинах и вырабатывая на нем напряжение. Этот цикл продолжает повторяться снова и снова, генерируя сигналы резонансной частоты. Мы также можем использовать эту схему для извлечения сигналов этой частоты из сложного сигнала.

СВОДКА О КОНДЕНСАТОРАХ:

  1. Конденсаторы состоят из двух параллельных пластин, разделенных изолирующей средой или диэлектриками.
  2. Конденсаторы накапливают энергию в виде электрического заряда, в результате чего на пластинах возникает напряжение.
  3. Количество заряда, которое он может хранить на своей пластине, определяется ее значением емкости.
  4. Он позволяет сигналу постоянного тока проходить только в течение определенного периода времени, позволяя сигналу переменного тока проходить бесконечно.
  5. Обладает высоким реактивным сопротивлением (сопротивлением) низкочастотным сигналам и низким реактивным сопротивлением высокочастотным сигналам.
  6. Конденсаторы
  7. чаще всего используются в усилителях, фильтрах, источниках питания, трансиверах и т. Д.

Это в основном о конденсаторе и его работе.Надеюсь, что это руководство будет информативным и даст вам представление о его работе и использовании в практических схемах. Я также хотел бы добавить, что есть другие приложения Capacitor, которые мы не рассмотрели в этом руководстве. Но здесь я рассмотрел самые важные приложения.

В ближайшее время мы опубликуем руководство по другим компонентам. Подпишитесь на нашу рассылку новостей и следите за нами через каналы социальных сетей, чтобы получать регулярные обновления с нашего веб-сайта. Если у вас есть какие-либо вопросы относительно конденсаторов, оставьте их в поле для комментариев ниже, я буду рад ответить на ваши вопросы.

Связанное содержание

Цепи постоянного тока

, содержащие резисторы и конденсаторы

1. Устройство синхронизации в системе стеклоочистителей прерывистого действия автомобиля основано на постоянной времени RC и использует конденсатор емкостью 0,500 мкФ и переменный резистор. В каком диапазоне R должно изменяться для достижения постоянных времени от 2,00 до 15,0 с?

2. Кардиостимулятор срабатывает 72 раза в минуту, каждый раз, когда конденсатор емкостью 25,0 нФ заряжается (батареей, включенной последовательно с резистором) до 0.632 от его полного напряжения. В чем ценность сопротивления?

3. Продолжительность фотографической вспышки связана с постоянной времени RC , которая составляет 0,100 мкс для определенной камеры. (а) Если сопротивление импульсной лампы составляет 0,0400 Ом во время разряда, каков размер конденсатора, обеспечивающего его энергию? (б) Какова постоянная времени зарядки конденсатора, если сопротивление зарядки составляет 800 кОм?

4. Конденсаторы емкостью 2,00 и 7,50 мкФ могут быть подключены последовательно или параллельно, как и конденсатор емкостью 25 мкФ.0- и резистор 100 кОм. Вычислите четыре постоянные времени RC , которые можно получить при последовательном соединении полученной емкости и сопротивления.

5. После двух постоянных времени, какой процент конечного напряжения, ЭДС, находится на первоначально незаряженном конденсаторе C , заряженном через сопротивление R ?

6. Резистор 500 Ом, незаряженный конденсатор 1,50 мкФ и ЭДС 6,16 В соединены последовательно. а) Каков начальный ток? (b) Какова постоянная времени RC ? (c) Каков ток через одну постоянную времени? (d) Какое будет напряжение на конденсаторе после одной постоянной времени?

7.Дефибриллятор сердца, используемый на пациенте, имеет постоянную времени RC 10,0 мс из-за сопротивления пациента и емкости дефибриллятора. (a) Если дефибриллятор имеет емкость 8,00 мкФ, каково сопротивление пути, проходящего через пациента? (Вы можете пренебречь емкостью пациента и сопротивлением дефибриллятора.) (B) Если начальное напряжение составляет 12,0 кВ, сколько времени потребуется, чтобы упасть до 6,00 × 10 2 В?

