Виды солнечных коллекторов: полная справка от производителя
Существуют различные виды солнечных коллекторов, однако все они рассчитаны на собирание энергии тепла лучей солнца, которая поступает вместе с видимой и прилежащей инфракрасной зонами спектра. Они осуществляют нагрев теплоносителя, используются для обогрева, снабжения горячей водой и проветривания построек разного назначения.
Содержание:
- Коллекторы плоского типа
- Коллекторы вакуумного типа
- Вакуумный коллектор с прямой передачей тепла жидкости
- Вакуумный коллектор с прямой передачей тепла жидкости и встроенным теплообменником
- Вакуумные коллекторы с теплотрубками
- Солнечные коллекторы с концентраторами
- Воздушные коллекторы
Коллекторы плоского типа
Структура солнечных коллекторов плоского типа включает:
- Абсорбер – элемент, отвечающий за вбирание солнечного света и объединенный с теплопроводящей конструкцией. Это наиболее высокотехнологичная часть системы. Для увеличения результативности на него наносят селективное никелевое покрытие, напыление окиси титана либо окрашивают в черный цвет.
- Термоизолирующее покрытие используют для обработки изнаночной стороны гелиопанели. Чаще всего его изготавливают из полиизоцианурата, жесткого полимерного термореактивного материала с закрытыми ячейками.
- Прозрачный слой выполняется из листов поликарбоната с рифлением или закаленного стекла с небольшим количеством железа.
- Трубки для теплоносителя из полимера этилена с поперечно сшитыми молекулами (сшитого полиэтилена) или меди.
Основной принцип работы коллекторов плоского типа заключается в эксплуатации парникового эффекта. Стекло пропускает лучи солнца вовнутрь конструкции и позволяет накопить солнечную энергию, а затем передать ее теплоносителю (воде или незамерзающему раствору) при помощи других деталей (обычно алюминиевых или медных). Гелиопанели этого типа обрабатывают также силиконовым герметиком, достигая полной воздухонепроницаемости.
Эффективность нагрева теплоносителя зависит от количества поступающих на коллектор солнечных лучей. Чем больший объем энергии передается теплоносителю, тем выше результативность работы агрегата. Ее также можно увеличить, применяя специализированные оптические покрытия, не позволяющие уходить теплу.
Эффективность функционирования гелиопанели характеризуется выработкой нагретой жидкости на 1 кв. м площади поверхности устройства. Плоские разновидности могут нагревать теплоноситель до 200ºC.
Коллекторы вакуумного типа
В коллекторе этого типа поглощающий солнечные лучи элемент разделен с окружающей средой объемом, где создан вакуум. Благодаря этому теплопотери оказываются устранены практически полностью. Использование селективного покрытия, в свою очередь, намного снижает энергопотери на излучение.
На фото солнечного коллектора вакуумного типа видно, что используемые теплонакопители представляют собой трубочки, укомплектованные по принципу термоса. Детали вставляются друг в друга, а в зазоре между ними создается вакуум. Узкоцилиндрическая форма устройств обуславливает падение лучей под углом 90º к оси, что увеличивает количество получаемой с единицы площади энергии даже в вечернее и утреннее время суток.
Трубчатые системы способны эффективно собирать энергию рассеянного солнечного излучения, фактически в этом случае они работают как плоские модели, обустроенные возможностью поворота вслед за солнцем. Применение отражателей также может значительно увеличить рабочее пространство коллектора вакуумного типа.
Практически полное отсутствие пустого расхода энергии в функционировании вакуумного коллектора делает его незаменимым для использования в морозы, а приоритет перед плоскими гелиопанелями он получает уже при температуре ниже 15ºC.
Вакуумный коллектор с прямой передачей тепла жидкости
Конструкции из трубочек в вакуумном коллекторе с непосредственной теплопередачей жидкости располагаются под конкретным углом. Они подсоединяются к баку-накопителю, вода из которого течет непосредственно в трубки, где прогревается и затем возвращается. Отсутствие иных элементов служит важным достоинством агрегата. Коллекторы этой разновидности могут работать также и без бака-накопителя.
Вакуумный коллектор с прямой передачей тепла жидкости и встроенным теплообменником
Коллекторы этой разновидности устроены, в целом, так же, как и приборы с непосредственной передачей тепла жидкости, однако имеют эффективный теплообменник, подсоединенный изнутри бака. Такой аппарат допустимо встраивать в напорную систему снабжения водой.
Для использования оборудования при пониженной температуре (до -10ºC) в контур нагрева воды заливают незамерзающий раствор. Отложений внутри коллектора не формируется, поскольку вода течет исключительно внутри медного теплообменника, а мера ее неизменна.
Вакуумные коллекторы с теплотрубками
Для производства дорогих моделей вакуумных коллекторов используют медные термические трубки, запечатанные и заполненные легкокипящим раствором. Механизм их работы состоит в том, что нагретая жидкость при улетучивании забирает энергию и уносит ее к теплоносителю, конденсируясь вверху. Конденсат затем стекает обратно, и процедура повторяется.
Перенос тепла осуществляется посредством «гильзы» приемника, изготовляемой из меди. Отопительный контур коллектора физически разделен с трубами, поэтому порча одной или нескольких деталей не лишает его работоспособности. Замена элементов не требует полного удаления незамерзающего раствора из контура теплообменника.
Коллектор с применением термотрубок достаточно производителен при морозах до -35ºC (для стеклянных моделей с тепловыми трубками) или -50ºC (изделия с тепловыми трубками из металла).
Солнечные коллекторы с концентраторами
Обустройство солнечных коллекторов концентраторами производится посредством параболоцилиндрических отражателей, которые прокладываются непосредственно под деталями, поглощающими излучение солнца. Процедура позволяет достичь роста эксплуатационных показателей температуры теплоносителя до 120-250ºC и более (если параллельно используются приборы слежения за источником света).
Воздушные коллекторы
Основной характеристикой воздушных солнечных коллекторов служит их способность прогревать воздушную массу. Обычно эти устройства относятся к типу простых плоских гелиопанелей. Теплообменник для их работы не нужен, поскольку воздух не промерзает.
Воздух поступает через поглотитель принудительно или естественным путем. Он проводит тепло не так хорошо, как теплоносители жидкого типа, поэтому применение вентиляторов для улучшения теплопередачи и усиления формирования завихрений в атмосферной массе увеличивает эффективность работы устройства.
Воздушные солнечные коллекторы имеют несложную структуру и высокую отказоустойчивость, их работой легко управлять. При соблюдении правил эксплуатации они могут исправно функционировать более 15-20 лет, не нуждаясь в ремонте и техническом обслуживании.
Виды солнечных коллекторов для прогрева воздуха могут интегрироваться в крыши или стены строений. Они нередко служат основной или дополнительной системой отопления и вентиляции зданий, где доступ к иным источникам энергии затруднен или невозможен.
виды, принцип работы, устройство системы
Тепловые насосы черпают энергию из грунта, воды или воздуха, согретых солнцем. Котлы используют тепло, высвобождающееся при сгорании топлива, которое в конечном итоге тоже является продуктом преобразования солнечной энергии в ходе длительной эволюции Земли. Гелиоколлекторы в некотором смысле уникальны: они получают энергию непосредственно от солнца.
Чтобы завтра иметь возможность абсолютно бесплатно нагревать воду для ГВС или отапливать свой дом, сегодня придется все-таки потратиться на приобретение солнечных коллекторов. С учетом немалой стоимости подобного оборудования очень важно не допустить ошибку при выборе. А значит, следует заранее получить хотя бы общие представления о специфике гелиоколлекторов и нюансах их работы.
Специфика использования солнечных коллекторов
Главной особенностью гелиоколлекторов, отличающей их от теплогенераторов других типов, является цикличность их работы. Нет солнца – нет и тепловой энергии. Как следствие, в ночное время подобные установки пассивны.
Среднесуточная выработка тепла напрямую зависит от продолжительности светового дня. Последняя же определяется, во-первых, географической широтой местности, и во-вторых, временем года. В летний период, на который в северном полушарии приходится пик инсоляции, коллектор будет работать с максимальной отдачей. Зимою же его продуктивность падает, достигая минимума в декабре-январе.
В зимний период эффективность гелиоколлекторов снижается не только из-за уменьшения продолжительности светового дня, но и из-за изменения угла падения солнечных лучей. Колебания производительности солнечного коллектора в течение года следует учитывать при расчетах его вклада в систему теплоснабжения.
Еще один фактор, который может повлиять на продуктивность солнечного коллектора, – климатические особенности региона. На территории нашей страны есть немало мест, где 200 и более дней в году солнце скрыто за толстым слоем туч или за пеленой тумана. В пасмурную погоду производительность гелиоколлектора не падает до нуля, поскольку он способен улавливать рассеянные солнечные лучи, но существенно снижается.
Принцип работы и виды солнечных коллекторов
Настала пора сказать несколько слов об устройстве и принципе работы солнечного коллектора. Основным элементом его конструкции является адсорбер, представляющий собой медную пластину с приваренной к ней трубой. Поглощая тепло падающих на нее солнечных лучей, пластина (а вместе с ней и труба) быстро нагревается. Это тепло передается циркулирующему по трубе жидкому теплоносителю, а тот в свою очередь транспортирует его далее по системе.
Способность физического тела поглощать или отражать солнечные лучи зависит, прежде всего, от характера его поверхности. Например, зеркальная поверхность отлично отражает свет и тепло, а вот черная, напротив, поглощает. Именно поэтому на медную пластину адсорбера наносится черное покрытие (простейший вариант – черная краска).
Принцип работы солнечного коллектора
1. Солнечный коллектор.
2. Буферный бак.
3. Горячая вода.
4. Холодная вода.
5. Котроллер.
6. Теплообменник.
7. Помпа.
8. Горячий поток.
9. Холодный поток.
Увеличить количество получаемого от солнца тепла можно и путем правильного подбора стекла, прикрывающего адсорбер. Обычное стекло недостаточно прозрачно. Кроме того, оно бликует, отражая часть падающего на него солнечного света. В гелиоколлекторах, как правило, стараются использовать специальное стекло с пониженным содержанием железа, что повышает его прозрачность. Для снижения доли отраженного поверхностью света на стекло наносят антибликовое покрытие. А чтобы внутрь коллектора не попадали пыль и влага, которые тоже снижают пропускную способность стекла, корпус делают герметичным, а иногда даже заполняют инертным газом.
Несмотря на все эти ухищрения, КПД солнечных коллекторов все же далек от 100%, что связано с несовершенством их конструкции. Часть полученного тепла нагретая пластина адсорбера излучает в окружающую среду, нагревая контактирующий с ней воздух. Чтобы свести к минимуму теплопотери, адсорбер необходимо изолировать. Поиск эффективного способа теплоизоляции адсорбера привел инженеров к созданию нескольких разновидностей солнечных коллекторов, самыми распространенными из которых являются плоские и трубчатые вакуумные.
Плоские солнечные коллекторы
Плоские солнечные коллекторы.
Конструкция плоского солнечного коллектора предельно проста: это металлический короб, покрытый сверху стеклом. Для теплоизоляции дна и стенок корпуса, как правило, используется минеральная вата. Вариант этот далеко не идеален, поскольку не исключен перенос тепла от адсорбера к стеклу посредством воздуха, находящегося внутри короба. При большой разнице температур внутри коллектора и снаружи потери тепла бывают довольно существенными. В результате плоский гелиоколлектор, прекрасно функционирующий весной и летом, зимой становится крайне неэффективным.
