Имеет ли конденсатор полярность: где плюс, где минус по внешнему виду

Содержание

где плюс, где минус по внешнему виду

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача — как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора — мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт — знаком «+». Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак «+» ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак «плюс» нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком «плюс».

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: «чтобы узнать, где плюс, сначала нужно найти, где минус». Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак «минус», а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность «электролита», как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача «как узнать полярность конденсатора» решается путем применения универсального тестера — мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен — для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие — на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью «крокодилов» (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Обозначение полярности на конденсаторах

цифровая электроника вычислительная техника встраиваемые системы

Как определить полярность электролитического конденсатора

Конденсаторы, как маленькие, так и большие, используются практически во всех формах электронного оборудования. Эти компоненты выполняют два важных действия в любой электронной цепи: они хранят электроэнергию, и они отфильтровывают постоянный ток при прохождении только переменного тока. Электролитические конденсаторы предназначены для хранения большего количества электроэнергии, и они имеют полярность, что означает, что они имеют положительный вывод и отрицательный вывод. Стандарты электроники предусматривают, что такие конденсаторы изготавливаются с маркировкой полярности, чтобы способствовать правильному размещению конденсаторов в цепи.

Определить полярность заводского электролитического конденсатора довольно просто. Поместите конденсатор на рабочее место или стол в хорошо освещенной зоне. Держите увеличительное стекло над конденсатором, чтобы увеличить вид маркировки на внешнем корпусе компонента.

Медленно вращайте конденсатор, наблюдая за маркировкой и графическими изображениями на конденсаторе. Некоторые электролитические конденсаторы имеют только отрицательную сторону, обозначенную символами, которые выглядят как минусовые знаки, указывающие отрицательную полярность конденсатора. Некоторые конденсаторы будут иметь белую или черную полосу с отрицательной стороны. Если вы не можете найти знак минус, но вы можете увидеть знак плюса, то вы определите положительную полярность.

Если с маркировкой получается не очень, то можно попробовать сделать следующим образом. Посмотрите на два вывода, которые идут от нижней части вашего конденсатора, и обратите внимание на то, является ли один вывод короче другого. Некоторые производители сознательно делают вывод с отрицательной полярностью короче положительного вывода, что также может помочь легко определить полярность. Однако дважды проверьте маркировку на корпусе конденсатора, чтобы убедиться, что более короткий вывод действительно отрицательная сторона конденсатора.

После того, как вы определили маркировку полярности на своем конденсаторе, убедитесь, что вы правильно установили конденсатор в цепь. Конденсатор будет поврежден и даже может взорваться, если он запаян неправильной стороной.

Если конденсатор не является новым, никогда не прикасайтесь к выводам пальцами, так как некоторые конденсаторы хранят высокое напряжение, иногда в течение нескольких дней, после того, как источник питания был отключен от них.

Впервые столкнувшийся с видом SMD-конденсатора радиолюбитель недоумевает, как же разобраться во всех этих «квадратиках» и «бочонках», если на некоторых вообще отсутствует маркировка, а если и есть таковая, то и не поймешь, что же она обозначает. А ведь хочется идти в ногу со временем, а значит, придется разобраться все-таки, как определить принадлежность элемента платы, отличить один компонент от другого. Как оказалось, все же различия есть, и маркировка, хотя и не всегда и не на всех конденсаторах, дает представление о параметрах. Есть, конечно, SMD-компоненты и без опознавательных знаков, но обо всем по порядку. Для начала следует понять, что же представляет собой этот элемент и в чем его задача.

Работает такой компонент следующим образом. На каждую из двух пластинок, расположенных внутри, подаются разноименные заряды (полярность их разнится), которые стремятся один к другому согласно законам физики. Но «проникнуть» на противоположную пластину заряд не может по причине того, что между ними диэлектрическая прокладка, а следовательно, не найдя выхода и не имея возможности «уйти» от близлежащего противоположного полюса, накапливается в конденсаторе до заполнения его емкости.

Виды конденсаторов

Конденсаторы различаются по видам, их насчитывается всего три:

  • Керамические, пленочные и им подобные неполярные не маркируются, но их характеристики легко определяются при помощи мультиметра. Диапазон емкостей от 10 пикофарад до 10 микрофарад.
  • Электролитические – производятся в форме алюминиевого бочонка, маркируются, с виду напоминают обычные вводные, но монтируются на поверхности.
  • Танталовые – корпус прямоугольный, размеры разные. Цвет выпуска – черный, желтый, оранжевый. Маркируются специальным кодом.

Электролитические компоненты

На таких SMD-компонентах обычно промаркирована емкость и рабочее напряжение. К примеру, это может быть 156v, что будет означать, что его характеристики – 15 микрофарад и напряжение в 6 В.

А может оказаться, что маркировка совершенно другая, например D20475. Подобный код определяет конденсатор как 4.7 мкФ 20 В. Ниже представлен перечень буквенных обозначений совместно с их эквивалентом напряжения:

  • е – 2.5 В;
  • G – 4 В;
  • J – 6.3 В;
  • A – 10 В;
  • С – 16 В;
  • D – 20 В;
  • Е – 25 В;
  • V – 35 В;
  • Н – 50 В.

Полоска, равно как и срез, показывает положение ввода «+».

Керамические компоненты

Маркировка керамических SMD-конденсаторов имеет более широкое количество обозначений, хотя сам код их содержит всего 2–3 символа и цифру. Первым символом, при его наличии, обозначен производитель, второй говорит о номинальном напряжении конденсатора, ну а цифра – емкостный показатель в пкФ.

К примеру, простейшая маркировка Т4 будет означать, что емкость данного керамического конденсатора равна 5.1 × 10 в 4-й степени пкФ.

Таблица обозначений номинального напряжения представлена ниже.

Маркировка танталовых SMD-конденсаторов

Такие элементы типоразмера «а» и «в» маркируются буквенным кодом по номинальному напряжению. Таких букв 8 – это G, J, A, C, D, E, V, T. Каждая буква соответствует напряжению, соответственно – 4, 6.3, 10, 16, 20, 25, 35, 50. За ним следует емкостный код в пкФ, состоящий из трех цифр, последняя из которых будет обозначать число нулей. К примеру, маркировкой Е105 обозначен конденсатор 1 000 000 пкФ = 10 мкФ, а его номинал составит 25 В.

Размеры C, D, E маркируются прямым кодом, подобно коду электролитических конденсаторов.

Основная сложность в маркировке подобных конденсаторов в том, что на данный момент, хотя и есть общепринятые правила обозначений, некоторые крупные и известные компании вводят свою систему обозначений и кодов, которая кардинально отличается от общепринятой. Делается это для того, чтобы при ремонте изготовленных ими печатных плат применялись только оригинальные детали и SMD-компоненты.

Обозначение в схемах

Вообще при ремонте и перепайке современных печатных SMD-плат удобнее всего, когда под рукой все же имеется схема, глядя на которую намного проще разобраться с тем, что установлено, узнать расположение определенной детали, потому как SMD-конденсатор по виду может совершенно не отличаться от того же транзистора. Обозначения этих деталей в схемах остались такими же, как и были до прихода на рынок чипов, а потому и емкость, и другие нужные характеристики можно также без труда найти радиолюбителю, который не сталкивался с SMD-компонентами.

Этот неотъемлемый элемент практически всех эл/цепей выпускается в нескольких модификациях. Необходимость определения полярности конденсатора относится к конденсаторам электролитическим, которые являются, в силу конструктивных особенностей, чем-то средним между полупроводником и пассивным элементом схемы. Разберемся, как это можно сделать.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Маркировка конденсаторов на плате

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший ) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка , которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Как отличить электролитический конденсатор

Сегодня на рынке электронных компонентов существует много разных типов конденсаторов, и каждый тип обладает своими собственными преимуществам и недостатками. Некоторые способны работать при высоких напряжениях, другие отличаются значительной емкостью, у третьих мала собственная индуктивность, а какие-то характеризуются исключительно малым током утечки. Все эти факторы определяют области применения конденсаторов конкретных типов.

Рассмотрим, какие же бывают типы конденсаторов. Вообще их очень много, но здесь мы рассмотрим основные популярные типы конденсаторов, и разберемся, как этот тип определить.

Конденсаторы алюминиевые электролитические, например К50-35 или К50-29, состоят из двух тонких полосок алюминия, скрученных в рулон, между которыми в качестве диэлектрика помещается пропитанная электролитом бумага. Рулон помещается в герметичный алюминиевый цилиндр, на одном из торцов которого (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.

Ёмкость электролитических конденсаторов измеряется микрофарадами, и может быть от 0.1 мкф до 100 000 мкф. Значительная емкость электролитических конденсаторов, по сравнению с другими типами конденсаторов, и является их главным преимуществом. Максимальное рабочее напряжение электролитических конденсаторов может достигать 500 вольт. Максимально допустимое рабочее напряжение, как и емкость конденсатора, указываются на его корпусе.

