Для чего нужен варистор на входе питания: Для чего нужен варистор на входе питания

Содержание

надежная защита от скачков напряжения

1 июля 2016

Варисторы – надежное средство для подавления скачков напряжения в первичных электрических цепях. Компания Littelfuse выпускает широкую линейку этих изделий, состоящую из нескольких серий, в числе которых – лидеры отрасли по рассеиваемой энергии, индустриальные варисторы серии C-III.

Чтобы быть уверенным в надежном функционировании разрабатываемого устройства, нужно уже на ранних этапах разработки продумать подавление скачков напряжения. Это может быть комплексной задачей, потому что электронные компоненты очень чувствительны к переходным процессам. Разработчик должен определить тип угрозы, из-за которой могут возникать скачки напряжения, и то, каким стандартам должно соответствовать устройство, исходя из области его применения. Варисторы чаще всего применяются для подавления скачков напряжения в первичных цепях. Компаний-производителей варисторов на рынке немало.

Рассмотрим различные типы варисторов, остановимся на их физической сущности и сравним варисторы лидера рынка защитных компонентов – компании Littelfuse – с варисторами других популярных производителей – Epcos и Fenghua.

Варистор – электронный прибор, сопротивление которого нелинейно меняется с изменением подаваемого на него напряжения, его вольт-амперная характеристика (ВАХ) схожа с ВАХ двунаправленных диодов Зенера. Варистор состоит, в основном, из оксида цинка ZNO с небольшим содержанием висмута, кобальта, магния и других элементов. Варистор из оксида металла (Metal Oxide Varistor или MOV) спекается в процессе производства в керамический полупроводник с кристаллической микроструктурой, которая позволяет рассеивать очень большие энергии, поэтому варисторы часто используются для защиты от скачков напряжения, вызванных ударами молний, связанных с переходными процессами, с индуктивными нагрузками, электростатическими разрядами в цепях переменного и постоянного тока, а также в промышленных линиях питания.

Помимо этого, варисторы используются в сетях с постоянным напряжением, например, в низковольтных источниках питания или автомобильных цепях. Процесс производства варисторов позволяет придать им разнообразную форму. Однако наиболее распространенным форм-фактором варисторов является диск c радиальными выводами.

Характеристики варистора

Тело варистора представляет собой изотропную гранулярную структуру оксида цинка ZnO (рисунок 1). Гранулы отделены друг от друга, и их граница разделения имеет ВАХ, схожую с p-n-переходом в полупроводниках. Эти границы при низких напряжениях имеют очень низкую проводимость, которая нелинейно увеличивается с увеличением напряжения на варисторе.

Рис. 1. Фотография гранулярной структуры варистора, сделанная с помощью электронного микроскопа

Симметричная ВАХ показана на рисунке 2. Благодаря ей варистор отлично справляется с подавлением скачков напряжения. Когда они появляются в цепи, сопротивление варистора уменьшается во множество раз: от почти непроводящего состояния до высокопроводящего, уменьшая импульс напряжения до безопасного для цепи значения. Таким образом, потенциально опасная для элементов цепи энергия входного импульса напряжения абсорбируется варистором и защищает компоненты, чувствительные к скачкам напряжения.

Рис. 2. Симметричная ВАХ варистора

В местах соприкосновения микрогранул варистора возникает эффект проводимости. Так как количество гранул в объеме варистора очень велико, абсорбируемая варистором энергия значительно превышает энергию, которая может пройти через единичный p-n переход в диодах Зенера. В процессе прохождения тока через варистор весь проходящий заряд равномерно распределяется по всему объему. Таким образом, количество энергии, которую может абсорбировать варистор, напрямую зависит от его объема. Величина рабочего напряжения варистора и максимального тока зависят от расстояния между электродами, между которыми находятся гранулы оксида цинка. Однако есть множество других технологических моментов, которые обуславливают эти электрические параметры: технология гранулирования и спекания, влияющая на размер гранул и их площадь соприкосновения, присоединение металлических выводов, покрытие варистора, легирующие добавки. Например, диапазон рабочих температур дисковых варисторов зависит от типа покрытия диска: у варисторов с эпоксидным покрытием диапазон -55…85°С, у фенолового покрытия, встречающегося у варисторов Littelfuse серии

C-III, этот диапазон расширен до 125°С. Также расширенный диапазон рабочих температур имеет большинство серий варисторов для поверхностного монтажа.

Рассмотрим подробнее принцип работы варистора.

В его корпусе между металлическими контактами находятся гранулы со средним размером d (рисунок 3).

Рис. 3. Схематическое изображение микроструктуры металл-оксидного варистора

Токопроводящие гранулы оксида цинка со средним размером гранулы d разделены между собой межгранулярными границами.

При разработке варистора для заданного номинального напряжения Vn основным параметром является количество гранул n, заключенных между контактами, что, в свою очередь, влияет на размер варистора. На практике его материал характеризуется градиентом напряжения В/мм, измеренном в коллинеарном направлении с нормалью к плоскости варистора. Для контроля состава и условий производства градиент должен быть постоянным. Так как физические размеры варистора имеют определенные пределы, то сочетание примесей в составе прибора позволяет достичь заданного размера гранул и нужного результата.

Фундаментальным свойством ZnO-варистора является его практически постоянное падение напряжения на границах гранул во всем объеме. Наблюдения показывают, что вне зависимости от вида варистора, падение напряжения на границе соприкосновения гранул всегда составляет 2…3 В. Падение напряжения на границах гранул не зависит и от размера самих гранул. Таким образом, если опустить разные способы производства и легирования оксида цинка, то напряжение варистора будет зависеть от его толщины и размера гранул. Эта зависимость может быть легко выражена в следующем виде (формула 1):

, (1)

где d – средний размер гранулы.

Учитывая

,

получаем данные, представленные в таблице 1.

Таблица 1. Зависимость структурных параметров варистора от напряжения

Напряжение варистора Vn, В~Средний размер
гранулы, мкм
nГрадиент, В/мм
при 1 мА
Толщина варистора, мм
15020751501,5
258012391

Напряжение варистора Vn – это напряжение на вольт-амперной характеристике, где происходит переход из слабопроводящего состояния на линейном участке графика в нелинейный режим высокопроводящего состояния. По общей договоренности для стандартизации измерений был выбран ток 1 мА.

Несмотря на то, что варисторы могут за несколько микросекунд абсорбировать большое количество энергии, они не могут продолжительно находиться в проводящем состоянии. Поэтому в некоторых случаях, когда, например, напряжение в сети на продолжительное время увеличивается до уровня срабатывания, варистор начинается сильно греться. Его перегрев может закончиться возгоранием (рисунок 4). Для защиты от этого стали применяться термисторы. Варистор со встроенным термистором защищен от перегрева, что продлевает его срок службы и защищает устройство от возможного возгорания.

Рис. 4. Результат увеличения напряжения в сети на продолжительное время

Проведем сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua с рабочим напряжением 250 и 275 В (АС rms) и диаметром диска 10, 14 и 20 мм.

Как видно из таблицы 2, рассеиваемая варистором энергия зависит не только от его размеров, но и от технологии производства и материалов, которые использованы для выпуска серии. Заметим, что серия индустриального класса С-III производства компании Littelfuse вышла на первое место, серия UltraMOV тоже показала очень высокие характеристики, оказавшись на уровне конкурентов – серии Advanced производства Epcos. Также можно отметить, что варисторы C-III при меньшем габарите (D = 14 мм) имеют большую энергию рассеивания, чем стандартные серии конкурентов, имеющие большие размеры (D = 20 мм), а разница в рассеиваемой энергии между качественными варисторами в корпусе D = 20 мм и стандартными варисторами в корпусе D = 10 мм может отличаться на порядок.

Таблица 2. Сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua

НаименованиеПроизводительСерияD, ммVRMS, ВImax (8/20 мкс), АWmax (2 мс), Дж
V275LA40CPLittelfuseC-III2027510000320
V250LA40CPLittelfuseC-III2025010000300
B72220S2271K101, S20K275E2EpcosAdvanceD2027510000215
B72220S2251K101, S20K250E2EpcosAdvanceD2025010000195
V20E275PLittelfuseUltraMOV®202756500190
V20E250PLittelfuseUltraMOV®202506500 170
B72220S0271K101, S20K275EpcosStandarD202758000151
V275LA20CPLittelfuseC-III142756500145
FNR-20K431FenghuaGeneral202756500140
B72220S0251K101, S20K250EpcosStandarD202508000140
V250LA20CPLittelfuseC-III142506500135
FNR-20K391FenghuaGeneral202506500130
B72214S2271K101, S14K275E2EpcosAdvanceD142756000110
V14E275P
LittelfuseUltraMOV®142754500110
B72214S2251K101, S14K250E2EpcosAdvanceD142506000100
V14E250PLittelfuseUltraMOV®142504500100
FNR-14K431FenghuaGeneral14275450075
B72214S0271K101, S14K275EpcosStandarD14275450071
FNR-14K391FenghuaGeneral14250450070
V275LA10CPLittelfuseC-III10275350070
B72214S0251K101, S14K250EpcosStandarD14250450065
V250LA10CPLittelfuseC-III10250350060
B72210S2271K101, S10K275E2EpcosAdvanceD10275350055
V10E275PLittelfuseUltraMOV®10275250055
B72210S2251K101, S10K250E2EpcosAdvanceD10250350050
V10E250PLittelfuseUltraMOV®10250250050
FNR-10K431FenghuaGeneral10275250045
B72210S0271K101, S10K275EpcosStandarD10275250043
FNR-10K391FenghuaGeneral10250250040
B72210S0251K101, S10K250EpcosStandarD10250250038

Обзор варисторов производства компании Littelfuse c разбивкой на серии и области применения представлен в таблице 3.

Таблица 3. Области применения варисторов Littelfuse

СегментТиповое применение и примерыСерияТехнологияSMD-монтаж
Низковольтное оборудование, одноплатные устройстваНаладонные и портативные приборы, контроллеры, измерительное оборудование, компьютеры, дистанционные датчики, порты ввода/вывода и интерфейсы, медицинское оборудованиеСНMOV+
MA, ZA, RA, UltraMOV, CIIIMOV
ML, MLE, MLN, MHSMLV+
Электросети, сетевые фильтрыИсточники бесперебойного питания, измерители мощности, источники питания переменного напряжения, LED-драйверы, блоки питания, промышленные источники питания, автоматы, сетевые фильтры, бытовая электроника, управление питаниемTMOV, UltraMOV, CIII, LA, HA, HB, HG, HF, DHB, TMOV34S, RAMOV
SM20, SM7, CHMOV+
Автомобильная электроникаABS, шины данных, контроллеры электродвигателей, сервоприводы, подушки безопасности, управление зеркалами, стеклоподъемниками, щеткамиSM7, CHMOV
ZA, LV UltraMOVMOV
AUML, ML, MLE, MLN, MHSMLV+
Телекоммуникационное оборудованиеСотовые и DECT-телефоны, роутеры, модемы, сетевые карты, защита абонентского оборудования, T1/E1/ISDN, защита шин данныхSM7, CHMOV
ZA, LV UltraMOVMOV
SM20, SM7, ML, MLE, MLN, MHSMLV+
Мощное индустриальное оборудованиеСиловые реле, соленоиды, драйверы электродвигателей, источники питания, роботы, большие двигатели/насосы/компрессорыDA/DB, BA/BB, CA, HA, HB, HC, HG, HF, DHB, TMOV34S, CIII, UltraMOVMOV

Литература

  1. http://www.littelfuse.com/.
  2. Electronics Circuit Protection Product Selection Guide.
  3. http://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_product_selection_guide.pdf.pdf.
  4. Metal-Oxide Varistors (MOVs).
  5. http://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_varistor_catalog.pdf.pdf.

