Гистерезис терморегулятора что это: Гистерезис терморегулятора что это? – Как настроить (отрегулировать) терморегулятор

Содержание

Гистерезис терморегулятора что это?

Прежде чем говорить: «Гистерезис терморегулятора, что это такое?», давайте вспомним, что такое гистерезис. В переводе с греческого языка гистерезис – отстающий. Гистерезисом называют свойство разного рода систем в физике, биологии, социологии, экономике, технике  и других реагировать на внешнее воздействие в зависимости от текущего состояния и предыстории состояний. Теперь определим, что такое терморегулятор. Это устройство для автоматического управления (регулирования) обогревающего (охлаждающего) оборудования. С его помощью осуществляется поддержка температуры на том уровне, который необходим. В настоящее время большинство устройств по регулированию и контролю температуры систем обогрева обладают настройкой температуры и настройкой гистерезиса. В терморегуляторах гистерезисом называют величину температуры, при которой сигнал изменяется на противоположный. И само явление, при котором осуществляется задержка переключения сигнала в зависимости от величины влияния. Терморегуляторы имеют разные пороги включения и выключения, эта система имеет температурный гистерезис. Он дает возможность уменьшит частоту переключения, например, на повышение температуры в обогревателе. Но при этом следует помнить, что чем больше величина гистерезиса, тем больше скачок температуры.

И так, пусть терморегулятор в настройке имеет температуру  . Его гистерезис  . До включения обогревающего оборудования (и соответственно терморегулятора) температура в комнате была . Обогрев включили. Когда температура в помещении достигнет , терморегулятор даст сигнал нагревающему оборудованию на выключение. Температура в комнате начнет уменьшаться, когда она станет равна , то терморегулятор подаст сигнал о включении.

Как настроить (отрегулировать) терморегулятор

Для этого вначале каждому пользователю стоит определится, какая температура воздуха будет для него комфортной. Тепловые ощущения каждого человека индивидуальны, как папиллярные линии кожи на пальцах его рук, и зависят от тепловых потерь помещения и его теплоинерционности.

Самым доходчивым примером может послужить настройка терморегулятора электромеханического типа. После выбора температуры с помощью вращающегося колеса, клавиш и шкалы в работу вступает терморегулятор со своим датчиком. Последний отслеживает уровень температуры воздуха или пола и передает эту величину в виде сигнала на регулятор. А он, в свою очередь, по мере необходимости включает или выключает нагревательный прибор либо кабель. Цель — поддержание заданной температуры или ее допустимого диапазона.

Именно электромеханический (непрограммируемый) терморегулятор целесообразен, когда отапливаемое помещение имеет небольшой объем и затраты на энергоносители для него невелики. Поэтому экономический эффект от программирования режимов будет малозаметным. Электромеханические регуляторы — это простые, энергонезависимые устройства, самые доступные по стоимости. С другой стороны, они вносят большую инерционность в процесс регулирования. Для них достижение заданной температуры помещения занимает больше времени, чем у цифровых.

На самом деле все типы терморегуляторов оперируют с температурой уставки. При ее достижении нагревательный прибор отключается от цепи питания и включается только после падения этой величины на размер гистерезиса. Он четко определяет момент подачи питания на нагревательный прибор и ее снятия. Уставка терморегулятора зависит преимущественно от области его применения. Для теплых полов, конвекторов и инфракрасных нагревателей она лежит в диапазоне (0…60), промышленного применения и электрических котлов (-55…+125), систем оттаивания снега (-20…+10) ºС. Отдельные технические решения касаются высокотемпературных процессов.

Гистерезис определяют как разность температур между включением и выключением обогревателя. Гистерезис может быть фиксированным или с возможностью изменения (регулируемым). В последнем случае минимально возможный гистерезис позволяет терморегулятору наиболее точно поддерживать температуру. Но при этом циклы включения / выключения нагревателя будут чередоваться очень часто. Если же гистерезис близок к максимальному значению — точность поддержания температуры снижается. Зато подача / отключение напряжения на теплый пол, конвектор или другой прибор будет происходить значительно реже. Это продлит срок эксплуатации терморегулятора и управляемого им обогревателя. Размер гистерезиса может быть 0,015 ºС для терморегулятора в инкубатор, от 1 ºС  и более для систем микроклимата комфортного или производственного назначения, электрических котлов. Элементы программирования имеют терморегуляторы электрических котлов, где есть возможность настроить гистерезис в определенных границах.