Есть у этого типа конденсаторов и недостатки. Первый из которых — полярность. На корпусе конденсатора отрицательный вывод помечен знаком минус, именно этот вывод должен быть, при работе конденсатора в схеме под более низким потенциалом, чем другой, или конденсатор не сможет нормально накапливать заряд, и скорее всего взорвется, или будет в любом случае испорчен, если долго держать его под напряжением неверной полярности.

Именно по причине полярности, электролитические конденсаторы применимы лишь в цепях постоянного или пульсирующего тока, но никак не напрямую в цепях переменного тока, только выпрямленным напряжением можно заряжать электролитические конденсаторы.

Второй недостаток конденсаторов этого типа — высокий ток утечки. По этой причине не получится использовать электролитический конденсатор для длительного хранения заряда, но он вполне подойдет в качестве промежуточного элемента фильтра в активной схеме.

Третьим недостатком является то, что емкость конденсаторов этого типа снижается с ростом частоты (пульсирующего тока), но эта проблема решается установкой на платах параллельно электролитическому конденсатору еще и керамического конденсатора сравнительно небольшой емкости, обычно в 10000 меньшей, чем у стоящего рядом электролитического.

Теперь поговорим о танталовых конденсаторах. Примером могут служить К52-1 или smd А. В их основе пентаоксид тантала. Суть в том, что при окислении тантала образуется плотная не проводящая оксидная пленка, толщину которой можно технологически контролировать.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода. Технологическая цепочка при производстве довольно сложна. В начале создают анод из чистого прессованного танталового порошка, который спекают в глубоком вакууме при температуре от 1300 до 2000°C, чтобы получилась пористая структура.

Затем, путем электрохимического окисления, на аноде формируют диэлектрик в виде пленки пентаоксида тантала, толщину которой регулируют меняя напряжение в процессе электрохимического окисления, в результате толщина пленки получается всего от сотен до тысяч ангстрем, но пленка имеет такую структуру, что обеспечивает высокое электрическое сопротивление.

Следующий этап — формирование электролита, которым выступает полупроводник диоксид марганца. Солями марганца пропитывают танталовый пористый анод, затем его подвергают нагреву, чтобы диоксид марганца появился на поверхности; процесс повторяют несколько раз до получения полного покрытия. Полученную поверхность покрывают слоем графита, затем наносят серебро — получается катод. Структуру затем помещают в компаунд.

Танталовые конденсаторы похожи свойствами на алюминиевые электролитические, однако имеют особенности. Их рабочее напряжение ограничено 100 вольтами, емкость не превышает 1000 мкф, собственная индуктивность у них меньше, поэтому применяются танталовые конденсаторы и на высоких частотах, достигающих сотен килогерц.

Недостаток их заключается в крайней чувствительности к превышению максимально допустимого напряжения, по этой причине танталовые конденсаторы выходят из строя чаще всего из-за пробоя. Линия на корпусе танталового конденсатора обозначает положительный электрод — анод. Выводные или SMD танталовые конденсаторы можно встретить на современных печатных платах многих электронных устройств.

Керамические однослойные дисковые конденсаторы, например типов К10-7В, К10-19, КД-2, отличаются относительно большой емкостью (от 1 пф до 0,47 мкф) при малых размерах. Их рабочее напряжение лежит в диапазоне от 16 до 50 вольт. Их особенности: малые токи утечки, низкая индуктивность, дающая им возможность работать при высоких частотах, а также малые размеры и высокая температурная стабильность емкости. Такие конденсаторы успешно работают в цепях постоянного, переменного и пульсирующего тока.

Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА. Керамические конденсаторы устойчивы в внешним факторам, таким как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.

Керамические дисковые конденсаторы широко применяются в сглаживающих фильтрах источников питания, при фильтрации помех, в цепях межкаскадной связи, и почти во всех радиоэлектронных устройствах.

Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф.

Керамические многослойные конденсаторы, например К10-17А или К10-17Б, в отличие от однослойных, имеют в своей структуре чередующиеся тонкие слои керамики и металла. Их емкость поэтому больше, чем у однослойных, и может легко достигать нескольких микрофарад. Максимальное напряжение также ограничено здесь 50 вольтами. Конденсаторы этого типа способны, так же как и однослойные, исправно работать в цепях постоянного, переменного и пульсирующего тока.

Высоковольтные керамические конденсаторы способны работать при высоком напряжении от 50 до 15000 вольт. Их емкость лежит в диапазоне от 68 до 100 нф, и работать такие конденсаторы могут в цепях постоянного, переменного или пульсирующего тока.

Их можно встретить в сетевых фильтрах в качестве X/Y конденсаторов, а также в схемах вторичных источников питания, где они используются для устранения синфазных помех и поглощения шума если схема высокочастотная. Порой без применения этих конденсаторов, выход из строя устройства может угрожать жизни людей.

Особый тип высоковольтных керамических конденсаторов — конденсатор высоковольтный импульсный, применяемый для мощных импульсных режимов. Примером таких высоковольтных керамических конденсаторов являются отечественные К15У, КВИ и К15-4. Эти конденсаторы способны работать под напряжением до 30000 вольт, а высоковольтные импульсы могут следовать с высокой частотой, до 10000 импульсов в секунду. Керамика обеспечивает надежные диэлектрические свойства, а особая форма конденсатора и расположение обкладок препятствует пробою снаружи.

Такие конденсаторы весьма популярны в качестве контурных в мощной радиоаппаратуре и очень приветствуются, например, тесластроителями (для конструирования катушек Тесла на искровом промежутке или на лампах, – SGTC, VTTC).

Полиэстеровые (полиэтилентерефталат, лавсан) конденсаторы, например K73-17 или CL21, на основе металлизированной пленки широко применяются в импульсных блоках питания и электронных балластах. Их корпус из эпоксидного компаунда придает конденсаторам влагостойкости, теплостойкости и делает их устойчивыми к воздействию агрессивных сред и растворителей.

Полиэстеровые конденсаторы выпускаются емкостью от 1 нф до 15 мкф, и рассчитаны на напряжение от 50 до 1500 вольт. Их отличает высокая температурная стабильность при высокой емкости и небольших размерах. Цена полиэстеровых конденсаторов не высока, поэтому они весьма популярны во многих электронных устройствах, в частности в балластах энергосберегающих ламп.

Маркировка конденсатора содержит на конце букву, обозначающую допуск по отклонению емкости от номинальной, а также букву и цифру в начале маркировки, обозначающие допустимое максимальное напряжение, например 2А102J – конденсатор на максимальное напряжение 100 вольт, емкостью 1 нф, допустимое отклонение емкости +-5%. Таблицы для расшифровки маркировки можно легко найти в интернете.

Широкий диапазон емкостей и напряжений, дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсного токов.

Полипропиленовые конденсаторы, например К78-2, в отличие от полиэстеровых, в качестве диэлектрика имеют полипропиленовую пленку. Конденсаторы этого типа выпускаются емкостью от 100 пф до 10 мкф, а напряжение может достигать 3000 вольт.

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tgδ может не превышать 0,001. Такие конденсаторы широко используются, например, в индукционных нагревателях, и могут работать на частотах измеряемых десятками и даже сотнями килогерц.

Отдельного упоминания заслуживают пусковые полипропиленовые конденсаторы, такие например, как CBB-60. Эти конденсаторы используют для пуска асинхронных двигателей переменного тока. Они наматываются металлизированной полипропиленовой пленкой на пластиковый сердечник, затем рулон заливается компаундом.

Корпус конденсатора выполнен из материала не поддерживающего горение, то есть конденсатор полностью пожаробезопасный и подходит для работы в тяжелых условиях. Выводы могут быть как проводными, так и под клеммы и под болт. Очевидно, конденсаторы этого типа предназначены для работы на промышленной сетевой частоте.

Пусковые конденсаторы выпускаются на переменное напряжение от 300 до 600 вольт, а диапазон типичных емкостей — от 1 до 1000 мкф.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Электролиты. Часть 1 (принципы) — Мои статьи — Каталог статей


Приветствую всех неравнодушных к качественному звуку. Попробую вкратце осветить одну из проблем, часто мусолимую в инженерно — аудиофильских кругах, а именно: почему те или иные пассивные элементы ( в данном конкретном случае — электролитические конденсаторы) вносят существенную окраску в звучание аудиоустройства и какой из элементов предпочесть в каждом конкретном случае?