Устройство плоского солнечного коллектора
1. Впускной патрубок.
2. Защитное стекло.
3. Абсорбционный слой.
4. Алюминиевая рама.
5. Медные трубки.
6. Теплоизолятор.
7. Выпускной патрубок.
Трубчатые вакуумные солнечные коллекторы
Трубчатые вакуумные солнечные коллекторы.
Вакуумный солнечный коллектор представляет собой панель, состоящую из большого количества сравнительно тонких стеклянных трубок. Внутри каждой из них расположен адсорбер. Чтобы исключить перенос тепла газом (воздухом), трубки вакуумированы. Именно благодаря отсутствию газа вблизи адсорберов, вакуумные коллекторы отличаются низкими теплопотерями даже в морозную погоду.
Устройство вакуумного коллектора
1. Теплоизоляция.
2. Корпус теплообменника.
3. Теплообменник (коллектор)
4. Герметичная пробка.
5. Вакуумная трубка.
6. Конденсатор.
7. Поглощающая пластина.
8. Тепловая трубка с рабочей жидкостью.
Области применения солнечных коллекторов
Главное назначение солнечных коллекторов, как и любых других теплогенераторов, – отопление зданий и подготовка воды для системы горячего водоснабжения. Осталось выяснить, какой именно тип гелиоколлекторов лучше подходит для выполнения той или иной функции.
Плоские солнечные коллекторы, как мы выяснили, отличаются хорошей производительностью в весенне-летний период, но малоэффективны зимой. Из этого следует, что использовать их для отопления, потребность в котором появляется именно с наступлением холодов, нецелесообразно. Это, однако, не означает, что для данного оборудования вовсе не найдется дела.
У плоских коллекторов есть одно неоспоримое преимущество – они существенно дешевле вакуумных моделей, поэтому в тех случаях, когда планируется использовать солнечную энергию исключительно летом, имеет смысл приобретать именно их. Плоские гелиоколлекторы прекрасно справляются с задачей подготовки воды для ГВС в летний период. Еще чаще их используют для подогрева до комфортной температуры воды в открытых бассейнах.
Трубчатые вакуумные коллекторы более универсальны. С приходом зимних холодов их производительность снижается не столь существенно, как в случае плоских моделей, а значит, они могут использоваться круглогодично. Это дает возможность задействовать подобные гелиоколлекторы не только для горячего водоснабжения, но и в системе отопления.
Сравнение плоских и вакуумных солнечных коллекторов.
Расположение солнечных коллекторов
Эффективность гелиоколлектора напрямую зависит от количества солнечного света, попадающего на адсорбер. Из этого следует, что коллектор должен располагаться на открытом пространстве, куда никогда (или, по крайней мере, максимально долго) не падает тень от соседних зданий, деревьев, расположенных вблизи гор и т. д.
Большое значение имеет не только расположение коллектора, но и его ориентация. Самой «солнечной» стороной в нашем северном полушарии является южная, а значит, в идеале «зеркала» коллектора должны быть развернуты строго на юг. Если технически сделать этого невозможно, то следует выбрать направление, максимально приближенное к южному, – юго-запад или юго-восток.
Не следует выпускать из внимания и такой параметр, как угол наклона гелиоколлектора. Величина угла зависит от отклонения положения Солнца от зенита, которое в свою очередь определяется географической широтой той местности, в которой будет эксплуатироваться оборудование. Если угол наклона будет выставлен неправильно, то существенно возрастут оптические потери энергии, поскольку значительная часть солнечного света будет отражаться от стекла коллектора и, следовательно, не достигнет абсорбера.
Как подобрать солнечный коллектор нужной мощности
Если вы хотите, чтобы отопительная система вашего дома справлялась с задачей поддержания в помещениях комфортной температуры, а из кранов текла горячая, а не еле теплая вода, и при этом планируете использовать в качестве генератора тепла солнечный коллектор, нужно заранее вычислить необходимую мощность оборудования.
При этом потребуется учесть довольно большое количество параметров, в том числе назначение коллектора (ГВС, отопление или их комбинация), потребности объекта в тепле (суммарная площадь обогреваемых помещений или средний суточный расход горячей воды), климатические особенности региона, особенности установки коллектора.
В принципе, произвести подобные расчеты не так уж и сложно. Производительность каждой модели известна, а значит, вы без труда оцените количество коллекторов, необходимое для обеспечения дома теплом. Компании, занимающиеся выпуском солнечных коллекторов, обладают информацией (и могут предоставить ее потребителю) об изменении мощности оборудования в зависимости от географической широты местности, угла наклона «зеркал», отклонения их ориентации от южного направления и т. д., что позволяет внести необходимые поправки при расчете производительности коллектора.
При подборе необходимой мощности коллектора очень важно достичь баланса между нехваткой и избытком генерируемого тепла. Специалисты рекомендуют ориентироваться на максимально возможную мощность коллектора, т. е. использовать в расчетах показатель для самого продуктивного летнего сезона. Это идет в разрез с желанием среднестатистического пользователя взять оборудование с запасом (т. е. посчитать по мощности самого холодного месяца), чтобы тепла от коллектора хватала и в менее солнечные осенние и зимние дни.
Однако если вы пойдете по пути выбора солнечного коллектора повышенной мощности, то на пике его производительности, т. е. в теплую солнечную погоду, вы столкнетесь с серьезной проблемой: тепла будет производиться больше, чем потребляться, а это грозит перегревом контура и прочими малоприятными последствиями. Существует два варианта решения этой задачи: либо устанавливать маломощный солнечный коллектор и в зимний период параллельно подключать резервные источники тепла, либо приобрести модель с большим запасом по мощности и предусмотреть при этом пути сброса избыточного тепла в весенне-летний сезон.
Стагнация системы
Поговорим чуть подробнее о проблемах, связанных с переизбытком генерируемого тепла. Итак, предположим, что вы установили достаточно мощный гелиоколлектор, способный полностью обеспечить теплом отопительную систему вашего дома. Но наступило лето, и потребность в отоплении отпала. Если у электрического котла можно отключить электропитание, у газового – перекрыть подачу топлива, то над солнцем мы не властны – «выключить» его, когда стало слишком жарко, нам не под силу.
Стагнация системы – одна из главных потенциальных проблем солнечных коллекторов. Если из контура коллектора забирается недостаточно тепла, происходит перегрев теплоносителя. В определенный момент последний может закипеть, что приведет к прекращению его циркуляции по контуру. Когда теплоноситель остынет и конденсируется, работа системы возобновится. Однако далеко не все виды теплоносителей спокойно переносят переход из жидкого состояния в газообразное и обратно. Некоторые в результате перегрева приобретают желеобразную консистенцию, что делает невозможной дальнейшую эксплуатацию контура.
Избежать стагнации поможет лишь стабильный отвод производимого коллектором тепла. Если расчет мощности оборудования сделан правильно, вероятность возникновения проблем практически нулевая.
Однако даже в этом случае не исключено возникновение форс-мажорных обстоятельств, поэтому следует заранее предусмотреть способы защиты от перегрева:
1. Установка резервной емкости для накопления горячей воды. Если вода в основном баке системы горячего водоснабжения достигла установленного максимума, а гелиоколлектор продолжает поставлять тепло, автоматически произойдет переключение, и вода начнет греться уже в резервной емкости. Созданный запас теплой воды можно будет использовать для бытовых нужд позже, в пасмурную погоду.
2. Подогрев воды в бассейне. У владельцев домов с бассейном (не важно, крытым или размещенным под открытым небом) имеется прекрасная возможность отводить излишки тепловой энергии. Объем бассейна несравнимо больше объема любого бытового накопителя, из чего следует, что вода в нем не нагреется так сильно, что уже не сможет поглощать тепло.
3. Слив горячей воды. При отсутствии возможности тратить избыток тепла с пользой можно попросту сливать небольшими порциями нагретую воду из накопительного резервуара для ГВС в канализацию. Поступающая при этом в емкость холодная вода будет понижать температуру всего объема, что позволит продолжать отводить тепло от контура.
4. Внешний теплообменник с вентилятором. Если гелиоколлектор обладает большой производительностью, избыток тепла может быть тоже очень велик. В этом случае система оборудуется дополнительным контуром, заполненным хладагентом. Этот дополнительный контур сопряжен с системой посредством теплообменника, оснащенного вентилятором и монтируемого за пределами здания. При возникновении риска перегрева избыточное тепло поступает в дополнительный контур и через теплообменник «выбрасывается» в воздух.
5. Сброс тепла в грунт. Если помимо солнечного коллектора в доме имеется грунтовый тепловой насос, избыток тепла можно направить в скважину. При этом вы решаете сразу две задачи: с одной стороны, защищаете контур коллектора от перегрева, с другой – восстанавливаете истощенный за зиму запас тепла в грунте.
6. Изоляция гелиоколлектора от прямых солнечных лучей. Этот способ с технической точки зрения один из самых простых. Конечно, забираться на крышу и занавешивать коллектор вручную не стоит – это тяжело и небезопасно. Гораздо рациональнее установить дистанционно управляемый заслон, наподобие рольставень. Можно даже подключить блок управления заслоном к контроллеру – при опасном повышении температуры в контуре коллектор будет закрываться автоматически.
7. Слив теплоносителя. Этот способ можно считать кардинальным, но в то же время он довольно прост. При возникновении риска перегрева теплоноситель посредством насоса сливается в специальную емкость, интегрированную в контур системы. Когда условия вновь станут благоприятными, насос вернет теплоноситель в контур, и работа коллектора будет восстановлена.
Другие компоненты системы
Недостаточно просто собрать излучаемое солнцем тепло. Нужно его еще транспортировать, накопить, передать потребителям, нужно контролировать все эти процессы и т. д. А это означает, что помимо расположенных на крыше коллеторов система содержит множество других компонентов, может быть менее заметных, но при этом не менее важных. Остановим ваше внимание лишь на некоторых из них.
Теплоноситель
Функцию теплоносителя в контуре коллектора может выполнять либо вода, либо незамерзающая жидкость.
Вода имеет ряд недостатков, накладывающих определенные ограничения на использование ее в качестве теплоносителя в гелиоколлекторах:
- Во-первых, при отрицательных температурах она застывает. Чтобы замерзший теплоноситель не разорвал трубы контура, с приближением холодов его придется сливать, а значит, зимой вы не получите от коллектора даже небольших количеств тепловой энергии.
- Во-вторых, не слишком высокая температура кипения воды может стать причиной частых стагнаций в летний период.
Незамерзающая жидкость в отличие от воды обладает значительно более низкой температурой замерзания и несравнимо более высокой температурой кипения, что повышает удобство использования ее в качестве теплоносителя. Однако при высоких температурах «незамерзайка» может претерпеть необратимые изменения, поэтому ее следует оберегать от чрезмерного перегрева.
Насос адаптированный для гелиосистем
Для обеспечения принудительной циркуляции теплоносителя по контуру коллектора необходим насос, адаптированный для гелиосистем.
Теплообменник для ГВС
Перенос тепла от контура гелиоколлектора к воде, используемой в ГВС, или к теплоносителю системы отопления осуществляется посредством теплообменника. Как правило, для накопления горячей воды используют резервуар большого объема с уже встроенным теплообменником. Рационально использовать баки с двумя и более теплообменниками: это позволит забирать тепло не только у солнечного коллектора, но и у других источников (газовый или электрический котел, тепловой насос и т. д.).