Для терморегуляторов, работающих в режиме Охлаждение, нагрузка будет включаться при достижении температуры уставки и выключаться — при повышении ее на размер гистерезиса.

Дополнительные настройки для цифровых терморегуляторов

Для всех терморегуляторов этого типа доступна поправка, призванная скорректировать показания температуры на экране. Вторая группа поправок характерна только для регуляторов со встроенным датчиком температуры. В этом случае на точность показаний терморегулятора влияет его внутренний нагрев. Степень последнего существенно зависит от подсоединенной нагрузки. Поэтому нужно настроить терморегулятор путем внесения значения ее мощности в память устройства.

Важно помнить следующее. Если при калибровке кратковременно отключится питание терморегулятора с последующим восстановлением, то отображенная на экране температура воздуха отличается от реальной на 10 – 12 ºС (в большую сторону). Повторная корректировка произойдет через 50 минут.

Терморегуляторы цифрового типа, управляемые с помощью модуля WI-FI или клавишами имеют блокировку кнопок. Это предотвращает несанкционированную смену настроек режимов работы детьми (в домашних условиях) или  при установке устройств управления в местах общего доступа (административные здания и т. д.). Причем настроить терморегулятор на поддержание этой защиты можно с помощью обычных или сенсорных кнопок или дистанционным методом — через компьютер или мобильные гаджеты с доступом в интернет.

При помощи некоторых моделей терморегуляторов можно настроить время (30 минут – 99 часов) задержки включения (подачи питания) отопительной системы или прибора. Какое то время в квартире / доме будут отсутствовать жильцы. Зная ориентировочно период своего возвращения, можно заранее прогреть комнаты для создания комфортных условий.

В приборах управления системами оттаивания снега и наледи имеются функции принудительного и последующего подогрева. Принудительный реализуется при ручном управлении системой оттайки. А последующий прогрев (постпрогрев) требуется для полного удаления осадков со всей площади поверхности, которую датчик осадков не контролирует.

Программируемые терморегуляторы

Отдельно стоит рассмотреть терморегуляторы-программаторы с возможностью введения расписания работы систем обогрева. В таких регуляторах реализовано программирование на неделю вперед. Т.е. каждый пользователь подбирает своему отоплению индивидуальный график эксплуатации, в полной мере соответствующий распорядку жизни человека и его семьи. При этом учитывается порядок чередования рабочих и выходных дней. Возможные режимы «Таймер», «Ручной» и «Отъезд».

К программируемым терморегуляторам terneo относят модели ax, sx, rzx, pro, pro-z и sen. Первые три программируются удаленно, через Wi-Fi, остальные — с помощью кнопок. В режиме расписания «Таймер» можно задать для программатора с кнопок максимум три,  а для Wi-Fi — программатора шестнадцать периодов поддержания комфортной температуры в течении суток. В промежутках между ними (т. е. ночью, в рабочее время дня и т. д.) удерживается экономная температура (15 – 16) ºС. Эта величина признана целесообразной с точки зрения расхода энергоносителей и для оперативного возврата к комфортной. Аналогичные температурные параметры поддерживаются в период относительно продолжительного отсутствия людей (режим «Отъезд»). «Ручному» режиму соответствует постоянное поддержание заданного значения температуры. Все это способствует максимально возможной экономии электроэнергии.

Не менее полезными будут настройки проветривания помещения, когда терморегулятор самостоятельно определяет наличие открытого окна или двери и делает получасовой перерыв в работе системы отопления.

В программаторе terneo pro можно активировать предпрогрев для своевременного обеспечения комфорта в помещении. Регулятор анализирует среднюю продолжительность нагрева от экономной до комфортной температуры и откорректирует необходимое время подключения нагрузки.

Для оптимизации расходов на электроэнергию потребителю надо настроить сохранение в памяти терморегулятор графиков статистики энергопотребления (суточных, недельных, месячных или за год). Для части регуляторов доступен более упрощенный вариант — счетчик времени его работы с нагрузкой.