8. У монитора ЭКГ постоянная времени RC должна быть меньше 1.00 × 10 2 мкс, чтобы иметь возможность измерять изменения напряжения за небольшие промежутки времени. (а) Если сопротивление цепи (в основном из-за сопротивления груди пациента) составляет 1,00 кОм, какова максимальная емкость цепи? (б) Будет ли сложно на практике ограничить емкость до значения, меньшего, чем значение, указанное в (а)?

9. На рис. 7 показано, как истекающий резистор используется для разряда конденсатора после отключения электронного устройства, что позволяет человеку работать с электроникой с меньшим риском поражения электрическим током.а) Что такое постоянная времени? (b) Сколько времени потребуется, чтобы снизить напряжение на конденсаторе до 0,250% (5% от 5%) от его полного значения после начала разряда? (c) Если конденсатор заряжен до напряжения В 0 через сопротивление 100 Ом, рассчитайте время, необходимое для повышения до 0,865 В 0 (это примерно две постоянные времени)

Рисунок 7.

10. Используя точную экспоненциальную обработку, найдите, сколько времени требуется, чтобы разрядить конденсатор емкостью 250 мкФ через резистор 500 Ом до 1.00% от исходного напряжения.

11. Используя точную экспоненциальную обработку, найдите, сколько времени требуется для зарядки первоначально незаряженного конденсатора 100 пФ через резистор 75,0 МОм до 90,0% от его конечного напряжения.

12. Integrated Concepts Если вы хотите сфотографировать пулю, летящую со скоростью 500 м / с, то очень короткая вспышка света, производимая разрядом RC через импульсную лампу, может ограничить размытие. Предполагая, что перемещение 1,00 мм за одну постоянную RC является приемлемым, и учитывая, что вспышка приводится в действие конденсатором емкостью 600 мкФ, каково сопротивление в импульсной лампе?

13. Integrated Concepts Мигающая лампа в рождественской серьге основана на разряде конденсатора RC через его сопротивление. Эффективная продолжительность вспышки составляет 0,250 с, в течение которых она дает в среднем 0,500 Вт при среднем 3,00 В. а) Какую энергию она рассеивает? б) Сколько заряда проходит через лампу? (c) Найдите емкость. (г) Какое сопротивление лампы?

14. Integrated Concepts Конденсатор емкостью 160 мкФ, заряженный до 450 В, разряжается через 31.Резистор 2 кОм. (а) Найдите постоянную времени. (b) Рассчитайте повышение температуры резистора, учитывая, что его масса составляет 2,50 г, а его удельная теплоемкость [латекс] 1,67 \ frac {\ text {кДж}} {\ text {кг} \ cdotº \ text {C}} \\ [/ latex], учитывая, что большая часть тепловой энергии сохраняется за короткое время разряда. (c) Рассчитайте новое сопротивление, предполагая, что это чистый углерод. (d) Кажется ли это изменение сопротивления значительным?

15. Необоснованные результаты (a) Рассчитайте емкость, необходимую для получения постоянной времени RC , равной 1.00 × 10 3 с резистором 0,100 Ом. б) Что неразумного в этом результате? (c) Какие допущения ответственны?

16. Создай свою проблему Рассмотрим вспышку фотоаппарата. Составьте задачу, в которой вы вычисляете размер конденсатора, который накапливает энергию для лампы-вспышки. Среди факторов, которые необходимо учитывать, — это напряжение, приложенное к конденсатору, энергия, необходимая для вспышки, и соответствующий заряд, необходимый для конденсатора, сопротивление импульсной лампы во время разряда и желаемая постоянная времени RC .

17. Создайте свою проблему Рассмотрим перезаряжаемый литиевый элемент, который будет использоваться для питания видеокамеры. Постройте задачу, в которой вы вычисляете внутреннее сопротивление ячейки во время нормальной работы. Кроме того, рассчитайте минимальное выходное напряжение зарядного устройства, которое будет использоваться для зарядки литиевого элемента. Среди факторов, которые следует учитывать, — ЭДС и полезное напряжение на клеммах литиевого элемента, а также ток, который он должен обеспечивать в видеокамере.