Итак, что у нас представляет собой конденсатор? Устройство для накопления электрического заряда! Формально, идеальный конденсатор представляет собой две идеально (!) проводящие пластины (т. н. «обкладки») с контактами, разделенные тончайшим слоем идеального (!) диэлектрика (т.е. вещества не являющегося проводником). Очевидно, что постоянный ток конденсатор не проводит, так как между обкладками нет контакта из-за наличия диэлектрика. Однако, при подаче электрического напряжения к клеммам (контактам пластин) из-за возникающего между пластин (в толще диэлектрика) электрического поля происходит, так называемый, «заряд» конденсатора, т.е кратковременное протекание тока и возникающее благодаря этому накопление на обкладках электрического заряда. При смене полярности подводимого напряжения конденсатор начинает менять полярность зарядов на обкладках, и опять у нас течет ток в цепи… Процесс зарядки-разрядки конденсатора происходит быстро, ( для буквоедов, график изменения тока описывается обратным экспоненциальным законом) и зависит от емкости конденсатора и сопротивления цепи. Таким образом, для конкретного конденсатора в конкретной цепи существует некоторая «постоянная времени» именуемая ТАУ и равная произведению емкости на сопротивление TAU~ R*C. Все здесь кажется ясным и понятным, и знакомым всем еще со школьного курса физики. Как может такой — вот радиоэлемент вносить существенную окраску в звучание аудиоустройства, в котором он использован? Что там «такого» может быть? Зарядился, накопил заряд – отдал его при потребности в нагрузку. Всего и делов — то! Думаете, все так просто? Проблема кроется в том, что то, что мы имеем в реальности в качестве конденсатора в наших аудио игрушках, очень сильно далеко от идеального элемента описанного выше. Для сохранения приемлемых размеров устройства (конденсатора) изобретатели постепенными итерациями пошли на целый воз уловок в надежде обмануть физику. Таким образом, устройство, именуемое нынче электролитическим конденсатором, представляет собой просто «клубок» кишащий пороками. Для сохранения габаритов в пределах разумного, обкладки конденсатора изготовили из полосок тончайшей фольги, разделенной тончайшим слоем сепаратора (слоя содержащего диэлектрический ЭЛЕКТРОЛИТ) свернутых затем в цилиндр.

1. В результате, полученная «спираль» из обкладок, очевидно, имеет определенную паразитную индуктивность, которая у нас оказывается включенной последовательно с емкостью самого конденсатора. Как мы знаем, индуктивность — суть реактивный элемент, так же как и конденсатор. При протекании переменного тока по данной индуктивности из-за возникающего вокруг проводника магнитного поля формирующего противо-ЭДС резко возрастает сопротивление цепи с ростом частоты тока. Сводя «тупо» на нет емкостные характеристики конденсатора на высоких рабочих частотах. Я уж просто не упоминаю о том, что цепь состоящая из емкости и индуктивности является резонансным контуром, очень сильно меняющим свои свойства вблизи определенных (резонансных) частот.

2. Тоненькие обкладочки изготовленные из фольги, вкупе с внешними выводами и неизбежными контактами между ними, обладают существенным омическим (активным) сопротивлением, которое оказывается, включено последовательно с нашим конденсатором и также влияет на его реальные характеристики.

3. Электролит, используемый в качестве наполнителя сепаратора, формирует нам слой «диэлектрика» в нашем реальном конденсаторе. Данная «субстанция» имеет высокие параметры диэлектрической проницаемости для того, чтобы конденсатор имел высокую емкость при как можно меньших габаритах. Однако, жидкий диэлектрик во-первых, не является полностью непроводящим материалом! Существует так называемый «ток утечки» оценивающий численно сопротивление данного «лже-диэлектрика». В результате конденсатор у нас оказывается шунтирован пусть и довольно большим, но все-же СОПРОТИВЛЕНИЕМ, которое также является паразитным, не свойственным природе собственно конденсатора и противоречащая нашим потребностям от данного устройства. (Что это за накопитель заряда, который склонен к саморазряду изначально?)

4. Мало у нас вышеизложенных проблем, так оказывается, электролит у нас еще и исключительно нелинейная среда! Для того, чтобы электролит эффективно работал, необходимо, чтобы к нему постоянно было приложено, так называемое, «напряжение поляризации» (постоянное напряжение определенной полярности, плюс на аноде, минус на катоде). Только в таком вот рабочем режиме электролит, находящийся внутри конденсатора, начинает работать так, как надо. И не дай бог полярность перепутать! Электролит не только не будет работать, но и из-за протекания внутри обратной химической реакции он может закипеть, разорвать корпус элемента и повредить многое, что находится рядом… Это условие вроде — бы выполняется, когда конденсатор стоит в качестве буфера-фильтра на выходе нашей системы питания. Однако представьте себе — в процессе работы в синхроне с нашим музыкальным, постоянно меняющимся сигналом конденсатор будет отдавать ток в усилитель, при этом напряжения на обкладках будут флуктуировать. Соответственно, напряжение поляризации, приложенное к электролиту, будет модулироваться нашим полезным сигналом. Т.е реактивные характеристики конденсатора будут постоянно менятся в зависимости от прослушиваемого нами музыкального сигнала! А только представьте, как будет работать полярный конденсатор, который сплошь и рядом ставят в качестве разделительного между цепями, фактически не имеющими разности потенциалов вообще! При «правильной» полярности приложенного звукового сигнала конденсатор будет конденсатором, хоть и меняющим свои параметры в зависимости от уровня приложенного сигнала. А вот при «обратной» полярности устройство будет уже вообще «неизвестно чем»! Если задуматься о том, что сигнал музыкальный у нас сугубо периодический, и его полярность меняется туда-сюда в диапазоне от единиц раз до десятков тысяч раз за секунду, то неудивительно, что результат, который у нас получится в результате такого элегантного «инженерного решения» не может радовать истинных фанатов качества звучания. Мутность, мыльность звучания подобных «аудиоподелок» де-факто стандарт для лоу- и мид-фай техники.

5. Структура электролитического конденсатора, описанная выше, очевидно, имеет потенциальную склонность к зависимости от «микрофонного эффекта». При механическом воздействии на конструкцию существует реальная предрасположенность к флуктуациям зазоров между обкладками, с флуктуацией фактической емкости в результате. Вам мало? Можно говорить далее о температурной нестабильности диэлектрических возможностей элекролита (ТКЕ). Процессах старения электролита (конденсаторы «усыхают» со временем, теряя свою емкость, растут токи утечки и тд и тп.) Зависимости возможностей по отдаче тока в нагрузку ( так называемый ripple current) от частоты. Величине «тангенса угла потерь», характеризующей «качество работы диэлектрика» и величину активных потерь при работе конденсатора и ее зависимости от напряжения поляризации… Так далее, так далее…

Вы все еще удивляетесь, что подобные «пассивные» элементы аудиотракта могут влиять на результирующее качество звука? И что все пафосные марки и модели конденсаторов являются таблетками плацебо для больных аудиофилов? Или Я вас убедил? Тогда дальше перейдем к моделям, самым интересным по звуку, и разберемся чем они хороши и почему.
сентябрь 2010
ЮА

Где на конденсаторе плюс и минус фото

Этот неотъемлемый элемент практически всех эл/цепей выпускается в нескольких модификациях. Необходимость определения полярности конденсатора относится к конденсаторам электролитическим, которые являются, в силу конструктивных особенностей, чем-то средним между полупроводником и пассивным элементом схемы. Разберемся, как это можно сделать.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Решил сделать плавное выключение салонного освещения.
Сразу о затратах:
конденсатор 4700 16v = 8 руб
30 см. проводов, изолента, припой, термоусадка =

3 руб
На все работы ушло у меня примерно 20 минут.
Я использовал конденсатор на 4700, но можно и увеличить емкость, главное рассчитан он должен быть минимум на 16 вольт.
У кондера есть минус и плюс, определяется это просто: на самом кондере минусовой вывод помечен полоской с «минусами», также у новых конденсаторов плюсовой вывод длинее минусового.

Идем дальше! Теперь нужно определить где плюс и минус у плафона, я определил это с помощью тестера.

Теперь осталось самую малость: припаиваем провода в конденсатору, изолируем пайку, и все хозяйство припаиваем к плафону, соблюдая полярность

Устанавливаем плафон на место, предварительно спрятав конденсатор с проводами в пространство за декоративным потолком.
Вот и все! Теперь свет в салоне тухнет плавно, примерно за 5 секунд )))

Керамические конденсаторы есть ли полярность — MOREREMONTA

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Практические соображения — Конденсаторы | Конденсаторы

Конденсаторы

, как и все электрические компоненты, имеют ограничения, которые необходимо соблюдать для обеспечения надежности и правильной работы схемы.

Рабочее напряжение конденсатора

Рабочее напряжение : Поскольку конденсаторы представляют собой не что иное, как два проводника, разделенных изолятором (диэлектриком), вы должны обращать внимание на максимальное допустимое напряжение на нем. Если приложить слишком большое напряжение, предел пробоя диэлектрического материала может быть превышен, что приведет к внутреннему короткому замыканию конденсатора.