Оцените новость:

Гистерезис — Википедия

Рис. 1. Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Гистере́зис (греч. ὑστέρησις — отставание, запаздывание) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис[править | править код]

Рис. 1. Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Магнитный гистерезис — явление зависимости вектора намагниченности и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как будто удерживается некоторым внутренним полем HA{\displaystyle H_{A}} (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA{\displaystyle H_{A}}). При перемагничивании однодоменных частиц вектор

M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила Hc≈HA{\displaystyle H_{c}\approx H_{A}}. Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc{\displaystyle H_{c}} он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc{\displaystyle H_{c}} может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис[править | править код]

H_{c} Зависимость поляризации P{\displaystyle P} от напряжённости электрического поля E{\displaystyle E} в сегнетоэлектрике.

Сегнетоэлектрический гистерезис

 — неоднозначная петлеобразная зависимость поляризации P{\displaystyle P} сегнетоэлектриков от внешнего электрического поля E{\displaystyle E} при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc{\displaystyle P_{c}}. Направление поляризации может быть изменено электрическим полем. При этом зависимость P{\displaystyle P} (E{\displaystyle E}) в полярной фазе неоднозначна, значение P{\displaystyle P} при данном E{\displaystyle E} зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pr{\displaystyle P_{r}}, при E=0{\displaystyle E=0}
  • значение поля EKt{\displaystyle E_{Kt}} (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис[править | править код]

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина ΔU{\displaystyle \Delta U} — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

\Delta U

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm

[1].

\Delta U Зависимость вероятности поимок Mustela nivalis (ласка) в t-году от плотности основной жертвы — Myodes glareolus (рыжая полевка) осенью предыдущего года (жирная линия) или весной текущего года (тонкая линия). Логит-регрессия по обучающей части ряда наблюдений — 1994—2004 гг. Средний Урал, темнохвойная южная тайга, Висимский заповедник.

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.

Основная гидрофизическая характеристика почвы обладает гистерезисом.

Практический интерес также представляет запаздывание изменения температуры грунта на различных глубинах от колебаний температуры воздуха. Осенью и в начале зимы когда температура воздуха опускается ниже нуля, накопленное грунтом за тёплый сезон тепло ещё остаётся в грунте. Это создаёт благоприятные условия для использования грунтовых тепловых насосов для отопления.

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.

Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определёнными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства[2].

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчёта» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и её текущего состояния.

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).

  1. Harrison, L. Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
  2. Горшков М. К. Общественное мнение. Учебное пособие. — М.: Политиздат, 1989. — 384 с.
  3. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
  4. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
  5. R. V. Lapshin. Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope (англ.) // Review of Scientific Instruments (англ.)русск. : journal. — USA: AIP, 1995. — Vol. 66, no. 9. — P. 4718—4730. — ISSN 0034-6748. — doi:10.1063/1.1145314. (перевод на русский).
  6. ↑ Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses) (неопр.). R-project (20 ноября 2013). Дата обращения 11 июня 2018.

терморегулятор своими руками, термодатчики на включение выключение

Термореле с регулировкой температуры можно приобрести в магазине или же сделать самому Термореле с регулировкой температуры можно приобрести в магазине или же сделать самому Сегодня, в быт современного человека активно внедряются устройства, позволяющие автоматизировать работу систем отопления и вентиляции, горячего водоснабжения. К таким устройствам относят и термореле. Какие виды термореле для контроля над температурой существуют на сегодня, где можно использовать терморегуляторы и как самостоятельно сделать устройство – читайте ниже.

Что такое термореле с регулировкой температуры

Термореле с регулировкой температуры – это электромеханический прибор, предназначенный для контроля температуры в неагрессивной среде. Регулировка температуры посредством устройства происходит благодаря способности реле размыкать и замыкать контакты электрической цепи, в соответствии с изменениями температурного режима.

Это позволяет использовать отопительные приборы только по их фактической необходимости.

Так, например, термореле с внешними теплочувствительными датчиками можно использовать для регулирования работы отопительной системы в зависимости от погодных условий. Регулятор будет включать отопительные приборы при понижении температуры на улице ниже заданной.