Что такое конденсаторные цепи?

К настоящему времени мы представили источники питания, резисторы и переключатели, а также изучили значение напряжения, тока, сопротивления и рассеиваемой мощности в цепях.В этой статье рассматривается другой тип электронного компонента: конденсатор.

Ключевые термины

o Конденсатор

o Емкость

o Фарад

Объективы

o Распознать функцию конденсатора

o Анализировать простые цепи, содержащие конденсаторы

Обратите внимание: не пытайтесь воспроизвести схемы, иллюстрации или инструкции из этой статьи в реальной жизни.Это может привести к поражению электрическим током, травме или смерти. Эти примеры предназначены только для теоретического обсуждения, а не для фактического / физического использования.

Резисторы

— важные электронные компоненты, но многие сложные электронные схемы — это гораздо больше. Сети резисторов довольно «статичны», то есть их параметры не сильно меняются с течением времени. Это нормально, скажем, в случае лампочки — как правило, вам нужен устойчивый источник света, а не мерцание или мигание. Но что, если мы хотим сделать еще кое-что интересное, например, создать падение напряжения, которое со временем уменьшается или увеличивается? Нам нужно нечто большее, чем просто резисторы.В этой статье мы обсудим один из таких компонентов: конденсатор.

Что такое конденсатор?

Заряд может двигаться в проводнике, и он перемещается под действием электрической силы. Обычно провода электрически нейтральны, но они могут проводить заряд, и заряд также может накапливаться в частях материала в ответ на электрические силы. Представьте себе сценарий ниже, где у нас есть обычный источник питания (напряжения). Каждая клемма соединена с металлической пластиной, но эти две пластины разделены изолятором (например, воздухом), что означает, что между ними не может перемещаться заряд.Также мы добавим переключатель, который начинается в «открытом» положении.

Когда переключатель разомкнут, ничего не происходит — нижняя металлическая пластина находится на «земле», а верхняя металлическая пластина отключена от любого источника напряжения. (Мы также будем предполагать, что он находится на земле «.) Таким образом, между пластинами нет электрических сил. Теперь давайте замкнем переключатель и посмотрим, что произойдет.

Первоначально, когда ток только начинает течь в цепи, две пластины не имеют разницы напряжений между ними.Но положительный заряд движется от положительного вывода источника питания к верхней пластине и начинает накапливаться (нижняя пластина находится на земле, а положительный заряд притягивается к ней электрической силой). Обратите внимание, что ток не может течь между этими пластинами, потому что они разделены. Когда положительный заряд накапливается в верхней пластине, положительный заряд отталкивается от нижней пластины, оставляя на ней эквивалентный отрицательный заряд.

Заряд будет накапливаться до тех пор, пока падение напряжения между двумя пластинами не станет эквивалентным напряжению питания, В. Обратите внимание, что наличие электрической силы между пластинами (и, следовательно, разницы электрических потенциалов) четко видно, потому что одна пластина заряжена положительно, а другая — отрицательно. По сути, эти пластины подобны источнику питания, который «заряжается» или «получает питание» от батареи (или другого источника питания) в цепи. Другими словами, эти пластины способны накапливать электрическую энергию, накапливая заряд. Такое устройство, состоящее из проводящих пластин, независимо от их формы, называется конденсатором . Мы будем использовать следующий интуитивно понятный символ цепи для конденсатора.

Как нетрудно догадаться, пластины большего размера оставляют больше места для накопления заряда. Кроме того, чем ближе пластины, тем сильнее сила между накоплением заряда. Способность конденсатора удерживать заряд называется его емкостью , , которую мы обозначим как C. (Единица емкости в системе СИ — фарад — мы не будем иметь дело с этот аппарат понравился, правда.Тем не менее, один фарад равен одному кулону на вольт, что довольно интуитивно понятно, если вдуматься!) Если конденсатор может удерживать больший заряд при данном падении напряжения на нем, то его емкость выше.