Автоматика
Такой сложной системе не обойтись без автоматики, осуществляющий контроль и управление процессом. Контроллер позволяет автоматизировать работу коллектора: он осуществляет анализ температуры в контуре и накопительном резервуаре, управляет насосом и клапанами, ответственными за движение теплоносителя по контуру. При перегреве теплоносителя в контуре и воды в баке контроллер отдаст команду на сброс тепла в альтернативный теплоприемник – дополнительный резервуар с водой или уличный воздушный теплообменник.
Если в конце светового дня температура воды в накопительной емкости превысит температуру теплоносителя в контуре коллектора, автоматика остановит циркуляцию теплоносителя по контуру, чтобы накопленное тепло не выбрасывалось в атмосферу через сам коллектор. Современные контроллеры дают возможность удаленно следить за работой системы и при необходимости вносить корректировки.
Сегодня не составит труда найти на рынке гелиоколлектор и любой из компонентов, необходимых для его работы. Вполне реально собрать систему из купленных по отдельности элементов. Однако производители предлагают уже готовые комплекты, которые включают в себя коллектор, насосы, накопительные резервуары, управляющую автоматику и т. д. Приобретение такого комплекта – это не только экономия вашего времени, но и гарантия работоспособности системы.
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
виды, принцип работы системы, правила установки солнечных коллекторов, сфера и специфика применения устройств
Солнечными коллекторами называют установки, предназначенные для сбора тепловой энергии солнца, используемой для нагрева теплоносителя. Как правило, их используют для отопления и горячего водоснабжения помещений. Основные объекты использования гелиоколлекторов – здания коммерческого назначения и частные дома.
Солнечный коллектор – своего рода уникальное устройство. Его покупка в будущем позволит избавиться от ежемесячных расходов на горячую воду и отопление. Однако в связи с его немалой стоимостью главное – не допустить ошибок при выборе соответствующего оборудования.
Следовательно, перед тем, как приобрести гелиоколлектор, необходимо располагать общей информацией о его видах, особенностях и принципах работы.
Преимущества солнечных коллекторов и гелиосистем Oventrop
Экономичность. Солнечные коллекторы существенно снижают расходы на горячее водоснабжение и обогрев коттеджа в холодное время года. Использование гелиоустановок сокращает годовые затраты на нагрев воды до 60%, а на отопление здания – до 30%;
Экологическая чистота. Гелиоколлектор абсолютно безопасен, т.к. не допускает загрязнения окружающей среды и не оказывает негативного влияния на здоровье человека. Кроме того, в воде, находящейся под действием высоких температур и вакуума, появление и распространение бактерий становится невозможным;
Автономность. Гелиоустановка может отапливать здания даже в случае длительных перебоев в работе системы теплоснабжения. Аналогичная ситуация и при отключении горячей воды.
Специфика применения
В отличие от теплогенераторов и тепловых насосов, преобразующих энергию из согретых солнцем грунтовых вод и воздушных масс, солнечные коллекторы работают от прямых солнечных лучей, воздействующих на их поверхность. Единственный нюанс гелиоколлекторов заключается лишь в том, что ночью они находятся в пассивном режиме.
На суточную производительность гелиоустановки влияют такие факторы, как:
- Продолжительность светового дня, которая в свою очередь зависит от географической широты региона и времени года. Так, например, в Центральной части России летом солнечный коллектор будет функционировать по максимуму, а зимой – по минимуму. Это связано не только с длительностью дня, но и изменением угла падения солнечных лучей на гелиопанели;
- Климатические особенности региона. Как правило, на территории нашей страны имеется множество участков, над которыми больше 200 дней в году солнце скрывается за слоями туч или за пеленой тумана. Несмотря на то, что гелиоколлектор может улавливать даже рассеянные солнечные лучи, в пасмурную погоду его продуктивность значительно уменьшается.
Принцип работы и особенности устройства
Главным элементом гелиоколлектора является адсорбер. Он представляет собой медную пластину с присоединенной к ней трубой. При поглощении энергии воздействующих на гелиосистему прямых солнечных лучей, адсорбирующий элемент моментально нагревается, передавая тепло циркулирующему по трубопроводу теплоносителю.
От типа поверхности коллектора зависит его способность отражать или поглощать солнечные лучи. Так, например, устройство с зеркальной поверхностью превосходно отражает свет и тепло, в то время как черная пластина полностью поглощает их. Следовательно, для наибольшей эффективности медную пластину адсорбера чаще всего покрывают черной краской.
Чтобы также повысить количество излучаемой от солнца тепловой энергии, необходимо грамотно выбрать прикрывающее адсорбер стекло. Для солнечных коллекторов применяют специальное стекло с антибликовым покрытием и минимальным процентом содержащегося в нем железа. Такое стекло отличается от обыкновенного не только сниженной долей отражаемого света, но и увеличивает прозрачность.
Кроме того, для предотвращения загрязнения стекла, что тоже снижает эффективность работы гелиоустановки, корпус коллектора полностью герметизируют, либо наполняют инертным газом.
При всем этом часть получаемой тепловой энергии пластина адсорбера отдает в окружающую среду, нагревая взаимодействующий с гелиосистемой воздух. Для снижения теплопотерь адсорбирующий элемент следует изолировать. Поиски максимально эффективных способов теплоизоляции и привели к появлению множества разновидностей солнечных коллекторов. Одними из распространенных видов являются плоские и трубчатые, или вакуумные.
Плоские солнечные коллекторы: устройство
Гелиоколлектор плоского типа состоит из алюминиевого короба, сверху которого установлено защитное стекло с абсорбционным слоем. Внутри корпуса расположены медные трубки, впускной и выпускной патрубки. Дно и стенки короба защищены самым надежным теплоизолирующим элементом – минеральной ватой.
Некоторые модели плоских коллекторов могут также иметь под стеклом слой пропиленгликоля, который выполняет функцию поглотителя солнечных лучей. Это увеличивает его КПД, обеспечивая оборудованию максимальную производительность вне зависимости от сезона.
Достоинства и недостатки плоских гелиоколлекторов
К главным преимуществам плоских солнечных коллекторов относят:
- Способность к самоочищению в случае выпадения осадков в виде снега или инея;
- Высокие показатели в соотношении «цена/качество», что характерно для южных регионов с теплым климатом;
- Высокий КПД при эксплуатации в летний сезон;
- Сравнительно невысокая стоимость в отличие от других гелиоконструкций.
Основными недостатками таких систем являются:
- Высокие теплопотери, обусловленные конструктивными признаками установок;
- Небольшой КПД при функционировании осенью и зимой;
- Сложности в ходе перевозки и монтажа гелиосистем;
- Максимальные затраты в случае выполнения ремонтных работ;
- Повышенная парусность гелиоустановки.
Сфера применения плоских солнечных коллекторов
Несмотря на недостатки, данный тип гелиосистем используется для сезонного нагрева горячей воды. Плоские гелиоколлекторы используются:
- Для горячего водоснабжения летнего душа;
- Для подогрева воды в бассейне до нужной температуры;
- Для обогрева теплиц.
Вакуумные гелиоколлекторы
Вакуумный солнечный коллектор – это высокотехнологичное комплексное устройство, предназначенное для сбора тепловой солнечной энергии и последующей ее переработки в тепловую энергию, которая используется в быту и промышленных сферах для обеспечения отопления, подогрева воды в системах водоснабжения. Солнечный вакуумный коллектор высокоэффективен и эргономичен, обладает высоким КПД даже в условиях слабой освещенности и низких температур, что дает возможность использовать систему в любое время года. Устройство позволяет перерабатывать в тепло инфракрасное излучение, проникающее сквозь облака и рассеянные лучи. Солнечные коллекторы Oventrop способны даже при отрицательных температурах окружающей среды нагреть воду до ста градусов Цельсия.
Сфера применения вакуумных солнечных коллекторов
Использование конструкции значительно снижает затраты на отопление в зимний период года и гарантирует бесплатный подогрев воды в летний период года. Солнечный коллектор активно поглощает солнечную энергию и улавливает 98% энергии, когда степень вакуума — 10—. Системы устанавливают на фасадах, плоских или скатных крышах. При расположении в произвольных местах угол наклона должен находиться в пределах 15-750. Срок эксплуатации – не менее двадцати лет.
Системы широко используются для:
- подогрева воды в бытовых и производственных водопроводах, бассейнах;
- работы отопительных индивидуальных систем;
- обогрев теплиц.
Коллекторы легко включаются в сети водо- и теплоснабжения. Для подключения системы используется станция Regusol X Duo с вмонтированным теплообменником и контроллером, которая благодаря послойному накоплению теплоносителя повышает эффективность всей энергосистемы.
Установка солнечного коллектора
От правильности установки коллектора напрямую зависит эффективность конструкции. Для избегания риска поднятия давления вследствие перегрева воды расчет солнечного коллектора выполняются исключительно в специальных программах. Расчеты производятся с учетом погодных условий в точке размещения коллектора и среднегодового расхода тепла. Мощность солнечного корректора вычисляется исходя из данных о площади, значения инсоляции системы и КПД коллектора.
Перед началом расчетов определяется, будет система круглогодичной или сезонной.
- Солнечные корректоры сезонного типа предполагают использование в теплый период года (середина апреля – середина октября). Данная конструкция состоит из бака накопителя и коллектора. Теплоносителем служит вода, которая замерзает при отрицательных температурах, поэтому использование ее в холодную часть года невозможно.
- Круглогодичные системы могут эффективно использоваться вне зависимости от температурного режима окружающей среды. В конструкции используется незамерзающая эфирная жидкость, которая обеспечивает высокий КПД солнечного коллектора даже в самые холодные дни года.
Вакуумные солнечные коллекторы при грамотной установке и монтаже покрывают до 60% среднестатистической семьи в горячей воде и обеспечивают отопление в период от второй половины весны до середины осени. Например, при установке системы в средних широтах России коллектор площадью в два квадратных метра обеспечивает ежедневный нагрев ста литров воды до 40-600.
Эффективность установки в летний период года значительно выше. За один ясный световой день 1 м2 коллектора будет прогревать около восьмидесяти литров воды до температуры + 650. Среднегодовая производительность солнечного коллектора с поглощающей площадью в 3м2 будет состоять в диапазоне 500-700 кВт/ч на 1м2.
Устройство вакуумного солнечного коллектора
Компания Oventrop предлагает вакуумные солнечные коллекторы с тепловой трубкой. Системы с тепловой трубкой конструктивно напоминают термос: в стеклянную/металлическую трубку большего диаметра вставлена другая, меньшего диаметра. Пространство между ними вакуумированно, что обеспечивает максимально эффективную теплоизоляцию от воздействия внешних температур и минимальные потери на излучение. Вакуумная прослойка позволяет сохранить до 95% поглощенной тепловой энергии.
Все вакуумированные трубки оборудованы внутри медными пластинами поглотителя с эффективно собирающим солнечную энергию гелиотитановым покрытием. Заполненная специальной эфирной жидкостью тепловая труба установлена под поглотителем и присоединена к расположенному в теплообменнике конденсатору. Полученная поглотителем солнечная энергия превращает жидкость в пары, которые поднимаются в конденсатор и отдают тепло коллектору, конденсируется и возвращается в нижнюю часть колбы. Благодаря цикличности создается непрерывный процесс теплообмена.