Кроме того, термореле можно использовать для:

  • Управления оборудованием для нагрева воды в системах автономного отопления и горячего водоснабжения;
  • Автономной работы “теплого пола”, водонагревательного котла;
  • Автоматизации систем кондиционирования в тепличном хозяйстве;
  • В автоматических системах отопления погреба и других складских и подсобных помещений.

Существует несколько видов термореле. В основном, устройства различаются по исполнению. При этом, их устройство остается практически неизменным. К основным конструктивным элементам термореле относят термочувствительный датчик и терморегулятор, подающий сигнал на включение или выключение приборов обогрева и кондиционирования. Информация о фактическом и заданном температурных режимах, обычно, выводится на цифровой дисплей устройства, а светодиодный индикатор сигнализирует о рабочем состоянии реле.

Для чего нужен гистерезис терморегулятора

Сегодня, большинство устройств по контролю над температурным режимом имеют функции как установки нужной температуры, так и настройки гистерезиса. Что же такое гистерезис терморегулятора? Это величина температуры, при которой сигнал противоположно меняется. Благодаря настройке гистерезиса реле осуществляет включение или выключение подключенного к нему оборудования.

Главная функция гистерезиса терморегулятора заключается в выключении и включении оборудования, которое к нему подключено Главная функция гистерезиса терморегулятора заключается в выключении и включении оборудования, которое к нему подключено

То есть гистерезис – это разница между температурами включения и выключения приборов, обеспечивающих нагревание или охлаждение среды.

Так, например, если гистерезис терморегулятора равен 2 °С, а само устройство выставлено на 25 °С, то при понижении температуры окружающей среды до 23 °С термореле запустит оборудование, контролирующее обогрев комнаты. Такое оборудование может быть представлено электрическим обогревателем или газовым котлом отопления. При этом, чем больше будет гистерезис, тем реже будет запускаться термореле. Это следует учитывать в том случае, если главной целью установки автоматического терморегулятора является экономия электроэнергии.

Виды термореле на включение-выключение

Обычный терморегулятор на включение и выключение представляет собой компактный электронный блок, который крепится на стену в подходящем месте и соединяется с контролируемым оборудованием. Самый простой, а поэтому и самый доступный регулятор температуры имеет механическое управление.

Кроме того, все термореле делится на:

  1. Программируемые устройства контроля. Такие регуляторы подключаются к оборудованию как по проводному, так и по беспроводному принципу. Настройка реле производится через специальную программу или ЖК дисплей. Благодаря программному обеспечению можно настраивать реле на срабатывание в определенное время суток и года.
  2. Термореле с модулем беспроводного программирования GSM. Такие устройства могут быть как с одним, так и двумя термодатчиками.
  3. Автономные регуляторы с питанием от аккумуляторов. Такие установки, чаще всего, используют для контроля работы бытовой техники (например, холодильника), инкубаторов.

Отдельно выделяют беспроводные устройства с внешним датчиком. Такие устройства считаются наиболее эффективными. Они отличаются быстродействием, ведь термодатчик реагирует на изменение температуры еще до того, как она успела повлиять на температуру внутри помещения.

Как сделать термореле своими руками

Подходящее по способу действия термореле можно заказать в интернет-магазине, а можно собрать своими руками. Чаще всего, самодельные регуляторы температуры воздуха рассчитываются на питание от аккумулятора на 12 В. Можно запитать термореле и к электропроводке через силовой кабель.

Для того чтобы смастерить терморегулятор, необходимо заранее подготовить корпус прибора и другие инструменты для работы Для того чтобы смастерить терморегулятор, необходимо заранее подготовить корпус прибора и другие инструменты для работы

Для того, чтобы собрать надежный терморегулятор с датчиком следует:

  1. Подготовить корпус прибора. Для этих целей можно выбрать корпус от старого электрического счётчика, автоматического выключателя.
  2. Ко входу компаратора (помеченного знаком «+») подключить потенциометр, а минусовому инверсному входу – термодатчики типа LM335. Схема работы устройства достаточно простая. При повышении напряжения на прямом входе, транзистор подает питание на реле, а оно, в свою очередь, на нагреватель. Как только напряжение на обратном входе станет выше, чем на прямом, уровень на выходе компаратора приблизится к нулю, и реле отключится.
  3. Создать отрицательную связь между прямым входом и выходом. Это создаст пределы включения и отключения терморегулятора.