Практическая задача : Емкость конденсатора составляет 1 фарад. Если падение напряжения на нем составляет 10 вольт, сколько кулонов заряда он может удерживать?

Решение : Используйте определение фарада: это то, сколько заряда может удерживать конденсатор, измеренный в кулонах на вольт падения напряжения.Таким образом, если конденсатор имеет падение напряжения 10 В, он будет удерживать 10 кулонов заряда. (Умножьте падение напряжения на «емкость» заряда — это должно быть то же самое, что и емкость в фарадах. Другими словами, используйте соотношение Q = CV, где Q — заряд, накопленный в конденсаторе, C — емкость, V — напряжение.)

На что способны конденсаторы?

Возможно, вам не сразу понятно, как можно использовать конденсаторы. Но пока давайте посмотрим на схему ниже, чтобы увидеть, на что способен конденсатор.

Сначала замкните переключатель S 1 , чтобы зарядить конденсатор; Поскольку S 2 остается разомкнутым, на резисторе нет падения напряжения, поэтому он не участвует в работе схемы.

Как мы обсуждали выше, конденсатор будет «заряжаться», пока не достигнет напряжения В . (Время, необходимое для этого процесса, зависит от ряда факторов — если провода действительно идеальные проводники, процесс происходит мгновенно, но если провод имеет некоторое сопротивление, как в действительности, то этот процесс занимает некоторое конечное количество времени.) Как только конденсатор заряжен, размыкаем выключатель S 1 ; Верхняя пластина сохраняет свой заряд (потому что она не подключена к земле), поэтому напряжение на C остается В вольт.

Теперь замкните выключатель S 2 . Положительный заряд на верхней пластине конденсатора теперь имеет путь к земле — через резистор R. Следуя принципам анализа цепей, мы знаем, что (изначально) падение напряжения на резисторе составляет В.

Но по мере того, как избыточный заряд в верхней пластине конденсатора течет на землю, конденсатор теряет свою запасенную энергию, что означает уменьшение его напряжения. Таким образом, по закону Ома уменьшается и ток. Этот процесс продолжается до тех пор, пока заряд конденсатора не разрядится; в этот момент схема «мертва» (это просто означает, что нет больше напряжения или тока через R и C ). (Между прочим, положительный заряд в этом случае лучше всего можно рассматривать как переход к нижней пластине конденсатора, где он «нейтрализует» отрицательный ток, накопленный при зарядке конденсатора.)

На этом этапе необходимо перезарядить конденсатор, чтобы повторить процесс. Если оба переключателя замкнуты одновременно в этой цепи, то конденсатор также заряжается, но как только он достигает своей максимальной емкости, течет только ток, протекающий через резистор R. Этот ток можно найти с помощью закона Ома.

Таким образом, при полной зарядке в этой цепи конденсатор фактически такой же, как разомкнутый переключатель!


В этой статье конденсатор кратко описан, и это сделано с минимальными математическими усилиями.Чтобы по-настоящему понять, что происходит с конденсаторами, нам потребуется сложная математика и более сложная электрическая теория. Но, как вы можете видеть из краткого обсуждения выше, конденсаторы — это электронные компоненты, которые могут накапливать электрическую энергию, накапливая заряд. Эта функция важна, например, в схемах радиосвязи, просто чтобы назвать один пример!

Переходная характеристика конденсатора

| Постоянные времени RC и L / R

Поскольку конденсаторы накапливают энергию в форме электрического поля, они имеют тенденцию действовать как небольшие батареи вторичных элементов, способные накапливать и выделять электрическую энергию.Полностью разряженный конденсатор поддерживает нулевое напряжение на своих выводах, а заряженный конденсатор поддерживает постоянное напряжение на своих выводах, как аккумулятор.

Когда конденсаторы помещаются в цепь с другими источниками напряжения, они будут поглощать энергию из этих источников, так же как аккумуляторная батарея вторичных элементов становится заряженной в результате подключения к генератору. Полностью разряженный конденсатор, имеющий нулевое напряжение на клеммах, первоначально будет действовать как короткое замыкание при подключении к источнику напряжения, потребляя максимальный ток, когда он начинает накапливать заряд.

