Что такое вакуум и где мы его используем
В самом строгом смысле вакуум — это область пространства, в которой полностью отсутствует материя. Этот термин представляет собой абсолютную пустоту, и главная его проблема заключается в том, что он описывает идеальное состояние, которое не может существовать в реальном мире. Еще никто не нашел способа создать идеальный вакуум такого типа в земных условиях, и по этой причине термин также используется для описания пустых областей космоса. Но вакуум все же есть и в областях, находящихся чуть ближе к нашей повседневной жизни. Рассказываем, что это такое, простыми словами.
В большинстве случаев вакуум — это емкость, из которой максимально удалены все газы, в том числе воздух. Космическое пространство, действительно, наиболее близко к идеальному вакууму: астрономы считают, что пространство между звездами в некоторых случаях состоит не более чем из одного атома или молекулы на кубический километр.
Ни один вакуум, производимый на Земле, даже близко не подходит к этому условию
Чтобы поговорить о «земном вакууме», необходимо вспомнить о давлении. Давление возникает в результате воздействия молекул в газе или жидкости на их окружение, обычно на стенки вмещающего сосуда, будь то бутылка газировки или ваша черепная коробка. Величина давления зависит от силы ударов, которые молекулы «наносят» по определенной территории, и измеряется в «ньютонах на квадратный метр» — эта единица измерения имеет специальное название «паскаль».
Соотношение между давлением (p), силой (F) и
В целом, несмотря на то что определение вакуума неточно, обычно под ним понимается давление ниже, а часто и значительно ниже атмосферного. Вакуум образуется при удалении воздуха из замкнутого пространства, в результате которого возникает перепад давления между этим пространством и окружающей его атмосферой. Если пространство ограничено подвижной поверхностью, атмосферное давление будет сжимать ее стенки вместе — величина удерживающей силы зависит от площади поверхности и уровня вакуума. По мере удаления все большего количества воздуха перепад давления увеличивается, и потенциальная сила вакуума также становится больше.
Поскольку удалить все молекулы воздуха из контейнера практически невозможно, невозможно добиться и идеального вакуума
В промышленных и домашних масштабах (например, если вы решили убрать в вакуумные пакеты зимний пуховик) эффект достигается за счет вакуумных насосов или генераторов разных размеров, которые и удаляют воздух. Насос, состоящий из поршня в цилиндре, прикреплен к закрытой емкости, и с каждым ходом насоса часть газа из баллона удаляется. Чем дольше работает насос, тем лучше создается разрежение в емкости.
Каждый, кто когда-либо откачивал воздух из пакета для хранения одежды, отжимал крышку пластикового контейнера, чтобы выпустить воздух из емкости, или ставил банки (а также ходил на вакуумный массаж), сталкивался в своей жизни с вакуумом. Но, конечно, самый распространенный пример его использования — это обычный бытовой пылесос. Вентилятор пылесоса постоянно удаляет воздух из канистры, создавая частичный вакуум, а атмосферное давление снаружи пылесоса выталкивает воздух в канистру, забирая с собой пыль и грязь, взбалтываемые щеткой в передней части пылесоса.
Еще один пример — это термос. Термос состоит из двух бутылок, вложенных друг в друга, и пространство между ними представляет собой вакуум. В отсутствие воздуха тепло не проходит между двумя бутылками так легко, как это было бы в нормальном состоянии. В результате горячие жидкости внутри контейнера сохраняют тепло, а холодные жидкости остаются холодными, потому что тепло не может в них проникнуть.
Итак, уровень вакуума определяется перепадом давления между внутренним пространством и окружающей атмосферой. Двумя основными ориентирами во всех этих измерениях являются стандартное атмосферное давление и идеальный вакуум. Для измерения вакуума можно использовать несколько единиц, но общепринятая метрическая единица — миллибар, или мбар. В свою очередь, атмосферное давление измеряется барометром, который в простейшем варианте состоит из откачанной вертикальной трубки с закрытым верхним концом и нижним концом, находящимся в контейнере со ртутью, открытом для атмосферы.
Давление атмосферы действует на открытую поверхность жидкости, заставляя ртуть подниматься в трубку. «Нормальным» атмосферным давлением называется давление, равное весу ртутного столба высотой 760 мм, находящегося при температуре 0.0 °C, на широте 45° и на уровне моря.