Для питания терморегулятора можно взять катушку от старого электромеханического электросчетчика. Для получения необходимого напряжения в 12 В, нужно будет намотать на катушку 540 витков. Для этого лучше всего использовать медный провод диаметром не менее 0,4 мм.

Как изготовить терморегулятор для инкубатора своими руками

Инкубатор – это незаменимая вещь в сельском хозяйстве, которая позволяет выводить птенцов в домашних условиях. Температуру инкубатора можно контролировать с помощью термореле. Термореле для инкубатора можно приобрести, а можно собрать самостоятельно из подручных материалов.

Существует два способа изготовления терморегулятора для инкубатора:

  • С использованием стабилитрона, тиристора и 4 диодов мощностью не менее 700 Вт. Регулировка температурного режима выполняться через переменный резистор с сопротивлением в диапазоне от 30 до 50 кОм. Датчиком температуры в данном приборе выступит транзистор, установленный в стеклянной трубке и размещенный на лотке с яйцами.
  • С использованием термостата. К корпусу термостата с помощью паяльника нужно будет прикрепить винт и связать его с контактами. Вращение винта будет регулировать температурные показатели.

Наиболее простым и доступным считается второй способ. Независимо от типа термореле, перед закладкой яиц, инкубатор необходимо прогреть, а самодельный терморегулятор настроить.

Ремонт терморегулятора холодильника своими руками (видео)

Термореле с регулировкой температуры – это простое устройство, которое позволяет автоматизировать работу нагревательного, обогревательного и кондиционирующего оборудования. Благодаря термореле электроприборы можно автоматически использовать по их фактическому назначению, сократив потребление электроэнергии. Выбрать термореле помогут представленные выше рекомендации. А если подобрать наиболее подходящее устройство не получилось, вы всегда сможете собрать терморегулятор своими силами!



Добавить комментарий

определение понятия, физические явления, использование эффекта в терморегуляторах котлах отопления

Понятие и термин гистерезис Гистерезис является комплексным понятием процессов, происходящих в системах и веществах, которые способны в себе накапливать различную энергию, при этом скорость и интенсивность ее нарастания отличается от кривой ее убывания при снятии воздействия. В переводе же с греческого языка понятие гистерезис переводится как отставание, поэтому и понимать его следует как запаздывание одного процесса по отношению к другому. При этом совсем необязательно, чтобы эффект гистерезиса был характерен только магнитным средам.

Это свойство проявляется во многих других система и средах:

  • гидравлике;
  • кинематике;
  • электронике;
  • биологии;
  • экономике.

Особенно часто используют понятие при осуществлении регулирования температурных режимов в системах отопления.

Особенности физического явления

Мы же остановимся именно на гистерезисе в электронной технике, связанным с магнитными процессами в различных веществах. Он показывает, как себя ведет тот или другой материал в электромагнитном поле, а это тем самым позволяет строить графики зависимости и снимать какие-то показания сред, в которых находятся эти самые материалы. Например, этот эффект используется в работе терморегулятора.

Рассматривая более подробно понятие гистерезиса и эффект с ним связанный, можно заметить такую особенность. Вещество, обладающее такой особенностью, способно переходить в насыщение. То есть, это то состояние, при котором оно больше не способно накапливать в себе энергию. А при рассмотрении процесса на примере ферромагнитных материалов энергия выражается намагниченностью, которая возникает благодаря имеющейся магнитной связи между молекулами вещества. А они создают магнитные моменты – диполи, которые в обычном состоянии направлены хаотически.