Система способна вырабатывать значительные температуры и обеспечивает высокий КПД даже при слабой освещенности и t -30 — -450С (в зависимости от вида коллектора с трубками из стекла или металла). Вакуумные солнечные коллекторы просты и недороги в эксплуатации. Специальные соединения конструкции позволяют заменять либо поворачивать трубки в заполненной находящейся под давлением установке.
Как правильно выбрать солнечный коллектор. Инфографика |
Если вы решились на приобретение и установку у себя гелиосистемы, то перед вами неизбежно встанет дилемма как выбрать солнечный коллектор — самый главный элемент солнечной установки.
На сегодняшний день на рынке представлено огромное количество солнечных коллекторов различные по типу, конструкции, эффективности и стоимости. Выбрать самый оптимальный вариант — не простая задача. В данной статье мы разберемся в особенностях подбора солнечных коллекторов для гелиосистем, что позволит сделать правильный выбор и ощутить все преимущества использования солнечной энергии.
Солнечный коллектор: сфера применения
Во-первых, следует определиться, для каких целей вам нужен солнечный коллектор. Обычно, гелиосистема применяется в бытовом секторе для:
Каждый вариант может использоваться как самостоятельно, так и в сочетании друг с другом, а так же все вместе. Однако в комбинированных системах, должна быть одна приоритетная цель, на которую и следует ориентироваться выбирая солнечный коллектор.
Основные типы солнечных коллекторов
После того как цели использования определены можно приступать к выбору типа солнечного коллектора. Уверен, что многие из вас слышали об извечном споре – вакуумный или плоский солнечный коллектор. На самом деле явного победителя в этом споре нет. Всё зависит от целей применения солнечной системы, что для каждого конкретного случая. Кроме того, мы пойдем дальше и расширим спектр выбора.
Как известно, существует несколько основных типов вакуумных солнечных коллекторов, которые так же значительно отличаются между собой, поэтому будет более корректно рассматривать каждый тип отдельно.
Для сравнения были выбраны четыре основных типа вакуумных трубчатых коллекторов и один плоский высокоэффективный:
- Вакуумный трубчатый коллектор с перьевым абсорбером и прямоточным тепловым каналом
- Вакуумный трубчатый солнечный коллектор с перьевым абсорбером с тепловой трубкой “heat pipe”
- U-образный прямоточный вакуумный коллектор с коаксиальной колбой и отражателем
- Вакуумный трубчатый солнечный коллектор с коаксиальной колбой и тепловой трубкой “heat pipe”
- Плоский высокоэффективный солнечный коллектор
Большинство аргументов за или против того или иного типа коллектора сводятся к весьма абстрактным показателям, таким как: «лучшее восприятия солнечных лучей», «отсутствие теплопотерь», и т.д. Но поскольку у каждого солнечного коллектора есть абсолютно конкретные параметры эффективности, следует доверять именно этим данным для расчета производительности солнечного коллектора в каждом выбранном случае.
Подробнее об этих параметрах и принципе расчета: эффективность солнечного коллектора.
На графике показана зависимость коэффициента полезного действия гелиосистемы от разницы температуры между окружающим воздухом и теплоносителем в солнечном коллекторе при условии солнечного излучения равного 1000 Вт/м². Для анализа воспользуемся средними параметрами для каждого выбранного типа солнечного коллектора указанными на изображении.
Первая зона с минимальной разницей температуры характерна для режима работы солнечного коллектора для нагрева воды в бассейне. Режим работы гелиосистемы во второй зоне является оптимальным для горячего водоснабжения в круглогодичном режиме. Третья зона соответствует режиму работы солнечных коллекторов для нужд отопления, поскольку температура окружающего воздуха в отопительный период самая низкая. Четвертая зона используется для получения высоких температур используемых в технологических нуждах. В бытовом секторе такой температурный режим работы встречается крайне редко.
Из графика видно, что чем меньше ∆t (фактически это означает — чем ниже температура подачи теплоносителя) тем выше КПД солнечного коллектора. Именно поэтому для гелиосистемы оптимальным является применение низкотемпературных систем отопления таких как «теплые полы».
Плоский коллектор и вакуумные трубчатые коллекторы с плоским перьевым абсорбером имеют более высокую производительность при работе на нагрев бассейна и ГВС за счет оптических свойств, способствующих лучшему поглощению солнечного света. В свою очередь вакуумный солнечный коллектор с коаксиальной колбой лучше работает в отопительный период благодаря лучшей теплоизоляции.
Производительность солнечных коллекторов
Следующая диаграмма позволяет оценить среднюю производительность коллекторов за год и за отопительный период (нижняя часть столбца).
Данные о количестве выработанной энергии получены при помощи расчета, в программе позволяющей смоделировать работу солнечной системы за год. В расчетах используются усредненные данные по солнечному излучению и погоде для города Днепра. Расчеты приведены к 1 м² апертурной площади каждого типа коллектора.
Диаграмма позволяет оценить максимальную эффективность при непрерывной работе солнечной системы во время всего года. На практике такие условия практически невозможны и не всегда отображают реальную картину производительности солнечного коллектора.
Для расчета реальной производительности воспользуемся примером. Смоделируем предполагаемый случай применения гелиосистемы для нужд горячего водоснабжения в круглогодичном режиме и поддержки системы отопления теплыми полами со следующими параметрами:
- площадь отопления – 200 м²;
- теплопотери – современная постройка с высоким уровнем теплоизоляции 50 Вт/м² площади;
- место расположения – Киев;
- ГВС – 200 л в сутки;
- апертурная площадь коллекторов – 30 м² ;
На графике видно, что при используя солнечный коллектор для отопления более важным является низкие тепловые потери. При этом хорошие оптические характеристики дают прирост выработки тепла в межсезонье, когда средняя температура воздуха выше, но всё еще необходимо отопление.
В итоге получаем реальную производительность гелиосистемы за год.
Стоимость солнечного коллектора и полученного тепла
Стоимость солнечных коллекторов варьируется и зависит от множества факторов: качество сборки, материал абсорбера и корпуса, толщина и способ укладки изоляции, толщина стекла и т.д. Чтобы оценить стоимость полученной тепловой энергии от солнечных коллекторов зададимся средней стоимостью одного метра квадратного каждого типа солнечного коллектора. Так же взяв за основу срок эксплуатации 25 лет и условия эксплуатации описанные в примере, можем получить значение стоимости полученного 1 кВт*ч энергии.
Как видим из графика, тепло полученное от прямоточного вакуумного коллектора с перьевым абсорбером является наиболее дорогим. А тепло полученное от плоского солнечного коллектора самое дешевое, соответственно плоские коллекторы имеют минимальный срок окупаемости.
Однако цена солнечного коллектора не всегда является основополагающим фактором. Более дорогие коллекторы могут иметь больший срок службы и низкие эксплуатационные расходы, связанные с возможными поломками. В связи с этим, можно рассматривать установку как дорогой брендовой техники, так и бюджетных вариантов при определенном уровне начальных капиталовложений.
Выбирая солнечный коллектор, обратите внимание на техническую информацию
Важнейшим фактором для выбора солнечного коллектора является наличие полного технического описания. В первую очередь необходимо знать параметры оптического КПД (ŋ₀), коэффициенты тепловых потерь a₁ (k₁) и а₂ (k₂) и площадь солнечного коллектора (апертурная и общая). Именно эти параметры позволяют оценить эффективность и рассчитать прогнозируемую производительность солнечного коллектора.
Если производитель или продавец по каким-то причинам не предоставляет эти данные, то в итоге мы получаем “кота в мешке” и не сможем оценить энергетический вклад гелиосистемы, поэтому лучше воздержатся от покупки такого изделия. Наличие международного сертификата (например, от швейцарской лаборатории SPF или Solar Keymark) приветствуется, однако не всегда нам продают коллектор именно с заданными в данном документе параметрами. Особенно этим грешат азиатские производители, тут уж мы ничего не сможем проверить, остаётся только надеяться на порядочность компании производителя или поставщика.
В заключении, предлагаем вашему вниманию полную инфографику «как выбрать солнечный коллектор». (Кликните для увеличения изображения).
Воздушный солнечный коллектор для отопления дома
Панельные воздушные солнечные коллекторы для отопления дома — это источник дополнительной тепловой энергии. Модули подходят для жилых домов, теплиц, дач, коттеджей, турбаз. Один блок в среднем вырабатывает около 1,5 кВт/час, чего более чем достаточно для поддержания комфортной температуры в весенне-осенний период.
Воздушные коллекторы в зимнее время года сокращают расход топлива (газа, электричества), на котором работает котёл до 52%. Летом модуль работает на поддержание влажностного микроклимата и кондиционирование помещений.
Как устроен воздушный коллектор
Принцип работы основан на простых физических законах. Солнечные лучи проникая в атмосферу земли практически не отдают тепла. Нагрев воздуха происходит после того как ультрафиолет попадает на твердые поверхности. Под действием солнечных лучей грунт и другие предметы нагреваются. Происходит теплообмен.
Устройство воздушных солнечных коллекторов использует описанное явление, аккумулируя тепло и направляя его в помещение. В конструкции присутствуют следующие детали:
- корпус с теплоизоляцией;
- нижний экран, абсорбер;
- радиатор с аккумулирующими ребрами;
- верхняя часть из обычного стекла или поликарбоната.
В конструкцию коллектора входят вентиляторы. Основное предназначение: нагнетание нагретого воздуха в жилые помещения. В процессе работы вентиляторов создается принудительная конвекция, за счет которой холодные воздушные массы поступают в блок коллектора.
Принцип обогрева и его эффективность
Абсорберы воздушных коллекторов делают черного цвета, для увеличения интенсивности нагрева под воздействием солнечного излучения. Температура воздуха в коллекторе достигает 70-80°С. Тепла с избытком хватает для полноценного обогрева помещений небольшой площади.
Принцип действия воздухонагревателя следующий:
- воздух закачивается с улицы в корпус коллектора принудительным способом;
- внутри блока установлены абсорберы, отражающие тепло, поднимающие температуру внутри ящика до 70-80°С;
- происходит нагрев воздуха;
- разогретые воздушные массы принудительно нагнетаются в отапливаемые помещения.
В заводских моделях обеспечение циркуляции воздуха осуществляется при помощи вентиляторов, подключенных к солнечным батареям. Как только ультрафиолетовое излучение становится достаточно интенсивным, чтобы выработать некоторое количество электроэнергии, турбины включаются. Коллекторы начинают работать на обогрев. Зимой интенсивность излучения Солнца снижается.
Дом не сможет полностью функционировать на солнечном воздушном отоплении. Воздухонагреватели используются как дополнительный источник тепла. При правильных расчетах одна установка (данные взяты из технических характеристик воздушных солнечных коллекторов Solar Fox) обеспечит следующую экономию, за отопительный сезон:
- газ до 315 м³;
- дрова до 3,9 м³.
Система солнечного воздушного обогрева компенсирует около 30% необходимого для здания тепла. Полная окупаемость достигается в течение 2-3 лет. Если учесть, что принцип работы связан с использованием установки и для кондиционирования воздуха, а в течение года вырабатывается около 4000 кВт, целесообразность использования становится еще очевиднее.
В странах ЕС широкое распространение получило конструкторское решение «солнечная стена». Конструкция заключается в следующем:
- в здании одна из стен изготавливается из аккумулирующего материала;
- перед панелью устанавливается стеклянная перегородка;
- в течение дня тепло аккумулируется, после чего отдается в помещение ночью.
