Эффективность подключения радиаторов отопления: Способы и схемы подключения радиаторов отопления: как правильно провести монтаж

Содержание

Как лучше подключить радиатор отопления: tvin270584 — LiveJournal

Монтаж системы водяного отопления требует правильного расчета и проектирования. Одним из таких этапов является подключение радиатора отопления в систему. От этого зависит эффективность всей системы, поэтому сделать это нужно правильно. В статье мастер сантехник расскажет, как лучше подключить радиатор отопления.

Выбор радиаторов

Прежде чем перейти к тому, как правильно подключить радиаторы отопления, нужно определиться с их видом. Изделия из разных материалов имеют свои свойства и требования к эксплуатации.
В настоящее время на рынке можно встретить следующие батареи:

До сих пор чугунные батареи остаются весьма распространенными. К их преимуществам относятся долговечность и невысокая цена. А вот недостатков у них множество: это большой вес, необходимость регулярной покраски, невысокая теплоотдача (по сравнению с более современными приборами из других материалов).


Биметаллические радиаторы представляют собой стальную трубу, окруженную алюминиевыми ребрами. Они совмещают в себе качества стальных и алюминиевых изделий. Основным недостатком таких батарей является их высокая стоимость.
Стальные радиаторы имеют хорошую теплоотдачу, однако они малоустойчивы к гидравлическим ударам. По этой причине они используются в основном в автономных отопительных системах в частных домах.
Алюминиевые батареи в последнее время стали пользоваться большой популярностью. Они стоят недорого, отличаются красивым внешним видом и долговечностью. В зависимости от индивидуальных потребностей, можно выбирать изделия с разным количеством секций. Главным недостатком является низкая теплоемкость – алюминиевые радиаторы быстро нагреваются и остывают. С другой стороны, уже через 15 минут после включения системы отопления в холодном помещении чувствуется увеличение температуры воздуха. Кроме того, воздух из отопительной системы приходится спускать через специальный клапан.

Таким образом, недостаточно просто выполнить правильное подключение радиаторов отопления, нужно еще и подобрать подходящий тип батарей.
Схемы разводки труб системы отопления

Выбор схемы подключения радиатора отопления в первую очередь зависит от типа разводки труб системы отопления. Наиболее часто встречается однотрубная система отопления и двухтрубная.
Схема подключения радиатора в однотрубной системе отопления
Само определение «однотрубная» говорит само за себя. Осуществить подключение при однотрубной системе отопления можно по разному.
Последовательное подключение
Суть данной схемы заключается в последовательном подключении радиаторов отопления. То есть труба выходящая из одного радиатора входит в другой радиатор.

Из последнего радиатора труба подключается к холодному входу котла отопления или в стояк многоквартирного дома.
У данного способа существует один плюс и пару минусов.
Плюс заключается в простоте и бюджетности осуществления монтажа.
Минус этого варианта в том, что температура в первом радиаторе всегда будет на порядок выше, чем в последнем и чем больше количество радиаторов, тем больше будет эта разница.
Ещё минусом является отсутствие возможности регулировать температуру радиаторов по отдельности. Установив терморегулятор на один радиатор, регулироваться будут все, что не всегда будет соответствовать нужным требованиям конретной комнаты.

Все радиаторы отопления по ориентации подключения можно разделить на батареи с боковым и нижнем подключением. Поэтому при однотрубном отоплении последовательным способом радиаторы с нижний подводкой подключаются так:

Конкретно, какой из входов на батареи является подающим, а какой обратным читайте в инструкции, прилагаемой к радиатору.
Радиаторы с боковым подключением можно подключить по диагонали

Этот способ подключения является самым эффективным по сравнению с другими. Именно его производители берут за основу, когда пишут технические характеристик, испытывая свои радиаторы.

Односторонним способом

Удобно, когда основная труба проходит сбоку от радиатора.
Нижним подключением (седельное подключение)
Для того чтобы была возможность регулировать каждый радиатор в отдельности при однотрубной системе отопления применяется седельное подключение:

Но при этом мощность радиатора падает примерно на 15 % .
Стоит отметить, что таким способом можно воспользоваться, только при наличии принудительной циркуляции.
Схема подключения радиатора при двухтрубной системе отопления
Двухтрубная система отопления представлена подающей и обратной трубами. Такая система эффективней однотрубной. Варианты подключения при таком отоплении схожи с однотрубной, но всё таки есть разница, которую демонстрируют изображения ниже:

При подключении радиаторов отопления вне зависимости от выбранного способа, желательно ставит на подающую и обратную трубы шаровые краны на случай каких-то внештатных ситуаций, что бы можно было устранить проблему без остановки всей системы. А лучше установить терморегулирующие вентили на батареи, что бы была возможность контролировать температурный климат в помещении.
Эффективность отдачи тепла в зависимости от подключения

В зависимости от способа, которым радиатор подключен в систему отопления эффективность батареи от её максимальной возможности разнится, поэтому на изображении ниже наглядно все варианты и их эффективность указана.

В каком месте ставить радиаторы
Радиаторы отопления в первую очередь ставятся под окнами. И это не случайно, так как тёплый воздух, идущий от него, создает тепловую завесу холодному воздуху, что улучшает обогрев помещения и предотвращает запотевание стекла.
Как располагать радиаторы под окнами

Во-первых, ширина батареи не должна быть меньше 70 % от ширины окна, далее высота радиатора от пола 8-12 см. Ниже нельзя, так как нарушатся конвекционные потоки, выше тоже не рекомендуется потому, как пол в таком помещении будет плохо прогреваться. Теперь, что касается расстояния от стены до батареи. Оно должно варьироваться от 3 до 5 см, опять же для условий возникновения конвекционных потоков, которые так необходимы для эффективной работы системы отопления.

Если при подсчете необходимой мощности радиаторов отопления окажется, что места под окнами уже не хватает, а нужно установить ещё батареи, то они ставятся уже в свободном месте, желательно на стене, граничащей с улицей.
Видео
В сюжете — Как лучше подключить радиатор верхнее, боковое, нижнее, диагонально

В продолжение темы посмотрите также наш обзор Не работают батареи отопления

Источник

https://santekhnik-moskva.blogspot.com/2020/05/Kak-luchshe-podklyuchit-radiator-otopleniya.html

Правильное подключение радиатора отопления, боковое, нижнее, диагональное подключение

Комфорт и уют в помещениях зависит от созданного в них микроклимата. В холодное время года в его формировании участвуют радиаторы, вернее целая система отопления квартиры или дома.

Мы расскажем о правильном подключении радиаторов отопления. Показать схемы подключения, виды, типы и попытаться выбрать самое эффективное подключение.

Ответы на эти вопросы необходимо получить до начала процесса монтажа, потому что переделывать всегда сложнее, чем делать. Вам интересно, или с нижним, чем они отличаются? Давайте разберемся в этом вопросе, чтобы не возникло проблем при эксплуатации.

 Основные схемы подключения

Вы выбрали для своих помещений стальные радиаторы. Мастера разработали схему, предложив один из способов подключения оборудования. Это важный момент. От выбранного варианта подачи теплоносителя зависит, как будут нагреваться радиаторы и поддерживаться микроклимат.

Основные схемы подключения радиаторов


Количество тепла, которое начнет давать ваш прибор отопления, встроенный в общую систему, не в последнюю очередь зависит от предложенной схемы установки

. Существует три основных варианта монтажа подающего и отводящего патрубков: диагональный, боковой и нижний.

Диагональное подключение стального радиатора


Данный тип подключения стального радиатора отопления считается максимальным по эффективности теплоотдачи. При такой установке достигается равномерное распределение теплоносителя и оптимальный температурный градиент.  Предпочитают диагональные (перекрестные) при установке длинных секционных радиаторов (число секций от 12 и более) а также при обогреве больших площадей или когда надо выжать из радиатора максимум теплоотдачи. Часто бывает что у клиента есть определенная ниша под радиатор, а таких размеров недостаточно для обогрева помещения, тогда можно пробовать для повышения эффективности диагональное подключения радиаторов.

В диагональной схеме подающий теплоноситель трубопровод монтируется к верхнему патрубку одной стороны радиатора, а к нижнему подходит отводящий трубопровод с другой стороны устанавливаемого оборудования, по диагонали. Или наоборот.

 

Недостатком этого типа подключения мастера считают неудобство монтажа, а потребители — неэстетичный внешний вид. Из-за этого в многоэтажных домах не практикуют диагональный монтаж. Если вы выбрали его для частного дома или при капитальном ремонте в квартире, то добиться внешней гармонии позволит прокладка трубопроводов в стене (штроба) или установка фальшстены.

Боковое подключение радиатора отопления


Это наиболее часто встречающийся вариант монтажа в городских в квартирах, потому что вертикальные контуры подачи и обратки (стояки), всегда проложены по единой системе.

  • При секционных моделях число секций батареи не превышает 12-ть.
  • Трубы идут от этажа к этажу в одном месте.

Схема бокового одностороннего подключения батареи отопления проста и предельно понятна: подающая труба монтируется к верхнему патрубку, а обратная — к нижнему. Подведение и обратка расположены на одной стороне оборудования. Такая схема энергетически эффективна и эстетически приемлема. Единственное что батарея не должна превышать 12 секций, или 1000 мм. Также есть еще разновидность седельного подключения — это когда подключение боковое но снизу (снизу по бокам).

Информация по теме: Обвязка радиаторов  | Радиаторные комплекты для бокового подключения | Лучшие алюминиевые радиаторы

Нижнее подключение радиаторов отопления


Третий вариант — нижнее подключение радиаторов отопления, которое теоретически относится к схемам одностороннего монтажа. Отличительная особенность этого типа в сравнении с боковым – запрет на перемену мест подводящего и обратного патрубка. Используется в новостройках, трубопровод подводится на прямую к каждому радиатору отопления, от рспределительного отопительного щитка в корридоре.

В данный момент самый распространенный метод подключения, еще называют лучевая развязка отопления. Обвязка стального радиатора и возможность самостоятельной установки оборудования.

Информация по теме: Обвязка стального радиатора  | Радиаторные комплекты для нижнего подключения |

Подключение радиаторов отопления при однотрубной системе


При однотрубной системе подача теплоносителя в радиатор и обратка возвращается в один и тот же контур, и потом последовательно теплоноситель проходит по всем радиаторам в одном контуре. Такую систему еще называют последовательной, последовательное подключение радиатора. Недостаток такой схемы, что последние радиаторы будут самые менее теплые. Данную систему обязательно надо отбалансировать с помощью преднастройки в клапанах.

Схема практически изжила себя, осталась более менее в частных домах, так как она менее затратна и легка в инсталяции.

Подключение радиаторов отопления при двухтрубной системе


Двухтрубная система отопления для радиаторов в данный момент самая распространенная, так как позволяет вести учет тепла каждого отдельного пользователя. На примере новостройки, есть общий стояк, а от него уже расходятся контура по всем квартирам. Каждый из пользователей может сам управлять подачей отопления в своем жилище. Применяется во всех новых домах и новостройках.


Грамотное решения вопроса, как правильно провести установку стального радиатора с нижним подключением, боковым или радиальным, обеспечивает еще и правильный выбор радиаторной арматуры. Она определяется мастером в соответствии с купленной моделью.

  • Потребители получили сегодня широчайший выбор вариантов вплоть до совершенно экзотических.
  • Ориентироваться при подключении приходится и на особенности самого радиатора.
  • От них, а не только от варианта монтажа, будет зависеть выбор .

Отопление – вид коммуникации, который имеет повышенные риски в эксплуатации. Никому не интересно мерзнуть в стужу, но еще менее привлекательным выглядит залив своей квартиры и соседей. Рекомендуем 10 раз подумать, прежде чем предпринимать самостоятельные действия по монтажу стальных радиаторов в квартирах и домах. Так как вариантов есть много, рпавильных и не правильных. Но главное, чтобы все это делал проверенный специалист. Обращайтесь к профессионалам Киевской Tепловой Компании. Предлагаем комплексное и гарантированное обслуживание в сфере водоснабжения, отопления, канализации.

Правильное подключение радиаторов отопления: диагональное, нижнее, боковое, последовательное

Любые современные батареи, будь то алюминиевые, чугунные или биметаллические, поставляются с четырьмя открытыми патрубками для подключения к магистрали отопления. В соответствии с конструктивными особенностями разводки выбирается схема соединения радиаторов с подведенными трубами, а оставшиеся отверстия закрываются заглушками или воздухоотводящими кранами.

В этой статье мы будем изучать возможные варианты установки батарей и расскажем, какая схема лучше с точки зрения эффективности теплоотдачи. [contents]

Диагональное подключение

Считается, что наилучшие результаты работы вашего радиатора можно получить, используя диагональное подключение. Для того чтобы правильно реализовать этот способ, нужно подсоединить входную трубу к одному из верхних входов, а обратку – к нижнему с противоположного края. Тогда теплоноситель будет циркулировать по оптимальному маршруту, захватывая наибольшую часть поверхности отопительного прибора.

Такая комбинация является особенно эффективной, если радиатор состоит из большого числа (более 10) секций. Все другие виды соединений в этом случае будут заметно проигрывать.

Поэтому диагональное соединение считается эталонным, и все производители указывают параметры своего оборудования относительно этого варианта устройства отопления.

Диагональное подключение многосекционной батареи

К недостаткам рассматриваемого способа можно отнести:

  • большой расход труб в системе;
  • невозможность спрятать коммуникации в стене или в коробе;
  • сложную геометрию разводки;
  • неудобный монтаж.

Применяется диагональная схема в тех случаях, когда главным требованием является максимальная теплоотдача, а соображения эстетики и дизайна отходят на второй план. В силу неэкономичности и сложности разводки, в многоэтажных домах этот способ установки радиаторов практически не используется.

Нижнее подключение

В противоположность диагональному, нижний способ подключения батарей не позволяет оптимизировать систему отопления по производительности, но зато обеспечивает возможность сделать радиатор практически незаметным.

Нижнее подключение радиатора

Такое соединение (его иногда называют ленинградкой), в силу особенностей прохождения теплоносителя между входным и выходным коллектором, снижает КПД в системе на 10-15%. Причем столь ощутимыми эти потери становятся лишь в многоквартирных домах при большой длине магистрали.

Если вы планируете устанавливать радиатор в собственном доме (особенно одноэтажном), нижняя схема подключения будет отличным вариантом.

Верхняя часть батареи прогревается хуже нижней, особенно это становится заметным при засорении или завоздушивания внутренних полостей. В этих случаях требуется чистка и удаление воздуха при помощи кранов Маевского.

Боковая схема

Чаще всего радиаторы системы отопления, особенно в многоквартирных домах, монтируются по боковой схеме. Ее суть заключается в том, что обе магистрали подходят к батарее с одной стороны.

Боковое подключение радиатора отопления

Преимущества бокового подключения:

  • высокая эффективность;
  • удобный монтаж;
  • экономия на трубах;
  • возможность организации байпаса между магистралями для установки регулирующей арматуры.

Если сравнивать между собой диагональную и боковую разводку, преимущество стоит отдать последней, т. к. разница в эффективности составляет всего несколько процентов, а выгоды бокового подключения очевидны.