Получение технической информации, заказ образцов, заказ и доставка.

•••

Наши информационные каналы

устройство, принцип действия и назначение

Принцип работы варистора

Сейчас рассмотрим, принцип работы варистора и важные моменты, связанные с его применением и использованием.

Доброго времени! Уважаемые читатели сайта energytik.net, сегодня поговорим об уникальном элементе электронной цепи. Этот радиоэлемент схемы одновременно является и полупроводником и многоразовым предохранителем.

Изучать электронику и её ремонт с обслуживанием, правильно начинать с теоретических данных. Примите этот совет за основное правило, ко всей учебе.

Название элемента варистора, происходит от английского языка, впрочем, как и подавляющее большинство радиоэлементов. Дословно, можно перевести как, переменный резистор. На языке С. Джобса, пишется variable resistor, просто взяли из первого слова, первые четыре буквы, а из второго последние, вот и получилось слово, варистор.

Отличительным чертой и параметром сего изделия, является его ВАХ, проще выражаясь, вольт – амперная характеристика. Она у варистора, является не линейной, другими словами, резко меняется сопротивление, при подаче на него, большего, чем необходимого, для правильной работы аппаратуры напряжения.

Принцип работы варистора в электрической схеме

Начнём с того что, по сути он является резистором, и в нормальном режиме работы электроники, он имеет огромное, омическое сопротивление. Практически всегда, оно равняется порядка нескольких сотен мега Ом (МОм). Как только, на концах его выводов, напряжение достигает необходимого для защиты уровня, его сопротивление, резко уменьшается. После этого, его сопротивление не составляет и сотни Ом.

Когда сопротивление варистора, достигает совсем низкого значения и примерно равняется нулю, происходит короткое замыкание. В результате чего, перегорает предохранитель, который перед варистором в цепи фазы или нуля. Выходом из строя, предохранитель размыкает электрическую цепь и оставляет схему без напряжения.   Самое приятное, что после пропажи напряжения, варистор снова восстанавливается и готов к работе. Меняем предохранитель в схеме, и если вам сильно повезло, электронное устройство начинает полноценно и правильно функционировать. В схему, он включается параллельно источнику питания. На примере источника питания для компьютера, его ставят параллельно фазы и нуля, у варистора, всего два вывода.

Как выглядит и обозначается варистор на схеме

Графическое обозначение варисторов на принципиально электрической схеме, очень напоминает простой резистор. Через этот прямоугольник, проходит диагональная линия, на одном конце которой, располагается английская буква U, которая и обозначает напряжение. На схеме, буквенное обозначение варистора выполняется на английском языке и выглядит следующим образом RU.

Применение варисторов на практике.

Как вы уже поняли, задача варистора, сводится к защите электронике от высокого и скачкообразного напряжения в сети домашней электропроводки. Основное место установки варисторов, это первичные цепи электрооборудования. Вы их сразу можете увидеть в блоках питания компьютеров, пусковых системах для ламп дневного освещения, в народе именуемых, балластами.   В схемах, они принимают участие в стабилизации токов и напряжений, а так же их токов. Подобные аппараты, применяются и в линиях воздушных электропередачи, там их называют разрядниками, у них рабочие напряжение, составляет 20 000 вольт, прочтите статью по ссылки, расширите свой кругозор. Рабочий диапазон работы варисторов, достигает 200 вольт, начинается с совсем незначительного значения, равняется трём вольтам. Диапазон по токам, от 0,1 до 1 ампера, это касается низковольтных деталей. Прочтите следующие статью про маркировку и проверку варисторов.

Маркировка и выбор варистора

На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

20D 471K

Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

240*1,1*1,41=372 В.

Где 1,1 – коэффициент запаса.

При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

  • 100В (100~120)– 271k;
  • 200В (180~220) – 431k;
  • 240В (210~250) – 471k;
  • 240В (240~265) – 511k.

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры

Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.

Если диод пробит, то он будет звониться в обе стороны. При этом цешка может показывать незначительное отклонение сопротивления от 0. Если р-n переход находится в обрыве, то независимо от направления включения показания прибора будут отсутствовать.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

Продукция

  • Поиск продукции
  • Новая продукция
  • Регулирующая арматура для радиаторов
    • Ручные клапаны
    • Термостатические клапаны
    • Клапаны с увеличенным проходом
    • Клапаны с предварительной регулировкой
    • Динамические термостатические клапаны
    • Отсечные клапаны
    • Термостатические головки
    • Беспроводная система — Klimadomotic
    • Kомплекты для отопительных приборов
    • Kлапаны хромированные с глянцевым покрытием
    • Клапаны нижнего подключения для двухтрубных систем
    • Клапаны нижнего подключения для однотрубных систем
    • Зонды
    • Клапаны для стальных панельных радиаторов
    • Аксессуары для радиаторов
    • Комплектующие для радиаторных клапанов
  • Коллекторы и коллекторные сборки
    • Распределительные коллекторы для отопления
    • Модульные коллекторы для отопления
    • Коллекторные узлы для отопления
    • Электротермические головки и термостатические головки с выносными датчиками темпратуры
    • Шкафы и кронштейны для коллекторов
    • Конечные элементы и аксессуары для коллекторов
    • Коллекторы для водоснабжения
    • Сборные и модульные коллекторы для водоснабжения
    • Шкафы и кронштейны для коллекторов
    • Запасные части коллекторов
  • Шаровые краны
    • Шаровые краны для отопления и водоснабжения
    • Краны для водоснабжения
    • Шаровые краны для газа
    • Краны шаровые с фланцевым соединением
    • Краны с пресс-соединением
    • Дренажные краны
    • Краны хозяйственные
    • Аксессуары и запасные части
  • Трубы и фитинги
    • Mеталлополимерные и полимерные трубы
    • Фитинги резьбовые компрессионные для многослойных и полимерных труб
    • Пресс-фитинги для многослойных и полимерных труб
    • Aдаптеры для полимерных и медных труб – фитинги для адаптеров
    • Фитинги для металлической трубы
    • Cгоны, ниппели, переходники
    • Система GX
    • Cистема Giacoqest
    • Комплектующие и инструменты
  • Арматура гидравлической балансировки
    • Балансировочные клапаны
    • Редукторы давления и смесительные клапаны для водоснабжения
  • Оборудование для котельных и тепловых пунктов
    • Фильтры и обратные клапаны
    • Воздухоотводные клапаны
    • Арматура котельных и тепловых пунктов
    • Задвижки
    • Затворы поворотные
    • Арматура для твердотопливных котлов
    • Группы быстрого монтажа для котельных
    • Комплектующие для групп быстрого монтажа
    • Смесительные и зональные клапаны
    • Арматура для дизельного топлива
    • Оборудование для солнечных систем
    • Узлы ГВС
    • Комплектующие для солнечных систем
  • Системы панельного отопления, охлаждения, автоматика терморегулирования
    • Компоненты системы напольного отопления
    • Система напольного отопления без бетонной стяжки
    • Терморегулирующая автоматика — Klimadomotic
    • Терморегулирующая автоматика прямого действия
    • Терморегулирующая автоматика — KLIMAbus
    • Беспроводная автоматика Klimadomotic
    • Осушители воздуха
    • Универсальные котельные блоки
  • Системы учета тепловой энергии и воды
    • Hепрямое измерение (распределители затрат)
    • Приборы прямого учета тепла и воды
    • Модули для удаленнной диспетчеризации M-BUS
    • Модули для беспроводной диспетчеризации
    • Коллекторные узлы для поквартирного учета
    • Узлы ввода
    • Малые тепловые пункты
    • Блоки в сборе для индивидуального учета
    • Комплектующие систем учета (шкафы, шаблоны, теплоизоляция)
  • Скачать

Как работает варистор?

Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.

Будет интересно Что такое тепловое реле

Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.

Как говорилось выше, варистор подключается параллельно нагрузке:

  • В цепях переменного тока – фаза – фаза, фаза – ноль;
  • В цепях постоянного тока – плюс и минус.

Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:

Применение в быту

Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:

  • линий связи;
  • информационных входов электронных устройств;
  • силовых цепей.

В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.

Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.

Часто электрики рекомендуют защитить китайские светодиодные лампы, установив варистор параллельно патрону. Также защищают и другие устройства, некоторые монтируют варистор в розетку или в вилку, чтобы обезопасить подключаемую технику.

Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:

Напоследок рекомендуем просмотреть полезные видео по теме статьи:

Наверняка вы не знаете:

  • Какие бывают помехи в электросети
  • Принцип работы УЗИП
  • Как сделать сетевой фильтр своими руками
  • Как проверить резистор в домашних условиях

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Варисторы: применение

Такие приборы играют важную роль в жизни человека.

Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.

Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Применение варисторов в схемах защиты

Исходя из свойств элемента, логично применять его в цепях обхода основной электросхемы. При повышении питающего напряжения, варистор выступит в роли своеобразного шунта.

При импульсном (несколько миллисекунд) скачке напряжения, основной ток пройдет в обход схемы. При восстановлении параметров – электропитание цепи мгновенно возобновится.

Простейший пример – варистор подключается параллельно питанию в удлинителе с защитой. При скачке напряжения, элемент фактически формирует короткое замыкание, и срабатывает защитный автомат. Чаще всего в подобных схемах применяются варисторы типа TVR 14561.

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U

Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Как маркируется варистор?

На сегодняшний день можно встретить разные обозначения этих приборов. Каждый производитель вправе устанавливать ее самостоятельно. Маркировки различаются, потому что технические характеристики варисторов отличаются друг от друга. Примерами могут служить такие показатели, как допустимое напряжение или необходимый уровень тока.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока. Наиболее популярная маркировка – CNR, к которой прикрепляется такое обозначение, как 07D390K. Что же это значит? Итак, само обозначение CNR указывает на вид прибора. В этом случае варистор является металлооксидным.

Далее, 07 – это размер устройства в диаметре, то есть равный 7 мм. D – дисковое устройство, и 390 – максимально допустимый показатель напряжения.

Продукция

  • Поиск продукции
  • Новая продукция
  • Регулирующая арматура для радиаторов
    • Ручные клапаны
    • Термостатические клапаны
    • Клапаны с увеличенным проходом
    • Клапаны с предварительной регулировкой
    • Динамические термостатические клапаны
    • Отсечные клапаны
    • Термостатические головки
    • Беспроводная система — Klimadomotic
    • Kомплекты для отопительных приборов
    • Kлапаны хромированные с глянцевым покрытием
    • Клапаны нижнего подключения для двухтрубных систем
    • Клапаны нижнего подключения для однотрубных систем
    • Зонды
    • Клапаны для стальных панельных радиаторов
    • Аксессуары для радиаторов
    • Комплектующие для радиаторных клапанов
  • Коллекторы и коллекторные сборки
    • Распределительные коллекторы для отопления
    • Модульные коллекторы для отопления
    • Коллекторные узлы для отопления
    • Электротермические головки и термостатические головки с выносными датчиками темпратуры
    • Шкафы и кронштейны для коллекторов
    • Конечные элементы и аксессуары для коллекторов
    • Коллекторы для водоснабжения
    • Сборные и модульные коллекторы для водоснабжения
    • Шкафы и кронштейны для коллекторов
    • Запасные части коллекторов
  • Шаровые краны
    • Шаровые краны для отопления и водоснабжения
    • Краны для водоснабжения
    • Шаровые краны для газа
    • Краны шаровые с фланцевым соединением
    • Краны с пресс-соединением
    • Дренажные краны
    • Краны хозяйственные
    • Аксессуары и запасные части
  • Трубы и фитинги
    • Mеталлополимерные и полимерные трубы
    • Фитинги резьбовые компрессионные для многослойных и полимерных труб
    • Пресс-фитинги для многослойных и полимерных труб
    • Aдаптеры для полимерных и медных труб – фитинги для адаптеров
    • Фитинги для металлической трубы
    • Cгоны, ниппели, переходники
    • Система GX
    • Cистема Giacoqest
    • Комплектующие и инструменты
  • Арматура гидравлической балансировки
    • Балансировочные клапаны
    • Редукторы давления и смесительные клапаны для водоснабжения
  • Оборудование для котельных и тепловых пунктов
    • Фильтры и обратные клапаны
    • Воздухоотводные клапаны
    • Арматура котельных и тепловых пунктов
    • Задвижки
    • Затворы поворотные
    • Арматура для твердотопливных котлов
    • Группы быстрого монтажа для котельных
    • Комплектующие для групп быстрого монтажа
    • Смесительные и зональные клапаны
    • Арматура для дизельного топлива
    • Оборудование для солнечных систем
    • Узлы ГВС
    • Комплектующие для солнечных систем
  • Системы панельного отопления, охлаждения, автоматика терморегулирования
    • Компоненты системы напольного отопления
    • Система напольного отопления без бетонной стяжки
    • Терморегулирующая автоматика — Klimadomotic
    • Терморегулирующая автоматика прямого действия
    • Терморегулирующая автоматика — KLIMAbus
    • Беспроводная автоматика Klimadomotic
    • Осушители воздуха
    • Универсальные котельные блоки
  • Системы учета тепловой энергии и воды
    • Hепрямое измерение (распределители затрат)
    • Приборы прямого учета тепла и воды
    • Модули для удаленнной диспетчеризации M-BUS
    • Модули для беспроводной диспетчеризации
    • Коллекторные узлы для поквартирного учета
    • Узлы ввода
    • Малые тепловые пункты
    • Блоки в сборе для индивидуального учета
    • Комплектующие систем учета (шкафы, шаблоны, теплоизоляция)
  • Скачать
Оцените статью:

Ремонт компьютерного блока питания. Что такое варистор

Всем привет. На днях в ремонт принесли сгоревший компьютерный блок питания Zalman ZM500-GS. Со слов хозяина, компьютер перестал включаться после перепада напряжения.

к оглавлению ↑

Проверка неисправности блока питания

Для подтверждения неисправности, подключил блок питания к сети, а разъем ATX (самый широкий на 24 контакта) подключил к тестеру блоков питания. Диагноз подтвердился, блок питания не подавал признаков жизни.

Проверка работоспособности тестером для компьютерных блоков питания

к оглавлению ↑

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Проверка предохранителя

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

к оглавлению ↑

Информация о варисторах

Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.

Покажу на примере.

Схема работы варистора при нормальном напряжении

Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.

Схема, как отрабатывает варистор при завышенном напряжении

При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.

Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.

Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.

к оглавлению ↑

Результат ремонта

Заменив предохранитель, и установив варистор с донора, блок питания был собран, и протестирован.

Результат

После полной проверки был отдан хозяину.



Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Загрузка…

Варисторы маркировка и параметры — Мастер Фломастер

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

· возможность работы под значительными нагрузками, а также на высокой частоте;

· большой спектр применения;

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

· классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

· максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

· максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

· максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

· допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

· время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

· максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

· визуальный осмотр корпуса;

· измерение сопротивления специальным прибором.

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

· отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

· поставить переключатель тестера в режим замера сопротивления на максимум;

· прикоснуться щупами прибора к выводам проверяемой детали;

· снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».

Варисторы: как работают, основные характеристики и параметры, схема подключения

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

· возможность работы под значительными нагрузками, а также на высокой частоте;

· большой спектр применения;

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

· классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

· максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

· максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

· максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

· допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

· время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

· максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

· визуальный осмотр корпуса;

· измерение сопротивления специальным прибором.

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

· отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

· поставить переключатель тестера в режим замера сопротивления на максимум;

· прикоснуться щупами прибора к выводам проверяемой детали;

· снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Варистор: принцип действия, проверка и подключение

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Ремонт компьютерных блоков питания — FoxKom – Профессиональный ремонт компьютеров и ноутбуков в Таганроге

Меры предосторожности

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет — все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий:

  • Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
  • Отсос для припоя и (или) оплетка. Служат для удаления припоя.
  • Отвертка
  • Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
  • Мультиметр
  • Пинцет
  • Лампочка на 100Вт
  • Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX A – диодный мост, служит для преобразования переменного тока в постоянный B – силовые конденсаторы, служат для сглаживания входного напряжения Между B и C – радиатор, на котором расположены силовые ключи C — импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

  • БП не запускается, отсутствует напряжение дежурного питания
  • БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
  • БП уходит в защиту,
  • БП работает, но воняет.
  • Завышены или занижены выходные напряжения

Предохранитель


Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор

Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.


Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.



Резисторы


Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

Диоды и стабилитроны


Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки

.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в «позвонке» р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

ШИМ

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно. Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС)

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.


Трансформаторы

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой. Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервисный центр или магазин.

Как устроены и работают сетевые фильтры в бытовых приборах и нужны ли они?

Как устроены и работают сетевые фильтры?
В бытовой домашней электросети, которая приходит в наши квартиры, имеется большое количество всплесков (бросков) напряжений, которые возникают на очень короткое время и имеют порой достаточно большую амплитуду, возникающие в следствии переходных процессов, наведенные молнией, грозовыми разрядами и др.
Всплески от переходных процессов, порожденные оборудованием, причиной которых разряды запасенной энергии индуктивными и емкостными элементами. Электродвигатели используемые в лифтах, системе отопления, кондиционирования, охлаждения и другие индуктивные нагрузки создают непрерывный поток всплесков разной амплитудой до 1000В. Приводы постоянного тока, с переменной скоростью вращения, импульсные источники питания, переносной электроинструмент и т.п. являются так же источниками переходных процессов и следовательно, дополнительных всплесков напряжений.
Пример схемы подавления импульсного перенапряжения состоит из варистора (VDR)и газового разрядника (GDT), соединенных последовательно. Схема предназначена для защиты чувствительных электронных устройств от перенапряжения, переходных процессов, и короткого замыкания.
   Схема защиты включается в разрыв между источником напряжения, в данном случае это розетка, и нагрузка. В обычном нормальном режиме ток не протекает через GDT и VDR1, но когда напряжение становится больше, чем сумма напряжения срабатывания GDT и VDR1 (GDT UZ470B и VDR S20K250 общее напряжение 250v), то ток начинает протекать через элементы. Чем больше превышение напряжение, тем больше протекает ток через GDT и VDR1.
   При уменьшении напряжения до нормального значения, схема переводится в исходное состояние. Из-за физических свойств разрядника и варистора, протекающий ток через защитные элементы не увеличивается больше определенного значения в течение короткого периода времени. Когда напряжение возвращается к нормальному значению, ток через элементы G1 и VDR1 прекращается, схема возвращается к обычному режиму.
Если протекающий ток значительно увеличиться, то срабатывает защитный предохранитель, нагрузка обесточивается. Две неоновые контрольные лампы, примененные в схеме, показывают наличие напряжения на входе и на нагрузке.
* VDR варистор — полупроводниковый резистор, представляет собой электронный компонент имеющий нелинейную вольт амперную характеристику (ВАХ). Название происходит от английского слова — переменный резистор.
Подобные схемы часто используются для защиты цепей от чрезмерных переходных напряжений путем включения их в схему таким образом, что при их срабатывании, они будут шунтировать возникающий чрезмерный ток, создаваемый высоким напряжением для чувствительных компонентов. Задача VDR еще в том, чтобы защитить от увеличения тока через устройства, когда напряжение становиться чрезмерным.
Преимущества
1) Нормальное рабочее напряжение 230V AC / DC
2) Максимальная номинальный ток 16A
3) Максимальный ток 16A
4) Напряжения отключения => 300В RMS
5) Защита от перегрузок.
6) Защита от короткого замыкания.
Применение
1) Защита чувствительных компонентов.
2) Защита двигателя.
3) Защита телефонных линий.

Самому собрать фильтр

Схема высококачественного сетевого фильтра.
Высококачественный сетевой фильтр позволяет отфильтровать помехи и кратковременные импульсные скачки напряжения. Особенно актуальна схема для проживающих в поселках, где электричество подводится по воздушным линиям и когда во время грозы, при разрядах молний наводится высокое напряжение. Детали применяются от ненужных компьютерных блоков питания, которые могут заваляться дома или выбрасываются на работе — дайте им вторую жизнь! Необходимо намотать симметрирующие дроссели-трансформаторы, варисторы и конденсаторы выпаять из блоков питания, лучше всего подойдут класса Y2 и X2.
Номиналы элементов для фильтра могут иметь значения:
  1. Конденсаторы С2-4 серии Y2 номиналом по 0,047 мкФ (стандартные конденсаторы из БП например, Kh572N)
  2. Конденсаторы С1, С5 серия класса Х2, номинал 0,47МкФ.
  3. GAS — разрядник типа BHS 2500V.
  4. Варисторы MV, диаметр корпуса 20мм (можно 25 и более), напряжение пробоя 470В.
  5. Трансформаторы TR1-TR2 имеют две обмотки 2*10 витков, намоточный проводом сечением 2кв.мм. В качестве сердечника использованы кольца от симметрирующего трансформатора 350 Ватного компьютерного блока питания.
  6. L1, L2 — ферритовые стержни проницаемостью М2000, намотано 10 витков проводом, желательно пропитать эпоксидным лаком.
Розетки можно дополнительно зашунтировать разрядными резисторами номиналом 470 КОм, мощностью 0,5 Вт (для того чтобы не щелкало, правильнее составить из двух резисторов общим номиналом)
Для исключения резких бросков тока добавьте последовательно с каждым варистором резистор 1Вт по 10Ом.
Для исключения возгорания и разлета осколков керамики, наденьте сверху на варисторы термоусадочную трубку.
Бытовые фильтры-удлинители и схемы фильтров применяемые в них. Задумывались Вы, что Вам необходимо:просто удлинитель или удлинитель с фильтром?
Если Вы подключаете электрический чайник, лампу освещения, то конечно, фильтр здесь абсолютно не нужен, зачем тратить деньги впустую. Здесь важно качество розеток в удлинителе, толщина провода и его длина, но в тоже время излишняя длина не нужна, иначе придется сматывать в клубок.
Если несколько бытовых приборов расположенных рядом друг с другом, для подключения можно использовать тройник. А что делать, если дорогая бытовая техника: телевизор, компьютер, аудиоцентр, то в этом случае ответ однозначен — надо защищать приборы как минимум сетевым фильтром.

Удлинитель типа Пилот

  • Бытовая техника, такие как микроволновые печи, холодильники, электрочайники, стиральная машины не должны подключаться через удлинитель. Они должны подключаются непосредственно в электрические стационарные розетки в квартире.
  • Запрещается перегружать розетки, удлинители по потребляемой мощности (току)!
  • В случае срабатывания автоматических выключателей — это является предупреждением что линия перегружена, не следует ни в коем случае игнорировать!
  • Если Вы не знаете какое количество оборудование может быть подключено к одной розетке или удлинителю, уточните у профессионалов, в крайнем случае спросите в жэке…
  • Не пользуйтесь вилками, не имеющие контакт для заземления (металлический лепесток).
  • При использовании электрооборудованием расположенного возле источника влаги, оно в обязательном порядке должно подключено к защитному заземлению.
  • Не пользуйтесь удлинителями имеющие признаки повреждений, или при работе шнур удлинителя нагревается!

 

Металлооксидный варистор (MOV) — Характеристики, работа и техническое описание

A Металлооксидный варистор ( MOV ) — это защитный компонент, используемый в цепях питания, которые питаются непосредственно от сети переменного тока. Он используется для защиты схемы от скачков высокого напряжения путем изменения ее сопротивления.