Для усиления конвекции, солнечный коллектор делается не во всю стену. Вверху и внизу предусматривают раздвижные шторки.
На КПД воздушного коллектора существенно влияет время года. Так, в декабре коэффициент полезного действия поддерживается на уровне 50%, в октябре и марте увеличивается до 75%.
Солнечный коллектор — водяной или воздушный
Каждый из нагревателей эффективен, отличается только основное предназначение и принцип работы:
- Водяной коллектор — применяется для обеспечения потребностей в ГВС и низкотемпературных систем теплых полов. Эффективность работы в зимний период существенно снижается. Вакуумные и панельные коллекторы косвенного нагрева, подсоединенные к буферной емкости, продолжают аккумулировать тепло в течение всего года. Главный недостаток, высокая стоимость гелиоколлектора, монтажа и обвязки.
- Воздушный вентиляционный коллектор — отличается простой конструкцией и устройством, которое при желании можно изготовить самостоятельно. Основное предназначение: обогрев помещений. Конечно, существуют схемы, позволяющие использовать полученное тепло для ГВС, но при этом эффективность воздушных коллекторов падает практически вдвое. Преимущества: низкая стоимость комплекта и установки.
Солнечные воздушные системы отопления работают только днем. Нагрев воздуха начинается даже в пасмурную погоду, при сильной облачности и во время дождя. Работа воздухонагревателей зимой не прекращается.
Как и из чего сделать воздушный коллектор
Главное достоинство солнечных воздухонагревателей, в простоте конструкции. При желании можно сделать самодельное солнечное воздушное отопление частного дома, затратив на это минимум средств.
Для начала потребуется сделать расчеты производительности, затем подобрать тип конструкции и выбрать материалы для изготовления. Корпус и абсорберы можно изготовить из подручных средств, существенно сэкономив бюджет.
Как сделать расчёты коллектора
Вычисления выполняются следующим образом:
- каждый м² от площади коллектора даст 1,5 кВт/час тепловой энергии, при условии, что будет солнечная погода;
- для полноценного обогрева помещения требуется 1 кВт тепловой энергии на 10 м².
Приблизительный расчет мощности покажет, что для отопления жилого дома на 100 м² необходимо установить коллекторы общей площадью 7-8 м².
Для обеспечения максимальной производительности надо определить сторону дома с максимальной интенсивностью ультрафиолетового излучения. Практика показывает, что оптимальное место для установки — это скат кровли или южная стена здания.
Типы конструкции коллектора
Классификация осуществляется по различиям корпуса коллекторов. Заводской воздухонагреватель обычно имеет надувной каркас, с двумя съемными панелями. При необходимости модуль легко демонтируется, разбирается и переносится на другое место. Сделать своими руками конструкцию надувного типа навряд ли получится.
В домашних условиях выполняют сборку неразборного корпуса. Это деревянный ящик с абсорбером, радиатором и верхним прозрачным экраном. При изготовлении используют подручные средства: профнастил, алюминиевые пивные банки, обычное стекло.
Материалы для изготовления коллектора
Для изготовления модулей для нагрева жилого или хозяйственного здания потребуются несколько комплектующих:
- Внешний блок — собирается из фанеры, ДСП и деревянных брусков. По внешнему виду напоминает обыкновенный коробок.
- Дно — изготавливают из профнастила. Лист металла обрабатывают специальной черной краской с высоким коэффициентом светопоглащения. Абсорбирующую поверхность можно сделать из разрезанных алюминиевых банок. Дно обшивают изоляционным материалом, чтобы избежать тепловых потерь.
- Ребра радиатора — используются для лучшей абсорбции тепла. При изготовлении используют тонкие листы алюминия, меди. Можно установить уже готовый радиатор из старого холодильника.
- Крышка коллектора — делается из сотового поликарбоната, отличающегося хорошей светопропускной способностью и одновременно удерживающая тепло внутри коллектора. Чтобы сэкономить, в качестве покрытия можно использовать обычное стекло. Теплоэффективность при этом будет нижем чем у коллекторов, закрытых поликарбонатом.
- Теплоизоляция корпуса — по периметру каркас обшивают пенополистиролом.
Для нагнетания воздуха в отапливаемые помещения устанавливают 2-4 вентилятора. Подойдут кулеры, снятые со старого компьютера.
Установка и подключение воздушного коллектора
Для монтажа воздухонагревателей нужно подготовить поверхность стены, сделав 4 отверстия под воздуховоды. Внутри здания гофрированные трубы разводят по комнатам, направляя в сторону пола.
Самодельные воздушные солнечные коллекторы для отопления дома подключаются к электросети, через трансформатор. При наличии навыков в качестве источника питания можно установить аккумулятор на солнечных батареях.
Теплоэффективность изготовленных своими руками воздухонагревателей существенно ниже, чем у заводской продукции. При отсутствии специальных навыков лучше использовать готовые модули. Как показывают реальные отзывы о коллекторах, оптимальный вариант для покупки из представленных на отечественном рынке: Solar Fox, Солнцедар и ЯSolar-Air.
Воздухонагреватели не используются в качестве основного источника тепла и выполняют исключительно вспомогательную функцию. В домах с солнечными воздушными коллекторами изначально устанавливают котел, покрывающий потребности в отоплении на 100%.
При грамотных расчетах и интенсивной эксплуатации, вложения окупятся в течение 1-2 лет. В случае самостоятельного изготовления коллектора, затраты вернутся уже в середине первого отопительного сезона.
Пошаговая инструкция изготовления воздушного коллектора
Изготовление воздушного солнечного коллектора из алюминиевых банок:
Изготовление солнечного воздухогрейного коллектора из квадратной трубы:
{banner_downtext}
Солнечные коллекторы. Какие они бывают?
Классический солнечный коллектор представляет собой металлические пластины черного цвета, установленные на крыше дома. Цвет и положение коллектора предполагает максимальное поглощение и накапливание солнечной энергии. Эти металлические пластины помещаются в корпус, изготовленный из стекла или пластмассы. Наклон к южной стороне, при установке позволит увеличить количество поглощаемой радиации. Проще говоря, солнечный коллектор – это миниатюрная теплица, которая накапливает солнечную энергию под стеклянной панелью. Солнечная радиация распределяется по поверхности равномерно, по этому, чем больше площадь коллектора, тем больше энергии будет поглощено.
На сегодняшний день солнечная энергетика развита достаточно обширно, это дает возможность устанавливать солнечные панели различных комплектаций и размеров. Этот аспект позволяет солнечным коллекторам обеспечивать хозяйственные нужды человека, такие как отопление и снабжение горячей водой.
К примеру, существует несколько отдельных видов солнечных коллекторов, которые различаются, в зависимости от температуры, до которой они способны достигать:
- Коллекторы низких температур. Такие коллекторы дают достаточно низкие температуры – не выше 50 С. Такие коллекторы, широко применяются для подогрева воды в бассейнах, и в других случаях, когда не требуется слишком высокая температура воды.
- Коллекторы средних температур. Такой тип коллекторов способен нагревать воду от 50 до 80 С. Зачастую, такой коллектор представляет собой плоскую остекленную пластину, в которой с помощью жидкости происходит теплопередача или же это коллекторы-концентраторы. В последних тепло концентрируется и может использоваться для нагрева воды в жилых секторах.Представлен коллектор-концентратор, в большинстве случаев, вакуумированным трубчатым коллектором
- Коллектор высоких температур. Зачастую имеют форму параболических тарелок. Такое устройство, в большинстве случаев используется большими предприятиями, которые генерируют электричество и распределяют его для городских электросетей
Интегрированный коллектор
Накопительный интегрированный коллектор
На данный момент одним из самых простых видов солнечных коллектором является емкостной коллектор, который еще называются термосифонным коллектором. Такое название, данный генератор получил за счет того, что он одновременно может и аккумулировать тепло и хранить определенное, уже нагретое, количество воды. Такие коллекторы, зачастую используются для начального нагрева воды, которая впоследствии нагревается до необходимой температуры стандартными установками (газовыми, электрическими колонками и т.д.). Такой метод позволяет экономить на потреблении электричества, за счет того, что в бак котла поступает уже подогретая вода.
Рассмотрим основные плюсы такого вида коллекторов. Первое – это, конечно же, экономия на электричестве. Второе – это возможность использовать достаточно дешевую альтернативу солнечной водонагревательной системе. Третьим плюсом стоит отметить простоту использования коллектора – минимум технического обслуживания, за счет отсутствия в нем движущихся частей (насосов и прочего).
Такие коллекторы бывают также «Integrated Collector and Storage», или, проще говоря, интегрированными коллекторами-накопителями. Такой вид коллектора, зачастую представлен одним или несколькими баками, которые заполнены водой. Эти баки помещаются в теплоизоляционный ящик и накрываются стеклянной крышкой. Порою, в этот же ящик помещаются прибор-рефлектор, который позволяет увеличивать солнечное излучение. Принцип действия данного устройства достаточно прост – солнечный свет, проходя через стекло, нагревает воду. Такая простота функционирования обуславливает достаточно не большую цену самого устройства. Однако стоит помнить, что в холодное время года, воду стоит защищать от замерзания, или же сливать.
Плоские коллекторы
Такие коллекторы, пожалуй, самые популярные для использования в бытовых условиях, для нагрева воды и в отопительных системах. Внешне, такое устройство выглядит как обычный металлический ящик. Однако внутри него находиться черная платина, которая поглощает солнечный свет. Крышка у этого ящика должна быть в обязательном порядке, стеклянной или пластмассовой, дабы лучше пропускать солнечную энергию.
Остекление плоского солнечного коллектора может быть прозрачным или матовым. Зачастую, все же, отдается предпочтение матовому остеклению, поскольку такое стекло позволяет пропускать только свет. А также, содержание железа в стекле должно быть очень низким, что бы позволить пропускать большую часть поступающего света, в коллектор. Принцип действия заключается в том, что солнечный свет, попадая на пластину, тепловоспринимающую пластину, которая и вырабатывает тепло. Стекло служит теплоизоляцией, а для повышения КПД коллектора, его стенки прокладывают теплоизолятором. Такая конструкция, позволяет снизить тепловые потери до минимума.
Пластина абсорбента, или же пластина, поглощающая солнечный свет, зачастую окрашена в черный цвет, дабы увеличить количество поглощаемой солнечной энергии, ведь тот факт, то темные тела притягивают ее больше – ни для кого не секрет. Проходя через стекло, и попадая на поглощающую пластину, солнечная радиация превращается в тепловую энергию. Далее, чтобы продолжить процесс, полученное тепло передается тепловому носителю. Тепловым носителем может выступать воздух или жидкость, которые циркулируют в трубах. К сожалению, даже полностью черные поверхности, способны отражать около 10% солнечной радиации, падающей на нее. Дабы избежать этого, абсорбирующие пластины покрываются дополнительно специальным покрытием, которое призвано удерживать солнечный свет попадающие на пластину. Такое покрытие служит дольше обычной краски и позволяет повысить КПД коллектора. В состав такого селективного покрытия входит слой аморфного полупроводника, который наноситься на металлическое основание пластины.
Абсорбирующие пластины изготавливаются из металла, который наилучшим образом проводит тепло. Высокий уровень теплопроводности металла позволит уменьшить теплопотери при передаче переработанной энергии теплоносителю. К списку таких металлов можно причислить медь и алюминий. Разница между ними заключается в том, что медная пластина способна лучше проводить тепло, и более устойчива к коррозиям, в отличии от алюминиевой пластины.