Диагональная схема начинает выигрывать, если нужно подключить радиатор с большим количеством секций или организовать последовательное расположение нескольких мощных батарей. Правильное понимание этих особенностей поможет оптимально распределить радиаторы в системе.

Расположение радиатора

Радиатор лучше всего устанавливать под окном. Это общеизвестное правило объясняется очень просто: именно там батарея отопления создаст наилучшие условия, препятствующие попаданию холодного воздуха в помещение.

Схема размещения радиаторов отопления под окном

В городской квартире окна и двери – самые главные источники теплопотерь. В частных домах, как мы уже отмечали, к ним добавляются крыша и пол. Батарея под подоконником создаст завесу из теплого воздуха, который, как известно, стремится вверх при нагреве, и не пустит холод внутрь.

Если в помещении несколько окон, лучше распределить радиаторы между ними и подключить их последовательно. Также специалисты рекомендуют ставить несколько точек обогрева в угловые комнаты.

Правильно разместить радиатор помогут следующие советы:

  • Расстояние батареи до пола и подоконника должно быть не менее 10 см. В противном случае эффективность ее работы снизится, а под ней будет неудобно убираться;
  • Не стоит сильно углублять радиатор в сторону стены, лучше оставить зазор около 5 см;
  • При использовании декоративных защитных экранов эффективность радиаторов снижается на 10-15%.
  • С точки зрения теплоотдачи преимущество имеют алюминиевые радиаторы, но в городских квартирах лучше устанавливать биметаллические изделия.

И еще один немаловажный момент: самостоятельно изменять схему подключения радиаторов, их соединение между собой или устанавливать запорные вентили при отсутствии байпасов в многоквартирных домах запрещено. Все переделки в системе отопления необходимо согласовывать с Управляющей компанией.

Установка радиаторов

Самостоятельная установка радиаторов не вызовет проблем в системе отопления в дальнейшем, если правильно выполнить все требования к таким работам и обеспечить герметичность всех соединений. Кроме того, некоторые виды батарей требуют аккуратности при обращении: алюминиевые и биметаллические радиаторы имеют довольно мягкий внешний корпус, который можно легко помять при ударе.

Процесс установки производится в следующем порядке:

  1. Снимаем старый радиатор (если это необходимо). Естественно, магистраль отопления должна быть при этом перекрыта;
  2. Размечаем место установки. Радиаторы обычно вешаются на специальный кронштейн, который крепится к стене. Крепеж в комплекте чаще всего рассчитан на бетонные или кирпичные стены. Если вы хотите повесить радиатор на мягкую стену, например, из гипсокартона, необходимо использовать специальные дюбели. Алюминиевые и биметаллические батареи не создадут опасных нагрузок для такой стены, а вот чугунный вариант здесь лучше не использовать. Кронштейн нужно установить так, чтобы радиатор располагался с учетом требований, описанных в предыдущем разделе;
  3. Теперь нужно собрать батарею. Для этого во все четыре монтажных отверстия вкручиваем переходники, идущие в комплекте. Обычно два из них имеют левую резьбу, а два – правую, поэтому необходимо проявить внимательность. Далее, в зависимости от схемы подключения, неиспользуемые коллекторы заглушаем, один краном Маевского, а другой – специальным запорным колпачком. Все места соединений тщательно герметизируем;

  4. Для предотвращения протекания воды в местах соединений прокладываем сантехнический лен. Фум ленту здесь лучше не использовать. Лен нужно наматывать правильно: для правой резьбы по часовой стрелке, а для левой – в обратном направлении. В этом случае при накручивании на резьбу подсоединяемых элементов лен не будет выбиваться из-под них. Для надежности соединение можно дополнительно уплотнить специальными средствами, например, пастой Unipak;
  5. К местам подвода магистральных труб прикручиваем шаровые краны. Они позволят в дальнейшем снимать радиатор для чистки и обслуживания, не останавливая работу всей системы;
  6. Теперь осталось только повесить радиатор на кронштейн и подключить к нему подводимые трубы. Места соединений герметизируем по приведенному выше алгоритму.

Итак, мы рассмотрели все возможные виды подключений батарей отопления. Если вы только планируете структуру системы для собственного жилья, то можете выбрать наиболее подходящую схему. Если же вы живете в городской квартире, такой свободы у вас нет. В любом случае, понимание принципов и особенностей подключения радиаторов позволит вам самостоятельно обслуживать и устанавливать отопительные приборы в своем доме.

Схемы подключения радиаторов отопления — Авалон

В процессе монтажа батарей сотрудники компании «Авалон» используют разные схемы подключения радиаторов отопления в зависимости от количества секций в них и особенностей системы обогрева (однотрубная, двухтрубная). Слесари-сантехники по доступной цене подключают алюминиевые, стальные, чугунные, биметаллические батареи в квартирах, коттеджах, офисах. Мастера оперативно выполняют работы «под ключ» в любое время года.

Наиболее распространенные схемы

Схемы подключения радиаторов отопления

Боковое одностороннее подключение

При использовании этой схемы верхний и нижний патрубки радиатора присоединяются к трубе с одной стороны. Этот способ можно применять как при однотрубной, так и при двухтрубной системе обогрева. Такая схема подключения радиаторов отопления с успехом используется в многоэтажных зданиях с вертикальной подачей теплоносителя.

Существенная особенность этого вида – монтаж так называемого байпаса (перемычки) и двух кранов нужных для того, чтобы можно было снять батарею для ремонта или замены, не прерывая циркуляцию горячей воды по трубам в стояке. У одностороннего бокового подключения есть, тем не менее, небольшой минус – оно не рекомендуется для присоединения радиаторов с большим количеством секций, так как они будут плохо прогреваться.

Боковое одностороннее подключение

Боковое подключение с закольцовкой

По сути, этот метод ничем не отличается от упомянутого выше способа.  Радиатор таким же образом подключается к стояку с одной стороны. Однако в этом случае теплоноситель, пройдя по батарее, не поднимается выше, а отправляется вниз. Боковое подключение с закольцовкой – это оптимальный вариант для квартир или офисов, располагающихся на последних этажах здания. Упомянутая схема подключения радиаторов отопления также предполагает использование байпаса и двух кранов, чтобы оставалась возможность отключения и демонтажа батареи осенью или зимой без перекрытия подачи теплоносителя.

Боковое подключение с закольцовкой

Двухтрубное подключение

Такая схема используется в зданиях, в которых имеются два стояка: один для циркуляции нагретой воды, второй для ее оттока. Верхний патрубок подключается к «подаче», нижний присоединяется к «обратке». В этом случае байпас не используется, соответственно, работы по покраске, ремонту или замене радиаторов желательно проводить в теплое время года, когда в трубах отсутствует теплоноситель.

Двухтрубное подключение

Диагональное подключение с двух сторон

Эта схема применяется в том случае, когда устанавливаются батареи с большим количеством секций (12 и выше). Подающий контур присоединяется к верхнему патрубку радиатора, а отводящий – к нижнему, находящемуся с противоположной стороны. Такая система подключения дает возможность равномерно прогревать все секции, так как обеспечивает хорошую циркуляцию носителя тепла по всем секциям батареи.

Диагональное подключение с двух сторон

Нижнее подключение

Сразу оговоримся, что такие схемы редко используются в квартирах и офисах. Они больше подходят для коттеджей с автономными системами обогрева с принудительной циркуляцией жидкости. Радиаторы в таком случае подключаются к трубам снизу, а не с боков. Нижнее подключение также можно использовать как при одно-, так и при двухтрубных системах отопления. К этому же типу относится так называемое седельное подсоединение радиаторов (с нижних боков), однако оно используется достаточно редко, так как менее эффективно. Подходит тогда, когда работает система водяного обогрева пола и батареи подключаются к ней.

Нижнее подключение

Преимущества подключения радиаторов отопления от нашей компании

Сразу отметим тот факт, что без наличия навыков, опыта, инструмента, лучше не пытаться самостоятельно установить батареи, изучив лишь краткое изложение основных схем подключения радиаторов отопления. Доверьте все работы профессионалам, чтобы получить положительный результат и быть уверенными в качестве выполненных работ.

Стоимость того или иного варианта подключения Вы можете просмотреть здесь

Мы рекомендуем воспользоваться нашими услугами в силу следующих причин:

  • опытные сотрудники, обладающие необходимой квалификацией;
  • быстрое выполнение заказов в любое время года;
  • привлекательная стоимость без необоснованных наценок;
  • решение всех вопросов по согласованию с ЖЭУ;
  • бесплатная доставка материалов, инструментов и радиаторов до объекта заказчика;
  • гарантия на выполненные работы – 5 лет;
  • гибкая система скидок;
  • профессиональные консультации, предоставляемые специалистами;
  • постоянное наличие комплектующих и батарей для систем отопления коттеджей и квартир;
  • бесплатный выезд сантехника на объект в день обращения;
  • составление сметы для прозрачности расходов;
  • предоставление услуг по официальному договору.

Позвоните или напишите нам, чтобы получить больше информации и оставить заявку. Наши контактные данные: г. Екатеринбург, Чкалова 124; Бахчиванджи 2а-406; +7 (343) 328-08-68; WhatsApp\Viber: (922) 174-00-00; [email protected]

Как регулировать батареи отопления: особенности и полезные советы


Плюсы и минусы диагонального подключения радиаторов отопления

Отличительной особенностью диагональной схемы является подвод трубопровода к радиаторам. Чтобы отопление было максимально эффективное, нужно ознакомиться с положительными и отрицательными сторонами такого подключения.

Диагональная схема отличается особым подводом трубопровода к радиаторам

Плюсы:

  1. Схема обладает высокой эффективностью, считается оптимальным выбором для частного дома. КПД отопления превышает 90%.
  2. При диагональном способе подключения можно устанавливать на отопительном приборе обогрева большое количество секций – оптимально до 24 штук.
  3. Во время циркуляции теплоносителя по секциям образуется контур градиента.

Минусы:

  1. Эффективность отопления достигается, когда подключение способом по диагонали выполнено в двухтрубной системе. Для однотрубной схемы такой вариант плохо подходит.
  2. Подвод двух труб к отопительному прибору обогрева с разных сторон не эстетично смотрится внутри помещения.
  3. При диагональной схеме подвод патрубков к прибору обогрева происходит с двух сторон. В будущем, если надо добавить или уменьшить количество секций, трубопровод придется разрезать.
  4. Для квартир диагональная схема используется редко, а в некоторых случаях вовсе не доступна.
  5. Монтаж отопительного контура по диагональной схеме затратный, так как требует больше материалов и работы.

Чтобы иметь четкое представление о диагональном способе подсоединения, надо разобраться с его особенностями и нюансами.

Как подключить стальной радиатор

Существует три способа подключения батарей:

  • диагональное – подающая труба соединена с верхним патрубком, отводящая — с нижним по диагонали. Такое подключение обеспечивает максимальную теплоотдачу, а потери тепла составляют всего 2%. Недостатками являются неудобство монтажа и не эстетичный вид, поэтому в многоэтажных домах такое подключение почти не используется;
  • боковое (одностороннее) – подающая/отводящая трубы подключаются сверху и снизу с одного бока. Используется в многоэтажных домах наиболее часто. Оно достаточно эффективно, а теплопотери составляют 2…5%. Однако при увеличении количества секций более 15, тепловая эффективность понижается из-за неравномерного прогрева;
  • нижнее (седельное) – подающая/отводящая трубы подключаются снизу радиатора с разных сторон. Теплопотери в этом случае возрастают до 15% из-за неравномерного нагрева изделия. Такое подключение применяется в домах, где потери тепла почти незаметны.

Особенности подключения радиатора по диагонали

Благодаря подключению подводящих патрубков с двух сторон, нагретый теплоноситель равномерно распределяется по всем секциям. Самой эффективной считается схема, когда подача подсоединена вверху, а отток – внизу. Ведь по законам физики горячая жидкость всегда располагается выше холодной. Однако бывает диагональное подключение радиаторов отопления с нижней подачей теплоносителя. КПД такой системы меньше. Связано это с тем, что по тем же законам физики остывающему теплоносителю в нижней части секций сложнее направляться вверх к отводящему трубопроводу.

Большим КПД обладает система, у которой подающая труба подключена к верхнему коллектору отопительного прибора

Увеличенное количество трубных линий портит внешний вид, но в частном доме эстетика уходит на задний план. Подключение приборов обогрева по диагонали с верхней подачей обладает большим КПД, и это главное для потребителя.

Схема комплектации отопительного прибора при диагональном способе подсоединения тоже отличается. Батарею обязательно оснащают краном Маевского. Устанавливают его на свободном от трубопровода верхнем коллекторе. Кран помогает стравливать воздух, иначе при завоздушивании часть секций не прогреется.

Важно! Конструкция кранов Маевского разнообразна. Существуют модели с рычажками, рукоятками, под отвертку или ключ.

Независимо от того, что у диагонального подключения радиаторов подача снизу или сверху, отводящая труба всегда подходит. Снять при необходимости батарею невозможно без разрезания трубопровода. Чтобы избежать таких неудобств, подключение выполняют разъемными муфтами. Раньше использовались так называемые резьбовые сгоны. Их недостаток в том, что металл быстро поддается коррозии. Через пару лет раскрутить такой сгон сложно. В современном отоплении ставят «американки». Муфта состоит из двух частей, между которыми расположено уплотнительное кольцо. «Американка» легко раскручивается ключами, после чего можно свободно демонтировать прибор обогрева.

Вместе с «американками» на каждый патрубок ставят запорную арматуру. Если радиатор зимой потек, его кранами перекрывают и демонтируют для ремонта. Остальная система продолжает функционировать.

В отоплении с диагональным способом подсоединения важно правильно расположить на стене радиатор. По установленным нормам соблюдают следующее расстояние:

  • от нижней поверхности подоконника до верхней части секций 5-10 см;
  • от пола до нижней части секций 8-12 см;
  • от стены до секций тыльной стороны отопительного прибора 2-5 см.

Соблюдение зазоров обеспечивает оптимальные условия для конвекции воздушных масс вокруг батареи.

Важно! Радиаторы устанавливают строго горизонтально по уровню, чтобы уменьшить вероятность завоздушивания секций и образования кальциевого осадка.

Принцип подключения радиаторов

Отопительные приборы могут подключаться к системе разными способами. Рассмотрим примеры подключения радиаторов отопления. Во многом выбор типа радиатора зависит от его размера и расположения относительно иных радиаторов системы, а также типа самой системы.

Существуют такие способы подключения радиаторов отопления: боковое, диагональное, радиаторы отопления с нижней подводкой, последовательное соединение радиаторов отопления и параллельное.

К наиболее распространенным можно отнести боковое подключение и радиаторы отопления с нижним подключением. Рассмотрим детальнее эти типы:

  • боковое подключение. Для такого метода характерно подключение подводящей трубы к верхнему патрубку, а отводящей – к нижнему. То есть, обе трубы – и подачи, и оттока теплоносителя, – расположены с одной стороны радиатора. Этот метод достаточно распространен по той причине, что позволяет добиться максимального прогрева радиатора, и соответственно – максимальной теплоотдачи. Однако радиаторы отопления с боковым подключением не следует применять для большого количества секций – в таком случае, последние могут быть недостаточно прогретыми. Однако если иного способа подсоединения нет, то для устранения проблемы следует воспользоваться удлинителем протока воды.
  • батареи отопления с нижней подводкой. Применяется такой вариант в том случае, если батареи отопления с нижней разводкой проходят под плинтусами или полом. Нижнее подключение называют самым красивым – батареи отопления с нижним подключением и подачи теплоносителя, и его оттока спрятаны под пол и подключаются к радиатору при помощи патрубков, направленных в пол.