Полярность конденсатора

Полярность : Некоторые конденсаторы производятся таким образом, что они могут выдерживать приложенное напряжение только одной полярности, но не другой. Это связано с их конструкцией: диэлектрик представляет собой микроскопически тонкий слой изоляции, нанесенный на одну из пластин постоянным напряжением во время производства. Они называются конденсаторами электролитическими , и их полярность четко обозначена.

Изменение полярности напряжения на электролитический конденсатор может привести к разрушению этого сверхтонкого диэлектрического слоя, что приведет к разрушению устройства.Однако тонкость этого диэлектрика обеспечивает чрезвычайно высокие значения емкости при относительно небольшом размере корпуса. По той же причине электролитические конденсаторы обычно имеют низкое номинальное напряжение по сравнению с другими типами конденсаторной конструкции.

Эквивалентная схема конденсатора

Эквивалентная схема: Поскольку пластины конденсатора имеют некоторое сопротивление и поскольку диэлектрик не является идеальным изолятором, не существует такой вещи, как «идеальный» конденсатор. В реальной жизни конденсатор имеет как последовательное сопротивление, так и параллельное сопротивление (сопротивление утечки), которые взаимодействуют с его чисто емкостными характеристиками:

К счастью, относительно легко изготовить конденсаторы с очень малым последовательным сопротивлением и очень высоким сопротивлением утечке!

Физический размер конденсатора

Для большинства приложений в электронике минимальный размер является целью разработки компонентов.Чем меньше могут быть изготовлены компоненты, тем больше схем может быть встроено в меньший корпус, и, как правило, также сохраняется вес. Что касается конденсаторов, то существует два основных фактора, ограничивающих минимальный размер блока: рабочее напряжение и емкость . И эти два фактора, как правило, противоположны друг другу. При любом выборе диэлектрических материалов единственный способ увеличить номинальное напряжение конденсатора — это увеличить толщину диэлектрика. Однако, как мы видели, это приводит к уменьшению емкости.Емкость можно поднять, увеличив площадь пластины. но это делает для большей единицы. Вот почему вы не можете судить о емкости конденсатора в фарадах просто по размеру. Конденсатор любого заданного размера может иметь относительно высокую емкость и низкое рабочее напряжение, наоборот, или некоторый компромисс между двумя крайностями. Для примера возьмем следующие две фотографии:

Это довольно большой по физическим размерам конденсатор, но у него довольно низкое значение емкости: всего 2 мкФ.Однако его рабочее напряжение довольно высокое: 2000 вольт! Если бы этот конденсатор был модернизирован так, чтобы между пластинами был более тонкий слой диэлектрика, можно было бы достичь как минимум стократного увеличения емкости, но за счет значительного снижения его рабочего напряжения. Сравните фотографию выше с приведенной ниже. Конденсатор, показанный на нижнем рисунке, представляет собой электролитический блок, по размеру аналогичный приведенному выше, но с очень различными значениями емкости и рабочего напряжения:

Более тонкий диэлектрический слой дает ему гораздо большую емкость (20 000 мкФ) и значительно снижает рабочее напряжение (35 В непрерывно, 45 В прерывисто).

Вот несколько образцов конденсаторов разных типов, все меньше, чем показанные ранее:

Электролитические и танталовые конденсаторы поляризованы, (чувствительны к полярности) и всегда имеют соответствующую маркировку. Отрицательные (-) выводы электролитических агрегатов обозначены стрелками на корпусах. У некоторых поляризованных конденсаторов полярность обозначена маркировкой положительного вывода.Большой электролитический блок емкостью 20 000 мкФ, показанный в вертикальном положении, имеет положительный (+) вывод, помеченный знаком «плюс». Керамические, майларовые, пластиковые пленочные и воздушные конденсаторы не имеют маркировки полярности, потому что это неполяризованные конденсаторы (они не чувствительны к полярности).

Конденсаторы — очень распространенные компоненты в электронных схемах. Внимательно посмотрите на следующую фотографию — каждый компонент, отмеченный на печатной плате знаком «C», является конденсатором:

Некоторые из конденсаторов, показанных на этой печатной плате, являются стандартными электролитическими: C 30 (верх платы, в центре) и C 36 (левая сторона, 1/3 сверху).Некоторые другие представляют собой особый вид электролитического конденсатора под названием тантал , потому что это тип металла, который используется для изготовления пластин. Танталовые конденсаторы имеют относительно высокую емкость для своего физического размера. Следующие конденсаторы на схемной плате, показанной выше, являются танталовыми: C 14 (чуть левее нижнего угла от C 30 ), C 19 (непосредственно под R 10 , что ниже C 30 ). , C 24 (нижний левый угол платы) и C 22 (нижний правый).

Примеры конденсаторов еще меньшего размера можно увидеть на этой фотографии:

Конденсаторы на этой печатной плате являются «устройствами для поверхностного монтажа», как и все резисторы, из соображений экономии места. Следуя правилам маркировки компонентов, конденсаторы можно идентифицировать по этикеткам, начинающимся с буквы «C».

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как определить полярность электролитического конденсатора

Обновлено 8 сентября 2019 г.

Автор: S.Hussain Ather

Конденсаторы имеют различные конструкции для использования в вычислительных приложениях и фильтрации электрического сигнала в схемах. Несмотря на различия в том, как они построены и для чего они используются, все они работают на одних и тех же электрохимических принципах.

Когда инженеры создают их, они принимают во внимание такие величины, как значение емкости, номинальное напряжение, обратное напряжение и ток утечки, чтобы убедиться, что они идеальны для своих целей. Если вы хотите сохранить большой заряд в электрической цепи, узнайте больше об электролитических конденсаторах.

Определение полярности конденсатора

Чтобы определить полярность конденсатора, полоса на электролитическом конденсаторе указывает отрицательный полюс. Для конденсаторов с осевыми выводами (в которых выводы выходят из противоположных концов конденсатора) может быть стрелка, указывающая на отрицательный конец, символизирующая поток заряда.

Убедитесь, что вы знаете полярность конденсатора, чтобы его можно было подключить к электрической цепи в нужном направлении. Установка в неправильном направлении может вызвать короткое замыкание или перегрев цепи.

В некоторых случаях положительный конец конденсатора может быть длиннее отрицательного, но вы должны быть осторожны с этим критерием, потому что многие конденсаторы имеют обрезанные выводы. Танталовый конденсатор иногда может иметь знак плюса (+), указывающий на положительный полюс.

Некоторые электролитические конденсаторы могут использоваться в биполярном режиме, что позволяет при необходимости менять полярность. Они делают это, переключаясь между потоками заряда через цепь переменного тока (AC).

Некоторые электролитические конденсаторы предназначены для биполярной работы неполяризованными методами. Эти конденсаторы состоят из двух анодных пластин, соединенных с обратной полярностью. В последовательных частях цикла переменного тока один оксид действует как блокирующий диэлектрик. Он предотвращает разрушение противоположного электролита обратным током.

Характеристики электролитического конденсатора

В электролитическом конденсаторе используется электролит для увеличения емкости или способности накапливать заряд, который он может получить.Они поляризованы, то есть их заряды выстраиваются в линию, позволяющую им сохранять заряд. Электролит в данном случае представляет собой жидкость или гель с большим количеством ионов, благодаря которым он легко заряжается.

Когда электролитические конденсаторы поляризованы, напряжение или потенциал на положительном выводе больше, чем на отрицательном, что позволяет заряду свободно проходить через конденсатор.

Когда конденсатор поляризован, он обычно обозначается минусом (-) или плюсом (+) для обозначения отрицательного и положительного полюсов.Обратите на это особое внимание, потому что, если вы неправильно подключите конденсатор в цепь, это может привести к короткому замыканию, как в случае, когда через конденсатор протекает настолько большой ток, что может его необратимо повредить.

Хотя большая емкость позволяет электролитическим конденсаторам накапливать большее количество заряда, они могут быть подвержены токам утечки и могут не соответствовать соответствующим допускам по величине, величина емкости может варьироваться для практических целей. Определенные конструктивные факторы могут также ограничивать срок службы электролитических конденсаторов, если конденсаторы склонны к быстрому износу после многократного использования.

Из-за такой полярности электролитического конденсатора они должны быть смещены в прямом направлении. Это означает, что положительный конец конденсатора должен иметь более высокое напряжение, чем отрицательный, чтобы заряд проходил через цепь от положительного конца к отрицательному.

Подключение конденсатора к цепи в неправильном направлении может привести к повреждению материала оксида алюминия, изолирующего конденсатор, или к короткому замыканию. Это также может вызвать перегрев, в результате которого электролит слишком сильно нагревается или протекает.

Меры предосторожности при измерении емкости

Перед измерением емкости вы должны знать о мерах безопасности при использовании конденсатора. Даже после того, как вы отключите питание от цепи, конденсатор, скорее всего, останется под напряжением. Прежде чем прикоснуться к нему, убедитесь, что все питание схемы отключено, используя мультиметр, чтобы убедиться, что питание отключено, и вы разрядили конденсатор, подключив резистор к его выводам.