Плоские солнечные коллекторы бывают жидкостными или воздушными. А в зависимости от наличия остекления, и тот и другой вид бывает как остекленным, так и не остекленным.
Жидкостные коллекторы
В солнечных коллекторах этого типа, теплоносителем выступает жидкость. Солнечная энергия, перерабатывается в поглощающей пластине в тепло, и передается жидкости, которая течет по трубам, прикрепленным к пластине. Эти трубы могут идти параллельно друг другу, но на каждой, в обязательном порядке должно быть входное и выходное отверстие. Существует возможность расположение труб в виде змеевика. Такое положение уменьшает количество соединительных отверстий, что, в свою очередь, снижает вероятность протекания. Таким образом, змеевидное расположение обеспечивает более равномерный поток жидкости-теплоносителя. Однако, могут возникать сложности при спуске жидкости перед похолоданием, поскольку в изгибах трубы может остаться жидкость.
Простые системы жидкостных солнечных коллекторов предполагают использование обычной воды, которая сразу же, нагреваясь в коллекторе, поступает пользователю. Такие модели называют «разомкнутыми» или «прямыми» системами. Однако применение таких коллекторов неудобно в регионах с низким температурным режимом. Поскольку, при снижении температуры ниже точки замерзания – необходимо сливать воду. В этот период систему использовать невозможно. Альтернативой является использование незамерзающих жидкостей вместо воды. Этот вид системы жидкостных солнечных коллекторов использует жидкие теплоноситель, который, поглощая тепло, направляется в теплообменник. Зачастую теплообменником является водяной бак, конструкция которого предполагает передачу тепла воде. Такую систему называют «замкнутой» или «непрямой».
Остекление жидкостных коллекторов позволяет нагревать воду для бытовых нужд, и для отопления дома, поскольку их КПД выше, чем у неостекленных аналогов. Неостекленные коллекторы, зачастую используют для нагрева воды в бассейнах. В последних приборах не требуется нагревать температуру до высоких температур. Это позволяет использовать менее дорогие материалы, такие как пластмасса и резина.
Воздушные коллекторы
Теплоносителем в воздушных коллекторах выступает воздух, а он не замерзает и не кипит, в отличие от воды. Этот факт позволяет избежать проблем, которым подвержены жидкостные коллекторы. К тому же, утечка в системе воздушных коллекторов приносит намного меньше трудностей, хотя, конечно же, обнаружить ее достаточно сложно. Стоит помнить, что перед материалами, используемыми в воздушных солнечных коллекторах, не стоят особо сложные эксплуатационные задачи. По этому, в воздушных системах возможно использование более дешевых материалов.
Конструкция воздушных коллекторов, представляет собой сочетание плоских коллекторов. Такой прибор используется в основном для просушки сельскохозяйственной продукции, или же для отопления помещений. Металлические панели и многослойные неметаллические экраны могут послужить поглощающими пластинами в конструкции воздушных коллекторов. Теплоноситель проходит через стенки поглотителя с помощью естественной конвекции, или с помощью специального вентилятора.
Теплопроводимость воздуха, на порядок хуже, чем проводимость тепла, жидкостью. По этому, поглотитель получает значительно меньше тепла от воздуха, чем от жидкости. Вентилятор, присоединенный к поглощающей пластине, позволяет увеличить поток воздуха, таким образом, улучшая теплоотдачу. Однако и в этой конструкции есть свои недостатки. Для работы вентиляторов, необходимо дополнительно использовать электроэнергию, а это, в свою очередь увеличивает затраты на работу системы. В условиях холодного климата, необходимо направлять воздух между поглощающей пластиной и утепленной стенкой коллектора, это позволяет избежать потерь тепла. Но не стоит применять такою циркуляцию, если, все же, воздух в помещении, нагревается на 17 С больше, чем воздух на улице. В этом случае, воздух может спокойно циркулировать без потерь эффективности.
Поговорим о достоинствах воздушных коллекторов. В первую очередь – это простота и надежность. Воздушные коллекторы имеют достаточно простое устройство, благодаря этому снижается уровень необходимости технического обслуживания, при этом увеличивая их безусловную надежность. При достойных условиях эксплуатации, срок службы качественного воздушного коллектора колеблется от 10 до 20 лет. За счет того, что теплоносителем выступает воздух, исключается необходимость использования теплообменника и термоизоляции в холодное время года.
Однако не все так красочно, в сфере солнечных воздухонагревателей. Все дело в том, что применение таких установок распространено исключительно для отопления помещений и просушки сельскохозяйственной продукции, причем, в основном, в развивающих странах. Причиной этому стало то, что существуют некоторые ограничения, для использования в промышленных условиях. Начнем с того, что по сравнению с жидкостными, воздушные коллекторы занимают достаточно большую площадь, за счет низкого уровня удельной теплоемкости. К тому же, требуется оборудовать длинный воздуховод для эффективной работы коллектора. И самая главная трудность – это необходимость использования электроэнергии для прогонки воздуха через функциональные части коллектора. Еще иногда встречаются сложности с аккумулированием самой теплоты. Все эти проблемы, даже в регионах с достаточным количеством солнечных дней, приводит к значительному увеличению стоимости на эксплуатацию и установку воздушных коллекторов.
Принцип действия солнечных коллекторов
Элементарный воздушный коллектор
Воздушные солнечные коллекторы делятся на две группы, в зависимости от способа циркуляции воздуха. В самом простейшем случае, поток теплоносителя (воздуха) в коллекторе проходит как раз под поглотителем. Таким образом, данный коллектор позволяет повысить температуру воздуха, не больше чем на 3-5 С. Причиной такого низкого КПД является потери тепла на конвекцию и излучение.
Любой прозрачный материал, с низкой проводимостью инфракрасного излучения, позволяет снижать уровень теплопотерь, при накрывании им поглотителя. Все дело в том, что поток воздуха, образовывается или под поглотителем, или между поглотителем и данным прозрачным покрытием. Прозрачная крышка (из особого стекла или пластмассы) позволяет не на много снижать уровень излучения тепла с поглотителя. Однако, это снижение конвективных тепловых потерь, может позволить увеличить температуру до 20-50 С. Но и этот параметр будет зависеть от интенсивности солнечной энергии попадающей в коллектор и качества воздушного потока. Как плюс к этому всему, наблюдается, также снижение тепловых потерь на излучение, за счет снижения температуры поглотителя. Но стоит помнит, что при этом происходит еще и снижение возможности абсорбента поглощать энергию, за счет его запыления, в том случае, если поток воздуха проходит с обеих сторон.
Накрытый поглотитель в воздушном коллекторе
Отказ от остекления металлического ящика и теплоизоляции, в некоторых случаях, позволяет существенно снижать затраты. Дело в том, что изготовляется такой коллектор из перфорированного металла черно цвета. Такой материал позволяет улучшать качество теплообмена. Принцип этого процесса заключается в том, что этот металл нагревается достаточно быстро, а вмонтированный вентилятор втягивает теплый воздух, через отверстия в металлических листах. Коллекторы такого типа, достаточно часто используются в жилых домах. Зачастую размеры такого прибора составляют 2,4 м?0,8 м, при этом скорость нагрева воздуха составляет 0,002 м3/с. Даже в солнечный зимний день, температура воздуха, который нагревается в коллекторе, может достигать разницы в 28 ?С по сравнению с наружным. К тому же, стоит учесть, что в значительной мере улучшается качество воздуха, поскольку нагревается непосредственно воздух, поступающий снаружи.
Одним из главных плюсов подобных коллекторов, является тот факт, что они достаточно эффективны. КПД некоторых промышленных моделей может достигать 70%. А их стоимость снижается, за счет уменьшается количество используемых материалов.
Вакуумированный солнечный коллектор
Плоские солнечные коллекторы, изначально создавались для использования в местах с большим количеством солнечной энергии. При плохой погоде, их эффективность достаточно не значительна. Холодная, ветреная, пасмурная погода – не позволяют работать таким коллекторам в полную мощь. Но и это не все – повышенная влажность в значительной мере неблагоприятно сказывается на состоянии внутренних деталей такого коллектора. А это влечет за собой уменьшение срока службы коллектора, а также ухудшение эффективности его работы. Дабы устранить такие недостатки были созданы вакуумированные солнечные коллекторы.
Современные вакуумированные солнечные коллекторы способны нагревать воду, для обеспечения хозяйственных нужд. Принцип действия такого прибора заключается в следующем: солнечная энергия, проходя через наружную трубку, попадает в поглощающую трубку, где и происходит превращение солнечной энергии в тепло. А далее, переработанное тепло передается теплоносителю (жидкости). Сам коллектор представляет собой сочетание определенного количества параллельных рядов стеклянных трубок. К каждой из этих трубок прикрепляется трубчатый поглотитель с селективным покрытием (аналог пластины-поглатителя в вышеописанных плоских коллекторах). Нагретая в коллекторе жидкость поступает в бак накопитель, и уже там отдает все полученное тепло воде.
Трубки в вакуумированном коллекторе можно менять. Добавлять или даже убирать, в зависимости от необходимости. Это позволяет называть такие коллекторы модульными. Но стоит помнить, что между трубками коллектора должен быть вакуум, что бы уменьшить потери тепла в процессе конвекции. Однако, радиационная потеря тепла остается. Уточним, что радиационная потеря тепла – это то тепло, которое идет на нагревание поверхностей рабочих частей коллектора. Но не стоит думать, что эти потери существенно повлияют на эффективность работы коллектора. Радиационная потеря достаточно мала, по этому можно уверенно считать, что рабочие характеристики вакуумированного коллектора достаточно велики.
На данный момент, создано большое количество вакуумированных коллекторов, которые имеют различные комплектации, а, следовательно, и разные эксплуатационные характеристики и особенности.
Создание вакуумированного коллектора – это достаточно сложный и трудоемкий процесс. Особенные трудности вызывает запайка оболочки коллектора. Проблема заключается в том, что по сей день не найдено достаточно эффективного метода создания эффективной высоковакуумной системы, при не больших затратах.
Стоит помнить, что такие вакуумированные коллекторы достаточно эффективны, по сравнению с обычными плоскими коллекторами. Все дело в том, что эффективность работы вакуумированного коллектора не зависит от качества радиации, т.е. как в условиях прямой, так и рассеянной радиации, данный коллектор работает одинаково эффективно. К тому же, вакуумное строение коллектора позволяет свести к минимуму потери тепла. Помимо всего вышесказанного, такие приборы достаточно долго и качественно служат, полностью обеспечивая все хозяйственные нужды человека.
Концентраторы
Фокусирующий солнечный коллектор
Концентраторы или же коллекторы отличаются от предыдущих описанных коллекторов тем, что их принцип действия заключается в концентрации солнечных лучей. Делается это за счет зеркальных поверхностей, которые направляют солнечную энергию конкретно на поглотители. Температура, которая обеспечивается концентраторами значительно выше, чем максимальная температура плоских коллекторов. Но стоит помнить, что концентраторы могут воспринимать исключительно прямую солнечную радиацию, по этому. В пасмурную погоду их использование не возможно. Такой тип коллекторов-концентраторов, особенно эффективен в регионах близких к экватору и в пустынных районах с большим количеством солнечных дней.