Контакт Описание

Металлооксидные варисторы похожи на резисторы и имеют только два вывода. Эти выводы не имеют полярности, поэтому их можно подключать в обоих направлениях.

Характеристики
  • Диапазон напряжения переменного тока: от 130 до 1000 В
  • Диапазон напряжения постоянного тока: от 175 до 1200 В
  • Сопротивление изоляции: 1000 МОм
  • Рабочая температура: от -55 до +85 ° C

Примечание: Вышеуказанные функции применимы ко всей серии LA Varistor компании Littlefuse. Обратитесь к таблице данных, приведенной ниже, чтобы выбрать соответствующий номер модели в соответствии с вашим приложением.

Как работает MOV?

Термин MOV означает « Металлооксидный варистор ». Как следует из названия варистор, это переменный резистор. Но в отличие от потенциометра сопротивление MOV изменяется автоматически в зависимости от напряжения на нем. Если напряжение на нем увеличивается, сопротивление уменьшается, и наоборот. Это свойство полезно для защиты цепей от скачков высокого напряжения.

Как использовать MOV в вашей цепи?

MOV обычно используется вместе с предохранителем параллельно цепи, которая должна быть защищена, как показано на изображении ниже.

Когда напряжение находится в пределах номинальных значений, сопротивление MOV будет очень высоким, и, следовательно, весь ток течет через цепь, а ток через MOV не течет.

Но когда в главном напряжении возникает скачок напряжения, он появляется прямо на MOV, поскольку он размещен параллельно сети переменного тока. Это высокое напряжение снизит значение сопротивления MOV до очень низкого значения, что сделает его похожим на короткое замыкание.

Это заставляет большой ток течь через MOV, который протекает через предохранитель и отключит цепь от сетевого напряжения.Во время скачков напряжения неисправное высокое напряжение очень скоро вернется к нормальным значениям, в этих случаях продолжительность протекания тока будет недостаточно высокой, чтобы сгорел предохранитель, и схема вернется в нормальный режим работы, когда напряжение станет нормальным. Но каждый раз, когда обнаруживается всплеск, MOV на мгновение отключает цепь, закорачивая себя и каждый раз повреждая себя сильным током. Так что, если вы обнаружите, что MOV поврежден в какой-либо силовой цепи, возможно, это связано с тем, что в цепи было много скачков напряжения.

Приложения
  • Защита от перенапряжения
  • Защита от скачков напряжения
  • Линия защиты линии
  • Защита переключения
  • Арочная защита.

2D Модель

MOV бывают разных размеров и форм. Стандартные обозначения — 7 мм, 10 мм, 14 мм и 20 мм. Размеры всех можно найти в таблице ниже.

Выберите правильные варисторы для защиты цепей от перенапряжения

Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные соединенным друг с другом стабилитронам.

Загрузить статью в формате .PDF

Переходные процессы напряжения Варисторы обладают высокой долговечностью, которая необходима для выдерживания повторяющихся импульсных токов с высокой пиковой нагрузкой и переходных процессов при импульсных скачках большой энергии.Они также предлагают широкий диапазон напряжений, высокое энергопотребление и быструю реакцию на скачки напряжения. Пиковый ток составляет от 20 до 70000 А, а пиковая мощность — от 0,01 до 10000 Дж.

В этом контексте «переходные процессы напряжения» определяются как кратковременные скачки электрической энергии. В электрических или электронных схемах, которые варисторы призваны защищать, эта энергия может выделяться либо предсказуемым образом посредством контролируемых переключающих действий, либо случайным образом индуцироваться в цепи от внешних источников.Общие источники включают:

Молния: Фактически, переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар из облака в облако может повлиять как на воздушные, так и на проложенные кабели. Результат также непредсказуем — удар, который происходит на расстоянии мили, может генерировать 70 В в электрических кабелях, а другой может генерировать 10 кВ на расстоянии 160 ярдов.
Коммутация индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов.Включение и выключение индуктивных нагрузок может привести к возникновению высокоэнергетических переходных процессов, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключена, коллапсирующее магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер с длительностью 400 мс. Из-за различных размеров нагрузки будет различаться форма волны, продолжительность, пиковый ток и пиковое напряжение переходных процессов.После того, как эти переменные будут приближены, разработчики схем смогут выбрать подходящий тип подавителя.
Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами. Он характеризуется очень быстрым временем нарастания и очень высокими пиковыми напряжениями и токами.

Основы варистора

Варисторы в основном состоят из массивов шариков из оксида цинка (ZnO), в которых ZnO был заменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец.В процессе производства MOV эти шарики спекаются (плавятся) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе. После спекания поверхность металлизируется, а выводы крепятся пайкой.

Благодаря высокому рассеянию энергии MOV, они могут использоваться для подавления молний и других высокоэнергетических переходных процессов, встречающихся в линиях электропередач переменного тока. Они способны выдерживать большие количества энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по потоку.MOV, которые также используются в цепях постоянного тока, имеют различные форм-факторы (рис. 1) .

% {[data-embed-type = «image» data-embed-id = «5df275ecf6d5f267ee20f227» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig1 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_2015_01_0215EEpng? auto = format & fit = max & w = 1440 «data-embed-caption =» «]}%
1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого спектра применений. Тип свинцовых дисков является наиболее распространенной версией.

Многослойные варисторы

Многослойные варисторы (MLV) обращаются к определенной части спектра переходных напряжений: среде печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, индуктивного переключения нагрузки и даже остатки грозовых перенапряжений в противном случае могут достичь чувствительных интегральных схем на плате.MLV также изготавливаются из материалов ZnO, но они изготавливаются с переплетенными слоями металлических электродов и производятся в керамических корпусах без свинца. Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжений, превышающих их номинальное напряжение.

MLV

выпускаются с кристаллами разного размера и способны рассеивать значительную энергию скачков напряжения для своего размера. Таким образом, они подходят как для систем подавления переходных процессов, так и для линий передачи данных и источников питания.

Руководство по применению

При выборе подходящего MOV для конкретного применения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, в том числе:

• Условия цепи, такие как пиковое напряжение и ток во время скачка напряжения
• Постоянное рабочее напряжение MOV (должно быть на 20% выше максимального напряжения системы при нормальных условиях)
• Количество скачков, которое должен выдержать MOV
• Допустимое допустимое отклонение — сквозное напряжение для защищаемой цепи
• Любые стандарты безопасности, которым цепь должна соответствовать

Для простоты в этом примере предположим, что целью является выбор низковольтного дискового MOV постоянного тока для следующих условий и требований схемы:

• Цепь постоянного тока 24 В
• Форма кривой тока для скачка напряжения 8 × 20 мкс; форма волны напряжения равна 1.2 × 50 мкс (это типичные стандартные формы сигналов)
• Пиковый ток во время скачка = 1000 A
• MOV должен выдерживать 40 скачков
• Другие компоненты схемы (управляющая ИС и т. Д.) Должны быть рассчитаны на выдерживает 300 В максимум

Шаг 1: Чтобы найти номинальное напряжение MOV, учитывайте запас в 20% для учета выбросов напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что ни один варистор не имеет номинального напряжения ровно 28,8 В, проверьте спецификации для 31-В постоянного тока MOV.

% {[data-embed-type = «image» data-embed-id = «5df275ecf6d5f267ee20f229» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = »Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Таблица «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Table = max & w = 1440 «data-embed-caption =» «]}%

Шаг 2: Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к перенапряжению 1000-A.Изучив приведенную выше таблицу, можно предположить, что MOV диаметром 20 мм с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер детали V20E25P) является возможным решением, отвечающим требованиям.

Шаг 3: Используйте кривые номинальных значений импульсов (рис. 2) в той же таблице данных, чтобы определить импульсные характеристики относительно 40 импульсов при требовании 1000-A.

% {[data-embed-type = «image» data-embed-id = «5df275ecf6d5f267ee20f22b» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig2 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig2.png?auto=format&fit=max&w=1440 «data-embed]-caption =» € 2. В таблице данных приведена кривая мощности импульсов; этот пример для 20-мм MOV.

Шаг 4: Используйте кривую V-I (рис. 3) в таблице данных MOV, чтобы убедиться, что напряжение утечки будет меньше предельного значения 300 В.

% {[data-embed-type = «image» data-embed-id = «5df275ecf6d5f267ee20f22d» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig3 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig3.png?auto=format&fit=max&w=1440 «data-embed-caption %OV 3.» Data-embed-caption = «Data-embed-caption


будет
. также имеют кривую зависимости напряжения от тока, такую ​​как эта кривая максимального напряжения фиксации для 20-мм устройства на рис. 2.

Защита MOV от теплового разгона

Поглощение варистором переходной энергии во время скачка напряжения вызывает локальный нагрев внутри компонента, что в конечном итоге приводит к его ухудшению.Если оставить без защиты, деградация варистора может увеличить нагрев и тепловой пробой. Таким образом, все большее количество устройств защиты от перенапряжения на основе варисторов предлагает встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей пожара, даже в экстремальных условиях, когда варистор выходит из строя или при длительном перенапряжении.

MOV

рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих пределов путем применения устойчивого состояния аномального перенапряжения может привести к перегреву и повреждению MOV.

MOV имеют тенденцию к постепенному ухудшению после большого всплеска или нескольких небольших всплесков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже при нормальных условиях, таких как рабочее напряжение 120 или 240 В переменного тока. Тепловой разъединитель, расположенный рядом с MOV (рис. 4) , можно использовать для определения повышения температуры MOV, пока он продолжает ухудшаться до состояния конца срока службы. В этот момент тепловой разъединитель размыкает цепь, удаляя из нее неисправный MOV и тем самым предотвращая потенциальный катастрофический отказ.

% {[data-embed-type = «image» data-embed-id = «5df275ecf6d5f267ee20f22f» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig4 «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_fau&figit=0215EE = max & w = 1440 «data-embed-caption =» «]}%
4. Тепловое отключение может размыкать цепь, предотвращая катастрофический отказ неисправного MOV.

Драйверы светодиодов и освещения

Как правило, большинство источников питания светодиодов являются источниками постоянного тока и часто называются драйверами светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения требований к перенапряжениям более низкого уровня.

Обычно драйверы рассчитаны на перенапряжение в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Однако, чтобы обеспечить более высокий уровень защиты от перенапряжения для освещения, установленного на открытом воздухе в условиях воздействия перенапряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.

MOV Пример конструкции: Промышленные двигатели

Одним из аспектов защиты двигателя переменного тока является способность самого двигателя выдерживать импульсные перенапряжения. В параграфе 20.36.4 стандарта NEMA для двигателей-генераторов MG-1 единичное значение перенапряжения определяется следующим образом:

u × V LL (или 0,816 × V LL )

, где VL-L — линия-к- линейное напряжение системы переменного тока.

Для переходного времени нарастания от 0,1 до 0,2 мкс требуется удвоенное значение импульсной способности обмоток статора.Когда время нарастания достигает 1,2 мкс или больше, указывается в 4,5 раза больше единицы. В случае внешних переходных процессов, таких как молния, это будет соответствовать допустимому импульсному напряжению 918 В PEAK для двигателя 230 В (ток полной нагрузки = 12 А) в условиях высокого напряжения 250 В. (Удары молнии могут превышать эти значения, поэтому обмоткам статора также потребуется элемент подавления для защиты.)