Для безопасной разрядки конденсатора подключите 5-ваттный резистор к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что питание отключено. Постоянно проверяйте конденсатор на предмет утечек, трещин и других признаков износа.

Символ электролитического конденсатора

••• Syed Hussain Ather

Символ электролитического конденсатора является общим обозначением конденсатора. Электролитические конденсаторы изображены на принципиальных схемах, как показано на рисунке выше для европейского и американского стилей. Знаки плюс и минус указывают на положительную и отрицательную клеммы, анод и катод.

Расчет электрической емкости

Поскольку емкость является величиной, присущей электролитическому конденсатору, вы можете рассчитать ее в единицах фарад как C = ε r ε 0 A / d для области перекрытия две пластины A в м 2 , ε r как безразмерная диэлектрическая проницаемость материала, ε 0 как электрическая постоянная в фарадах / метр, а d как расстояние между плитами в метрах.

Экспериментальное измерение емкости

Для измерения емкости можно использовать мультиметр. Мультиметр измеряет ток и напряжение и использует эти два значения для расчета емкости. Установите мультиметр в режим измерения емкости (обычно обозначается символом емкости).

После того, как конденсатор был подключен к цепи и получил достаточно времени для зарядки, отключите его от цепи, соблюдая только что описанные меры безопасности.

Подключите выводы конденсатора к клеммам мультиметра. Вы можете использовать относительный режим для измерения емкости измерительных проводов относительно друг друга. Это может быть удобно при низких значениях емкости, которые может быть труднее обнаружить.

Попробуйте использовать различные диапазоны емкости, пока не найдете показание, которое является точным в зависимости от конфигурации электрической цепи.

Приложения при измерении емкости

Инженеры часто используют мультиметры для измерения емкости однофазных двигателей, оборудования и машин небольшого размера для промышленного применения.Однофазные двигатели работают за счет создания переменного потока в обмотке статора двигателя. Это позволяет току менять направление при протекании через обмотку статора в соответствии с законами и принципами электромагнитной индукции.

Электролитические конденсаторы особенно подходят для использования с высокой емкостью, например, для цепей питания и материнских плат компьютеров.

Индуцированный ток в двигателе затем создает собственный магнитный поток, противоположный потоку обмотки статора.Поскольку однофазные двигатели могут быть подвержены перегреву и другим проблемам, необходимо проверить их емкость и работоспособность с помощью мультиметров для измерения емкости.

Неисправности конденсаторов могут ограничить их срок службы. Короткозамкнутые конденсаторы могут даже повредить его части, так что он может больше не работать.

Конструкция электролитического конденсатора

Инженеры создают алюминиевые электролитические конденсаторы , используя алюминиевую фольгу и бумажные прокладки, устройства, которые вызывают колебания напряжения для предотвращения разрушительных вибраций, которые пропитаны электролитической жидкостью.Обычно они покрывают одну из двух алюминиевых фольг оксидным слоем на аноде конденсатора.

Оксид в этой части конденсатора заставляет материал терять электроны в процессе зарядки и накопления заряда. На катоде материал приобретает электроны в процессе восстановления конструкции электролитического конденсатора.

Затем производители продолжают укладывать пропитанную электролитом бумагу с катодом, соединяя их друг с другом в электрическую цепь и свертывая их в цилиндрический корпус, который подключается к цепи.Инженеры обычно выбирают расположение бумаги либо в осевом, либо в радиальном направлении.

Осевые конденсаторы выполнены с одним штифтом на каждом конце цилиндра, а в радиальных конструкциях оба штифта используются с одной стороны цилиндрического корпуса.

Площадь пластины и электролитическая толщина определяют емкость и позволяют электролитическим конденсаторам быть идеальными кандидатами для таких приложений, как усилители звука. Алюминиевые электролитические конденсаторы используются в источниках питания, материнских платах компьютеров и бытовой технике.

Эти характеристики позволяют электролитическим конденсаторам сохранять гораздо больший заряд, чем другие конденсаторы. Двухслойные конденсаторы или суперконденсаторы могут даже достигать емкости в тысячи фарад.

Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы используют твердый алюминиевый материал для создания «клапана», так что положительное напряжение в электролитической жидкости позволяет ей образовывать оксидный слой, который действует как диэлектрик, изолирующий материал, который может быть поляризован до не допускать прохождения зарядов.Инженеры создают эти конденсаторы с алюминиевым анодом. Это используется для создания слоев конденсатора и идеально подходит для хранения заряда. Инженеры используют диоксид марганца для создания катода.

Эти типы электролитических конденсаторов могут быть далее разбиты на тонкую плоскую фольгу и протравленную фольгу типа . Типы простой фольги — это те, которые были только что описаны, в то время как в конденсаторах с протравленной фольгой на аноде и катодной фольге используется оксид алюминия, который протравлен для увеличения площади поверхности и диэлектрической проницаемости, что является мерой способности материала накапливать заряд.

Это увеличивает емкость, но также снижает способность материала выдерживать высокие постоянные токи (DC), тип тока, который проходит в одном направлении в цепи.

Электролиты в алюминиевых электролитических конденсаторах

Типы электролитов, используемых в алюминиевых конденсаторах, могут различаться: нетвердый, твердый диоксид марганца и твердый полимер. Обычно используются нетвердые или жидкие электролиты, потому что они относительно дешевы и подходят для различных размеров, емкостей и значений напряжения.Однако при использовании в цепях они действительно теряют много энергии. Этиленгликоль и борная кислота составляют жидкие электролиты.

Другие растворители, такие как диметилформамид и диметилацетамид, также могут быть растворены в воде для использования. Эти типы конденсаторов также могут использовать твердые электролиты, такие как диоксид марганца или твердый полимерный электролит. Диоксид марганца также экономичен и надежен при более высоких значениях температуры и влажности. Они имеют меньший ток утечки постоянного тока и высокую электрическую проводимость.

Электролиты выбраны для решения проблем высоких коэффициентов рассеяния, а также общих потерь энергии электролитических конденсаторов.

Ниобиевые и танталовые конденсаторы

Танталовые конденсаторы в основном используются в устройствах поверхностного монтажа в вычислительных приложениях, а также в военном, медицинском и космическом оборудовании.

Танталовый материал анода позволяет им легко окисляться, как алюминиевый конденсатор, а также позволяет им использовать преимущества повышенной проводимости, когда танталовый порошок прижимается к проводящей проволоке.Затем оксид образуется на поверхности и внутри полостей в материале. Это создает большую площадь поверхности для повышенной способности хранить заряд с большей диэлектрической проницаемостью, чем у алюминия.

Конденсаторы на основе ниобия используют массу материала вокруг проводника, который использует окисление для создания диэлектрика. Эти диэлектрики имеют большую диэлектрическую проницаемость, чем танталовые конденсаторы, но для данного номинального напряжения используется большая толщина диэлектрика. Эти конденсаторы в последнее время используются чаще, потому что танталовые конденсаторы стали более дорогими.

Полярность в электронных компонентах | Компоненты Западной Флориды

Существует несколько различных способов маркировки компонентов для обозначения полярности.

Для определения полярности КОНДЕНСАТОРОВ:

Электролитические конденсаторы часто маркируются полосой. Эта полоса указывает ОТРИЦАТЕЛЬНЫЙ вывод.

Если это конденсатор с осевыми выводами (выводы выходят из противоположных концов конденсатора), полоса может сопровождаться стрелкой, указывающей на отрицательный вывод.

Иногда можно посмотреть на длину проводов как на показатель полярности. Положительный вывод обычно длиннее, но будьте осторожны, если вы повторно используете старые или бывшие в употреблении конденсаторы — выводы могли быть обрезаны.

Танталовые конденсаторы часто обозначаются знаком +. Кроме того, есть и другие конденсаторы, которые не поляризованы, например керамические, полиэфирные, пленочные, полистирольные и бумажные.

Всегда будьте осторожны, пытаясь определить положительный и отрицательный выводы конденсатора.Если вы ошиблись с электролитическим конденсатором и подключили его в обратном направлении, конденсатор все еще может работать, если напряжение на конденсаторах достаточно низкое. Если напряжение на конденсаторах недостаточно низкое, вы можете взорвать крышку (или, что еще хуже), неправильно определив полярность перед установкой.

Для определения полярности в ДИОДАХ:

На диодах в пластиковом корпусе на одном конце диода выбита белая или серебряная полоса, указывающая полярность диода.Стеклянные диоды могут иметь черную полосу. На любом из них положительный ток течет от клеммы, наиболее удаленной от полосы, к клемме, ближайшей к полосе (и блокируется в противоположном направлении). На схематическом чертеже полоса представлена ​​буквой «Т». Полосчатая сторона — это катодная сторона.