Варианты подключения радиаторов отопления

Виды диагонального подключения батареи

Существует несколько видов схем, по которым происходит диагональное подсоединение приборов обогрева в системе отопления. Общее у них то, что в любом варианте подвод трубопровода осуществляется с двух сторон. При двухстороннем присоединении КПД радиатора больше, чем при одностороннем подключении.

Двухстороннее присоединение труб способствует повышению теплоотдачи по сравнению с односторонним подключением

Важным различием у диагональной системы является подвод подающей и отводящей трубы. Эффективной считается схема, где подача подключена к верхнему коллектору батареи, а обратка – подходит снизу. Такой вариант подходит для самотечных систем автономного отопления, где не предусмотрен циркуляционный насос. При обратном подводе (подача снизу, а обратка сверху), КПД уменьшается. Схема подходит для закрытого типа отопления, где перекачкой теплоносителя занимается циркуляционный насос.

Еще одним различием является то, что подключение приборов обогрева по диагонали можно выполнять в однотрубном и двухтрубном отопительном контуре.

Диагональное подключение радиатора отопления при однотрубной системе

Схема подразумевает использование в контуре одной трубы. Из нее сформировано кольцо. Другими словами, закольцованная одна линия исполняет роль подачи и обратки. К ней отводящими патрубками по диагонали подведена батарея.

Диагональное подключение радиаторов в двухтрубной системе отопления

У двухтрубной системы аналогично контур выполнен кольцом, но трубы идет две. По подающему трубопроводу направляется нагретый котлом теплоноситель. По обратной трубе (обратке) теплоноситель отводится от радиаторов и направляется в котел для прогрева. Обогревательный прибор у двухтрубной системы подключают отводящими патрубками к обеим линиям общего контура.

Настройка отопления в частном доме

Наталья Роки написал: Мне кажется что из-за этого у нас слишком часто включается котёл, причем не особо и жарко +23 в доме, а на улице +12, при том что температура воды установлена на котле 60 градусов.

Тактование котла это штатная плата за простоту подключения котла.

Установка специальных балансировочно-запорных клапанов, термоклапанов на радиаторы вместо шаровых клапанов НЕ уменьшит тактование котла!

Только упростит балансировку радиаторов.

Минимизировать тактование котла, не во всех котлах, можно уменьшением мощности горелки в режиме отопления.

Делается, в зависимости от котла, регулировкой в самом котле или через панель управления, обычно с входом в специальное меню через код.

Не самый эффективный, но самый простой способ уменьшить тактование котла и уменьшить расход газа поставить комнатный термостат.

В котлах обычно есть специальная перемычка вместо которой подключается комнатный термостат. .

Наталья Роки написал: Объясните пожалуйста как регулировать температуру во всех комнатах

Балансировочно-запорные клапана, термоклапана для бюджетного варианта не обязательны, дольше поигравшись, пару дней, недельку, можно и шаровыми клапанами настроить, что при ограниченном бюджете позволит сэкономить деньги и поберегти нервы.

Без опыта, хоть и на много меньше, будете играться и специальными балансировочно-запорными клапанами, термоклапанами!

Так же специальных балансировочно-запорных клапанов, термоклапанов много разновидностей и если существующая разводка радиаторов в притырочку, то установив специальные балансировочно-запорные клапана можете УСУГУБИТЬ ситуацию!

Специальные балансировочно-запорные клапана, термоклапана для систем в притырочку стоят существенно дороже!

Это не говоря, что без опыта можно купить не то, так как производители бывает предоставляют НЕ верную информацию, а за бывшее установленное деньги не возвращают.

Специальные балансировочно-запорные клапана, термоклапана правильно может купить только опытный мастер взявши предварительно их в руки и позаглядывавши, перемерив все отверстия, зазоры и то бывают подводные камни.

На последних, тупиковых, радиаторах все шаровые клапана откройте и не трогайте больше, на остальных на подаче откройте, балансируйте на обратке, как отбалансируюте тоже больше не трогайте. Просто учитывайте, что у шаровых клапанов малый диапазон регулировки, так что сразу можете прикрыть на 45° и потом пробовать поджимать, прикрывать, больше, чтоб радиаторы грели как надо по помещениям. Теоритически чем ближе к котлу, тем сильней должен быть поджат клапан на обратке радиатора, так как чем ближе к котлу тем больше напор.

Где размещать диагональную систему подключения радиатора

Систему используют в автономном и централизованном отоплении. Больше она подходит для частных домов, чем квартир. Автономное отопление бывает открытого и закрытого типа.

У открытого типа отопления циркуляция теплоносителя происходит самотеком

Если подсоединение по диагонали выбрано для самотечной системы, трубопровод укладывают под уклоном. Подача всегда идет на возвышение, а обратка – на понижение. Отсутствие циркуляционного насоса не позволяет равномерно распределять теплоноситель. Дальние по кольцу радиаторы всегда будут холоднее тех, которые расположены ближе до котла. Проблему решают параллельным двухтрубным подсоединением. Подающая труба от котла и расширительного бака подходит патрубками к верхнему коллектору каждой батареи. Аналогично от нижнего коллектора каждого прибора обогрева отходит патрубок к обратной трубе, подсоединенной к нижней части котла. Сам отопительный прибор устанавливают в приямке, чтобы основной контур был выше по уровню.

Важно! Самотечную систему можно устанавливать в здании максимум с двумя этажами. Вдобавок ограничивается длина контура, количество батарей. Минусом является невозможность подключить «теплый пол».

Принудительное отопление оснащено циркуляционным насосом

Централизованное и автономное отопление закрытого типа предполагает использование циркуляционного насоса. Теплоноситель подается под давлением. Отпадает необходимость соблюдения уклонов, вывода расширительного бака большого объема в верхнюю точку. В принудительном отоплении диагональ подходит для однотрубной и двухтрубной системы. Вдобавок подающий трубопровод можно подвести к верхнему или нижнему коллектору прибора обогрева.

На видео больше информации о подсоединении радиаторов:

Схемы диагонального подключения радиаторов отопления

Самой эффективной и правильной считается двухтрубная схема, когда дело касается диагонального способа подключения. Подающую ветку лучше подводить к верхнему коллектору с одной стороны, а обратку – к нижнему коллектору с другой стороны радиатора. Двухтрубная схема отлично работает в самотечной и принудительной системе. Однако важно правильно расположить подающую и отводящую линию.

Если циркуляция принудительная, две трубы можно располагать снизу радиатора

Так как при принудительной циркуляции теплоноситель подается под давлением, подающую и обратную линию можно расположить по полу ниже батареи. Схема выигрывает в эстетичности, так как на стене видны только подходящие к коллектору патрубки.

Если циркуляция естественная, подающую трубу располагают выше приборов обогрева

При естественной циркуляции двухтрубная схема выглядит не эстетично, так как выше радиаторов по стене пролегает подающая ветка. От нее идут отводные патрубки к верхним коллекторам каждой батареи. Обратная линия пролегает по полу. По-прежнему она остается менее заметной.

Однотрубная схема предполагает прокладку по полу только одной трубы, от которой патрубки подводят к нижнему и противоположному верхнему коллектору

По эффективности однотрубная схема проигрывает во всем, но есть один плюс. При нижней разводке диагональный способ подключения позволяет увеличить теплообмен на 15%, чем у других систем, например, «ленинградки», где оба подводящих патрубка от одной трубы подключены только к пробкам нижних противоположно расположенных коллекторов.

Как диагонально установить радиатор

Прежде чем приступить к монтажу, необходимо точно определиться со схемой. Она будет отличаться в зависимости от вида отопления. Важным нюансом является тип жилья: частный дом или квартира в многоэтажном здании.

Диагональное подключение радиаторов отопления в квартире

Для квартир редко принято подключать батареи по диагонали. В многоквартирных домах чаще встречается боковой подвод. То есть, в однотрубной и двухтрубной системе отводящие патрубки от стояков подсоединяют к верхнему и нижнему коллектору с одного бока.

Для квартир приемлем боковой подвод от стояков

Недостатком является невозможность прогрева длинных батарей. Если набрано от 12 и больше секций, то каждый последующий элемент будет холоднее предыдущего. Только по этой причине диагональное подключение радиаторов отопления в многоквартирном доме специалисты рекомендуют использовать. Даже если у батареи больше 12 секций, теплоноситель равномерно будет циркулировать по каждой из них.

Диагональное подключение радиаторов отопления в частном доме

Совсем иначе обстоят дела с частным домом. Отопительный контур здесь обычно небольшой. Теплоноситель отлично циркулирует по всем секциям в однотрубной и двухтрубной схеме. Однако оптимально отдать предпочтение второму варианту.

Технология монтажа требует использование дополнительных деталей

Монтаж происходит в следующем порядке:

  1. На стене наносят разметку, монтируют кронштейны. Участок стены, прилегающий к тыльным секциям, обклеивают фольгированным материалом. Отражающий экран увеличит теплоотдачу отопительного прибора на 30%.
  2. Следующим этапом комплектуют батарею. На один верхний коллектор ставят кран Маевского. К противоположному верхнему коллектору будет подходить подающая труба. Здесь ставят «американку» и запорный кран. Аналогичный комплект ставят на нижний коллектор с противоположной стороны. Здесь будет подходить обратка. Оставшийся свободный второй коллектор снизу закрывают заглушкой.
  3. Укомплектованную батарею навешивают на кронштейны, подсоединяют к общему контуру. Способ подсоединения зависит от выбранных труб (пластик, металл).

По аналогичному принципу монтируют все радиаторы. По окончании работ закачивают теплоноситель, проверяют отсутствие протечек.

Где лучше устанавливать радиатор?

Отопительные радиаторы, устанавливаемые в любом помещении, помимо отопительной функции, имеют еще одну, не менее важную – защитную. То есть, поток теплого воздуха, идущий от отопительного прибора, создает своеобразный щит, который защищает помещение от проникновения холодного воздуха. И, в таком случае, не имеет значения, каким образом подключены радиаторы – параллельное подключение радиаторов отопления или это последовательное подключение радиаторов отопления.

Именно создание такого заслона от холода и заставляет нас устанавливать радиаторы там, где возможно просачивание холодного воздуха – в нише под окнами.

Поэтому – параллельное или последовательное подключение батарей отопления будет в таком случае – не имеет значение.


Установка батареи отопления под окном

Для того чтобы помещение было максимально защищено от холода, прежде чем приступать непосредственно к установке радиаторов, необходимо правильно определить места, где они будут располагаться. Это не лишняя мера предосторожности – ведь в дальнейшем изменить что-либо возможности не будет.

Еще одна важная особенность – вам следует не только знать, где именно расположить батареи, но и как это правильно сделать, а в дальнейшем – какая будет схема подсоединения радиаторов отопления.

В частности, есть несколько правил относительно того, на каком расстоянии от поверхностей должен быть установлен отопительный прибор:

Правила установки радиаторов отопления

  • от нижней точки подоконника до верхней точки радиатора должно быть не менее 10 см;
  • от поверхности пола до нижней точки радиатора должно быть не менее 12 см;
  • от задней стенки радиатора до стены должно быть не менее 2 см.


Требования к установке радиаторов отопления

Советы профессионалов

Несколько полезных рекомендаций помогут точнее определиться с выбором схемы:

  • для квартир подключение по диагонали выгодно, если у прибора обогрева 12 и больше секций;
  • оптимально отдать предпочтение диагонали, если разводка двухтрубная;
  • подачу всегда надо стараться подводить к верхнему коллектору, а обратку – к нижнему.

В отоплении с принудительной циркуляцией можно отдать предпочтение диагонали при однотрубной системе, а подающую трубу подводить к нижнему коллектору. Однако эффективность обогрева снижается.

KAN-therm: Эффективность теплоотдачи радиатора отопления

Одним из ключевых элементов системы отопления является – радиатор.

Радиатор передает тепловую энергию от источника тепла воздуху в помещении. Тепло от радиатора передается конвекцией, излучением и теплопроводностью.

Эффективность теплопередачи прибора зависит от многих факторов, таких как:

  • Способ установки радиатора;
  • Способ подключения отопительного прибора к системе;
  • Наличие пыли на отопительном приборе – микрочастицы значительно снижают теплоотдачу;
  • Цвет отопительного прибора и состав покрытия;
  • Поверхность строительной конструкции за радиатором;
  • Скорость воздуха в помещении, направление потока воздуха;
  • Атмосферное давление – коэффициент теплопроводности понижается при уменьшении плотности воздуха.

Рассмотрим два основных фактора, оказывающих существенное влияние на теплоотдачу:

 

1. Способ установки радиатора

Самым оптимальным расположением отопительного прибора, с точки зрения теплотехники, является установка под окном. Так как сопротивление теплопередаче окна в несколько раз меньше сопротивления теплопередаче наружной стены, то через окно происходит одна из самых больших потерь тепла. Радиатор под окном создает тепловую завесу, которая уменьшает утечку тепла из помещения. Также отопительный прибор нагревает наружный воздух, который проходит через неплотности и щели оконной рамы (инфильтрация).

Возможна установка отопительных приборов у внутренней стены вдали от наружных стен, наружных дверей и окон, а также под перекрытием – в таком случае эффективность теплоотдачи прибора снижается примерно на 10%.

Идеальным вариантом было бы расположение радиатора под окном без подоконника -100 % теплоотдачи. Из-за подоконника траектория движения воздуха меняется, и теплоотдача уменьшается на 3-4%.

При расположении радиатора в нише теплоотдача уменьшается примерно на 7%.

В случае установки прибора отопления за декоративным экраном, который имеет внизу пространство для доступа воздуха, теплоотдача радиатора уменьшается на 5-7%.

У полностью закрытых декоративным экраном радиаторов теплоотдача падает на 20-25%.

 

2. Способ подключения отопительного прибора к системе

Способ подключения радиатора к системе отопления зависит от типа радиатора. Нижнее подключение радиаторов используется с радиаторами типа VK, имеющих встроенный термостатический клапан и нижнее подключение подающего и обратного трубопроводов. Межосевое расстояние 50 мм. Ось подающего трубопровода находится всегда дальше от бокового края радиатора. Подсоединение в обратном порядке вызовет падение тепловой мощности отопительного прибора более чем на 30%.

Труба к радиатору типа VK может выходить из пола (рис.1) или из стены (рис.2). Прибор отопления может быть подключен к системе отопления через вентиль отопительного прибора или напрямую.

Существует множество вариаций подключений, которые зависят от вида применяемой арматуры, от индивидуальных предпочтений заказчика, от бюджета, выделенного на систему отопления.

На рисунках представлены наиболее распространенные варианты подключений отопительных приборов в системах KAN-therm Push и KAN-therm Press.