Со временем напряжение на клеммах конденсатора повышается, чтобы соответствовать приложенному напряжению от источника, и ток через конденсатор соответственно уменьшается. Как только конденсатор достигнет полного напряжения источника, он перестанет потреблять ток от него и будет вести себя как разомкнутая цепь.

Когда переключатель в первый раз замкнут, напряжение на конденсаторе (который, как нам сказали, был полностью разряжен) составляет ноль вольт; таким образом, сначала он ведет себя так, как если бы произошло короткое замыкание.Со временем напряжение на конденсаторе повысится до напряжения батареи, что приведет к возникновению состояния, когда конденсатор ведет себя как разомкнутая цепь.

Ток в цепи определяется разницей напряжения между батареей и конденсатором, деленной на сопротивление 10 кОм. Когда напряжение конденсатора приближается к напряжению батареи, ток приближается к нулю. Как только напряжение на конденсаторе достигнет 15 вольт, ток будет точно равен нулю. Давайте посмотрим, как это работает, используя реальные значения:

Время (секунды) Напряжение аккумулятора Напряжение конденсатора Текущий
0 15 В 0 В 1500 мкА
0.5 15 В 5,902 В 909,8 мкА
1 15 В 9,482 В 551,8 мкА
2 15 В 12,970 В 203,0 мкА
3 15 В 14,253 В 74.68 мкА
4 15 В 14,725 В 27.47 мкА
5 15 В 14.899 В 10.11 мкА
6 15 В 14,963 В 3,718 мкА
10 15 В 14,999 В 0,068 мкА

Приближение напряжения конденсатора к 15 вольт и приближение тока к нулю с течением времени — это то, что математик назвал бы асимптотическим : , то есть они оба приближаются к своим конечным значениям, приближаясь со временем все ближе и ближе, но никогда не достигают в точности. их пункты назначения.Однако для всех практических целей мы можем сказать, что напряжение конденсатора в конечном итоге достигнет 15 вольт, а ток в конечном итоге станет равным нулю.

Используя программу анализа цепей SPICE, мы можем изобразить это асимптотическое нарастание напряжения конденсатора и спад тока конденсатора в более графической форме (ток конденсатора отображается как падение напряжения на резисторе, используя резистор в качестве шунта для измерения тока). ):

Как видите, я использовал .plot в список соединений вместо более знакомой .printcommand . Это создает псевдографический график фигур на экране компьютера с использованием текстовых символов. SPICE строит графики таким образом, что время находится по вертикальной оси (идет вниз), а амплитуда (напряжение / ток) откладывается по горизонтали (справа = больше; слева = меньше).

Обратите внимание, как напряжение сначала увеличивается (справа от графика) очень быстро, а затем постепенно спадает. Ток также сначала изменяется очень быстро, затем со временем стабилизируется, но он приближается к минимуму (слева от шкалы), в то время как напряжение приближается к максимуму.

ОБЗОР:

  • Конденсаторы действуют как батареи вторичных элементов, когда сталкиваются с внезапным изменением приложенного напряжения: они сначала реагируют, производя большой ток, который со временем спадает.
  • Полностью разряженный конденсатор первоначально действует как короткое замыкание (ток без падения напряжения) при внезапном приложении напряжения. После полной зарядки до этого уровня напряжения он действует как разомкнутая цепь (падение напряжения при отсутствии тока).
  • В цепи зарядки резистор-конденсатор напряжение конденсатора изменяется от нуля до напряжения полного источника, в то время как ток идет от максимума до нуля, причем обе переменные сначала изменяются наиболее быстро, а с течением времени приближаются к своим конечным значениям все медленнее и медленнее.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Конденсаторы и емкость

в зависимости от индуктивности и индуктивности

В предыдущем видеоуроке мы увидели, что источники напряжения и тока обеспечивают энергию, которая позволяет электрической схеме выполнять предполагаемые функции.Однако цепь не просто делится на источники, которые поставляют энергию, и компоненты, которые потребляют энергию. Фактически, два общих электронных компонента — конденсатор и катушка индуктивности — естественно хранят энергию . Эти компоненты могут функционировать как временные источники энергии, и они широко используются в электрических сетях, схемах регуляторов напряжения и частотно-зависимых схемах, называемых фильтрами.