Если у вас есть диод в корпусе TO-220, два внешних вывода имеют маркировку «+» или «-».

Наконец, на диодах-шпильках конец с резьбой является катодом, а вывод для пайки — анодом.

Для определения полярности в СИД (светодиодах):

Самый простой способ определить полярность светодиода — это посмотреть на длину проводов. Более длинный вывод — это анод; чем короче катод.

Другой метод, который вы можете использовать, — это поиск плоского пятна на краю светодиода. Плоское пятно указывает катодную сторону лампы.

Полярность

— learn.sparkfun.com

Добавлено в избранное Любимый 43 год

Что такое полярность?

В области электроники полярность указывает, является ли компонент схемы симметричным или нет.Неполяризованный компонент — деталь без полярности — может быть подключен в любом направлении и по-прежнему работать так, как должен. Симметричный компонент редко имеет более двух выводов, и каждый вывод компонента эквивалентен. Вы можете подключить неполяризованный компонент в любом направлении, и он будет работать точно так же.

Поляризованный компонент — деталь с полярностью — может быть подключен к цепи только в одном направлении.Поляризованный компонент может иметь два, двадцать или даже двести контактов, и каждый из них имеет уникальную функцию и / или положение. Если поляризованный компонент был неправильно подключен к цепи, в лучшем случае он не будет работать должным образом. В худшем случае неправильно подключенный поляризованный компонент будет дымить, искры и быть очень мертвой деталью.

Ассортимент поляризованных компонентов: батареи, интегральные схемы, транзисторы, регуляторы напряжения, электролитические конденсаторы и диоды, среди прочего.

Полярность — очень важная концепция, особенно когда речь идет о физическом построении цепей. Включаете ли вы детали в макет, припаиваете их к печатной плате или вшиваете их в проект электронного текстиля, очень важно уметь идентифицировать поляризованные компоненты и соединять их в правильном направлении. Так вот для чего мы здесь! В этом руководстве мы обсудим, какие компоненты имеют полярность, а какие нет, как определить полярность компонентов и как проверить некоторые компоненты на полярность.

Рассмотрите возможность чтения

Если ваша голова еще не кружится, возможно, можно безопасно прочитать оставшуюся часть этого руководства. Полярность — это концепция, которая основывается на некоторых концепциях электроники более низкого уровня и усиливает некоторые другие. Если вы еще этого не сделали, подумайте о том, чтобы ознакомиться с некоторыми из приведенных ниже руководств, прежде чем читать это.

Что такое схема?

Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

Как использовать макетную плату

Добро пожаловать в чудесный мир макетов. Здесь мы узнаем, что такое макетная плата и как с ее помощью построить вашу самую первую схему.

Как пользоваться мультиметром

Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

Полярность диодов и светодиодов

Примечание: Мы будем иметь в виду поток тока относительно положительных зарядов (т. Е. Обычного тока) в цепи. Диоды

позволяют току течь только в одном направлении, и они всегда поляризованы . У диода два вывода. Положительная сторона называется анодом , а отрицательная — катодом .

Обозначение диодной цепи с маркировкой анода и катода.

Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении. Физически каждый диод должен иметь какую-то индикацию анода или катода. Обычно у диода будет линия рядом с катодным выводом , которая совпадает с вертикальной линией в символе диодной цепи.

Ниже приведены несколько примеров диодов. Верхний диод, выпрямитель 1N4001, имеет серое кольцо возле катода.Ниже на сигнальном диоде 1N4148 используется черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой вывод является катодом.

Обратите внимание на линии на каждом устройстве, обозначающие сторону катода, которые соответствуют линии на изображении выше.

светодиода

LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы. Есть несколько идентификаторов для поиска положительных и отрицательных контактов на светодиодах.Вы можете попробовать найти более длинную ногу , которая должна указывать на положительный анодный штифт.

Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода. Штифт, ближайший к плоскому краю , будет отрицательным катодным штифтом.

Могут быть и другие индикаторы. SMD-диоды имеют ряд идентификаторов анода / катода. Иногда проще всего проверить полярность с помощью мультиметра. Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода.Если светодиод горит, положительный датчик касается анода, а отрицательный датчик касается катода. Если он не загорается, попробуйте поменять местами зонды.

Полярность крошечного желтого светодиода для поверхностного монтажа проверяется с помощью мультиметра. Если положительный вывод касается анода, а отрицательный — катода, светодиод должен загореться.


Диоды, конечно же, не единственный поляризованный компонент. Есть масса деталей, которые не будут работать при неправильном подключении.Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.

Полярность интегральной схемы

Интегральные схемы (ИС)

могут иметь восемь или восемьдесят контактов, и каждый контакт на ИС имеет уникальную функцию и положение. При использовании микросхем очень важно соблюдать полярность. Есть большая вероятность, что они задымятся, растают и испортятся при неправильном подключении.

ИС со сквозным отверстием обычно поставляются в двухрядном корпусе (DIP) — два ряда выводов, каждый с интервалом 0.1 дюйм шириной, достаточной для того, чтобы охватить центр макета. Микросхемы DIP обычно имеют выемку , чтобы указать, какой из множества контактов является первым. Если не выемка, на ИС может быть вытравленная точка в корпусе рядом с контактом 1.

ИС с точкой и меткой для обозначения полярности. Иногда вы получаете и то, и другое, иногда только одно или другое.

Для всех корпусов ИС номера выводов последовательно увеличиваются при перемещении против часовой стрелки от вывода 1.

ИС для поверхностного монтажа могут иметь QFN, SOIC, SSOP или ряд других форм-факторов. Эти микросхемы обычно имеют точку точек, рядом с контактом 1.

ATmega32U4 в корпусе TQFP, рядом с распиновкой таблицы данных.

Конденсаторы электролитические

Не все конденсаторы поляризованы, но когда они поляризованы, очень важно не перепутать полярность.

Керамические конденсаторы — маленькие (1 мкФ и менее), обычно желтые, — имеют поляризацию , а не .Вы можете придерживаться их любым способом.

Керамические конденсаторы со сквозным отверстием и SMD 0,1 мкФ. Они НЕ поляризованы.

Колпачки электролитические (в них есть электролиты), похожие на консервные банки, поляризованы . Отрицательный штифт крышки обычно обозначается отметкой «-» и / или цветной полосой вдоль банки. У них также может быть более длинная положительная ветвь .

Ниже приведены электролитические конденсаторы 10 мкФ (слева) и 1 мФ, на каждом из которых есть символ тире, обозначающий отрицательный полюс, а также более длинный положительный полюс.

Подача отрицательного напряжения на электролитический конденсатор в течение длительного времени приводит к кратковременному, но катастрофическому отказу. Они сделают pop , и верхняя часть крышки либо вздувается, либо лопается. С этого момента крышка будет практически мертвой, действуя как короткое замыкание.

Другие поляризованные компоненты

Батареи и блоки питания

Правильная полярность в вашей цепи начинается и заканчивается правильным подключением источника питания.Независимо от того, получает ли вы питание от настенной бородавки или от LiPo батареи, очень важно убедиться, что вы случайно не подключили их обратно и случайно не подали 9 В или 4,2 В.

Любой, кто когда-либо заменял батарейки, знает, как определить их полярность. На большинстве батарей положительные и отрицательные клеммы обозначаются символом «+» или «-». В других случаях это может быть красный провод для положительного и черный провод для отрицательного.

Ассортимент аккумуляторов.Литий-полимерный, плоская ячейка, 9 В щелочной, AA щелочной и AA NiMH. У каждого есть способ представить положительные или отрицательные клеммы. Блоки питания

обычно имеют стандартный разъем, который обычно должен иметь полярность. У бочкообразного домкрата, например, два проводника: внешний и внутренний; внутренний / центральный провод обычно является положительной клеммой. Другие разъемы, такие как JST, имеют ключ и , поэтому вы просто не можете подключить их задним ходом.

Для дополнительной защиты от обратной полярности источника питания вы можете добавить защиту от обратной полярности с помощью диода или полевого МОП-транзистора.

Транзисторы, полевые МОП-транзисторы и регуляторы напряжения

Эти (традиционно) трехконтактные поляризованные компоненты объединяются вместе, потому что они имеют одинаковые типы корпусов. Транзисторы со сквозным отверстием, полевые МОП-транзисторы и регуляторы напряжения обычно поставляются в корпусах TO-92 или TO-220, как показано ниже. Чтобы определить, какой вывод является каким, найдите плоский край на корпусе TO-92 или металлический радиатор на TO-220 и сопоставьте его с выводом в таблице данных.

Выше транзистор 2N3904 в корпусе TO-92, обратите внимание на изогнутые и прямые края.Регулятор 3,3 В в корпусе ТО-220, обратите внимание на металлический радиатор сзади.

и т. Д.