рис.1



рис. 2

 

Для радиаторов с боковым подключением существуют следующие виды подключений:

  • Боковое разностороннее (диагональное)

Труба к радиатору также может выходить из пола (рис. 3) или из стены (рис. 4). Данное подключение является оптимальным исходя из теплоотдачи. Рекомендуется для радиаторов длиной более 2-х метров, а также для тех, длина которых вчетверо превышает высоту. Подающая труба присоединяется к левому или правому верхнему штуцеру, а обратная – к противолежащему нижнему штуцеру. Подсоединение, выполненное наоборот (снизу в верх), приведёт к снижению теплоотдачи радиатора более чем на 20%


рис.3                                                                                                     рис.4 

 

  • Одностороннее боковое подключение

Подающая труба присоединяется к верхнему штуцеру радиатора, а обратная – к нижнему с той же стороны (рис. 5). Подсоединение, выполненное наоборот, приведёт к снижению теплоотдачи радиатора примерно на 20%.

 


рис.5 

 

Седельное подключение

Подающая и обратная трубы присоединяется к нижним штуцерам (рис.6). При таком виде подсоединения теплоотдача радиатора будет ниже номинальной примерно на 10%.

Системы KANtherm предлагают широкий ассортимент  элементов, позволяющих осуществить различные схемы присоединения отопительных приборов в широком ценовом диапазоне.  В предложении фирмы KAN представлены специальные элементы для подключения отопительных приборов, такие как отводы и тройники с медными никелированными трубками Ø15 мм, различные фитинги для медных трубок, пластмассовые маскирующие насадки и другие элементы, позволяющие реализовать  все существующие способы подключений отопительных приборов.

 

Правильно выбранный способ подключения отопительного прибора позволит эффективно использовать систему отопления, на многие годы обеспечит работоспособность системы и будет приносить эстетическое удовольствие.

 

 

 


Ещё по теме:


 

 

 

Способы подключения радиаторов отопления — Услуги сантехника

Содержание

Последовательное соединение батарей отопления

Последовательное соединение

Последовательное соединение батарей отопления практикуется в многоэтажных домах. Принцип действия отопительной системы сводится к подключению радиаторов один за другим, когда теплоноситель идет по кругу. Ввод трубы производится снизу радиатора, а вывод осуществляется снизу или сверху. Такая схема подключения способствует тому, что первые батареи в системе нагреваются сильнее последних. Возможна даже довольно существенная разница температур в них, а поэтому те радиаторы, которые греют сильнее, рекомендовано устанавливать в более холодных помещениях.

Последовательное подключение радиаторов отопления предполагает их непосредственное соединение к системе. Регулировка теплоотдачи в таких радиаторах  невозможна, а их замена и обслуживание производится с полным отключением всей отопительной системы.

Параллельное подключение радиаторов отопления

Параллельное подключение батарей

Параллельное соединение радиаторов используют чаще всего в многоквартирных домах. Отопительная система с таким видом подключения работает по следующему принципу: горячая вода по всем этажам идет по одной трубе вверх, и по другой – вниз. При этом теплоноситель последовательно проходит все радиаторы дома.

Минус подобной конструкции состоит в необходимости при ремонте одного радиатора отключения системы отопления во всем подъезде. Проблема решается установкой на отводах шаровых кранов, одновременно предоставляющих возможность регулирования уровня теплоотдачи отдельных радиаторов.

Следует отметить и другой недостаток параллельного подключения радиаторов отопления – снижение давления теплоносителя в магистрали приводит к недостаточному прогреванию батарей, что сокращает эффективность такой системы отопления.

Диагональное подключение радиаторов отопления

Диагональное соединение батарей с магистралью теплоподачи

Диагональное подключение радиаторов – наиболее эффективный вариант функционирования отопительной системы. При таком соединении подача горячего теплоносителя осуществляется через верхнюю трубу с одной стороны батареи, а возврат охлажденной воды в стояк – по нижней трубе с другой стороны. Такое соединение обеспечивает максимальный уровень теплоотдачи радиатора и рекомендовано к применению по отношению к многосекционным конструкциям.

Несовершенство диагонального подключения радиаторов отопления – в его непривлекательном дизайне. Появление дополнительной отопительной трубы, огибающей радиатор, выглядит не очень эстетично, особенно в интерьере офисных и презентационных помещений. Чаще всего такой тип соединения реализуется в частном домостроении, где большое значение придается именно повышению эффективности отопительной системы, а вопросам дизайна отводится второстепенная роль.

Нижнее подключение радиаторов отопления

Нижнее подключение батареи отопления

Подобная схема подключения радиаторов отопления считается наименее эффективной с точки зрения теплоотдачи. Тепловая мощность радиаторов при ее использовании значительно снижается, а теплопотери достигают 10-15%. По этой причине применения радиаторов отопления с нижним подключением стараются избегать. Но в тех случаях, когда в интерьере помещения важная роль отведена эстетической стороне вопроса, например, в помещениях офисов компаний, подобная схема весьма удобна. Либо при монтаже дизайнерских радиаторов сложной формы или нестандартного размещения. Она эффективно скрывает трубопроводы, которые чаще всего маскируют плинтусами либо встраивают в стяжку пола.

Оправдана такая обвязка при использовании биметаллических или алюминиевых радиаторов, в которых высокая теплопроводность материала изготовления способствует сокращению потерь теплоотдачи.

Однотрубное подключение радиаторов отопления

Однотрубная схема подключения радиаторов является наиболее простой. Подача теплоносителя и его вывод осуществляет в одну и ту же трубу. Но простота монтажа декомпенсируется недостатками такой системы – все радиаторы сети нагреваются неравномерно, первый из них получает больше тепла, последний – меньше. Разница температур на радиаторах разных концов сети может быть весьма ощутимой и достигать десяти градусов.

По этой причине однотрубное подключение радиаторов отопления лучше применять на чугунных батареях. При монтаже алюминиевых или биметаллических радиаторов перепад температур увеличивается.

Недостаток системы можно частично исправить установкой байпаса, который переносит теплоноситель из верхней подводящей трубы в отводящую нижнюю. Между входным отверстием радиатора и байпасом для автоматизации управления помещают вентиль или терморегулятор.

Двухтрубное подключение радиаторов отопления

Двухтрубные системы имеют в своей конструкции два трубопровода – прямой и обратный. Охлажденная вода из радиатора возвращается в котел по выходной трубе. Такая система отопления очень удобна тем, что позволяет обеспечивать равномерный нагрев всех радиаторов сети и регулировать их мощность по отдельности.

Двухтрубные системы могут быть горизонтальными или вертикальными. В горизонтальных подключение осуществляет с верхней или нижней разводкой. Вертикальные системы удобны в домах, имеющих переменную этажность.

Двухтрубное подключение радиаторов отопления на сегодняшний день считается более прогрессивным и способствует повышению комфорта проживания людей. Кроме того, они обеспечивают более современный дизайн интерьера и удобны при выполнении скрытой прокладки.

Практическая поддержка для оценки коэффициентов эффективности системы отопления помещений в холодном климате

В этом разделе объясняется методология, используемая для оценки тепловых потерь в оболочке здания и расчета коэффициентов эффективности для различных жидкостных панельных радиаторов. В частности, в разделе «Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007) под названием ‘ Немецкий метод» »объясняется, как рассчитать тепловые потери и КПД радиаторов.В разделе «Переходная модель жидкостного панельного радиатора» представлена ​​переходная модель жидкостного панельного радиатора, используемая в моделировании. В разделе «Проверка модели жидкостного панельного радиатора» описывается проверка модели жидкостного панельного радиатора в сравнении с имеющимися экспериментальными измерениями. Раздел «Испытание на скачкообразную реакцию между водяными панельными радиаторами с разным расположением соединительных труб: сравнение выделяемого тепла» описывает испытание на скачкообразную реакцию между жидкостными радиаторами с различным расположением соединительных труб.В разделе «Краткий обзор имитационной модели здания» представлен краткий обзор имитационной модели здания. В разделе «План моделирования» описан план моделирования для исследуемого случая.

Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007), названный

«« Немецкий метод »

Метод повышения эффективности, описанный в EN 15316-1 ( 2007), стандартизирует подвод тепла и тепловые потери в оболочку здания для системы отопления помещений.Тепловые потери необходимы для расчета КПД системы отопления помещений. Изменение тепловых потерь из-за климата, типа системы отопления и типа конструкции здания обсуждается позже в разделе «План моделирования». Тепловые потери в оболочку здания следующие: потери тепла из-за неравномерного распределения внутренней температуры Q e м , с т г и потери тепла из-за стратегии управления Q e м , в т г л , как показано на Рис. 3а. квартал e м , с т г разделяется между тепловыми потерями, что приводит к повышению / понижению внутренней температуры вблизи границ рассматриваемого контрольного объема (помещения) Q e м , с т r 1 , а тепловые потери из-за расположения излучателя Q e м , с т р 2 .

Рис. 3

Тепловые потери. a Control. b Стратификация

квартал e м , с т г относится к теплопотерям у потолка Q e м , в и и , где на температуру в помещении влияет эффект расслоения. В этом контексте в Техническом стандарте также рассматриваются потери тепла при расслоении, потери тепла через окна Q e м , м и , где на температуру в помещении влияют холодные поверхности. квартал e м , с т r 2 относится к потере тепла по направлению к задней стенке радиатора, учитываемой как конвекция и излучение, как показано на рис.3b.

Для обоих сроков, Q e м , с т r 1 a d 2 , техническая норма определяет, как их рассчитать, применяя общее уравнение для потерь тепла при передаче, как показано в уравнении. 1.

$$ \ mathrm {Q_ {em, str, i}} = \ mathrm {\ Sigma A_ {i}} \ cdot \ mathrm {U_ {inc, i}} \ cdot \ mathrm {(T_ {air, inc , i} — T_ {out, i})} \ cdot \ mathrm {\ Delta \ theta} $$

(1)

Технические стандарты учитывают потери при передаче, потому что механизм конвекции между объемом воздуха и внутренними поверхностями, а также излучение между внутренними поверхностями помещения происходит внутри анализируемого контрольного объема. Пример контрольного объема можно найти на рис.3b. Уравнение 1 учитывает локальное повышение / понижение температуры в помещении T и т , и с , и локально увеличенный / уменьшенный коэффициент теплопередачи, рассчитанный от изоляционного материала к внутренней поверхности U и с . Скорее всего, уравнение. 1 может применяться к результатам моделирования помещений, разработанных с помощью программного обеспечения вычислительной гидродинамики. Неочевидно вычислить локальное повышение / понижение температуры в помещении с помощью программного обеспечения для моделирования энергопотребления здания. По этой причине T с и и и T Вт и , температура внутренней поверхности потолка и окна, заменить T а и р , и с в уравнении.1 с использованием того же коэффициента теплопередачи U и рассматриваемой конструкции. Особое внимание следует уделять повышению температуры в помещении около потолка. Согласно приложению A.2 стандарта EN 15316-1 (2007), коэффициент полезного действия при перегреве около потолка составляет 0,95% при кривой нагрева 55/45 ℃ и ΔT = 30 K для радиаторов. Повышение температуры в помещении около потолка считается постоянным в течение всего времени моделирования.

Потери тепла из-за контроля температуры в помещении Q с т г л относится к невозвратному теплу, превышающему заданную температуру в помещении. Неидеальный контроль вызывает отклонения и отклонения от предварительно заданной заданной температуры из-за физических характеристик системы управления, самой системы отопления и расположения датчика.В этой статье, чтобы упростить задачу, датчик определяет только поведение температуры воздуха.

Согласно стандарту EN (EN 15316-2-1 2007), коэффициенты эффективности для расслоения η e м , с т r , 1 a d 2 и контроль η e м , в т г можно количественно определить с помощью отношения между тепловыми потерями, рассчитанными с идеальной системой отопления, и тепловыми потерями в реальном случае, как показано в уравнении. 2а и б. В идеальном случае рассчитывается потребность в энергии для обогрева жилого помещения в соответствии с EN 13790 (2008). Температура в помещении поддерживается постоянной (или приблизительно постоянной) в течение всего периода отопления. Помещение оборудовано как идеальным контролем, так и идеальной системой отопления. Это означает, что система отопления не учитывает возможные задержки в управлении, тепло, накопленное в излучателе тепла, и тепло, выделяемое из распределительных труб. Приток тепла от солнца, людей, электроприборов, освещения и механической вентиляции одинаков как для реальных, так и для идеальных случаев.

$$ \ mathrm {\ eta _ {\ mathrm {em, str1 / 2}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, str1 / 2}}} {Q _ {\ mathrm {em , str1 / 2}}}} $$

(2а)

$$ \ mathrm {\ eta _ {\ mathrm {em, ctrl}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, ctrl}}} {Q _ {\ mathrm {em, ctrl}}} } $$

(2b)

Общий коэффициент полезного действия системы отопления помещений можно рассчитать, используя выражение в формуле. 3, как указано в разделе 7.2 EN (EN 15316-2-1 2007).

$$ \ mathrm {\ eta_ {em}} = \ mathrm {\ frac {1} {4 — (\ eta_ {em, str} + \ eta_ {em, ctr} + \ eta_ {em, embed}) }} $$

(3)

η e м , и кв.м б и д имеет значение 1, поскольку радиатор не имеет труб, встроенных в конструкцию здания.Член η e м , с т г — среднее значение между η e м , с т r 1 и η e м , с т р 2 .

Переходная модель радиатора жидкостной панели

Модель разработана совместно с IDA ICE. Радиаторы моделируются как изотермическая поверхность, сообщающаяся с моделью зоны температурой и границей теплового потока. Поэтому одна поверхность моделируется как средняя температура всего металла. Это упрощение связано с относительно высокой теплопроводностью металла по сравнению с теплопроводностью жидкости. Однако для получения динамических характеристик жидкость радиатора моделируется с помощью нескольких элементов, соединенных последовательно.Тепловые характеристики радиатора (номинальная мощность, мощность n и т. Д.) Указаны в техническом каталоге. Тепло, излучаемое радиатором, оценивается на основе тепловых характеристик радиатора с использованием температуры воздуха и температуры капли воды. Наконец, температура поверхности получается на основе разницы между оценкой выделяемого тепла и общим теплопереносом на границе раздела модели.

Линия подачи расположена в верхнем углу T с u п. , а выхлопная линия расположена в противоположном нижнем углу T e х ч .Температура приточного потока i-го элемента является температурой на выходе (i-1) -го элемента . Когда i = 1, T эт d , 0 T с u п. в радиатор. Таким образом, тепловой поток, поступающий на каждую емкость \ (\ dot {\ mathrm {Q}} _ {\ mathrm {{sup, i}}} \), можно определить следующим образом:

$$ \ dot {Q} _ {\ mathrm {sup, i}} (\ theta) = \ dot {\ mathrm {m}} _ {\ text {fld}} \ cdot \ mathrm {c_ {fld} } \ cdot \ mathrm {\ left (T_ {fld, i-1} (\ theta) -T_ {fld, i} (\ theta) \ right)} $$

(4)

где \ (\ dot {\ mathrm {m}} _ {\ text {fld}} \) — массовый расход жидкости, подаваемой в радиатор, c эт д — удельная теплоемкость и температура жидкости T эт д , и при разной i-й ёмкости .