Загрузить статью в формате .PDF

Рабочие температуры — еще одно соображение.Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до + 70 ° C. Это будет в пределах номинала MOV от -40 до + 85 ° C, и не будет требований к снижению импульсного тока или энергии в этом диапазоне температур. Принимая во внимание допуск на высокое напряжение, MOV с номиналом 275 В переменного тока может быть выбранным для этого примера. При использовании однофазного двигателя среднего размера мощностью 2 л.с. требуемый импульсный ток MOV будет определяться пиковым током, наведенным в источнике питания двигателя. Предполагая, что электродвигатель обслуживается, а полное сопротивление линии составляет 2 Ом, было определено, что возможен удар молнии 3 кА.
В этом случае в одном листе данных указано максимальное напряжение зажима 3 кА при 900 В, что ниже предполагаемой выдерживаемой способности обмотки статора 918 В. Если бы срок службы двигателя был оценен в 20 лет и определен как способный выдержать 80 переходных процессов молнии в течение срока службы, кривые номинальных импульсов в таблице данных подтвердили бы рейтинг 100+ скачков напряжения.

Для более подробного объяснения того, как согласовать MOV с приложениями, ознакомьтесь с «Руководством по проектированию варисторов постоянного тока».”

Что такое варистор? Определение, конструкция, работа, характеристики, преимущества, недостатки и применение Варистора

Определение : Варистор — это полупроводниковое устройство с двумя выводами, которое защищает электрические и электронные устройства от переходных процессов перенапряжения. Его сопротивление зависит от приложенного входного напряжения.

Слово варистор формируется путем комбинирования варистора и resi stor .Он также известен как резистор, зависящий от напряжения , VDR , сопротивление которого изменяется автоматически при соответствующем изменении напряжения на нем.

Он всегда подключается к защищаемому устройству. В основном это делается для защиты схемы от скачков напряжения.

На рисунке ниже показано символическое изображение варистора:

Они в основном используются для защиты схемы от колебаний высокого напряжения.

Конструкция варистора

Варисторы образуются при вдавливании кристаллов карбида кремния или оксидов металлов в керамический материал.

После высыхания материала производится спекание при высокой температуре. Электрические характеристики устройства зависят от температуры и атмосферных условий.

Для обеспечения хороших электрических контактов контакты материала металлизируются серебром или медью. Затем к контактам припаиваются выводы, комплектуются и кодируются варисторы.

На рисунке ниже показан варистор дискового типа:

В настоящее время это самые распространенные клещи , которые могут использоваться в широком диапазоне напряжений.Это нелинейное устройство , которое поглощает разрушительную энергию и рассеивает ее в виде тепла, чтобы предотвратить повреждение системы.

Обычно при его производстве используется оксид цинка , , поэтому он также известен как варистор на основе оксида металла .

На рисунке ниже показана структура металлооксидного варистора:

Здесь варистор состоит на 90% из оксида цинка, а остальное — из присадочного материала , образующего переход.Стандартный карбид кремния отличается от варистора на основе оксида металла тем, что MOV имеет меньший ток утечки, а его рабочая скорость выше.

Работа и характеристики варистора

Прежде чем приступить к работе, давайте сначала поймем взаимосвязь между напряжением и сопротивлением варисторов.

На рисунке ниже показана кривая зависимости сопротивления от напряжения для варистора:

Варисторы проявляют необычное поведение в случае сопротивления.Как мы видим, когда напряжение низкое, сопротивление на нем высокое. Но сопротивление быстро падает с увеличением напряжения выше номинального.

Давайте теперь посмотрим на работу варистора в деталях:

Когда на устройство подается определенное низкое напряжение, оно создает высокое сопротивление, из-за чего через него протекает очень слабый ток. По мере того, как напряжение увеличивается и достигает напряжения фиксации, т. Е. Номинального напряжения, ток увеличивается.

В это время замечается изменение в работе варисторов. Таким образом, после этого напряжения устройство, которое до сих пор работало как изолятор, теперь начинает вести себя как проводник. Таким образом, после номинального напряжения сопротивление, предлагаемое им, станет очень низким, позволяя проходить через него очень сильному току.

Таким образом, говорят, что напряжение имеет нелинейную характеристику с током .

На рисунке ниже показана вольт-амперная характеристика варистора:

Здесь, как мы видим, пока не будет достигнуто напряжение фиксации, устройство остается в непроводящем состоянии.Таким образом, мы можем видеть линейную зависимость между напряжением и током. В это время через него протекает очень малый ток утечки. Из-за оказываемого им высокого сопротивления.

Однако, после этого конкретного уровня напряжения, проводящее состояние достигается варисторами. Таким образом, мы можем видеть, что сопротивление стало очень низким, и через него проходит большой ток даже после того, как напряжение ограничено после номинального напряжения.

Преимущества варистора

  • Обеспечивает отличную защиту от перенапряжения.
  • Поскольку не показывает полярного эффекта , двунаправленность достигается легко.

Недостаток варистора

Применение варистора

Он широко применяется в защите устройств, таких как защита линии связи, микропроцессора и защиты источников питания. В защите переменного тока, защите от перенапряжения кабельного телевидения и т. Д.

Каковы функции и применение варистора?


Введение

Варистор, резистивное устройство с нелинейными вольт-амперными характеристиками, которое в основном используется для ограничения напряжения и поглощения избыточного тока для защиты чувствительных устройств, когда цепь находится под повышенным напряжением.Его английское название — «резистор, зависящий от напряжения», сокращенно «VDR». Материал резистора — полупроводник, так что это своего рода полупроводниковый резистор.

Варистор — это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым реализуя защиту более поздней схемы.

В этой статье мы подробно расскажем о варисторе, его функциях, применении, параметрах и так далее.


Каталог

Введение

I Структурные характеристики варистора

II Базовые характеристики

II7 9066 9353 9353 Защита 9353 9353

2.2 Ударопрочность

2.3 Срок службы

III Параметры варистора

IV Типы варистора

4.1 Классификация по компоновке

4.2 Классификация по материалам применения

4.3 Классификация по вольт-амперным характеристикам

В Выбор варисторов

Вольт

5.2 Выбор расхода

5.3 Выбор напряжения зажима

5.4 Выбор CP

5.5 Сопоставление сопротивлений

VI Расчет напряжения варистора

6.1 Обычно вычисляется с U1mA = KUac

3 Номинальный ток разряда 9000 6,2

6.3 Параллельное соединение варисторов

VII Функции варистора

VIII Основные области применения варисторов

8.1 Молниезащита

8.2 Защита контура

8.3 Защита переключателя

8.4 Защита устройств


I Структура В арристор

В отличие от обычных резисторов варисторы изготавливаются на основе нелинейных характеристик полупроводниковых материалов.

Рисунок 1. Форма варистора, а его внутренняя структура показана на рисунке 2.

Рисунок 1.

Рисунок 2.

Обычные резисторы подчиняются закону Ома, а напряжение и ток Варисторы имеют особую нелинейную зависимость. Когда напряжение на обоих концах варистора ниже номинального номинального напряжения, значение сопротивления варистора близко к бесконечному, и через внутреннюю часть варистора почти не протекает ток.Когда напряжение на обоих концах варистора немного выше номинального номинального напряжения, варистор выйдет из строя и быстро включится, а рабочий ток резко возрастет от состояния с высоким импедансом к состоянию с низким импедансом. Когда напряжение на обоих концах ниже номинального номинального напряжения, варистор может вернуться в состояние высокого импеданса. Когда напряжение на обоих концах варистора превышает максимальное предельное напряжение, варистор полностью выходит из строя и не восстанавливается.

На рисунке ниже показана типовая схема применения варистора.

Типовая схема применения варистора


II Basic C Характеристики В aristor

00030003 Защита Когда интенсивность удара (или импульсный ток Isp = Usp / Zs) источника удара не превышает заданное значение, ограничивающее напряжение варистора не должно превышать импульсное выдерживаемое напряжение (Urp) защищаемого объекта.

2,2 Удар R esistance

Сам варистор должен выдерживать указанный ударный ток, энергию удара и среднюю мощность при многократных ударах друг за другом.

2,3 Срок службы C Характеристики

Один из них — это срок службы при непрерывном рабочем напряжении, то есть варистор должен надежно работать в течение определенного времени (часов) при указанной температуре окружающей среды и напряжении системы. условия; другой — это срок службы при ударе, то есть количество раз, когда указанное воздействие может быть надежно выдержано.

2,4 После включения варистора в систему, помимо выполнения защитной роли «предохранительного клапана», он будет вызывать некоторые дополнительные эффекты, которые называются «вторичным эффектом». Это не должно снижать нормальную работу системы. В настоящее время необходимо учитывать три основных фактора. Первый — это емкость самого варистора (от десятков до десятков тысяч пФ), второй — ток утечки при системном напряжении, а третий — влияние нелинейного тока варистора на другие цепи через связь сопротивление источника.


III P Параметры Варистора

Основными параметрами варистора являются номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток разряда, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, сопротивление изоляции, статическая емкость и т. д.

3.1 Номинал A резистор В Напряжение

MYG05K предусматривает, что проходящий ток равен 0.1 мА, MYG07K, MYG10K, MYG14K и MYG20, а номинальное напряжение относится к напряжению на обоих концах варистора при прохождении через постоянный ток 1 мА.

3,2 Максимум P Допустимое В Напряжение

Это напряжение делится на переменное и постоянное. Если это переменный ток, это относится к действующему значению переменного напряжения, разрешенному варистором, которое выражается в ACrms. Поэтому варистор с максимально допустимым напряжением следует выбирать под действующее значение переменного напряжения.В цепях переменного тока должно быть: min (U1mA) ≥ (2,2 ~ 2,5) Uac, а «Uac» — это эффективное значение рабочего напряжения переменного тока в цепи. В цепях постоянного тока должно быть: мин (U1mA) ≥ (1,6) Udc, а «Udc» — это номинальное рабочее напряжение постоянного тока в цепи. Вышеупомянутые принципы в основном предназначены для обеспечения соответствующего запаса прочности варистора при его включении в цепь источника питания.

3,3 D ischarge C urrent C apacity

Это относится к максимальному значению импульсного (пикового) тока, разрешенному для прохождения через варистор при определенных условиях (наложение стандартного импульсного тока при заданные временные интервалы и количество раз).Обычно перенапряжение — это импульс или серия импульсов. В экспериментальном варисторе используются два вида ударных волн: одна — волна 8/20 мкс, то есть импульсная волна с напором волны 8 мкс и временем хвоста волны 20 мкс, а другая — прямоугольная волна длительностью 2 мс, как показано ниже. рисунок:


3,4 Максимум L имитировано В Напряжение

Это относится к максимальному напряжению, которое может выдерживаться на обоих концах варистора, и представляет собой напряжение, генерируемое на обоих концах. заканчивается, когда заданный импульсный ток Ip проходит через варистор.

3,5 Максимум E Энергия (допуск по энергии)

Энергия, потребляемая варисторами, обычно рассчитывается по следующей формуле

W = kIVT (Дж)

I —— Пиковое значение текучести через варистор

В—— Напряжение на обоих концах варистора при протекании тока I через варистор

Т —— Длительность тока

к —— Коэффициент формы сигнала тока I

2 мс, прямоугольная волна k = 1

8/20 мкс волна k = 1.4

Волна 10/1000 мкс k = 1,4

При прямоугольной форме волны 2 мс варистор поглощает энергию до 330 Дж на квадратный сантиметр; когда волна 8/20 мкс, плотность тока может достигать 2000 А на кубический сантиметр, что указывает на то, что его пропускная способность и устойчивость к энергии очень велики.

В общем, чем больше диаметр кристалла варистора, тем больше его допуск по энергии и больше выдерживаемый ток. При использовании варисторов мы также должны учитывать перенапряжение, которое часто имеет меньшую энергию, но более высокую частоту, например, перенапряжение в течение нескольких десятков секунд, одной или двух минут.В это время мы должны учитывать среднюю мощность, которую могут поглотить варисторы.

3,6 В oltage R atio

Это отношение значения напряжения, генерируемого при токе варистора 1 мА, к значению напряжения, генерируемому при токе варистора 0,1 мА.

3,7 Номинальная P ower

Максимальная мощность, которая может потребляться при указанной температуре окружающей среды.