Для более эффективной работы концентратора, используется специальный прибор, который отслеживает направление солнечных лучей и поворачивает прибор к солнцу. В зависимости от оси, по которой может вращаться, такой коллектор различают одноосные и двуосные следящие устройства. Первые предполагают вращение устройства с востока на запад, а вторые, предполагают поворот устройства во все четыре стороны света, для того что бы точно отслеживать направление солнца в течение всего года. Данные коллекторы-концентраторы, в основном используются в промышленных условиях. Причиной этому стала достаточно большая стоимость этого устройства, а также необходимость постоянного технического обслуживания. Для бытового применения, они просто не приемлемы.
Солнечные печи и дистилляторы.
Солнечная печь
Помимо всех вышеописанных приборов, существуют также приборы, которые имеют достаточно простую структуру, и узкую сферу применения. К примеру, такие приборы могут выступать в роли солнечной печи, для приготовления пищи, или солнечного дистиллятора – прибора достаточно дешево очищающего воду любого состояния.
Поговорим про солнечные печи. Они достаточно просты, как при эксплуатации, таки при изготовлении. Солнечные печи представляют собой достаточно хорошо теплоизолированную коробку, которая покрыта материалом, отражающим свет (фольгой, например). Эта коробка накрывается стеклом и оборудована внешним отражателем. Кастрюля черного цвета послужит поглотителем, поскольку может намного быстрее нагреваться. Такие печи, можно использовать для стерилизации воды, при кипении.
Что касается солнечных дистилляторов, то они могут в результате своей работы предоставлять дистиллированную воду достаточно дешево, притом, что брать воду, можно практически из любого источника. Принцип работы солнечного дистиллятора лежит в основе процесса испарения, а сам прибор использует солнечную энергию, с целью ускорить этот процесс. За день работы, небольшой солнечный дистиллятор может произвести около 10 литров идеально чистой воды.
На данный момент солнечная энергия используется достаточно обширно. Одним из самых эффективных примеров его использования является метод нагрева воды солнечной энергией. Несколько миллионов жителей нашей планеты, уже достаточно долго и давно используют солнечные коллекторы для обеспечения своих нужд. Такие приборы достаточно эффективны, не требуют особых затрат на эксплуатацию, к тому же не приносят вреда окружающей среде.
Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов
Для превращения солнечной энергии в тепловую используют гелиосистемы.
Солнечный водонагреватель (солнечный коллектор) — это устройство, предназначенное для поглощения солнечной энергии, которая переносится видимым и ближним инфракрасным излучением для последующего её преобразования в тепловую энергию, пригодную для использования.
В гелиосистемах наиболее распространены два типа коллекторов: вакуумные и плоские.
Основной частью вакуумного коллектора является тепловая трубка. Такие коллекторы представляют собой ряд стеклянных трубок специальной конструкции. Трубка гелиоколлектора – это на самом деле две трубки (одна вложенная в другую), между которыми находится вакуум для наилучшей термоизоляции теплоносителя от внешней среды.
Способ передачи тепла от неё теплопроводу вакуумного солнечного коллектора: медная труба внутри пустая и содержит неорганическую и нетоксичную жидкость. При нагревании эта жидкость испаряется, а поскольку в трубке создан вакуум, то это происходит даже при температуре минус 30°С. Пар поднимается к наконечнику тепловой трубки, где отдаёт тепло теплоносителю (антифризу), который течёт по теплопроводу гелиоколлектора. Потом он конденсируется и стекает вниз, и процесс повторяется снова. Солнечный водонагреватель с вакуумными трубами показывает отличные результаты даже в пасмурные дни, потому что вакуумные трубы способны поглощать энергию инфракрасных лучей, которые проходят через тучи. Благодаря изоляционным свойствам вакуума, влияние ветра и низких температур на работу гелиосистемы также незначительно по сравнению с влиянием на плоский солнечный коллектор. Система с вакуумным солнечным коллектором успешно работает до -35°С.
Трубы установлены в солнечном водонагревателе параллельно, угол их наклона зависит от географической широты места установки системы отопления. Ориентированные с севера на юг, на протяжении дня, трубки вакуумного солнечного коллектора пассивно двигаются за солнцем. Они практически не нуждается в эксплуатационном обслуживании.
Для поддержания вакуума солнечный водонагреватель использует газопоглотитель, который в производственных условиях подвергался влиянию высоких температур, в результате чего нижний конец вакуумной трубы покрыт слоем чистого бария. Он поглощает СО, СО2, N2, O2, H2O и H2, которые выделяются из трубы в процессе хранения и эксплуатации, и является чётким визуальным индикатором состояния вакуума в трубке солнечного коллектора. Когда вакуум исчезает, бариевый слой из серебристого становится белым. Это дает возможность легко определить, целая ли труба вакуумного солнечного водонагревателя.
Вакуумные солнечные коллекторы полностью пригодны для ремонта: в случае необходимости трубку можно заменить без остановки солнечного водонагревателя. За необходимостью вакуумные трубки можно добавлять (при недостатке тепла) или частично снимать (если есть его избыток), уменьшая площадь гелиоколлектора. Обслуживание солнечного водонагревателя сводится практически к нулю. Вакуумные солнечные коллекторы отлично справляются с заданием обеспечения дома горячей водой, отоплением квартиры, подогревом бассейнов, теплиц, работают в системах вентиляции, кондиционирования и отопления зданий. Благодаря всему этому работа гелиосистемы проста, как с точки зрения эксплуатации, так и обслуживания.
Плоские гелиоколлекторы имеют иную конструкцию. Главным элементом в них является абсорбер, поглощающий солнечное излучение, сверху он имеет прозрачное покрытие. Для повышения эффективности коллектора, используют специальное оптическое покрытие из закалённого стекла с пониженным содержанием металлов. Абсорбер соединён с теплопроводящей системой.
Конструкция плоских солнечных коллекторов является довольно простой. Внешне они представляют собой простую панель, имеющую прямоугольную форму. Эта установка обладает алюминиевым корпусом, несколькими патрубками, использующимися с целью отвода и подвода жидкого теплоносителя. Кроме того, изнутри стенки коллектора покрыты теплоизоляционным слоем. На сегодняшний день производители его толщину делают равной трем-четырем сантиметрам – это предоставляет возможность добиться существенного уменьшения уровня теплопотерь.
Принцип работы плоского солнечного коллектора основывается на парниковом эффекте — солнечные лучи поступают на поверхность этого устройства и проникают сквозь стекло. Теплопоглощающее покрытие, используемое в нижней части коллектора, характеризуется коэффициентом поглощения, составляющим 91%. В конечном итоге чрезмерный нагрев приводит к тому, что покрытие начинает излучать тепловую энергию. Мощность её расположена в инфракрасном диапазоне, другими словами, имеется возможность достичь аккумулирования энергии солнца в коллекторе. Процесс отвода тепла происходит при непосредственном участии теплоносителя.
Преимущества и недостатки плоских и вакуумных коллекторов
Вакуумные трубчатые
Плоские высокоселективные
Низкие теплопотери
Способность очищаться от снега и инея
Работоспособность в холодное время года до -30С
Высокая производительность летом
Способность генерировать высокие температуры
Отличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение суток
Возможность установки под любым углом
Удобство монтажа
Меньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
минусы
минусы
Неспособность к самоочистке от снега
Высокие тепло потери
Относительно высокая начальная стоимость проекта
Низкая работоспособность в холодное время года
Рабочий угол наклона не менее 20°
Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность
Если у Вас появились вопросы по выбору оборудования или необходимо подобрать солнечную или резервную станцию, вы можете обратиться за помощью к нашим специалистам.
Проконсультируйтесь у специалистов
Солнечный коллектор — Energy Education
Рисунок 1. Солнечный коллектор. [1]Солнечный коллектор — это устройство, собирающее и / или концентрирующее солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]
Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени.Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.
Типы солнечных коллекторов
Есть много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки. В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода.Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Пластины-поглотители можно использовать, если нет необходимости в повышении температуры, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.
Коллекторы плоские
Рисунок 2. Схема плоского солнечного коллектора. [3]Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины.Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину поглотителя. [4] Эта пластина нагревается, передавая тепло воде или воздуху, находящимся между стеклом и пластиной абсорбера. Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно изготавливаются из металла, который является хорошим проводником — обычно из меди или алюминия. [4]
Коллекторы вакуумные
Рис. 3. Схема вакуумного трубчатого солнечного коллектора. [5]В этом типе солнечных коллекторов используется серия откачанных труб для нагрева воды. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии, минимизируя потери тепла в окружающую среду. У них есть внутренняя металлическая трубка, которая действует как пластина-поглотитель, которая соединена с тепловой трубкой для переноса тепла, собираемого от Солнца, к воде.Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце — конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, нагреваемую для использования. [2]
Коллекторы Line Focus
Рисунок 4.Схема солнечного коллектора с линейным фокусом. [7]Эти коллекторы, иногда называемые параболическими желобами, используют материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Труба, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]
Коллекторы точечного фокуса
Рис. 5. Точечный солнечный коллектор. [9]Эти коллекторы представляют собой большие параболические тарелки, состоящие из отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в массив, чтобы собрать еще больше энергии от Солнца. [10]
Коллекторы точечного фокуса и аналогичные устройства также могут использоваться для концентрации солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
- ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемые источники энергии: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Oxford University Press, 2004.
- ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский остекленный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
- ↑ 4,0 4,1 Флазолар. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
- ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн].Доступно: https://upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
- ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
- ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
- ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
- ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
- ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ком / СБОРНИКИ / concentrators_vs_flat_plates.htm
Солнечный коллектор с тепловыми трубками / без резервуара для воды / хорошее качество
Стандартные солнечные коллекторы с тепловыми трубками-JXSC-Serial
200L Стандартный солнечный коллектор с тепловыми трубками / солнечный водонагреватель / CE / SRCC / ТОВАРНАЯ ЗНАКА, 5000 / Месяц, T / T, быстрая отгрузка
MOQ: 1 комплект / Солнечные тепловые трубки коллектор / солнечная энергия / комплектные нагреватели / горячая вода, T / T, ESCROW.Western union, 80-500L
Характеристики солнечных коллекторов
1.Принимает красный медный канал с отличными характеристиками теплообмена.
2. Используйте медные тепловые трубки, содержащие специальную среднюю жидкость с низкой температурой кипения.
3. Хорошо работает в любом климате, может работать даже при температуре окружающей среды минус 30 градусов
Цельсия.
4. Каждая тепловая трубка работает независимо и эффективно.
5. Вода не течет внутри вакуумной трубки, нет риска замерзания.
6. Выдерживает высокое давление воды до 1.2 МПа.