Модель рассчитывает температуру каждой жидкости, емкость T эт д , и как разница между тепловым потоком, подаваемым \ (\ dot {\ mathrm {Q}} _ {\ mathrm {sup, i}} \) к каждой емкости, и теплотой, исходящей от каждой емкости жидкости \ (\ dot {\ mathrm { Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 5.

$$ \ mathrm {\ frac {C_ {fld}} {nCap}} \ cdot \ mathrm {\ frac {dT_ {fld, i} (\ theta)} {d \ theta}} = \ dot {\ mathrm {Q}} _ {sup, i} (\ theta) — \ dot {\ mathrm {Q}} _ {fld, i} (\ theta) $$

(5)

где C эт д = M эт д c эт д , — это общая емкость жидкости внутри радиатора, а nCap — это количество емкостей.

Модель вычисляет потери тепла из жидкости \ (\ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 6.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) = \ mathrm {\ frac {K_ {tot}} {nCap}} \ cdot \ mathrm {\ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right)} $$

(6)

где общий / эквивалентный коэффициент теплопередачи радиатора K т или т по формуле.{n}} {L \ cdot H \ cdot \ left | \ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right) \ right |} $$

(7)

L и H — геометрические параметры, длина и высота радиатора, а \ (\ dot {\ mathrm {Q}} _ {\ mathrm {N}} \) — общее количество тепла, выделяемого радиатором жидкостной панели в номинальных условиях.

Логарифмическая разница температур в уравнении. 7 вычисляется в формуле. 8.

$$ \ mathrm {\ Delta T_ {ln, i} (\ theta)} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} — \ mathrm {T_ {fld, i + 1} (\ theta)}} {ln \ frac {\ mathrm {T_ {fld, i} (\ theta)} — \ mathrm {T_ {air} (\ theta)}} {\ mathrm {T_ {fld, i + 1 } (\ theta)} — \ mathrm {T_ {air} (\ theta)}}} $$

(8)

Уравнение 8 не может быть решено, если отношение разностей температур жидкость-воздух равно 1.Таким образом, уравнение. 8 необходимо заменить арифметической разностью температур, как показано в формуле. 9.

$$ \ mathrm {\ Delta T_ {i}} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} + \ mathrm {T_ {fld, i + 1} (\ theta)}} {2} — \ mathrm {T_ {air} (\ theta)} $$

(9)

Логарифмическая разница температур при номинальных условиях Δ T л , вычисляется как в формуле. {nCap}} \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) \: — \ dot {Q} _ {\ text {tot}} (\ theta) $$

(10)

где C кв.м и т — емкость металлической части радиатора гидронной панели, а Тл с u г f — средняя температура поверхности излучателя тепла.

Модель радиатора вычисляет общую теплопередачу от поверхности к окружающей среде \ (\ dot {\ mathrm {Q}} _ {\ text {tot}} \) в сочетании с моделью зоны, выраженной как в формуле. 11. Граница раздела между моделями — это длинноволновое излучение, которым обмениваются поверхность радиатора и окружающие поверхности, и конвекция на поверхности радиатора с узлом температуры воздуха в помещении. {n}} $$

(11)

Общее количество тепла, выделяемого в термическую зону, делится на три компонента, как показано на рис.4 тепло к задней стене \ (\ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} \), конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv }} \) и тепло к зоне \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \). Уравнение 12 показывает этот тепловой баланс.

$$ \ dot {\ mathrm {Q}} _ {\ text {conv}} (\ theta) = \ dot {\ mathrm {Q}} _ {\ text {tot}} (\ theta) — \ dot {\ mathrm {Q}} _ {\ text {front}} (\ theta) — \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) $$

(12)

Рис.4

Схема радиатора с соединительными патрубками на противоположной стороне

Тепло к задней стенке вызвано излучением и конвекцией. В этой статье мы аппроксимируем потерю тепла с помощью механизма естественной конвекции. Механизм передачи тепла естественной конвекцией к задней стенке радиатора зависит от температуры задней стенки T б а с к к а л л , температура воздуха в канале, размер канала b и его высота H.{\ beta}} $$

(13)

Оценка коэффициента теплопередачи за счет конвекции между радиатором и его задней стенкой показана в формуле. 14.

$$ \ mathrm {h_ {back-wall}} = \ text {Nu} \ cdot \ mathrm {\ frac {\ lambda_ {air}} {b}} $$

(14)

где λ а и г — теплопроводность воздуха.

Средние значения температуры задней стенки, температуры воздуха, толщины и длины канала дают средний коэффициент теплопередачи за счет конвекции к задней стенке радиатора 3 Вт м −2 К -1 . Коэффициент теплопередачи за счет конвекции предполагается постоянным на протяжении всего моделирования. Потери тепла к задней стенке рассчитываются, как показано в формуле. 15.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) \, = \, \ mathrm {h_ {back-wall}} \ cdot \ mathrm {A} \ cdot \ mathrm {\ left (T_ {surf} (\ theta) \, — \, T_ {back-wall} (\ theta) \ right)} $$

(15)

Конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) — это тепло, выделяемое водяным панельным радиатором в помещении за счет конвективного механизма циркуляции воздуха в помещении.Внутренний воздух циркулирует в помещении, попадает в канал между радиатором и его задней стенкой, а затем поднимается к потолку.

\ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) вычисляется как разница среди других известных членов уравнения. 12, поскольку \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \) вычисляется в модели зоны.

Валидация модели водяного панельного радиатора

Валидация модели водяного панельного радиатора выполняется путем сравнения смоделированной температуры выхлопного потока во время фазы зарядки и тепла, выделяемого при достижении устойчивого состояния, с имеющимися экспериментальными измерениями в Стефан (1991).

Стефан (1991) провел испытание ступенчатой ​​характеристики радиатора с жидкостной панелью, подвергшегося внезапному увеличению массового расхода. Эксперимент проводится в кабине, которая соответствует техническим характеристикам, перечисленным в стандарте DIN 4704, который в настоящее время заменен на EN 442-2 (2014). Технический стандарт направлен на измерение тепловой мощности жидкостного панельного радиатора путем определения лабораторных условий и методов испытаний.

Для измерения тепловой мощности водяного панельного радиатора температура воздуха в помещении поддерживается постоянной на протяжении всего испытания за счет соблюдения стационарных условий.Чтобы обеспечить постоянный профиль воздуха в помещении, кабина оборудована системой охлаждения, встроенной в каждую поверхность кабины. Интегрированная система охлаждения позволяет контролировать температуру каждой поверхности кабины (кроме поверхности на задней стенке радиатора), выполняя установившиеся условия испытания.

Конструкция каждой будки выполнена из сэндвич-панелей. Сэндвич-панель состоит из трех слоев: стальной панели со встроенной системой охлаждения, изоляционной пены (толщиной 80 мм с термическим сопротивлением 2.5 кв.м 2 К Вт -1 ) и внешний стальной лист. Стена за жидкостным радиатором имеет такую ​​же сэндвич-панель, но без системы охлаждения. Система охлаждения должна быть спроектирована так, чтобы ограничивать разницу температур между охлаждаемыми внутренними поверхностями в диапазоне ± 0,5 К. Для обеспечения этого каждая панель должна поставляться с массовым расходом не менее 80 кг ч -1 за каждые м 2 поверхности.Кабина имеет два отверстия в стенах, чтобы гарантировать водное и электрическое соединение между водяным панельным радиатором и за пределами помещения. На рис. 5 показана схема камеры и системы охлаждения, взятая из стандарта EN 442-2 (2014).

Рис. 5

Камера и система охлаждения. Изображение взято из EN 442-2

Метод оценки тепла, излучаемого радиатором жидкостной панели, — это метод взвешивания. Метод взвешивания заключается в вычислении разницы энтальпий между подачей (входом) и возвратом (выходом) жидкости, умноженной на массовый расход.Энтальпия жидкости при давлении и температуре, измеренная в ходе испытания, известна из табличных значений.

Радиатор с жидкостной панелью, рассмотренный в эксперименте Стефана (1991), имеет номинальные параметры, перечисленные в таблице 1, с соединительными трубами, расположенными на противоположной стороне.

Таблица 1 Номинальное состояние радиатора гидронной панели

Модель жидкостного панельного радиатора имеет те же технические характеристики, которые указаны в таблице 1. Экспериментальные измерения и результаты моделирования сравниваются на рис.6 по температуре выхлопного потока от времени.

Рис. 6

Сравнение экспериментальных измерений, сделанных Стефаном (1991), и результатов моделирования для воды на выходе

Разница в количестве выделяемого тепла между экспериментальными измерениями и результатами моделирования составляет 3,75% при достижении стационарного состояния.

Испытание на скачкообразную характеристику между жидкостными панельными радиаторами с различным расположением соединительных труб: сравнение выделяемого тепла

Гидравлический панельный радиатор размещается в помещении с постоянной наружной температурой, поддерживаемой на уровне –15 ° C в течение всего времени моделирования. Выбор поддержания температуры наружного воздуха на уровне –15 ° C является случайным; Фактически, можно выбрать другое значение (как правило, меньшее, чем значение температуры, подаваемой в радиатор), но оно должно быть стабильным на протяжении всего времени моделирования, чтобы избежать помех в системе. Тепловые поступления от электроприборов, освещения, присутствия людей, интенсивности ветра и солнца во время испытания отключаются. Массовый расход увеличен до 0,01484 кг с −1 в момент моделирования 𝜃 = 0.До этого массовый расход составлял 2 × 10 −4 кг с -1 , а температура подаваемого потока поддерживалась постоянной на уровне 83 .

Такое же испытание было выполнено на том же типе водяного панельного радиатора с соединительными трубками, расположенными на той же стороне. Предполагается, что емкость жидкости вблизи соединительных труб имеет массовый расход на 10% выше, чем емкость, наиболее удаленная от соединительных труб. Этот тип водяного радиатора имеет температуру выхлопного потока; средневзвешенное значение температуры выхлопных газов для разных потоков в каждом элементе.

На рисунке 7 показана схема радиатора, когда соединительные патрубки расположены с одной стороны.

Рис.7

Схема радиатора с соединительными трубками, расположенными на той же стороне

Общее количество тепла, излучаемого радиатором жидкостной панели при различном расположении соединительных трубок, показано на Рис.Можно заметить, что радиаторы с соединительными трубками на одной стороне выделяют немного больше тепла, чем радиаторы с соединительными трубками, расположенными на противоположной стороне. Это означает, что радиаторы с соединительными трубками, расположенными на одной стороне, быстрее реагируют на изменение подаваемого массового расхода по сравнению с радиаторами с соединительными трубками, расположенными на противоположной стороне. В конечном итоге оба тепла, выделяемые двумя растворами, достигают одного и того же значения.

Рис. 8

Сравнение тепла, выделяемого радиаторами с различным расположением трубных соединений

Краткий обзор имитационной модели здания

Имитационная модель состоит из комнаты, смежной с другими отапливаемыми комнатами.В идеале тепло не передается в другие кондиционируемые помещения, поэтому для всех внутренних стен, потолка и пола задано адиабатическое граничное условие. Характеристики конструкции, окон, системы отопления, вентиляции и кондиционирования указаны в таблице 2. Помещение имеет чистую площадь пола 10 м 2 с постоянным расходом приточного воздуха при температуре 16 ° C. Еженедельные графики занятости, освещения и электроприборов являются стандартными; комната занята каждый день с 07.С 00:00 до 08:00 и с 17:00. до 20.00 часов в отопительный период.

Таблица 2 Тепловые характеристики здания

Помещение оборудовано системой механической вентиляции, в которой приточный вентиляционный поток смешивается с воздухом в помещении, обеспечивая примерно однородную температуру всего объема воздуха. Были произведены расчеты размера труб для распределительной системы, мощности, необходимой для циркуляционных насосов, а также мощности, требуемой от радиатора, и мощности, необходимой для установки кондиционирования воздуха.Радиатор подключен к системе хранения, которая состоит из многослойного резервуара для горячей воды. Электрический резистор внутри резервуара гарантирует требуемую температуру подаваемой жидкости в соответствии с погодозависимой кривой нагрева. Циркуляционные насосы работают согласно постоянной кривой нагрузки. Распределительные трубы предполагается изолированными и интегрированными в ограждающую конструкцию здания. Схема имитационной модели здания и системы HVAC представлена ​​на рис.9.

Рис. 9

Имитационная модель здания

План моделирования

В следующем разделе объясняется, как моделирование планируется, чтобы учесть вероятные изменения тепловых потерь из-за различных технических решений здания. План моделирования состоит из анализа чувствительности к местоположению здания, наружной оболочке здания и характеристикам системы отопления.

Первый анализ чувствительности был проведен путем определения местоположения здания в четырех различных климатических условиях Швеции: северный, северо-центральный, южно-центральный и южный. Климат влияет на соотношение между свободным теплом и тепловыми потерями в помещении; таким образом, обогрев может быть уменьшен для удовлетворения требований комфорта для пассажиров, как показано Bianco et al.(2016). В этом сценарии влажность воздуха также играет роль, как объяснил Menghao (2011), поскольку она влияет на микроклимат в помещении и, следовательно, на конструкцию системы HVAC. Файл погоды, используемый в программном обеспечении моделирования здания, представляет собой синтетический файл погоды, полученный за один час на основе значений внешней температуры по сухому термометру T или u т , относительная влажность воздуха ϕ, сила ветра в направлении x и y и процент облачности в%. Значения прямого D и диффузного d солнечного излучения рассчитываются по модели Чжан-Хуанга. Синтетический файл погоды записывается в базу данных ASHRAE (2001) и используется в коммерческой программе моделирования зданий IDA ICE vers. 4.7. На рисунках 10 и 11 показана среднемесячная температура наружного воздуха и прямая солнечная радиация для каждого выбранного населенного пункта.

Рис.10

Среднемесячная наружная температура

Рис.11

Среднее за месяц прямое солнечное излучение на горизонтальную поверхность

Второй анализ чувствительности был проведен путем изменения активной тепловой массы.Активная тепловая масса — это первый слой материала, контактирующий с воздухом в помещении, учитывая также все слои материала до изоляции, как показано в Brembilla et al. (2015b). Активная тепловая масса накапливает тепловую энергию, которая выделяется в помещении. Многие авторы рассматривали преимущества и недостатки изменения тепловой массы здания. Горейши и Али (2013) утверждают, что тяжелая тепловая масса может сглаживать резкие колебания температуры в помещении, обеспечивая стабильную температуру в помещении.В отопительный сезон накопленное тепло будет выделяться в кондиционируемое пространство; в то время как в период похолодания ночная вентиляция рассеивает накопленное тепло. Masy et al. (2015) утверждают, что активная тепловая масса также имеет положительный эффект за счет переключения нагрузки используемой электроэнергии. Автор статьи изменил внутренний слой внешней стены из кирпича ( ρ б г и с к = 1500 кг м −3 , с б г и с к = 1000 Дж г -1 К −1 ) в древесину ( ρ Вт или или д = 600 кг м −3 , с Вт или или д = 700 Дж г -1 К -1 ), регулируя толщину деревянного слоя, чтобы иметь одинаковый коэффициент теплопередачи как для тяжелой, так и для легкой конструкции. Такое же изменение произошло для кирпичного слоя адиабатических стен, примыкающих к кондиционируемым помещениям, и для бетонного слоя в полу и потолке ( ρ с или = 2300 кг м −3 , с с или = 880 Дж г -1 К -1 ).