3.8 Максимальный пиковый ток

Один раз: максимальное значение тока со стандартной формой волны 8/20 мкс и скоростью изменения напряжения варистора все еще в пределах ± 10%. 2 раза: Максимальное значение тока двойного удара с током стандартной формы волны 8/20 мкс. Интервал времени между двумя ударами составляет 5 минут, при этом скорость изменения напряжения варистора все еще находится в пределах ± 10%.

3.9 Коэффициент остаточного напряжения

Когда ток, протекающий через варистор, имеет определенное значение, напряжение, генерируемое на обоих концах варистора, называется остаточным напряжением. Коэффициент остаточного напряжения относится к отношению остаточного напряжения к номинальному напряжению.

3.10 Ток утечки

Ток утечки, также известный как ток ожидания, относится к току, протекающему через варистор при заданной температуре и максимальном постоянном напряжении.

3.11 Температурный коэффициент напряжения

Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в указанном диапазоне температур (20 ~ 70 ℃). То есть относительное изменение двух концов варистора, когда ток через варистор остается постоянным, а температура изменяется на 1 ℃.

3.12 Текущий температурный коэффициент

Он относится к относительному изменению тока, протекающего через варистор, когда напряжение на обоих концах варистора остается постоянным, а температура изменяется на 1 ℃.

3.13 Коэффициент нелинейности напряжения

Это отношение значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

3.14 Сопротивление изоляции

Это значение сопротивления между выводным проводом (выводом) варистора и изолирующей поверхностью резистора.

3.15 Статическая емкость

Это относится к внутренней емкости самого варистора.


IV Тип s из V арристор

Варисторы можно классифицировать по компоновке, производственному процессу, применяемым материалам и вольт-амперным характеристикам.

4.1 Классификация по схеме

Его можно разделить на варистор перехода, варистор объемного типа, варистор с одним слоем частиц, варистор с тонкой пленкой и так далее.

4.2 Классификация по материалам применения

Его можно разделить на варистор из оксида цинка, варистор из карбида кремния, варистор из оксида металла, варистор из германия (кремния), варистор из феррита бария и т. Д.

4.3 Классификация по вольтамперным характеристикам

Его можно разделить на симметричный варистор (без полярности) и несимметричный варистор (с полярностью).


В Выбор с варисторов

При выборе варистора необходимо учитывать особые условия цепи. Как правило, следует соблюдать следующие принципы.

5.1 Выбор напряжения варистора V1mA

В зависимости от напряжения источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не может превышать значение «максимального непрерывного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), которое составляет VDC ≥ VIN; Для выбора варистора источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети, а для выбора значения напряжения варистора варистора должно быть достаточно допуска для выбора. варистора. Общее колебание внутренней электросети составляет 25%.Следует выбрать варистор с напряжением от 470 В до 620 В. Выбор варистора с более высоким напряжением может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

5.2 Выбор расхода

Номинальный разрядный ток варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан в соответствии со значением более 10 ударов на кривой долговечности варистора, что составляет около 30% (0.3IP) максимальной скорости импульсного потока.

5.3 Выбор напряжения фиксации

Напряжение фиксации варистора должно быть меньше максимального напряжения (безопасного напряжения), которое может выдержать защищаемый компонент или устройство.

5.4 Выбор CP

Для высокочастотных сигналов передачи Cp должно быть меньше, и наоборот.

5.5 Сопоставление сопротивлений

Соотношение между внутренним сопротивлением R (R≥2Ω) защищаемого компонента (цепи) и переходным внутренним сопротивлением Rv варистора: R≥5R.Для защищаемых компонентов с малым внутренним сопротивлением по возможности используйте варистор с большой емкостью, не влияя на скорость передачи сигнала.


VI Расчет В Арстор В Напряжение

6,1 Обычно C мА, KU0003 = мА, KU0004 = мА, KU0004 = мА, KU000 = U0004 — коэффициент, связанный с качеством электроэнергии. Как правило, K = (2 ~ 3), города с лучшим качеством электроэнергии могут принимать меньшие, а сельские районы с низким качеством электроэнергии (особенно в горных районах) должны занимать более крупные; Uac — среднеквадратичное значение напряжения источника питания переменного тока.Для грозозащитного разрядника 220-240 В переменного тока подходит варистор с напряжением 470-620 В. Выбор варистора с более высоким напряжением может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

Общий расчет напряжения варистора

6,2 Расчет номинального тока разряда

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования.Номинальный ток разряда должен быть рассчитан в соответствии со значением более 10 ударов на кривой долговечности варистора, что составляет около 30% (0,3IP) от максимальной скорости импульсного потока.

Расчет номинального тока разряда

6,3 Параллельный C Подключение В Арристоры

Арристоры

Когда ток варистора не соответствует номинальному току, варистор не соответствует номинальному току следует использовать параллельно.Иногда, чтобы снизить предельное напряжение и обеспечить соответствие номинального тока разряда требованиям, несколько варисторов также используются параллельно. Важно отметить, что при параллельном использовании варисторов необходимо строго выбирать параметры (например, ΔU1mA≤3V , Δα≤3) для согласования, чтобы обеспечить равномерное распределение тока.

Параллельное соединение варисторов


VII Функции варистора

Самая большая характеристика варистора заключается в том, что когда приложенное к нему напряжение ниже порогового значения «UN», ток, протекающий через него, чрезвычайно мал , что эквивалентно закрытому клапану.Когда напряжение превышает UN, его значение сопротивления уменьшается, что вызывает скачок тока, протекающего через него, и мало влияет на другие цепи, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. С помощью этой функции можно подавить аномальные перенапряжения, которые часто возникают в цепях, и защитить цепи от перенапряжений.

Функция защиты варистора получила широкое распространение. Например, в силовой цепи домашних телевизоров используется варистор для выполнения функции защиты от перенапряжения.Когда напряжение превышает пороговое значение, варистор отражает свою фиксирующую характеристику, снижает чрезмерно высокое напряжение и заставляет пост-каскадную схему работать в безопасном диапазоне напряжений.

Варисторы в основном используются для защиты от переходных перенапряжений в схемах, но из-за того, что их вольт-амперные характеристики аналогичны полупроводниковым регуляторам, они также имеют множество функций компонентов схемы. Например, варистор представляет собой своего рода стабилизатор постоянного тока высокого напряжения и небольшого тока, а стабильное напряжение может достигать тысяч вольт, что недостижимо для кремниевого регулятора; варистор может использоваться как компонент обнаружения флуктуации напряжения; может использоваться как элемент сдвига уровня постоянного тока; может использоваться как флюоресцентный стартовый элемент; может использоваться как элемент выравнивания напряжения.


VIII Основные области применения варисторов

8.1 Lightning P rotection

Удары молнии могут вызвать атмосферные перенапряжения, которые в основном относятся к индуктивным перенапряжениям. Перенапряжение, возникающее в результате удара молнии в линии передачи, называется прямым перенапряжением молнии, и его значение напряжения особенно велико, что может нанести большой вред при напряжении 102 ~ 104 В.Поэтому для наружных систем электроснабжения и электрооборудования необходимо принимать меры по предотвращению перенапряжения. Использование варисторных разрядников из ZnO очень эффективно для устранения атмосферных перенапряжений. Обычно он подключается параллельно к электрическому оборудованию. Если электрооборудование требует низкого остаточного напряжения, можно использовать многоуровневую защиту.

Ниже приведены несколько распространенных схем защиты, в которых используются разрядники из ZnO для устранения атмосферных перенапряжений: рис. (а) — способ подключения разрядника из ZnO для трехфазного электрооборудования, рис.(b) — способ подключения разрядника из ZnO для системы управления электромагнитным клапаном, а на рис. (c) — способ подключения разрядника из ZnO между источником питания и нагрузкой.

Молниезащита

8.3 Защита переключателя

Когда цепь с индуктивной нагрузкой внезапно отключается, ее перенапряжение может в несколько раз превышать напряжение источника питания. Перенапряжение может вызвать дугу и искровой разряд между контактами, что может повредить контакты, такие как контакторы, реле и электромагнитные муфты, и сократить срок службы устройства.Варистор имеет шунт для высоких напряжений, поэтому его можно использовать для защиты контактов, предотвращая искровые разряды в момент разрыва контакта. Способ подключения варисторного защитного выключателя или контакта показан на рисунке ниже. Когда варистор подключен параллельно катушке индуктивности, сухое напряжение переключателя и сухое напряжение варистора являются суммой остаточного напряжения варистора. Энергия, поглощаемая варистором, — это энергия, запасенная катушкой индуктивности. Когда варистор подключен параллельно переключателю, перенапряжение на переключателе равно остаточному напряжению варистора, а энергия, поглощаемая варистором, немного больше, чем энергия, запасенная в катушке индуктивности.

Защита коммутатора

8.4 Защита устройства

Чтобы предотвратить возгорание полупроводниковых устройств из-за перенапряжения, возникающего по некоторым причинам, для их защиты часто используются варисторы. На рисунке ниже показана схема применения транзистора защиты варистора. Повреждение транзистора из-за перенапряжения может быть эффективно подавлено между коллектором и эмиттером транзистора или варистором первичного шунта трансформатора.При нормальном напряжении варистор находится в состоянии высокого импеданса с минимальным током утечки. Под воздействием перенапряжения варистор быстро переходит в состояние с низким импедансом, и энергия перенапряжения поглощается варистором в виде тока разряда. После прохождения скачка напряжения, когда цепь или компонент подвергается действию нормального напряжения, варистор возвращается в состояние с высоким импедансом.

Защита устройства


Вам также может понравиться:

Как проверить различные типы резисторов с помощью указательного мультиметра?

Как проверить сопротивление заземления?

Что такое гигантское магнитосопротивление (ГМС)?

Подтягивающий резистор и понижающий резистор

Как использовать устройства защиты от электростатического разряда / перенапряжения: дисковые варисторы | Примечание по применению

Преимущества различных типов варисторов

Варисторы

могут использоваться в качестве подавителей для защиты устройств и цепей от переходных аномальных напряжений, включая электростатический разряд (электростатический разряд) и удар молнии.
Для защиты от относительно большого импульсного тока (от 100А до 25кА) подходят дисковые варисторы с выводами и дисковые варисторы SMD. Для защиты от повышенного импульсного тока (примерно 25 кА и более) подходят блочные варисторы и ленточные варисторы.

Ниже приведены подробные приложения.



Пример применения: Защита от перенапряжения для входной части импульсного источника питания

Различные типы небольших, легких и высокоэффективных импульсных источников питания часто используются в качестве источников питания электронных устройств.В импульсном источнике питания перед силовой цепью размещается ЭМС-фильтр для предотвращения шума проводимости, который проникает через силовую линию. Однако, поскольку грозовые перенапряжения и коммутационные перенапряжения нельзя предотвратить только с помощью фильтра ЭМС, схема защиты от перенапряжения с использованием дисковых варисторов размещается перед фильтром ЭМС. Комбинации с ограничителями перенапряжения и другими устройствами, а также их схемные конфигурации различаются. Подобные схемы защиты встроены в адаптеры переменного тока, которые используются для портативных компьютеров и т.п.Варисторы также используются для удлинителей и розеток с молниезащитой.

Рис.1 Пример схемы защиты от импульсных перенапряжений для импульсного блока питания

Пример применения: Защита от перенапряжения для светодиодной системы освещения

Светодиодная система освещения состоит из светодиодных матриц с несколькими подключенными светодиодами, драйвера (схемы управления), схемы управления и источника питания светодиодов, а также подсистем, включая источник питания для связи.Многие варисторы микросхемы используются для защиты от электростатических разрядов и защиты от перенапряжения для интерфейсной части, а варисторы необходимы для защиты от электростатических разрядов. Светодиод — это устройство, в котором используется полупроводник, и без защиты он может быть разрушен электростатическим разрядом или скачком напряжения. По этой причине параллельно светодиодному устройству устанавливается варистор.