Это лишь верхушка айсберга поляризованных компонентов. Даже неполяризованные компоненты, такие как резисторы, могут поставляться в поляризованных корпусах. Блок резисторов — группа из пяти или около того предварительно установленных резисторов — является одним из таких примеров.

Блок поляризованных резисторов. Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце. Точка представляет собой первый общий штифт.

К счастью, каждый поляризованный компонент должен каким-то образом сообщать вам, какой контакт какой.Обязательно всегда читайте спецификации и проверяйте корпус на наличие точек или других маркеров.

Ресурсы и дальнейшее развитие

Теперь, когда вы знаете, что такое полярность и как ее определить, почему бы не ознакомиться с некоторыми из этих руководств по теме:

  • Основные сведения о разъемах — существует ряд разъемов, которые имеют собственную полярность. Обычно это отличный способ убедиться, что вы не подаете питание или какой-либо другой сигнал в обратном направлении.
  • Диоды — наш яркий пример полярности компонентов. В этом руководстве подробно рассказывается, как работают диоды и какие типы диодов существуют.
  • LilyPad Design Kit Эксперимент 1. Схемы существуют не только на макетных и печатных платах, вы также можете вшивать их в рубашки и другие ткани! Ознакомьтесь с руководствами по LilyPad Design Kit, чтобы узнать, как начать работу. Знание полярности очень важно для правильного подключения этих светодиодов.

Полярность конденсатора

для различных типов в зависимости от его маркировки

Полярность конденсатора

— важный момент, который следует учитывать при подключении.Существуют различные конденсаторы, некоторые из них «поляризованные», а некоторые относятся к категории «неполяризованных». Оба типа имеют «два терминала». Разница между этими двумя типами конденсаторов очень проста. Если рассматриваемые конденсаторы поляризованы, то клеммы, классифицируемые как «анод» и «катод». Они должны быть подключены с учетом полярности источника питания. Если рассматриваемые конденсаторы неполяризованные. Эти конденсаторы можно подключать без учета полярности.

Конденсаторы изначально классифицируются на основе значения емкости. Если емкость фиксированная, они классифицируются как «фиксированные конденсаторы». Если емкость переменная, то они классифицируются как «переменные конденсаторы». Эти фиксированные конденсаторы подразделяются на «поляризованные» и «неполяризованные». Каждый тип конденсатора выбирается исходя из требований к емкости.

Что такое полярность конденсатора?

Конденсатор, состоящий из выводов, имеющих определенные значения напряжения, которые могут быть положительными или отрицательными.Классификация клемм этого типа приводит к определению конденсатора с полярностью или без полярности.

Символ поляризованного конденсатора

Приведенное выше символическое представление также известно как схема полярности конденсатора.

Как определяется полярность конденсатора?

Есть несколько способов определения полярности конденсаторов. Один из них — «Маркировка» конденсаторов.

  • У некоторых конденсаторов высота клемм может быть разной.
  • На неполяризованном изображении упоминается как «NP» и «BP».
  • Некоторые из них помечены знаком «Позитив». В некоторых случаях стрелки играют жизненно важную роль в определении полярности конденсаторов.

Выше приведены некоторые способы определения полярности конденсатора. Клемма с положительной полярностью известна как Анод , а другая клемма — Катод .

Керамический конденсатор

Это наиболее популярные конденсаторы из-за их «малых размеров».Кроме того, когда нам требуется конденсатор с большей емкостью для хранения зарядов, предпочтение отдается керамическим конденсаторам. Этот компонент разработан с использованием пары электродов для проводимости. Эта пара разделена средой из непроводящего керамического материала, называемого диэлектриком. Это набор конденсаторов, который относится к категории неполяризованных конденсаторов.

Керамический конденсатор

Следовательно, он не имеет полярности. Это обеспечивает гибкость подключения этого конденсатора в схему.

Пленочный конденсатор

Даже эти конденсаторы не имеют полярности. В зависимости от конструкции они подразделяются на различные типы. Эти типы также не обладают никакой полярностью.

Пленочный конденсатор

Электролитический конденсатор

Обсуждаемые выше конденсаторы считаются «конденсатором без полярности». Эти конденсаторы определяются по маркировке. Наличие полосы указывает на то, что конкретный терминал является отрицательным.В типе «Осевой» предусмотрена стрелка для определения наличия отрицательного вывода в конденсаторе. Это также указывает направление потока заряда в соответствующем конденсаторе.

Если вы могли наблюдать несколько конденсаторов, у некоторых конденсаторов положительный вывод длиннее, чем отрицательный. Танталовый конденсатор, который относится к категории электролитических конденсаторов, на его выводах можно определить по присутствующему на нем значку плюса.

Неполяризованные конденсаторы можно подключать без каких-либо проблем с идентификацией клемм перед подключением. Но поляризованные должны быть связаны с вниманием, потому что это может привести к повреждению схемы. Даже это приводит к перегреву контура.

Маркировка полярности конденсаторов

Маркировка на конденсаторах помогает определить полярность.

  1. Полярность на большом конденсаторе.

Индикация полярности конденсатора

Индикация «плюс» рядом с выводом указывает, что соответствующий вывод является положительным.Итак, он считается анодом. Другой вывод следует рассматривать как катод.

  1. Полярность конденсатора можно определить по стрелке.

Полярность конденсатора по стрелке

Стрелка, указывающая на клемму, считается отрицательной.

Это процесс, описанный в «Идентификации полярности конденсатора», который может быть выполнен. Но для неполяризованных конденсаторов должна быть какая-то идентификация. В случае неполяризованных конденсаторов он обозначен как NP на конденсаторе, например NPA или NPR, где NP означает неполяризованный, A означает осевой, а R означает радиальный.

Следовательно, существуют различные способы определения полярности конденсатора. Во время изготовления на нем могут быть обозначения. Некоторые конденсаторы даже отмечены полосой. Тем не менее, необходимо соблюдать осторожность при фиксации этого в схемах. Какие из перечисленных выше конденсаторов вы предпочитаете поляризованные или неполяризованные для высоковольтных устройств?

Конструкция, классификация и ее применение

Конденсатор — это электронный компонент, который накапливает энергию в электрической форме при зарядке и также известен как двухконтактный пассивный компонент или конденсатор, измеряемый в фарадах (F).Он состоит из двух металлических параллельных пластин, разделенных зазором, заполненным диэлектрической средой. Они подразделяются на 3 типа: конденсатор постоянной емкости, поляризованный конденсатор и конденсатор переменной емкости. Если конденсатор постоянной емкости имеет фиксированное значение емкости, поляризованный конденсатор имеет две полярности («+ ve» и «-ve»), а в конденсаторе переменной емкости значение емкости может быть изменено в зависимости от применения. В этой статье дается обзор полярности конденсатора и его типов.

Что такое полярность конденсатора?

Определение: Конденсатор — это пассивный элемент, который накапливает в себе небольшой заряд.Они подразделяются на два типа: один представляет собой поляризованный конденсатор (конденсатор, полярность которого указывается), а другой — неполяризованный конденсатор (конденсатор, полярность которого не указана). Он состоит из 2 выводов, которые представлены как анод (+) и катод (-), как показано на схеме ниже. Если емкость конденсатора имеет фиксированную полярность, он подключается в соответствии с направлением полярности цепи.


Поляризованные и неполяризованные конденсаторы

Эквивалентная схема конденсатора

Идеальный конденсатор состоит из двух металлических пластин, разделенных расстоянием «d».Промежуток между конденсаторами заполнен диэлектрической средой, которая действует как изолятор. Такая конструкция делает конденсатор идеальным конденсатором. Но в реальном мире невозможно получить идеальный конденсатор из-за тока утечки, когда ток течет через конденсатор. Поэтому мы строим эквивалентную схему конденсатора, соединяющего последовательный резистор «R серии » и резистор утечки «R утечки », как показано ниже.

Цепь конденсатора

Идентификация полярности конденсатора

Полярность конденсаторов можно определить несколькими способами, как показано ниже.

По высоте выводов конденсатора мы можем определить, какая полярность — отрицательная, а какая — положительная. Конденсатор, вывод которого длиннее, является выводом положительной полярности или анодом, а конденсатор, вывод которого короче, является выводом отрицательной полярности или катодом.

Если конденсатор не поляризован, мы можем подключать его в любом направлении. Мы можем легко определить, является ли он неполяризованным, просмотрев метки NP и BP на конденсаторе. Для некоторых конденсаторов на компоненте есть положительные символы «+» и «-».

Конденсаторы полярности

Примеры полярности конденсатора

Примеры полярности конденсатора включают следующее.

Большой конденсатор

На рисунке ниже мы можем наблюдать знак DOT возле вывода, который является выводом положительной полярности, также известным как анод, а другой вывод называется выводом отрицательной полярности, известным как катод. Стрелки на конденсаторе — еще одно обозначение полярности.