Третий анализ чувствительности сосредоточен на местном управлении радиатором. Местное управление переключалось между P (зона пропорциональности с ΔT = 1 K сначала, а затем с ΔT = 2 K) и PI-регулированием. P-регулирование позволяет регулировать пропорциональный расход при изменении температуры в помещении, когда она выходит за пределы диапазона пропорциональности. ПИ-регулирование также гарантирует время интеграции, которое снижает реакцию системы и стабилизирует колебания температуры в помещении, как указано в Sanchis et al.(2010) и Ку и Захируддин (2004).

Последний анализ чувствительности проводился путем изменения местоположения соединительных труб. Соединительные патрубки сначала располагаются на той же стороне радиатора, а затем на противоположной стороне. Весь анализ чувствительности учитывает 48 реальных случаев и 8 идеальных случаев. Для каждого анализируемого климата и для тяжелой, и для легкой активной тепловой массы устанавливаются идеальные случаи.

REHVA Journal 01/2018 — Радиаторы, конвекторы и энергоэффективность

Микко Иивонен
MSc
Директор по технической среде и стандартам
Rettig ICC
REH99VA 908 Fellow [email protected]

Повышение энергоэффективности было ключевой задачей в строительной отрасли на протяжении последних нескольких десятилетий.
Также были запрошены новые энергоэффективные функции для таких компонентов, как радиаторы и конвекторы.

Поставщики излучателей тепла рекламировали и продвигали положительные индивидуальные особенности продукта, такие как повышенное тепловое излучение, меньшие потери на задней стенке и более быстрое реагирование на управление. Но это не так просто: энергоэффективность связана с процессом нагрева, и поэтому вопрос следует рассматривать в целом, а не как частичную оптимизацию деталей.

Конечно, существуют различия между радиаторами и конвекторами, но вопрос в том, в чем разница с точки зрения комфорта, энергоэффективности и, в конечном итоге, денег?

Цель этой статьи — дать ответы на эти важные вопросы с помощью объективной информации, основанной на измерениях.

Рассматриваемые типы излучателей тепла и соответствующие аспекты

На рис. 1 показаны рассматриваемые типы излучателей тепла.

Рисунок 1.Исследуемые излучатели тепла: обычный 2-панельный радиатор с параллельным потоком (PAR), типовой 2-панельный радиатор с последовательным потоком (SER), идеальный 2-панельный радиатор с последовательным потоком (SERi), ​​обычный круглый трубчатый / ламельный конвектор с кожухом или без него. (CON) и идеальный конвектор (CONi), такой как внутрипольный конвектор (без иллюстрации). = Отвод воздуха.

Для сравнения процесса отопления в зданиях важны следующие функции излучателей тепла:

· Реакция человека на тепловыделение

· Тепловое излучение в помещение

· Потери тепла через заднюю стенку

· Функция контроля температуры

· Тепловая мощность при частичных нагрузках

· Влияние на выработку тепла

Вторичные и с точки зрения сравнения несущественные элементы, такие как потери тепла в накоплении и распределении (трубопроводах), а также другие методы контроля не были приняты во внимание в данном обзоре .

Основная часть результатов измерений, упомянутых в этой статье, получена из лабораторных тестов, проведенных доктором Концельманном в WTP GmbH в Берлине (, рис. 2 ), и из анализа, проведенного профессором Курницким и его командой в Таллиннском технологическом университете. а также из нашего внутреннего анализа [1].

Рисунок 2. Измерительная установка в лаборатории WTP GmbH в Берлине.

При лабораторных измерениях мы хотели выяснить, как нормальный двухпанельный радиатор (PAR) и типичный двухпанельный радиатор с последовательным потоком (SER) ведут себя под управлением термостатического клапана радиатора в сопоставимых условиях.Выводы об идеальном двухпанельном радиаторе с последовательным потоком (SERi), ​​обычном конвекторе (CON) и идеальном конвекторе (CONi) также можно сделать с достаточной точностью из результатов измерений.

Реакция человека на тепловое излучение

Человек должен обнаруживать небольшие и быстрые изменения температуры в окружающей среде. В наших собственных экспериментальных тестах измерены скачки до 0,1 градуса при рабочей температуре. Вместо этого медленные изменения температуры, менее одного градуса за 15 минут [2], не воспринимаются, потому что собственная система терморегуляции человеческого тела способна адаптироваться к этому изменению в нормальных условиях. Это объясняет, почему мы не сталкиваемся с проблемой, когда термостат регулирует расход воды в радиаторе и соответственно изменяется температура радиатора.

Лучшее расположение радиатора — под окном, где он блокирует нисходящий поток, конвекционный поток от холодной поверхности окна. Еще одна важная особенность радиатора — это его тепловое излучение, которое компенсирует лучистый эффект более холодной поверхности окна, создавая условия для теплового комфорта.Фактически, радиатор под окном увеличивает полезное внутреннее пространство.

Температура излучателя и тепловые потери

Измерения при условиях частичной нагрузки 75% [3]

Частичная нагрузка 75% означает, что коэффициент притока свободного тепла составляет 25%. Свободный приток тепла складывается из притока внутреннего тепла и воздействия солнечной радиации. Средний охлаждающий эффект кабины составлял 774 Вт. Температура потока была установлена ​​на уровне 50 ° C. Термостатический клапан радиатора TRV был обычным пропорциональным клапаном, а расход воды был снижен до уровня примерно 1/3 ṁN, при этом тепловая мощность радиатора PAR была сбалансирована с потребностью в тепле. При всех измерениях перепад давления поддерживался постоянным. Номинальный расход, ṁN, представляет собой значение расхода через радиатор, измеренное в условиях и температурах EN 442: подача = 75 ° C, обратка = 65 ° C и воздух = 20 ° C.

Как показано на рис. 3 , основные наблюдения результатов испытаний заключаются в том, что тепловая мощность SER примерно на 15% ниже, чем у PAR, что приводит к увеличению расхода на 26% и повышению температуры возвратной воды примерно на 3,7 ° C. . SER также получил среднюю температуру передней панели 4.Средняя температура задней панели на 5 ° C выше и на 2,5 ° C ниже, чем у PAR.

Рисунок 3. PAR и SER, работающие с регулятором TRV при условиях частичной нагрузки 75%.

Теоретически тепловая мощность SERi может быть немного выше, чем SER, хотя собственные лабораторные измерения коммерческого продукта не подтвердили эту разницу [1]. Очевидно, что при тех же условиях SERi получает практически такую ​​же скорость потока и температуру обратки, что и PAR. Из-за более низкого расхода, чем SER, в этих условиях температуры передней и задней панели немного ниже, чем у SER. Для сравнения (, таблица 1, ) мы можем приблизительно оценить температуру панели SERi: передняя на 4,0 ° C выше, чем PAR, и задняя, ​​соответственно, на 3,5 ° C ниже, чем PAR. Особенности конвекторов рассматриваются в более поздней части этого обзора.

Таблица 1. Результаты измерения при частичной нагрузке 75%. * Расчетное значение

Tflow = 50 ° C

Tair = 20 ° C

Fcool = 774 Вт

Trtn

° C

00

000

9100 9100 9100 9100 9100 9100 ° C

Trear

° C

PAR

32. 5

39,1

40,1

SER

36,2

43,6

37,61006

005

005

95

95

95

43,1 *

36,6 *

КОН

Тепловая мощность панельного радиатора зависит не только от температуры, но и от расхода и соединения труб.Радиаторы с соединениями верхний-нижний-тот же самый конец (TBSE), а также соединения верх-низ-противоположный конец (TBOE) не так чувствительны к изменениям расхода воды, как соединения нижний-нижний-противоположный конец (BBOE). Эта функция показана на перерисованном графике Schlapmann [4], Рисунок 4 . Здесь мы также можем увидеть причину, по которой SER имеет пониженную теплоемкость: задняя панель SER подключена как BBOE, и теплоемкость явно снижается при меньших расходах воды. — Необходим радиатор SER увеличенного размера .

Рисунок 4. Тепловая мощность панельного радиатора зависит также от расхода и типа подключения.

Измерения при условиях частичной нагрузки 42% [3]

Частичная нагрузка 42% означает, что приток тепла покрывает 58% потребности в тепле. Измерения проводились при средней охлаждающей способности кабины 875 Вт и температуре потока 70 ° C, чтобы получить хорошо измеримые значения функций.

Термостатический клапан радиатора TRV начинает уменьшать расход воды до уровня, при котором тепловая мощность радиатора соответствует потребности в тепле.Пропорциональное управление больше не достигается, и режим управления начинает колебаться как вкл / выкл. Время отключения потока воды составляет около 30% цикла включения-выключения, однако с PAR немного больше, чем с SER.

Функция контроля температуры

В начальной фазе колебаний температуры воздуха и земного шара реагируют на PAR немного быстрее, чем на SER, из-за более высокой выходной мощности PAR, Рисунок 5 . Однако это различие уравнивается из-за того, что TRV определяет темп. : Во время регулярных колебаний оба излучателя PAR и SER имеют одинаковое время цикла, Рисунок 6 .А потому практических отличий в управляемости радиаторов нет. Конвекторы могут получить небольшую выгоду от пониженной выходной мощности при высоких показателях притока тепла, а время отключения может быть короче. Эта функция описана в главе «Влияние температуры возвратной воды».

Из-за недостаточной разницы в двухпозиционных режимах влияние колебаний температуры на потребление энергии в этой статье не принималось во внимание (обычно это зависит от используемого управления).

Рис. 5. PAR нагревает комнату немного быстрее, чем SER.

Рис. 6. PAR и SER работают с регулятором TRV при условиях частичной нагрузки 42%. Вкл-выкл-режим.

Расход воды колеблется от 0 до 60 кг / ч. Средневзвешенные температуры обратки SER были на 2,1 ° C выше, чем PAR. Средняя температура передней панели SER была на 5,3 ° C выше, чем PAR. Средняя температура задней панели соответственно составила 3.На 2 ° C ниже для SER.

Условие для PAR (тип радиатора 22-600-1400), где Tflow = 70 ° C и Trtn = 32 ° C с непрерывным потоком, другими словами, TRV все еще находится в пропорциональном режиме, соответствует коэффициенту тепловыделения 35 %. Очевидно, что TRV может модулировать поток до 35% теплопритока, а при более высоких тепловыделениях TRV переключается на двухпозиционный режим. Соответствующие значения SER и оценочные значения SERi показаны в таблице 2 .

Таблица 2. 42% результатов при частичной нагрузке. * Расчетное значение

003

00

95

00

95

00

95

002

Нормальное и старое здание

Для сравнения были выбраны два разных типа зданий, старое и стандартное: здание, построенное после Второй мировой войны, без теплоизоляционных слоев в стенах, но с двумя стеклянными окнами и стандартное здание, представляющее оба новых типа зданий, из 90-х, а также отремонтированные старые здания. Для расчетов использовались старые и стандартные элементы, отображаемые в таблице , таблица 3 .

Таблица 3. U-значения эталонных зданий

Tflow = 70 ° C

Tair = 20 ° C

Fcool = 875 W

Weighted Trtn

005

Tfront

° C

Trear

° C

PAR

32,1

95

93

32,1

937

SER

34,2

45,6

37,5

SERi

CON

CONi

002

Окно 4

Старое здание

U-значение внешней стены

9106 4

1,39 Вт / м² · K

2,8 Вт · м² · K

Здание норм

0.27 Вт / м² · K

1,2 Вт / м² · K

Климатические условия взяты по Дрездену (Германия), где расчетная температура наружного воздуха составляет -15 ° C.

Наружная температура 0 ° C была выбрана в качестве эталонной, поскольку она достаточно близка к средней температуре отопительного сезона.

Контрольная комната 16 м², окна 1,4 x 1,5 м², размер излучателя тепла 1,4 x 0,6 м². Расчетные температуры системы отопления составляют 70/55/21 ° C для старых зданий и 55/45/21 ° C для стандартных зданий.Температура подачи в системе при Tout = 0 ° C в старом здании составляет 50 ° C, а в стандартном здании — 41 ° C. Скорость воздухообмена в обоих случаях составляет 1 / час. Потребность в тепле при полной нагрузке в старом здании составляет 890 Вт, а в стандартном здании — 420 Вт. Показатели теплопритока при этих условиях в старом здании составляют 25%, а в здании нормы — 35%. По умолчанию в обоих условиях TRV работает в режиме пропорционального потока.

Эти условия выбраны для того, чтобы показать максимальную разницу между нагревателями. Однако на практике различий меньше.

С помощью графика преобразования в Рис. 7 на основе измеренных температур можно оценить средние температуры панели по температурам подающей и обратной линии радиатора ( Таблица 4 и 5 ).

Рис. 7. Температуры радиатора PAR и SERi в зависимости от температуры подающей и частичной нагрузки.

Таблица 4. Температура поверхности радиатора в старом здании.* Выбранное значение

4 9

4

40. 1

Старое здание

PAR

SER

SERi

CON

Среднее значение передней панели, ° C

39,1

43,6

43,1

31 *

37,5

36,6

31 *

Таблица 5. Температура поверхности радиатора, нормализация. * Выбранное значение

49

Построение норм

PAR

SER

SERi

CON

Среднее значение на передней панели, ° C

28.0

31,0

29,8

25 *

Среднее значение на задней панели, ° C

003

005

003

005

005

25 *

Рабочие температуры

На основании этих средних температур передней панели можно рассчитать влияние теплового излучения в соответствии со стандартом ISO 7726. Точка измерения находится в центре комнаты на высоте 0,6 м над уровнем пола, что относится к человеку в сидячем положении. Эти расчеты выполнены Equa Simulation Finland Oy [5].

Не существует стандартизированного метода расчета для оценки энергии, но обычно используется следующий метод расчета, средняя рабочая температура MOT. В таблицах 6 и 7 приведены расчетные температуры воздуха, дающие одинаковые рабочие температуры 21 ° C для разных корпусов излучателей тепла.SER показывает самую низкую температуру воздуха из-за самого высокого излучения, а CONi, соответственно, самого высокого. SERi в достаточной степени похож на SER.

Таблица 6. Температура воздуха, равная 21 ° C MOT, старое здание.

Старое здание

PAR

SER

SERi

45 9996

49

49 9996 Воздух, ° С

21. 38

21,26

21,27

21,59

21,90

Таблица 7. Температура воздуха в здании, соответствующая норме 21 ° C.

Нормативное здание

PAR

SER

SERi

249 9996

49 9996

49 9996 Воздух, ° С

21.14

21,05

21,06

21,21

21,32

Влияние теплового излучения на внешнее отопление ° C

Расчетное расположение ° Dres Климатические данные для расчетов взяты из Weather Underground.

Градусо-дневная ценность старого здания с базовой температурой 17 ° C составляет 2902, а разница в один градус соответствует 10% разнице в использовании энергии.