Намагниченность в данном случае – это принятие магнитными моментами определенного направления. Если же они направлены хаотически, то ферромагнетик считается размагниченным. Но когда диполи направлены в одну сторону, то материал намагничен. По степени намагниченности сердечника катушки можно судить о величине магнитного поля, создаваемого током, протекающим по ней.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса, необходимо досконально изучить следующие понятия:

  • Что значит термин гистерезис Магнитное поле – это среда, которая создается линиями магнитной индукции, образованными током, протекающим по проводнику или созданные строго направленными магнитными моментами в постоянном магните.
  • Вектор магнитной индукции – величина, указывающая направление распространения магнитного поля, обозначается большой буквой В.
  • Намагниченность – состояние вещества, при котором в нем еще остались направленные магнитные диполи. В физике и электротехнике обозначается буквой М.
  • Напряженность магнитного поля – величина, характеризующая разницу между В и М, обозначается буквой Н.

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Понятие гистерезис Чтобы увидеть гистерезис, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Гистерезис в разных материалах

Температурный гистерезис Гистерезис – это комплексное понятие, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

Что влияет на петлю гистерезиса?

Казалось бы, гистерезис – это больше внутренний эффект, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.

В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.

В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.

Другие свойства

Гистерезис котлаКроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.

Гистерезис в отоплении

Что такое гистерезис Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.

При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.

В таких системах гистерезис выражается в температуре. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.

что это такое, кратко и понятно

Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.

Что такое гистерезис?

Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она  полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.

Явление гистерезиса наблюдается:

  • в физике;
  • электротехнике и радиоэлектронике;
  • биологии;
  • геологии;
  • гидрологии;
  • экономике;
  • социологии.

Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.

Динамический гистерезис

Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.

По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.

Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.

Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.

Различают упругий гистерезис двух видов:

  1. Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.
  2. Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.

Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.

Петля гистерезиса

Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).

Петля гистерезисаРис. 1. Петля гистерезиса

Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.

Динамическая петляРис. 2. Динамическая петля

Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.

Гистерезис в электротехнике

Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.

На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.

Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.

Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).

Классификация магнитных материаловРис. 3. Классификация магнитных материалов

Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.

Петли гистерезиса под действием изменения напряжённости поляРис. 4. Петли гистерезиса под действием изменения напряжённости поля

Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.

В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.

Механизм возникновения петли магнитного гистерезисаРис. 5. Механизм возникновения петли магнитного гистерезиса

В электротехнике гистерезисные свойства используются довольно часто:

  • в работе электромагнитных реле;
  • в конструкциях коммутационных приборов;
  • при создании электромоторов и других силовых механизмов.

Явления диэлектрического гистерезиса

У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.

Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.

На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.

Гистерезис в электронике

При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.

На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.

На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.

Комнатный термостат для газового котла с Алиэкспресс из Китая

Выбираем программируемый комнатный термостат для газового котла на Алиэкспресс

Зачем нужен комнатный термостат

Установка в доме и подключение к газовому котлу комнатного термостата решает две задачи:

  1. Обеспечивает комфортную для человека температуру воздуха в доме. Исключает ситуации, когда хочется «прикрутить отопление», потому что в комнатах жарко, или наоборот, «прибавить» — так как холодно.
  2. Заметно сокращает расход газа на отопление, так как позволяет избегать в доме «перетопа» — держать во многих помещениях более низкую температуру. Изменение температуры в помещении всего на 1 оС приводит к увеличению или экономии количества газа на отопление примерно на 4-5%.

В редко посещаемых помещениях дома выгодно держать более низкую температуру. Строительные правила рекомендуют температуру воздуха в отопительный период в разных помещениях дома поддерживать в диапазоне от +12 до +26 оС

Нормы температуры воздуха в жилых помещениях дома

В частном доме или квартире, при настройке системы отопления рекомендуется ориентироваться на нормы температуры воздуха в помещениях, установленные «ГОСТ 30494—2011. Межгосударственный стандарт. Здания жилые и общественные. Параметры микроклимата в помещениях» :

Наименование помещенияТемпература (оС),
оптимальная / допустимая
Жилая комната20-22 / 18-24
То же, но в районах с температурой наружного воздуха наиболее холодной пятидневки -31 оС и ниже21-23 / 20-24
Кухня, туалет19-21 / 18-26
Ванная, совмещенный санузел24-26 / 18-26
Лестничная клетка, вестибюль16-18 / 14-22
Кладовка16-18 / 12-22

Комнатный регулятор

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*