Рис.2 Защита светодиодного устройства в системе светодиодного освещения

Пример применения: Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

В момент отключения питания устройств с индуктивными нагрузками, использующих катушки, такие как двигатели, соленоиды и электромагнитные клапаны, устройства разряжают магнитную энергию, которая была накоплена в качестве противодействующей электродвижущей силы, и генерируют большое импульсное напряжение.Для защиты устройств от скачков напряжения параллельно нагрузке подключают варистор.

Рис. Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

Пример применения: Защита от перенапряжения для двигателя с электромагнитным тормозом и защита контакта его выключателя

Двигатели переменного тока

, которые используются в промышленных устройствах, включают двигатель с тормозом.Электромагнитный тормоз с использованием электромагнита, якоря (подвижной стальной пластины) и пружины может остановить вращение двигателя сразу после выключения переключателя. Однако, поскольку электромагнит представляет собой индуктивную нагрузку, использующую катушку, в момент отключения тока катушка создает противодействующую электродвижущую силу, и возникает большое импульсное напряжение, которое повреждает контакт переключателя. Для поглощения перенапряжения и защиты контакта переключателя подключен варистор.

Рис.4 Защита касания выключателя электродвигателя с электромагнитным тормозом

Пример применения: защита от перенапряжения для твердотельного реле (SSR) и защита его выходной клеммы

SSR (твердотельное реле), использующее полупроводниковый элемент (например, тиристор), используется во многих промышленных устройствах с большим током. Это реле, электрически изолированное оптопарой, и, как преимущество, оно может безопасно управлять включением и выключением устройства с помощью сигналов включения и выключения очень небольшого электрического тока источника постоянного тока.Однако из-за того, что включается и выключается большой ток, выходной терминал легко повреждается из-за импульсного перенапряжения. Чтобы подавить это, на выходной стороне параллельно подключают варистор (некоторые твердотельные реле имеют встроенные варисторы).

Рис.5 Защита выходной клеммы твердотельного реле (SSR)

Пример применения: Защита от перенапряжения от сброса нагрузки и спада поля

Когда ток, протекающий через индуктивную нагрузку, использующую катушку, такую ​​как двигатель и генератор переменного тока (электрогенератор), отключается, генерируется большое импульсное напряжение из-за создания противодействующей электродвижущей силы.

Сброс нагрузки — это проблема перенапряжения, которая возникает, когда линия аккумуляторной батареи отключена по такой причине, как отсоединение клеммы аккумуляторной батареи, когда питание подается от генератора переменного тока на аккумулятор. Спад поля — это проблема с отрицательным импульсным напряжением, которое возникает при ошибочной смене полярности батареи.
Поскольку оба они могут достичь ЭБУ и вызвать неисправность, ЭБУ должны пройти испытание на сброс нагрузки и испытание на спад в поле. Дисковый варистор используется для защиты от перенапряжения.

Рис.6 Защита от сброса нагрузки и перенапряжения варистором

Когда питание от генератора переменного тока подается на аккумулятор, отключение аккумуляторной линии приводит к возникновению большого скачка напряжения. Варистор блокирует импульсное напряжение для защиты ЭБУ и других устройств.
Испытание на невосприимчивость и испытание на выбросы для ЭБУ (ISO10605)

Оценочные тесты ЭМС для ЭБУ включают тест на невосприимчивость для подтверждения того, что ЭБУ не неисправен, и тест на выбросы для подтверждения того, что ЭБУ спроектирован так, чтобы не генерировать шум, превышающий установленный предел.

Тест на иммунитет Стандартный Описание
Тест ESD ISO10605 Оценивает допуск, применяя ESD
Испытание на устойчивость к радиочастотам ISO11452-2, -3, -4 Оценивает переносимость с помощью сильной радиоволны
Испытание на самосвал под нагрузкой ISO7637-2 Оценивает допуск путем подачи положительного импульсного напряжения
Тест на затухание поля Оценивает допуск путем подачи отрицательного импульсного напряжения
Испытание на выбросы Стандартный Описание
Испытание на излучение CISPR25 Оценивает радиационный шум от ЭБУ
Испытание на кондуктивные выбросы Оценивает шум проводимости от ЭБУ

Пример применения: Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных систем производства энергии

Электроэнергия постоянного тока, генерируемая солнечной панелью, отправляется в стабилизатор питания через соединительную коробку, усиливается преобразователем постоянного тока в постоянный, преобразуется в электричество переменного тока с помощью инвертора, а затем отправляется в коммерческую энергосистему.Чтобы защитить его цепь от индуктивного удара молнии и т.п., схемы защиты по напряжению с использованием варисторов вставляются во входную и выходную части соединительной коробки и стабилизатора мощности. Сочетание с разрядником для защиты от перенапряжения увеличивает его надежность.

Рис.7 Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных энергосистем

Пример применения: Защита от перенапряжения для важных устройств с помощью грозового трансформатора

Устройство, называемое трансформатором молнии, используется для защиты важных устройств, таких как серверы в центрах обработки данных и телефонные коммутаторы, от грозового перенапряжения.Это комбинация SPD (устройства защиты от перенапряжения или молниезащиты) и специального трансформатора, первичная обмотка и вторичная обмотка которого защищены электростатическим экраном, а скачок напряжения, который не может быть устранен с помощью SPD, проходит через заземленные материалы электростатического экрана и разряжается на земля. Он отлично справляется с синфазным индуктивным разрядом молнии.

Рис.8 Пример защиты от грозовых перенапряжений с грозовым трансформатором

Пример применения: Защита от скачков большой энергии в промышленных устройствах

Блочные варисторы и ленточные варисторы — это высокоэнергетические изделия, используемые для источников питания промышленных устройств и устройств связи, силовых распределительных устройств на электростанциях и подстанциях, железнодорожных сигнальных систем и др., И их преимуществом является чрезвычайно высокая стойкость к импульсным токам.Блочный варистор находится в корпусе и имеет винтовые клеммы, а ременной варистор имеет плоские (плоские) клеммы с отверстиями, которые закреплены винтами (или припаяны). Также используется разрядник для защиты линии переменного тока.

Рис. 9 Пример защиты от скачков напряжения в промышленном устройстве

Связанные страницы

  • ■ Схема устройств защиты от напряжения

    Широкий модельный ряд устройств защиты от напряжения

    TDK включает как варисторы (оксид цинка), так и разрядники (разрядные трубки).Их можно использовать в различных приложениях от малых до больших токов.

■ Порталы по дисковым варисторам

Цепь

, работа и ее характеристики

Пассивное двухконтактное полупроводниковое устройство, которое используется для защиты электронных и электрических цепей, называется варистором.Он защищает от перенапряжения путем ограничения напряжения. Он также известен как резистор, зависящий от напряжения (VDR) или нелинейный резистор. Сопротивление варистора изменяется из-за изменения напряжения на нем. Варисторы представляют собой неомические переменные резисторы с симметричными характеристиками тока и напряжения, применимые как для постоянного, так и для переменного тока. При работе на переменном токе они подключаются либо между фазами, либо между фазами и нейтралью. При работе на постоянном токе они подключаются к положительным или отрицательным клеммам для стабилизации постоянного тока, чтобы защитить всю электронную схему от перенапряжения.Варистор из оксида металла — одна из форм варистора, используемого в различных приложениях защиты от перенапряжения. В этой статье подробно описывается металлооксидный варистор (MOV).

Металлооксидный варистор — основы

Определение: Наиболее часто используемой формой варистора является металлооксидный варистор, который также является зависимым от напряжения и нелинейным резистором, подключенным к электрическим и электронным цепям для защиты от переключателя. , грозовых скачков и для достижения высокого подавления переходных напряжений.

Варистор с оксидом металла

MOV состоит из оксидов цинка, причем оксиды металлов, такие как кобальт, висмут и марганец, вставлены между двумя металлическими пластинами, которые служат двумя электродами. Сопротивление MOV можно изменять, чтобы защитить цепь источника питания от скачков напряжения из-за высокого напряжения. Он всегда используется в качестве защитного устройства в цепях, где питание берется напрямую от сети переменного тока.

Металлооксидный варистор содержит два электрода и физически выглядит как конденсатор.Он подключается в любом направлении, потому что нет полярности для электродов, таких как резистор. Для повышения энергоэффективности MOV включен параллельно цепи, которая должна быть защищена. Обеспечивая более высокое номинальное напряжение в цепи, она подключается последовательно. Подключение MOV обязательно для защиты схемы от скачков высокого напряжения из-за прямого источника питания от сети. Базовое обозначение варистора или металлооксидного варистора показано ниже.

Цепь металлооксидного варистора

MOV помещается между сетью электропитания, и схема, которая должна быть защищена от скачков высокого напряжения, показана ниже.Сопротивление MOV изменяется автоматически в зависимости от напряжения, приложенного к цепи.

MOV Circuit

Как видно из рисунка выше, MOV используется параллельно со схемой, которая должна быть защищена от всплесков. MOV начинает работать из-за напряжения, приложенного к его электродам, и перестает работать из-за меньшего порогового напряжения (приложенное напряжение ниже порогового напряжения). Эти типы варисторов доступны в различных формах, таких как диски, осевые устройства, винтовые и блочные устройства, а также радиальные устройства.Из-за смеси оксидов металлов MOV представляет собой последовательную комбинацию большего количества no. диодов.

Работа металлооксидного варистора (MOV)

Работа металлооксидного варистора (MOV) зависит от приложенного напряжения. Когда приложенное напряжение находится в указанном диапазоне, то MOVa, подключенный параллельно цепи, будет иметь высокое сопротивление, и через него не будет протекать ток. Из-за высокого сопротивления MOV ток течет по цепи и работает в соответствии с приложением.При возникновении грозового скачка или скачков напряжения из-за перенапряжения в сети переменного тока сопротивление MOV уменьшается, и его значение будет низким и станет коротким.

Из-за высокого напряжения через MOV протекает большой ток, что приводит к срабатыванию предохранителя и отключению цепи от сети. Как только происходит скачок напряжения, высокое напряжение (перенапряжение) немедленно возвращается к своим нормальным значениям, и схема выполняет нормальную работу. В таких случаях протекающего тока будет недостаточно для перегорания предохранителя, и продолжительность протекания также будет меньше.

Это означает, что при каждом скачке напряжения MOV автоматически отключает цепь, чтобы предотвратить повреждение от перенапряжения. Если MOV поврежден, то можно сделать вывод, что в цепи произошли различные всплески напряжения.

Фиксирующее напряжение металлооксидного варистора

Во время работы, когда цепь подвергается воздействию импульса высокого переходного напряжения, параллельно установленный MOV фиксирует уровень напряжения, чтобы избежать скачков и грозовых скачков. Чтобы защитить схему и ее компоненты, MOV поглощает потенциально разрушительную энергию и защищает схему от повреждений.Кроме того, MOV будет в непроводящем состоянии, когда он подключен в качестве устройства с шунтирующим режимом при нормальной работе.

Следовательно, напряжение ограничения металлооксидного варистора — это номинальное напряжение, измеренное на нем, в единицах постоянного тока 1 мА. Это означает, что варистор позволяет току 1 мА проходить через него, когда на него подается постоянное напряжение. Варистор работает как изолятор, пока не достигнет номинального напряжения.

Как только приложенное напряжение достигает своего номинального напряжения, оно начинает проводить.Когда приложенное напряжение низкое, обратный ток утечки также будет низким на электродах MOV. Когда приложенное напряжение высокое, происходит лавинный пробой, и сопротивление MOV будет равно или больше его номинального напряжения. MOV отсекает скачки высокого напряжения и скачки напряжения, возникающие из-за внезапных высоких переходных напряжений, и действует как саморегулятор.