Норма строительного градусо-дня при базовой температуре 15 ° C составляет 2354, а разница в один градус соответствует 12% разнице в использовании энергии.

Таблицы 8 и 9 показывают, насколько разница рабочих температур ( Таблицы 6 и 7 ) увеличивает потребность в энергии для разных типов эмиттеров.

Таблица 8. Влияние теплового излучения в старом здании.

Старое здание

SER / SERi

PAR

CON

CON

49

49

49

4

0

+ 1. 2%

+ 3,3%

+ 6,4%

Таблица 9. Влияние теплового излучения в нормативном здании.

Нормальное здание

SER / SERi

PAR

CON

CON

49

49

4

0

+ 1.0%

+ 1,8%

+ 3,1%

Потери в задней стенке

По результатам измерений, проведенных компанией WTP GmbH в Берлине, можно с хорошей степенью точности рассчитать, тепловые потери задней стенки, вызванные излучателем тепла, см. , Таблица 10, 11 и 12 .

Таблица 10. Температура эмиттера на задней и задней стенке старого здания. * Выбранное значение

4 9

Старое здание

PAR

SER

SERi

CON

Среднее значение эмиттера, ° C

40.1

37,5

36,6

31 *

Среднее значение задней стенки, ° C

003

005 9996

005 9995

9996

005

24,7

Таблица 11. Температуры задней и задней стенки излучателя в нормированном здании. * Выбранное значение

000 C назад

EE

2

005

005

005

005

9996

005

PAR

6

3

SER

SERi

CON

CONi

27,0

26,5

25 *

Среднее значение задней стенки, ° C

21,6

По значениям температуры задней стенки можно рассчитать потери на задней стенке радиатора при температуре наружного воздуха 0 ° C.

Таблица 12. Потери на задней стенке, вызванные излучателем тепла.

996

95 + 0,26%

996

95 + 0,2

Дополнительная потребность в энергии

PAR

SER

SERi

CON

49

9

CON

49

9

Старое здание

+ 2,24%

+ 1.91%

+ 1,79%

+ 1,10%

Нормативное построение

+ 0,36%

+ 0,18%

Влияние потока утечки на серийные панельные радиаторы

Утечка воздуха является проблемой при строительстве серийных панельных радиаторов.Для идеальной работы серийного панельного радиатора необходимо отдельно удалять воздух из обеих панелей, передней и задней. Для этого необходимы сложные устройства для отвода воздуха. Следовательно, стоимость продукта увеличится.

Все коммерческие продукты SER имеют крошечный вырез между передней и задней панелями. Это помогает выпустить воздух через то же вентиляционное отверстие в верхнем конце радиатора, но неизбежно приводит к утечке потока от передней панели к задней панели, что приводит к ситуации, когда верх задней панели теплее, чем поток. вода от передней до задней панели.Это предотвращает подъем воды в задней панели, что приводит к дополнительному снижению выходной мощности задней панели, особенно в условиях частичной нагрузки. Это было обнаружено при измерениях [3].

Утечка в радиаторе SERi снижает также выходную мощность и выравнивает температуру передней и задней панели. Однако недостаток не такой серьезный, как у радиаторов SER.

Серийный панельный радиатор имеет повышенное гидравлическое сопротивление. При параллельной панели сопротивление радиатора соответствует примерно 3 кв.3, серийное сопротивление панели больше двойного, кв 1,3. Разница давлений между панелями может составлять несколько сотен паскалей даже в серийных радиаторах нормального размера, и утечка через даже меньшие отверстия неизбежна.

Влияние температуры обратной воды на выработку тепла

Как показано на Рисунок 4 Выходная мощность панельного радиатора также зависит от типа подключения и расхода. Мы можем распознать, что соединение радиатора SER на задней панели относится к типу BBOE, и поэтому мощность радиатора SER всегда меньше, чем у PAR.Кроме того, утечка еще больше снижает производительность.

Как упоминалось выше для случая частичной нагрузки 75%, температура обратной воды радиатора SER была измерена на 3,7 ° C выше, чем в случае PAR. Кроме того, в случае частичной нагрузки 42% это сокращение было значительным — чем выше температура обратной воды, тем выше расход топлива конденсационного котла и теплового насоса.

Тепловая мощность конвекторов с круглой трубчатой ​​/ ламельной конструкцией сильно зависит от типа потока воды, турбулентный или ламинарный.При уменьшении расхода мощность конвектора уменьшается в соответствии с числом Рейнольдса. Эта зависимость, согласно доктору Конзельманну [3], показана на рис. 8 .

Рисунок 8. Тепловая мощность конвектора зависит от условий потока воды.

Пример : Типовая конструкция конвектора с тепловой мощностью при dT50K (EN442) составляет 800 Вт. В случае частичной нагрузки 75%, температуры подачи 50 ° C и 248 Вт тепла требуется обратная магистраль. температура воды поднимается до отметки 39 ° C.

— Аналогичный корпус, радиатор PAR с температурой обратной воды 33 ° C.

Примечание. Этот эффект снижения тепловой мощности не был учтен в стандартах на продукцию EN442 и EN16430: стандартные значения тепловой мощности действительны только в условиях полной нагрузки и относительно высоких расходов воды. Расчетный расход часто явно ниже, что приводит к неправильному выбору конструкции.

В Рис. 9 мы можем найти, согласно измерениям и исследованию профессора Ошаца [6], зависимость температуры возвратной воды системы отопления от эффективности сгорания конденсационного газового котла: значение линии тренда 0.4% / К. Уровень нагрузки горелки также имеет небольшое влияние на КПД: чем ниже нагрузка, тем выше КПД и, соответственно, чем выше нагрузка, тем ниже КПД.

Рисунок 9. Эффективность сгорания конденсационного котла зависит от температуры возвратной воды системы

Годовой коэффициент полезного действия, COPa, также связан не только с температурой подачи воды в системе, как это часто предполагается, но и с температура возвратной воды системы. Согласно проведенным расчетам изменение температуры воды в системе на один градус дает изменение COPa на 1.2% [8]. Кроме того, значение COP зависит от температуры конденсатора теплового насоса. Также измерено, что температура воды в подающей линии в системе имеет 2/3, а температура воды в обратной линии оказывает влияние на температуру конденсатора на 1/3, Рисунок 10 .

Рис. 10. Влияние на КПД теплового насоса, проф. Курницкий [7]. Температура подающей воды 2/3 и температура обратной воды 1/3.

В заключение можно сказать, что и в конденсационном котле, и в тепловом насосе, при понижении температуры обратной воды системы на один градус, эффективность выработки тепла возрастает на 0.4%.

При использовании температуры обратной воды из случая номинальной нагрузки 75%, SER имеет температуру обратной воды на 3,7 ° C выше, чем PAR и SERi, а CON и CONi соответственно примерно на 6 ° C выше, чем PAR и SERi, следующие цифры для тепла. КПД генерации можно рассчитать, Таблица 13 . Эти значения действительны для обоих эталонных зданий с разумной точностью.

Таблица 13. Влияние относительного тепловыделения и дополнительных потребностей в энергии.

Влияние тепловыделения

PAR / SERi

SER

CON / CONi

003

6

6

6

+ 1,5%

+ 2,4%

Сводка

Таблица 14 показывает совокупность и сводку относительного влияния различных излучателей тепла на эффективность системы отопления: дополнительная потребность в энергии .

Таблица 14. Относительное влияние различных излучателей тепла на эффективность системы

3

+ 1,4%

3

0,3%

Дополнительная потребность в энергии

PAR

SER 9000

SER 9000

CON

CONi

Старое здание

+ 3,4%

+ 3.4%

+ 1,8%

+ 6,8%

+ 8,8%

Нормативное строительство

+ 1,4%

+ 4,4%

+ 5,5%

Обсуждение

По результатам различия между радиаторами как в старых, так и в обычных зданиях очень малы, не более 1.5%. Однако конвекторы явно отличаются от радиаторов.

Различия теплового излучения разных типов излучателей настолько малы, что они практически недоступны человеческому восприятию [9].

Когда функциональные различия между радиаторами невелики, решающее различие — их цена. Но сколько еще денег имеет смысл вкладывать в радиаторы, которые считаются более энергоэффективными?

Пример: В типичном немецком особняке площадью 170 м² середины 90-х годов энергия для отопления помещений составляет около 15 000 кВтч в год.При цене на газ 0,065 евро / кВтч счет за отопление составляет около 975 евро / год. Разница результатов между «стандартным радиатором» и «идеальным серийным панельным радиатором» составляет 1,1%. Соответствующая разница в стоимости энергии составляет в среднем 10,70 евро в год. Обычно это деление на 10 радиаторов дает максимальную годовую экономию 1,07 евро на радиатор. Например, цена на «идеальный серийный панельный радиатор » для конечного пользователя на несколько десятков евро выше, чем цена стандартного радиатора.Эта дополнительная цена, например 30 евро для конечного пользователя, деленная на 1,07 евро в год, дает срок окупаемости 28 лет!

Сниженная тепловая мощность «типичного серийного панельного радиатора » приводит к необходимости увеличения размера радиатора: например, обычная добавка 10% увеличивает цену для конечного пользователя примерно на 25 евро, и это без любая окупаемость.

Дополнительная потребность в тепловой энергии и отсутствие излучающего эффекта конвекторов кажутся более заметными: должны быть дополнительные аргументы для выбора конвектора.

В современных энергоэффективных зданиях, которые лучше изолированы и часто оснащены вентиляцией с рекуперацией тепла, потребность в тепловой энергии составляет лишь половину или меньше от «нормального здания», использованного в этом обзоре. Поэтому небольшие отличия радиаторов в новостройках совершенно неактуальны с точки зрения энергосбережения.

В заключение, очевидно, что для владельцев домов нет материальной, финансовой или физиологической выгоды, чтобы оплачивать повышенные расходы, связанные с предполагаемыми, но необоснованными «более энергоэффективными радиаторами». — Стандартный радиатор — лучший вариант.

Литература

[1] Исследовательский центр RETTIG ICC, лаборатория EN442.

[2] Стандарт ASHRAE ANSI 55.

[3] WTP GmbH Берлин, лаборатория EN 442.

[4] Schlapmann, HLH 9-76.

[5] Equa Simulation Finland Oy.

[6] Дрезденский технический университет.

[7] Таллиннский технический университет.

[8] Программное обеспечение IVT VPW2100.

[9] Тепловая модель человека, Центр технических исследований Финляндии VTT.

Радиатор против. Обогреватель, чтобы сэкономить на счете за электричество | Руководства по дому

Автор: SF Gate Contributor Обновлено 30 января 2021 г.

Электрические радиаторы и электрические обогреватели предназначены для создания дополнительного тепла в одной комнате дома, но они обеспечивают тепло очень разными способами. Чтобы определить, какие из них лучше всего подходят для вашего дома, вы должны сравнить их относительное удобство и экономическую эффективность, а также их характеристики безопасности.

Преимущества переносных радиаторов

Самые популярные версии маслонаполненных электрических радиаторных обогревателей примерно по размеру и форме имеют традиционные паровые радиаторы и оснащены термостатом и переключателями на два напряжения.Они производят рассеянное тепло, которое незаметно добавляет несколько дополнительных градусов тепла в домашний офис, детскую спальню или любую часть дома, пока комната используется. Электрические радиаторные обогреватели могут обеспечить это дополнительное тепло с минимальным риском возгорания или опасности для детей или домашних животных при прикосновении.

Возможность перемещать переносной источник тепла, включать его при необходимости и выключать, когда комната не используется, позволяет термостату в остальной части дома установить более низкую температуру. На странице «Устойчивое развитие города Сан-Диего» говорится, что на каждые два градуса понижения термостата зимой вы можете сэкономить примерно 5 процентов на расходах на отопление своего дома.

Преимущества излучающих обогревателей

Излучающие электрические обогреватели обычно используют проволочные, ленточные или кварцевые нагревательные элементы, которые при активации излучают оранжевое свечение. Это одно из основных отличий радиатора от обогревателя. В отличие от радиаторов, эти устройства производят направленное тепло, которое запускается мгновенно. Излучающие обогреватели доступны в широком диапазоне размеров и форм, поэтому вы можете легко найти небольшую модель с низким энергопотреблением, которая находится под вашим столом, или колеблющуюся башню с термостатическим управлением, которая может выделять достаточно горячего воздуха, чтобы согреть всю семейную комнату.

Сравнение безопасности

Переносной электрический радиаторный обогреватель распределяет тепло по всей площади поверхности, и никакая открытая часть этих устройств вряд ли будет настолько горячей, чтобы вызвать пожар или обжечь чью-то кожу. Однако в портативном обогревателе нагревательные элементы подвергаются воздействию воздуха, и волокна бумаги или ковра могут стать достаточно горячими, чтобы воспламениться при контакте. И наоборот, можно найти обогреватели меньшей мощности для небольших участков, которые с меньшей вероятностью могут вызвать пожар в домах со старой электропроводкой.

Сравнение экономии энергии

Радиаторы и другие обогреватели приближаются к 100-процентной эффективности в использовании электроэнергии, но вы можете достичь большей функциональной эффективности в зависимости от ваших потребностей в отоплении. Например, небольшую гостиную или читальный зал можно эффективно обогреть с помощью 600-ваттного нагревательного элемента радиатора, но семья из трех человек, рассредоточенная на кушетке в подвале, может лучше использовать колебательный обогреватель большей мощности. Настоящая экономия энергии достигается за счет сокращения использования печи для всего дома, когда точечное отопление — это все, что вам действительно нужно.

Согласно данным отдела энергетики штата Миссури, вы можете рассчитать стоимость эксплуатации обогревателя по формуле в киловаттах, умноженной на ставку, которую вы платите за электричество, умноженную на продолжительность работы прибора. Разделите ватт на 1000, чтобы получить киловатт в час. Если ваша электрическая компания взимает с вас 10 центов за киловатт-час, а вы используете обогреватель мощностью 1500 Вт в течение 10 часов, это будет стоить 1,50 доллара.

(PDF) Оценка производительности радиаторных систем и систем теплого пола для офисного помещения, подключенного к заземленному тепловому насосу

Energies 2016, 9, 228 18 из 19

Ссылки

1.

Анисимова Н. Возможности снижения спроса на первичную энергию в жилищном секторе ЕС. Сбор энергии.

2011

, 43,

2747–2751. [CrossRef]

2.

Bendea, G.V .; Prada, M.F .; Bendea, C .; Секуй, С. Системы тепловых насосов с заземлением — ключ к устойчивому развитию

зданий для отопления и охлаждения. В «Последние достижения в науке об окружающей среде», материалы

9-й Международной конференции по энергии, окружающей среде, экосистемам и устойчивому развитию,

Лемесос, Кипр, 21–23 марта 2013 г .; стр.133–138.

3.

Сарбу, И .; Дэн, Д .; Себархиевич, С. Эффективность тепловых насосных систем как пользователей возобновляемой энергии для отопления / охлаждения здания

. WSEAS Trans. Тепло-массообмен. 2014, 9, 51–62.

4.

Yang, W .; Чжоу, Дж .; Xu, W .; Чжан, Г. Текущее состояние геотермальных тепловых насосов в Китае. Энергетическая политика

2010, 38, 323–332. [CrossRef]

5.