Солнечные коллекторы Материал
1. Коллектор: алюминиевый сплав
2. Канал: красная медь
3. Тепловая труба: медь
4. Кронштейн: алюминиевый сплав / оцинкованная сталь / нержавеющая сталь
5. Изоляция материал: Минеральная вата
Параметр солнечного коллектора | |||||||||
Вакуумные трубки | Вместимость | Объем загрузки (20’GP) | Количество нагрузки (40 ‘HQ) | Условия оплаты | Срок поставки | Технические характеристики | |||
No. | Диаметр. — Лен. | (L) | |||||||
10 | Ø47-1,5 м | 85 | 264 | 642 | T / T или L / C | от 10 до 15 дней | Материал коллектора: алюминиевый сплав / нержавеющая сталь; Опорная стойка: оцинкованная сталь; Утеплитель: пенополиуретан / минеральная вата. | ||
15 | Ø47-1,5 м | 128 | 174 | 422 | |||||
20 | Ø47-1,5 м | 165 | 402 | ||||||
25 | Ø47-1,5 м | 213 | 140 | 341 | |||||
30 Ø47-1.5 м | 255 | 93 | 226 | ||||||
10 | Ø58-1,8 м | 100 | 167 | 405 4 | |||||
15 | Ø58-1,8 м | 150 | 129 | 314 | |||||
20 | Ø58-1.8 м | 200 | 99 | 241 | |||||
25 | Ø58-1,8 м | 250 | 83 | 202 4 | 30 | Ø58-1,8 м | 300 | 70 | 172 |
Солнечный водонагреватель низкого давления Проект Солнечный коллектор Солнечный коллектор-солнечный ключевой знак
Параметр SPC
Тип | SPC |
Материал внешнего резервуара | Пластина из нержавеющей сталиСталь белого цвета |
Внешний диаметр резервуара | 460 мм, 470 мм, 500 мм |
Материал внутреннего резервуара | Пластина из нержавеющей стали SUS304 2B |
для пищевых продуктов или нержавеющая сталь 316L | |
360 мм, 380 мм | |
Материал трубки | Высококачественное боросиликатное стекло |
Размер вакуумной трубки 900 (мм) 900 / 1800 (диаметр / длина) | 9002 3|
Номер трубки | 9/10/12/15/18/20/24/30/32/36/40 |
Рамы (детали стойки) | Оцинкованный лист, нержавеющая сталь или алюминиевый сплав |
Изоляционный слой | Высококачественная полиуретановая пена, изготовленная с помощью усовершенствованной установки для вспенивания под высоким давлением |
Толщина изоляции | 50 мм, ( внешний резервуар 460 мм), 55 мм (внешний резервуар 470 мм), 60 мм (внешний резервуар 500 мм) |
Градостойкость | 25 мм |
Рабочее давление | 0.05Mpa |
Соответствует стандарту | CE, CCC, Solar Keymark EN12976, SABS |
AL рама солнечный коллектор зима Модель Объем (нетто) л Диаметр резервуара мм Размер вакуумной трубки и № Вес кг 20 футов / 40HQ комплекты03 03 серия SPC 3 900 SP-420-47 / 1500-15-C
84
420
47/1500/15 шт.
58
73/170
SP- 420-47 / 1500-18-C
100
420
47/1500/18 шт.
62
60/139
SP-420-47 / 1500-24-C
133
420
47/1500/24 шт.
76
8SP-420-47 / 1500-27-C
150
420
47/1500/30 шт.
78
42 / 93
SP-420-47 / 1500-30-C
166
420
47/1500/36 шт.
86
39/90 9000
SP-470-47 / 1500-13-C
100
470
47/1500 / 13 шт.
60
66/150
SP-470-47 / 1500-18-C
9001 8139
470
47/1500/18 шт.
68
56/130
SP-470-47 / 1500-20-C
150
470
47/1500/20 шт.
72
48/111
SP-470-47 / 1500-24-C
8470
47/1500/24 шт.
79
41/95
SP-470-47 / 1500-30-C
226
226
470
47/1500/30 шт.
91
34/79
SP-470-58 / 1800-12-C
100
470
58/1800 / 12шт s
63
44/100
SP-470-58 / 1800-15-C
122
470
58/1800/15 шт.
78
42/97
SP-470-58 / 1800-18-C
150
470
58/1800 / 18шт
84
41/95
SP-470-58 / 1800-20-C
165
470
58/1800/20 шт.
37/86
SP-470-58 / 1800-24-C
200
470
58/1800/24 шт.
32/74
SP-470-58 / 1800-30-C
250
470
58/1800/30 шт.
130
25/58
25/58
3SP-470-58 / 1800-36-C
300
470
58/1800/36 шт.
150
23/50
80 9185
Мы можем производить водонагреватели с интегрированной системой низкого давления с прямым подключением, интегрированные солнечные водонагреватели под давлением, солнечные коллекторы с тепловыми трубками, плоские солнечные коллекторы, U-образные солнечные коллекторы, резервуары для хранения воды, солнечные проекты, аксессуары для солнечных водонагревателей..для тебя.
Пожалуйста, отправьте мне письмо по электронной почте
Сообщите мне ваши конкретные потребности. Я порекомендую вам наиболее подходящие продукты, найду для вас самые быстрые сроки изготовления и предоставлю вам услуги высочайшего качества.
Параметр SPA
Тепловой трубный солнечный коллектор, зимний коллектор для холодной погоды (SPA-C, SPA, SPB) | |||||||
907 SPA-C | SPA | SPB | |||||
Фото скатной крыши | 0 | 0 фотография крыши | |||||
Материал корпуса коллектора | Нержавеющая сталь 304 | Алюминиевый сплав | Алюминиевый сплав | ||||
Размер коллектора | 9194 130 * 14018 900 100 * 130 или 100 * 135 мм 9 0194 | 150 * 170 мм | |||||
Алюминиевое ребро | одинарное длинное шт. | одинарное длинное шт. | одинарное длинное шт. | ||||
Вакуумная трубка | Три мишениТри мишени | Три мишени | |||||
Крышка трубки | Винт | Винтовой | Винтовой 9007 | ||||
Отражатель 900 исключено | исключено | исключено | |||||
Материал рамы | Нержавеющая сталь | Алюминиевый сплав | Утолщенный и расширенный Материал алюминиевого сплава | 00 Перфорированный00 rmance Data (SP)0.714 | |||
Оптимальная скорость потока | 0,1 л / мин / трубка-0,026 г / мин / трубка | ||||||
Макс. Испытательное давление | 9 бар | ||||||
Наружный диаметр медной трубки | 22 мм | ||||||
Внутренний диаметр медной трубки | 20 мм | ||||||
м3 минеральной древесины | |||||||
Макс.Испытательное давление | 9 бар | ||||||
Оптимальный угол установки | 30-70 ° по вертикали, O ° по горизонтали |
Отправьте электронное письмо
Сообщите мне ваши конкретные потребности. Я порекомендую вам наиболее подходящие продукты, найду для вас самые быстрые сроки изготовления и предоставлю вам услуги высочайшего качества.
Параметр SPCF
Преимущества солнечного водонагревателя без давления SPCF:
1.Внутренний резервуар из нержавеющей стали SUS304
толщиной 0,5 мм 2. Внешний резервуар из цветной стали
толщиной 0,4 м 3. Полиуретан толщиной 55 мм из Германии Bayer
4. Цветная сталь
с цинковым покрытием 1,5 мм 5. Стеклянная вакуумная трубка из сверхтвердого бура и кварцевое стекло, степень поглощения ≥ 93%, степень теплового излучения: ≤6% (100 oC), на солнце без воды, температура может достигать 250 oC, 2,5 часа до кипения при использовании одной трубки. Устойчивость к граду 25 мм, срок службы шкалы составляет 20 лет
6.Устойчив к 25-миллиметровому граду, срок службы шкалы составляет 20 лет.
7. Регулируемые трубы и опоры.
8. Вместимость: 750 л, подходит для общежитий, школ и гостиниц.
9. Сопротивление давлению: выдерживает 0,6 МПа
Принципы и характеристики:
Морозостойкого нагревателя для холодной погоды зимой солнечного коллектора, который является нашим запатентованным элементом. Для работы системы не требуется никаких дополнительных забот, а горячая вода может быть доступна в любое время в течение 24 часов в сутки.Система может нормально работать даже при температуре 40 градусов ниже нуля. Подходит для средних и малых отелей и бань.
Для подключения нескольких комплектов или даже десятков автоматических солнечных коллекторов, зимних нагревателей для холодной погоды с дополнительными резервуарами для воды. Никаких дополнительных забот для работы системы не требуется, а горячая вода доступна в любое время 24 часа в сутки . Система может нормально работать даже при температуре 20 градусов ниже нуля. Подходит для средних и малых гостиниц и бань.
Пожалуйста, отправьте мне письмо по электронной почте
Сообщите мне свои конкретные потребности. Я порекомендую вам наиболее подходящие продукты, найду для вас самые быстрые сроки изготовления и предоставлю вам услуги высочайшего качества.
Параметр SPFP
Модель | SPFP-G / 0.6- CU / ZL- II | SPFP-G / 0.6- AL / ZL- II | Образец | 20GP / 95 шт. | 40HQ / 240 шт. | Образец | 20GP / 95 шт. | 20GP / 95 шт. | 1.88м2 | 1,88 м2 | ||
Площадь проема | 1,82 м2 | 1,82 м2 | ||||||||||
Площадь впитывания | 9194 1,75 | 9 1,75 900 | ||||||||||
Размеры | 960 * 1960 * 70 | 960 * 1960 * 70 | ||||||||||
NW | 22 / 23кг | 22/23 кг 25 | 333 медной трубы1.7L | 1.7L | ||||||||
Передающая крышка | Закаленное стекло с низким содержанием железа 3,2 мм | Закаленное стекло с низким содержанием железа, 3,2 мм | ||||||||||
% Коэффициент пропускания 10 9000 | ≥93% | |||||||||||
Абсорбер | Медный лист 0,2 мм с синим селективным покрытием с помощью вакуумного магнитного контролируемого распыления tec. (Импортировано из Германии) | 0.Лист AL толщиной 4 мм, с синим селективным покрытием, нанесенным методом вакуумного магнитного распыления. (Импортировано из Германии) | ||||||||||
Размер поглотителя | 915 * 1915 | 915 * 1915 | ||||||||||
Степень абсорбции | 95 ± 210 9 | 2%|||||||||||
Уровень излучения | 4 ± 2% | 4 ± 2% | ||||||||||
Техника сварки между медной трубой и поглотителем | лазерная сварка от Bluetec точечная сварка с двойным шагом 4 мм) | лазерная сварка от Bluetec (точечная сварка с двойным шагом 4 мм) | ||||||||||
Головные трубы | Φ22 * 1 | Φ22 * 1 | 3||||||||||
Тип решетки Φ10 * 1 | Тип решетки Φ10 * 1 | |||||||||||
Изоляция ма terials | Фенольная пена | Фенольная пена | ||||||||||
Толщина изоляции | 20 мм | 20 мм | ||||||||||
18 | ||||||||||||
18 материал рамы ) | Алюминиево-магниевый сплав (толщина 1 мм) | |||||||||||
Цвет рамы | черный, бронзовый, серебристый и белый | черный, бронзовый, серебристый и белый | ||||||||||
задняя панель материалы | Алюминий с тиснением под ржавчину | Алюминий с тиснением под ржавчину | ||||||||||
Толщина задней панели | 0.3 мм | 0,3 мм | ||||||||||
Уплотнительный материал | EPDM | EPDM | ||||||||||
Теплоноситель | 9019 вода или этиленгликоль 9125 9125 | |||||||||||
Испытательное давление внутренней циркуляции | 1,2 МПа | 1,2 МПа | ||||||||||
Рабочее давление внутренней циркуляции | 0.6 МПа | 0,6 МПа | ||||||||||
рабочая температура | 200 | 200 |
Отправьте мне письмо по электронной почте
Сообщите мне свои конкретные потребности. Я порекомендую вам наиболее подходящие продукты, найду для вас самые быстрые сроки изготовления и предоставлю вам услуги высочайшего качества.
Горячий продукт
Производственный процесс
Выставка
,