MOV Технические характеристики

Чтобы выбрать идеальный MOV для конкретного применения, необходимо знать его характеристики и технические характеристики.Технические характеристики MOV:

Максимальное рабочее напряжение варистора

Это называется установившимся постоянным напряжением. Где ток утечки меньше определенного значения.

Фиксирующее напряжение

MOV начинает проводить, и импульсный ток рассеивается.

Импульсный ток

Это максимальный пиковый ток, приложенный к устройству без каких-либо повреждений.

Surge Shift

Снижение напряжения ограничения из-за перенапряжения.Это приводит к разнице в напряжении, называемой скачком напряжения

Поглощение энергии

Рассеивание максимальной энергии MOV из-за скачка напряжения в течение определенного периода времени. Он определяется с использованием конкретных значений схемы и выражается как время переходного процесса в зависимости от времени, необходимого для достижения половины пикового значения.

Максимальное напряжение переменного тока

Это называется максимальным среднеквадратичным линейным напряжением, которое выше фактического среднеквадратичного линейного напряжения. Перекрытие пикового напряжения с напряжением варистора сокращает срок службы компонентов в цепи.

Ток утечки

Это называется током, протекающим через MOV, когда нет перенапряжения и работает ниже напряжения ограничения.

Характеристики

Общие характеристики MOV :

  • Диапазон рабочего напряжения от 18 В до 1200 В
  • Макс. сопротивления изоляции будет 1000 Ом
  • Время отклика будет менее 15 нс
  • Максимальный ток утечки составит 200 мкА
  • Температура эксплуатации и хранения должна быть от -40 ° C до + 140 ° C
  • Способен реагировать на переходные процессы -voltage
  • Способен поглощать большое количество переходной энергии и должен иметь низкий коэффициент зажима.

MOV Performance

MOV — это тип варистора, который действует как компонент защиты или устройство защиты от перенапряжения электронных и электрических цепей. Он отличается от предохранителей и автоматов защиты от сильноточных. Это зависимый от напряжения, нелинейный и переменный резистор, сопротивление которого изменяется автоматически в зависимости от напряжения источника питания от сети.

Рабочие характеристики MOV

MOV следует методу ограничения напряжения, а его ВАХ нелинейны и аналогичны стабилитрону.Вольт-амперные характеристики линейны, когда MOV находится в непроводящем состоянии. Это связано с тем, что сопротивление MOV будет низким и останется стабильным.

При скачке напряжения сопротивление MOV автоматически увеличивается и отключает цепь от сети, и он защищен от наведенных скачков молнии и скачков высокого напряжения. Основное преимущество MOV заключается в том, что он может работать как в условиях прямого, так и обратного смещения. V-I характеристики MOV аналогичны базовому варистору, показанному ниже.

Применения варистора на основе оксида металла

Применения варистора на основе оксида металла:

  • Используется для защиты диодов, микросхем, транзисторов, тиристоров или полупроводников симистора
  • Используется в бытовой электронике, промышленной электронике, коммуникационной электронике, системах измерения и управления для защиты от перенапряжения
  • Используется в бытовых электронных приборах, бензине и газе для защиты от перенапряжения
  • Используется в реле и электромагнитном клапане для защиты от перенапряжения
  • Используется для подавления перенапряжений, вызванных переключением индуктивных нагрузок, таких как реле, катушки и трансформаторы .
  • Используется для защиты от скачков напряжения, вызванных ударами молнии, на входящих линиях электропередачи.
  • Используется для защиты от перенапряжений, скачков напряжения, межфазного напряжения, переключения и дуги.

Итак, это все о металлооксидном варисторе (MOV) — основах, схеме, работе, ограничивающем напряжении, характеристиках и применении. Вот вам вопрос: «Какое сопротивление MOV?»

Роль варистора в импульсном источнике питания_ Адаптер питания переменного / постоянного тока 12 В 10 А, Производитель адаптера питания 24 В 5 А, Поставщик адаптера переменного / постоянного тока 5 В 12 А, оптовый продавец адаптера источника питания 15 В 8 А

Роль варистора в импульсном блоке питания

Варистор — это элемент с подавлением переходных напряжений.Он обычно используется в схемах импульсной защиты от импульсных перенапряжений и переходных процессов. Его можно использовать для замены диодов подавления переходных процессов, стабилитронов и конденсаторов. комбинация. Варистор защищает важные компоненты, такие как интегральные схемы и другие схемы и устройства, от повреждений, вызванных электростатическими разрядами, скачками и другими переходными токами, такими как удары молнии. При использовании необходимо только подключить варистор к защищаемой цепи. Когда напряжение выше определенного значения, сопротивление варистора быстро падает, включая большой ток, предотвращая мгновенное перенапряжение и защищая.Функция: когда напряжение ниже рабочего напряжения варистора, варистор имеет очень высокое значение сопротивления и почти разомкнут, поэтому он не влияет на нормальную работу устройства или электрического оборудования.

Варистор (резистор датчика Voltaga, VSR) — это новый тип защиты от перенапряжения. Варистор представляет собой керамический компонент металл-оксид-полупроводник, изготовленный из оксида цинка в качестве основного материала, а материал сердцевины, составляющий варистор, представляет собой оксид цинка, который включает зерна оксида цинка и межзеренный пограничный слой вокруг кристаллических зерен.Удельное сопротивление зерен оксида цинка очень низкое, а удельное сопротивление межзеренного пограничного слоя очень высокое. Между двумя контактирующими кристаллическими зернами образуется барьер, соответствующий стабилитрону, который становится варисторным блоком и множеством блоков. Основание варистора образовано последовательным и параллельным соединением. Когда варистор работает, каждый варисторный блок отвечает за энергию перенапряжения, и эти варисторные блоки по существу равномерно распределены по корпусу резистора, а весь корпус резистора отвечает за энергию, в отличие от вторичной стабилизации стабилитрона.Напорная трубка — это только место соединения, на которое подается электроэнергия, и ее сопротивление изменяется в зависимости от напряжения на клеммах.

1. Конструктивные характеристики и принцип работы варистора

.

Основными характеристиками варистора являются широкий диапазон рабочего напряжения (6-3000 В, разделенный на несколько передач), быстрая реакция на импульсы перенапряжения (наносекунды), высокая устойчивость к пусковому току (100 ~ 2000 А) и низкий ток утечки (микроампер). уровень), малый температурный коэффициент сопротивления, высокое качество и низкая цена, небольшой размер, является идеальным компонентом защиты, который может представлять собой схему защиты от перенапряжения, схему устранения шума, схему устранения искры и цепь поглощения.Когда импульс перенапряжения накладывается на сеть электропитания, после подключения варистора форма волны пика перенапряжения сглаживается и ограничивается определенным диапазоном. Когда индуктивная и емкостная цепь нагрузки включается или выключается, форма волны постоянного тока имеет импульс переключения, и варистор может поглощать обратный электрический потенциал в цепи, тем самым эффективно защищая схему переключения от повреждения.

Обычно используемые варисторы включают варистор из карбида кремния и варистор из оксида цинка.Среди них широко используется варистор из оксида цинка. Он использует оксид цинка в качестве основного сырья и добавляет различные оксиды металлов в следовых количествах. Спеченная сборка нового типа идеального устройства защиты от перенапряжения, величина проводимости которого изменяется нелинейно с приложением напряжения, его называют варистором или поглотителем перенапряжения.

2, терминология основных электрических параметров варистора

(1) Номинальное напряжение или напряжение варистора U1 мА: В условиях постоянного напряжения, когда варистор протекает через определенный ток, напряжение на клеммах варистора называется напряжением варистора варистора.Обычно напряжение на клеммах, когда варистор протекает через постоянный ток 1 мА, называется напряжением варистора U1 мА. Для варизоров диаметром 5 мм или менее номинальное напряжение измеряется при 0,1 мА, а для низковольтных изделий большого диаметра номинальное напряжение также выражается как 20 мА.

(2) Тестовый ток I1mA: ток, соответствующий напряжению варистора, называется тестовым током, а тестовый ток обычно указывается как 1 мА постоянного тока.

(3) Отношение напряжений: отношение падения напряжения постоянного тока, создаваемого варистором, протекающим через ток заданной величины, к напряжению варистора, называется отношением напряжений.

(4) Температурный коэффициент напряжения: в указанном диапазоне температур и условиях импульсного тока, когда температура варистора изменяется на 1 ° C, относительное изменение напряжения в процентах называется температурным коэффициентом напряжения.

(5) Сквозной поток: максимальная скорость прохождения, когда скорость изменения напряжения варистора варистора меньше или равна значению, указанному в технических условиях, после подачи на варистор указанной стандартной формы волны тока в соответствии с заданным интервалом времени. и количество раз.Текущее значение называется пропускной способностью импульсного потока, которая называется расходом.

Максимальное значение импульсного тока может пройти в течение указанного времени (8 мкс / 20 мкс). Импульсный ток составляет от 8% максимального значения до максимального значения 8 мкс, а длительность пика составляет 20 мкс.

(6) Скорость изменения напряжения: процентное изменение напряжения варистора до и после испытания на удар называется скоростью изменения напряжения.Формула выглядит следующим образом:

Скорость изменения напряжения = [(U1-U2) / U1] × 100%

Где: U1, U2 — напряжения до и после испытания.

(7) Ток утечки (мкА): когда напряжение на компоненте равно 75% напряжения на указанном токе, постоянный ток, проходящий через варистор, называется током утечки.

(8) Номинальная мощность P: мощность нагрузки варистора при указанной температуре окружающей среды называется номинальной мощностью.

(9) Собственная емкость C.: Отношение заряда, накопленного между двумя полюсами варистора, и приложенного к нему напряжения.

(10) Остаточное напряжение Uc: когда через варистор протекает определенный импульсный ток, пиковое значение напряжения, возникающего на варисторе, называется остаточным напряжением.

(11) Коэффициент остаточного напряжения η: отношение значения остаточного напряжения варистора к напряжению варистора U1mA.

Варистор не является резистором в общем смысле. Он состоит из частиц оксида металла (например, оксида цинка), разделенных изолирующей пленкой, которая называется MOV (варистор оксида металла). Характеристики варистора и его применение, его электрические характеристики, i = kU, k — постоянная величина, a находится в диапазоне 30 ~ 40. Имеет большое сопротивление при низком напряжении, небольшой ток утечки; при увеличении напряжения в варисторе изолирующая пленка становится проводником, напряжение немного увеличивается, а ток резко увеличивается, что аналогично характеристике пробоя лампы Зенера и может выдерживать большую мгновенную мощность.

Варистор часто подключается между токоведущими и токоведущими проводами входа импульсного адаптера питания, токоведущими и нейтральными проводами и клеммами индуктивного устройства в качестве компонентов, поглощающих скачки и скачки напряжения. Рабочее напряжение обычно составляет половину напряжения пробоя. Основными характеристическими параметрами являются напряжение пробоя Ub, коэффициент остаточного напряжения η и полученная энергия потерь W.

Shenzhen WPOWER Co., Ltd. — адаптер питания переменного / постоянного тока 12 В 10 А Адаптер питания 24 В 5 А Производитель адаптера питания 24 В 5 А Производитель адаптера питания 5 В 12 А переменного тока / Адаптер постоянного тока 5V12A Адаптер переменного / постоянного тока Поставщик 15V8A Завод адаптеров импульсного источника питания 15V8A Адаптер импульсного источника питания 15V8A Адаптер импульсного источника питания Оптовик и другие продукты, специализирующиеся на производстве и обработке.Компания располагает полным производственным оборудованием и испытательным оборудованием, первоклассной командой продаж и независимой командой высокого уровня по исследованиям и разработкам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*