Lee, J.Y. Текущее состояние геотермальных тепловых насосов в Корее. Обновить.Выдержать. Energy Rev.

2009

, 13,

1560–1568. [CrossRef]

6.

Сарбу, И .; Себархиевич, С. Общий обзор систем геотермальных тепловых насосов для отопления и охлаждения

зданий. Сбор энергии. 2014, 70, 441–454. [CrossRef]

7.

Bayer, P .; Saner, D .; Bolay, S .; Рыбач, И .; Блюм, П. Сокращение выбросов парниковых газов при использовании тепла из грунтовых источников

насосных систем в Европе: обзор. Обновить. Выдержать. Энергия Rev.2012, 16, 1256–1267. [CrossRef]

8.

Self, S.J .; Reddy, B.V .; Розен, М.А.Геотермальные тепловые насосы: обзор состояния и сравнение с другими вариантами отопления

. Appl. Энергия 2013, 101, 341–348. [CrossRef]

9.

Inalli, M .; Эсен, Х. Экспериментальная оценка тепловых характеристик горизонтальной системы с геотермальным тепловым насосом

. Appl. Therm. Англ. 2004, 24, 2219–2232. [CrossRef]

10.

Esen, H .; Inalli, M .; Эсен, М.Численный и экспериментальный анализ горизонтальной тепловой насосной системы

с заземлением. Сборка. Environ. 2007, 42, 1126–1134. [CrossRef]

11.

Esen, H .; Inalli, M .; Sengur, A .; Эсен, М. Моделирование системы теплового насоса с заземлением с использованием адаптивных систем нейро-нечеткого вывода

. Int. J. Refrig. 2008, 31, 65–74. [CrossRef]

12.

Congedo, P.M .; Colangelo, G .; Стараче, Г. Вычислительное моделирование и анализ чувствительности горизонтальных спиральных теплообменников

для GSHP.В материалах конгресса CLIMAMED 2007, AICARR, Genova,

Италия, 5–7 сентября 2007 г.

13.

Congedo, P.M .; Colangelo, G .; Стараче, Г. Вычислительное моделирование и анализ чувствительности горизонтальных обтяжных теплообменников

для GSHP. В материалах 22-го Международного конгресса по холодильному оборудованию IIR,

Пекин, Китай, 21–26 августа 2007 г.

14.

Yang, H .; Cui, P .; Фанг, З. Тепловые насосы с вертикальным расположением скважин и грунтовкой: Обзор моделей и систем.

Заявл. Энергия 2010, 87, 16–27. [CrossRef]

15.

Congedo, P.M .; Colangelo, G .; Стараче, Г. Моделирование методом CFD горизонтальных грунтовых теплообменников:

Сравнение различных конфигураций. Appl. Therm. Англ. 2012, 33–34, 24–32. [CrossRef]

16.

Retkowski, W .; Томинг, Дж. Термоэкономическая оптимизация вертикальных систем геотермальных тепловых насосов

посредством нелинейного целочисленного программирования. Appl. Энергия 2014, 114, 492–503. [CrossRef]

17.

Michopoulos, A .; Bozis, D .; Kikidis, P .; Папакостас, К .; Кириакис, Н.А. Трехлетний опыт эксплуатации системы наземного теплового насоса

в Северной Греции. Сбор энергии. 2007, 39, 328–334. [CrossRef]

18.

Mostafa, H .; Sharqawy, S.A .; Саид, Э.М.Первое определение теплопроводности грунта на месте для скважинных теплообменников

в Саудовской Аравии. Обновить. Энергия 2009, 34, 2218–2223.

19.

Карли, М.D .; Тонон, М .; Zarrella, A .; Zecchin, R. Модель сопротивления вычислительной мощности для вертикального теплообменника

с заземлением. Обновить. Энергия 2010, 35, 1537–1550. [CrossRef]

20.

Pulat, E .; Coskun, S .; Унлу К. Экспериментальное исследование производительности горизонтального геотермального теплового насоса для умеренного климата

в Турции. Энергия 2009, 34, 1284–1295. [CrossRef]

21.

Yang, W.B .; Shi, M.H .; Лю, Г.Ю. Двухзонная имитационная модель вертикального U-образного грунтового теплообменника

и ее экспериментальная проверка.Appl. Энергия 2009, 86, 2005–2012. [CrossRef]

22.

Lee, J.U .; Kim, T .; Ли, С. Анализ тепловых характеристик заземленного теплового насоса, встроенного в фундамент здания

летом. Сбор энергии. 2013, 59, 37–43. [CrossRef]

23.

Man, Y .; Ян, H .; Wang, J .; Фанг, З. Испытание эксплуатационных характеристик наземной системы теплового насоса

для охлаждения и обогрева в умеренной зоне. Appl. Энергия 2012, 97, 913–920.[CrossRef]

Экономия денег за счет повышения эффективности радиатора

С наступлением зимы и неизбежным ростом цен на электроэнергию сейчас хорошее время, чтобы найти способы снизить ваши счета за электроэнергию за счет повышения энергоэффективности радиаторов горячей воды в вашем доме. В этой статье и видео мы опишем четыре вещи , которые вы можете сделать, чтобы улучшить производительность ваших радиаторов горячей воды:
  1. Выпуск воздуха.

  2. Добавьте к стене отражатель.

  3. Очистка радиаторов.

  4. Проверка на образование отложений.

ВЫПУСК ВОЗДУХА


Одна из наиболее частых причин плохой работы водяного радиатора — это воздух, застрявший в системе.Со временем в результате многократного нагрева и последующего охлаждения воды в вашей системе воздух выходит из воды (полезный аксессуар: пылесосы). А поскольку воздух не проводит тепло так же хорошо, как вода, этот захваченный воздух снижает энергоэффективность вашей радиаторной системы. Чтобы удалить воздух, вы должны удалить воздух из радиаторов в начале отопительного сезона, а затем всякий раз, когда кажется, что они излучают меньше тепла, чем обычно.

Если у вас радиаторы основной платы , воздух, попавший в вашу систему, может издавать «булькающий» звук при включении системы.Когда вы начнете слышать этот звук, вы должны удалить воздух из вашей системы. Инструкции о том, как удалить воздух из системы отопления плинтуса, можно найти в нашем видеоролике под названием «Отопление плинтуса 101».

Если у вас настенный радиатор , и верхняя часть радиатора кажется намного холоднее чем в нижней части, то это хороший индикатор того, что вам нужно стравить воздух. Все радиаторы поставляются со специальной кнопкой, называемой «спускной». В верхней части радиатора вы заметите выступ, называемый «спускной» клапан.«Перед тем, как начать, вам нужно будет взять тряпку или небольшую миску, чтобы собрать вытекающую воду. Вставьте спускной ключ в спускной клапан и медленно поворачивайте его против часовой стрелки, пока воздух не начнет выходить из клапана с шипящим звуком. Когда вода начинает капать, это означает, что весь воздух удален. И теперь вы должны осторожно повернуть спускной клапан в противоположном направлении, чтобы закрыть его, как при запуске.

ДОБАВЛЕНИЕ ОТРАЖАТЕЛЯ НА СТЕНЕ


Размещение отражающей панели между внешней стеной и радиатором может повысить энергоэффективность вашего радиатора на 10-20% за счет уменьшения потерь тепла на внешние стены.Вы можете купить готовые отражатели для радиаторов или сделать свои собственные, используя алюминиевую фольгу (блестящей стороной к радиатору) и приклеив ее к куску картона или, что еще лучше, к тонкому куску жесткой изоляции, такой как Kingspan. или Целотекс.

ЧИСТКА РАДИАТОРОВ


Когда ваш радиатор нагревается, воздух вокруг него поднимается по мере нагрева, и это втягивает пыльный воздух с ваших полов. По мере того как пыль накапливается на радиаторах, она действует как слой изоляции, снижающий эффективность теплопередачи радиаторов.Таким образом, чтобы максимизировать производительность ваших радиаторов, вы должны регулярно удалять эту пыль с помощью пылесоса с помощью насадки с мягкой щеткой и протирать поверхности настенных радиаторов (полезный аксессуар: тепловые барьеры).

ПРОВЕРКА НАЛИЧИЯ ИЛА


И, наконец, если у вас настенные радиаторы, со временем внутри них может накапливаться шлам, что может значительно снизить их производительность. Чтобы проверить это, вы можете осторожно прикоснуться к нижней части радиатора, чтобы увидеть, не обнаружите ли вы какие-либо холодные точки.Будьте осторожны при этом, чтобы не обжечь пальцы. Если вы обнаружите какие-либо холодные пятна, это может указывать на накопление осадка, и вам необходимо обратиться к профессионалу, чтобы его очистить.

РЕЗЮМЕ


Мы надеемся, что вы найдете эти предложения полезными и что они позволят вам сократить расходы на электроэнергию этой зимой за счет повышения энергоэффективности ваших радиаторов.

Есть ли вентиляторы для радиаторов для повышения производительности?

Я слышал об идее, что использование вентиляторов увеличивает нагрузку на котел, и, исходя из моего опыта, это миф…или ошибка.

В качестве фона я строю печи для обжига и печи для термообработки, поэтому идея о том, что отвод тепла от радиатора, который является устройством теплопередачи, не подходит. И вот почему:

Если у вас есть горелка в котельной установке, эта горелка будет определяться ее способностью подавать сжигаемое топливо в камеру сгорания. Мы предполагаем, что горелка настроена как можно лучше с кислородом для максимально эффективного сгорания. Эта горелка может и будет производить только пламя с установленным пиковым числом БТЕ.Если мощность горелки составляет 100 000 БТЕ, то это то, что она обеспечивает в течение каждого периода розжига и остается до тех пор, пока дом не нагреется до целевой температуры, установленной контроллером, и не будет измерен термопарой или устройством считывания температуры. По достижении заданного значения печь отключается. Он срабатывает снова, когда температура в доме опускается ниже уставки на термостате.

Горелка в этом случае нагревает камеру, выходящую в дымоход, а задача теплообменника — уловить как можно больше БТЕ до того, как они выйдут из дымохода.Любое тепло, выходящее из дымохода, теряет тепло.

Но следующая проблема заключается в том, что в радиаторе обычно используется вода или пар. Старые котлы работают за счет конвекции. Эта концепция означает, что горячая вода или пар будут подниматься и переходить в холод, создавая поток из горячих линий в охлаждающую воду, выходящую из радиаторов и возвращающуюся обратно через обратные линии в теплообменник. Это делается с помощью конвекции, а также с помощью насосов.

Среда для тепла переносит тепло. Если вы можете получить это тепло, это означает, что обратные линии будут холоднее, но печь не чувствует, не ощущает и не работает больше из-за большего количества тепла, отводимого из контура.Это горелка на 100000 Но, которая сжигает не более 100000 БТЕ (при хорошей настройке).

Чем больше тепла вы получаете, тем меньше тепла теряется в дымоходе. Если вы это сделаете, вы эффективно передадите больше тепла из камеры сгорания.

Стоит отметить, что некоторые печи настолько эффективны, что для отвода дымовых газов требуются пластиковые трубы, потому что от выхлопных газов отводится так много тепла, что остается только пар. Все, что меньше, чем труба из ПВХ, вызывает коррозию, потому что в выхлопных газах в основном конденсируется теплый пар.А этого, друзья мои, вы и хотите! Вы хотите, чтобы выхлоп отводил крошечную долю тепла, выделяемого вашей горелкой.

Это мое обоснованное мнение, а именно: заводите фанатов. Мои собственные радиаторы спасибо …

Электрические радиаторы против центрального отопления

В чем разница?

Системы центрального отопления являются нормой для большинства жилых домов в Северной Америке и используют множество различных технологий теплообмена. В зависимости от климата в географической зоне наиболее популярными являются системы с принудительной подачей воздуха, поскольку они предлагают возможность как отопления, так и охлаждения (кондиционирование воздуха).С другой стороны, системы принудительной подачи воздуха полагаются на самый неэффективный и неточный метод передачи тепла — использование воздуха. По сути, тепло вырабатывается печью или тепловым насосом. Затем это тепло передается воздуху и пропускается через ряд воздуховодов с помощью воздуходувки (вентилятора).

Используется только для обогрева и пользуется популярностью в климате, где средняя зимняя температура близка к отметке замерзания. Гидравлические системы более эффективны, если хорошо спроектированы, и могут быть одной из самых удобных систем.Благодаря передаче тепла с помощью воды (горячая вода по трубам) гидравлические системы намного более эффективны, чем системы с принудительной подачей воздуха, когда дело доходит до перемещения тепла из точки A в точку B, в данном случае от котла к плинтусу или фанкойлу. в комнате.

Сложность по сравнению с контролем — В обоих случаях (принудительный воздух / гидроника) степень управления системой является вопросом возрастающей сложности (и, следовательно, стоимости). В случае принудительного обдува система должна быть очень хорошо спроектирована и сбалансирована, чтобы гарантировать, что каждая комната получает нужное количество «горячего воздуха» для достижения приемлемого уровня комфорта.В случае гидравлических систем, это снова вопрос очень хорошо спроектированной и сбалансированной системы трубопроводов и сложного матричного управления клапанами.

Fly by Wire — Нагрев по проводам

Хотя электрическое отопление может стоить немного дороже в отопительном сезоне, чем центральная система, оно имеет много эффективных и убедительных преимуществ:

Стоимость и простота установки . Электрическое отопление стоит намного дешевле в установке, его очень просто и эффективно контролировать.Вместо того, чтобы прокладывать сложные и громоздкие воздуховоды по всему зданию или сложные системы трубопроводов, электрическое отопление требует только проводки и только одного специалиста (электрика) для установки, в отличие от центральных систем, требующих как минимум 4 различных профессий.

Полный контроль над каждым помещением — Электрические системы позволяют гораздо точнее и эффективнее регулировать комфорт отопления. По сути, каждая комната может легко иметь собственное управление. Это не только обеспечивает точный комфорт для пассажиров (кому-то нравится жарко, кому-то холодно), когда в комнате никого нет, обогрев можно отключить (или значительно уменьшить) для повышения эффективности работы.Всем этим контролем можно очень легко и точно управлять из любой точки планеты, где есть соединение Wi-Fi, за счет включения термостата Smart Line Voltage Thermostat.

Качество воздуха в помещении и ваше здоровье: Электрическое тепло работает за счет конвекции (естественный поток воздуха / рост тепла) или, что еще лучше, лучистого теплообмена. (нет воздушного потока) В случае систем централизованного кондиционирования воздух перемещается по зданию через очень грязные воздуховоды, заполненные пылевыми клещами / аллергенами и твердыми частицами, даже после фильтра.

Универсальность — Ваш лучший вариант для проектов по благоустройству, пристройки, загородных домов, перестройки подвала или мест в вашем доме, где существующая система просто не может обеспечить вам комфорт. Для электрического отопления требуется только источник электроэнергии, а не добавление воздуховодов в систему, не предназначенную для нового помещения, или сложные системы трубопроводов и, возможно, модернизированные (котел / печь)

Чистая безопасная энергия — Электрическое тепло — это экологически чистая энергия, в основе которой НЕ лежит сжигание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*