Большой конденсатор
Конденсатор, изображающий стрелку

На рисунке мы можем увидеть стрелку черного цвета, указывающую на клемму, это клемма отрицательной полярности.

Стрелка

Типы неполярных конденсаторов

Конденсаторы, полярность которых не указана, являются неполярными. Он может быть подключен любым способом на печатной плате (PCB). Существуют различные типы неполярных конденсаторов, например

. Среди них наиболее часто используемые конденсаторы — керамический конденсатор и пленочный конденсатор.

Керамический конденсатор

Керамический конденсатор имеет постоянное значение емкости и изготовлен из материала, называемого керамикой.Он также известен как диэлектрический материал (диэлектрический материал не позволяет току свободно проходить через него). Как правило, керамический конденсатор состоит из множества чередующихся слоев керамики с металлическим слоем между ними (где металлы, используемые в конденсаторе, действуют как электроды). Имеющиеся 2 электрода имеют положительную и отрицательную полярность.

Керамический тип

Керамический конденсатор подразделяется на два класса, где керамический конденсатор класса 1 имеет высокую стабильность и низкие потери, а керамический конденсатор класса 2 имеет высокую буферную эффективность для объемных, байпасных и связанных приложений.Эти конденсаторы доступны в различных формах и размерах. Они относятся к категории неполяризованных конденсаторов, которые можно подключать к печатной плате любым способом.

Пленочный конденсатор

Пленочный конденсатор также называют пластиковым конденсатором или пластиковым пленочным конденсатором, полимерным пленочным конденсатором. Они построены из двух пластиковых пленок, по которым металлические электроды помещены внутри цилиндрической обмотки и герметизируются. Они подразделяются на два типа: конденсаторы из металлической фольги и конденсаторы из металлизированной пленки.Преимущество пленочного конденсатора заключается в его конструкции и используемом пленочном материале. Это конденсаторы неполярной категории, которые можно подключать на печатной плате любым способом.

Пленочный конденсатор
Электролитический конденсатор

Электролитический конденсатор — это поляризованный конденсатор, который состоит из катода и анода. Анод представляет собой металл, который при анодировании образует диэлектрический материал, а катод представляет собой твердый, жидкий или гелевый электролит, окружающий анод. Благодаря такой конструкции электролитический конденсатор имеет очень высокое значение емкости-напряжения на аноде.Они используются там, где входной сигнал имеет более низкую частоту и сохраняет большую энергию. Обычно он строится двумя способами.

Электролитические конденсаторы поляризованы своей асимметричной конструкцией. Они работают с напряжением выше, чем напряжение других конденсаторов. Полярность различается как «+», что означает анод, и «-», что означает катод. Если приложенное напряжение больше 1 или 1,5 В, конденсатор выходит из строя.

Электролитические конденсаторы

Преимущества

Ниже приведены преимущества

  • Снижает энергопотребление в цепи
  • Занимает меньшую площадь
  • Защищает цепь от повреждений.

Недостатки

Ниже приведены недостатки

  • Меньший срок службы
  • Если приложенное напряжение превышает емкость конденсатора, конденсатор может выйти из строя.
  • Подключен с соблюдением полярности
  • Очень чувствителен к внешней среде.
Приложения

Ниже приведены приложения

FAQs

1). Что такое конденсатор?

Конденсатор — это устройство, которое накапливает в себе небольшой заряд.

2). Классификация конденсаторов?

Конденсатор подразделяется на 2 типа: поляризованный конденсатор и неполяризованный конденсатор.

3). Разница между поляризованными и неполяризованными конденсаторами?

Конденсатор, полярность которого указана на компоненте, является поляризованным конденсатором. Эти типы конденсаторов подключаются в зависимости от направления цепи, а конденсатор, полярность которого не указана на компоненте, является неполяризованным конденсатором.Конденсаторы такого типа можно подключать к печатной плате в любом направлении.

4). Какие примеры неполяризованных конденсаторов?

Ниже приведены примеры неполярных конденсаторов, это

  • керамический конденсатор
  • серебряный слюдяной конденсатор
  • полиэфирный конденсатор
  • полистирольный конденсатор
  • стеклянный конденсатор
  • пленочный конденсатор.

5). Какие примеры поляризованных конденсаторов?

Электролитический конденсатор — лучший пример поляризованных конденсаторов, они в основном используются для обеспечения высокого напряжения.

Таким образом, конденсатор — это электронный компонент, который хранит в себе небольшой заряд. Они подразделяются на 2 типа поляризованных конденсаторов и неполяризованные конденсаторы. Определенную полярность конденсатора можно определить по высоте конденсатора, меткам NP и BP, символам «+» и «-» и стрелкам на конденсаторах. Конденсаторы в основном используются для предотвращения утечки тока в цепи.

Чего нельзя делать с крышками

Неправильное использование конденсаторов

Недавно мы опубликовали заметку о схеме конденсатора и, как всегда, получили много отличных отзывов от наших читателей.Чтобы ответить на ваши вопросы, мы попросили нашу службу технической поддержки рассказать нам о конденсаторах. Они поделились некоторыми ценными знаниями и рассказами из своего личного опыта. Тем временем наша команда по маркетингу продуктов решила, что показать вам, что именно происходит, когда вы меняете полярность конденсатора или подвергаете конденсатор воздействию перенапряжения, будет отличной возможностью для обучения.

Что такое конденсаторы и как они работают?

Конденсатор — это пассивный электрический компонент с двумя выводами.По сути, это два проводника, обычно с проводящими пластинами, разделенные изолятором, известным как диэлектрик. Он также имеет соединительные провода, которые подключаются к токопроводящим пластинам. Диэлектрик определяет тип конденсатора. Диэлектрический материал может быть разным, но он должен быть плохим проводником электричества.

Конденсатор предназначен для хранения энергии. Отрицательный вывод принимает электроны от источника питания, а положительный вывод теряет электроны. При необходимости конденсатор высвобождает накопленную энергию.Он работает аналогично аккумулятору, но может полностью разрядить его за доли секунды.

Обычными типами конденсаторов являются керамические конденсаторы, бумажные или пленочные конденсаторы и электролитические конденсаторы. Существует также семейство суперконденсаторов с высокой емкостью.

Применение конденсатора

:

Конденсаторы имеют множество применений. Они играют решающую роль в цифровой электронике, поскольку защищают микрочипы от шума в сигнале питания за счет развязки. Поскольку они могут быстро сбросить весь свой заряд, они часто используются во вспышках и лазерах вместе с настраиваемыми схемными устройствами и емкостными датчиками.Цепи с конденсаторами демонстрируют частотно-зависимое поведение, поэтому их можно использовать со схемами, которые выборочно усиливают определенные частоты.

Выбор конденсатора:

Выбор конденсатора во многом зависит от электронного устройства, с которым вы работаете, и от того, какой ток используется (переменный, постоянный и т. Д.). Вы должны определить, нужен ли вам поляризованный или неполяризованный конденсатор. Для этого проверьте схему вашего проекта. Если конденсатор обозначен знаком плюс (+), то требуется поляризованный конденсатор.(-6), или одна миллионная фарада.

Напряжение конденсатора пропорционально заряду, накопленному в конденсаторе. Они способны блокировать сигналы постоянного тока при прохождении переменного тока. Конденсаторы также могут устранить рябь. Если линия, по которой проходит постоянное напряжение, имеет пульсации, конденсатор может выровнять напряжение, поглощая пики и заполняя впадины.

Напряжение на конденсаторе — это не номинал, а то, какое напряжение вы можете подвергнуть конденсатору. Например, если ваш источник напряжения составляет 9 вольт, вы должны выбрать конденсатор, который как минимум в два раза больше напряжения, 18 вольт или даже 27 вольт, чтобы быть в безопасности.

Переменный ток или биполярные электролитические конденсаторы имеют два анода, подключенных с обратной полярностью. Электролитические конденсаторы постоянного тока поляризованы в процессе производства и поэтому могут работать только с постоянным напряжением. Напряжение с обратной полярностью, напряжение или пульсирующий ток выше, чем указано, могут разрушить диэлектрик и конденсатор. Разрушение электролитических конденсаторов может иметь катастрофические последствия, такие как пожар или взрыв. Если поляризованный конденсатор установлен неправильно, конденсатор со свистом взрывается.С другой стороны, неполяризованные конденсаторы в основном используются для фильтрации гармонических шумов почти в каждой цепи, более удобны в обращении.

«Некоторые большие электролитические конденсаторы могут сохранять заряд в течение длительного времени. Некоторые могут даже до некоторой степени заряжаться самостоятельно», — пояснил инженер технической поддержки Jameco. «Инженер-электронщик, с которым я работал, создавал прототип источника питания, настраивал схему, тестировал детали и т. Д. По своей привычке он вынул заглушку из схемы, чтобы заменить ее, и, не задумываясь, воткнул один из выводов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*