Конденсаторы и емкость

Емкость существует везде, где проводящий материал отделен изоляционным материалом.Емкостные структуры обладают способностью накапливать энергию в виде электрического поля; Когда емкостная структура была спроектирована как электрический компонент с определенной емкостью, она называется конденсатором.

Мы используем термины зарядка и разряд для обозначения, соответственно, состояния, в котором конденсатор набирает энергию, и состояния, в котором конденсатор подает энергию. Как показано на схеме, мы можем зарядить конденсатор, подключив его к батарее.Напряжение вызывает протекание тока, и этот ток передает электрический заряд конденсатору. Накопление заряда создает напряжение на конденсаторе, которое постепенно увеличивается по мере постепенного уменьшения тока, протекающего в цепи. Если заряженный конденсатор отсоединен от батареи и подключен к резистору, он функционирует как источник напряжения, поскольку энергия, накопленная в электрическом поле, может преобразовывать накопленный заряд в движущихся зарядов — другими словами, в электрический ток.

Характеристики напряжения и тока, связанные с зарядным конденсатором, представлены кривыми на следующей диаграмме. Обратите внимание, что на оси времени используется сокращение «RC»; это относится к постоянной времени RC , то есть периоду времени, соответствующему емкости (обозначенной C) конденсатора, умноженной на сопротивление, включенное последовательно с конденсатором.

Емкость компонента является критическим параметром схемы, поскольку, как показано на диаграмме, она влияет на скорость изменения напряжения (или тока) во время зарядки и разрядки.Более высокая емкость означает, что напряжение на конденсаторе будет расти медленнее (когда он заряжается) и медленнее уменьшаться (когда он разряжается).

Количественная оценка емкости

Когда инженеры-электрики включают емкость в схему, они должны выбрать конденсатор с правильным значением емкости. Конденсатор с более высокой емкостью может хранить больше заряда при заданном значении напряжения. Для количественной оценки емкости мы используем единицу фарад , что соответствует кулонам на вольт.Если конденсатор 2 мкФ и конденсатор 20 мкФ были заряжены до одинакового напряжения, конденсатор 20 мкФ будет иметь в десять раз больше накопленного заряда, чем конденсатор 2 мкФ.

Катушки индуктивности и индуктивность

Если вы знакомы с основными понятиями емкости, вы уже на пути к пониманию индуктивности, потому что эти два явления очень похожи — их можно описать как «равные, но противоположные»:

  • Конденсатор накапливает энергию в электрическом поле; индуктор хранит энергию в магнитном поле.
  • Когда конденсатор подключен к источнику напряжения, его напряжение постепенно увеличивается, а его ток постепенно уменьшается; когда индуктор подключен к источнику напряжения, его ток постепенно увеличивается, а его напряжение постепенно уменьшается.
  • В случае конденсатора скорость заряда и разряда определяется постоянной времени RC; с катушкой индуктивности мы используем постоянную времени RL , которая представляет собой индуктивность (L), умноженную на сопротивление, включенное последовательно с катушкой индуктивности.
  • Если емкостная цепь отключена от источника питания, конденсатор будет временно поддерживать напряжение. Если индуктивная цепь отключена от источника питания, индуктор будет временно поддерживать ток. Другими словами, конденсаторы «сопротивляются» изменениям напряжения, а катушки индуктивности «сопротивляются» изменениям тока.

Все проводники, такие как провода и выводы компонентов, имеют индуктивность. Для создания индуктора мы используем методы, которые усиливают магнитное поле и тем самым увеличивают индуктивность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*