Уровень вакуума можно измерить несколькими типами манометров:
Манометр с трубкой Бурдона является компактным и наиболее широко используемым устройством — измерение основано на деформации изогнутой эластичной трубки при приложении вакуума к отверстию манометра.
Электронным аналогом является вакуумный датчик. Вакуум или давление отклоняют эластичную металлическую диафрагму в датчике, и это отклонение изменяет электрические характеристики взаимосвязанной схемы — в итоге мы получаем электронный сигнал, который представляет уровень вакуума.
Манометр с U-образной трубкой показывает разницу между двумя давлениями. В простейшем виде этот манометр представляет собой прозрачную U-образную трубку, наполовину заполненную ртутью. Когда оба конца трубки находятся под атмосферным давлением, уровень ртути в каждом колене одинаков. Приложение вакуума к одной стороне заставляет ртуть в ней подниматься и опускаться с другой стороны — разница в высоте между двумя уровнями и показывает уровень вакуума.
На шкалах большинства манометров❓Приборы для измерения давления газа и жидкостей в замкнутом пространстве. атмосферному давлению присвоено нулевое значение, следовательно, измерения вакуума всегда должны быть меньше нуля.
Анна Веселко
Теги
#наука
#давление
#космос
#пространство
#просто о сложном
#газ
#воздух
#вакуум
ВАКУУМ: КОСМОС, ПРОСТРАНСТВО И ВРЕМЯ
Многие из нас не понимают природу вакуума и до сих пор считают, что вакуум – это просто ничто, пустота, пространство, лишенное материи и молекул. Вакуум как Пустота, такое понятие существовало еще в средние века и вызывало большой интерес среди ученых того времени.
В Средние века католическая церковь запрещала все исследования, связанные с пустотой, так как провозглашала это понятие священным. В 1211 году Уставом Парижского Собора заниматься “пустотой” было разрешено только теологам. Натурфилософы не имели такого права. Одним из главных постулатов теологии был: “Природа боится Пустоты”.
В 1640 году итальянский ученый Галилео Галилей, занятый в то время проектированием и строительством колодцев во Флоренции, определил “Силу боязни Пустоты” и показал, что она составляет 10 метров водяного столба или 1 кг на см2. Кто бы мог подумать, что на данном принципе будет построена аэрация водоемов и выбор насос компрессоров для пруда.
В 1643 году Эвангиелисто Торичелли, ученик Галилея, измерил эту силу, используя стеклянную трубку, запаянную с одного конца, и показал, что эта сила уравновешивается столбом ртути высотой 760 мм. Пустое пространство под поверхностью ртути было названо “Торригеллева пустота”, так как считали его абсолютно пустым. Сейчас мы знаем, что это пространство заполнено парами ртути с давлением около 1,2х10-3 мм. рт.ст (или 1,6х10-1 Па). Позже единица давления в 1 мм.рт.ст была названа тором в честь Торичелли. Большинство средств измерений вакуума, вакуумных датчиков, их диапазоны измерений указывается в торах. Более подробно с единицами измерения вакуума можно ознакомиться в технической статье по вакуумным датчикам.
В 1648 году Блез Паскаль открыл, что “Сила боязни Пустоты” была ничем иным, как атмосферным давлением. Сначала он повторил опыты Торичелли с трубкой и ртутью. Затем он попросил своего свояка Флорена Перье повторить этот эксперимент сначала у подножья горы Пюи де Дом, а затем на вершине. Эксперимент был проведен в присутствии горожан города Клермона 16 сентября 1648 года и показал разницу уровней столба ртути 82,5 мм для высоты 1,5 км. Паскаль был первым, кто доказал, что атмосферные газы создают давление. В честь этого открытия современная единица давления названа Паскалем (1 Па = 0,0076 тор). Вся вакуумная техника, характеристики вакуумных насосов, а точнее значение уровня вакуума указывается по системе измерений СИ в Паскалях.
В 1650 году Отто фон Герике, мэр города Магдебурга, сконструировавший первый воздушный насос с водяным уплотнением, осуществил свои знаменитые эксперименты с “Магдебургскими полушариями”.
В 1825 году Жан Батист Дюма, французский химик получил низкое давление путем конденсации паров воды в закрытом объеме. В 1835 году Роберт Бунзен, немецкий химик, получил вакуум с использованием струи жидкости, но все эти изобретения не использовались на практике, так как в них не было технической потребности.
Далее выяснилось, что полной пустоты в природе не существует. Ее нет даже там, где совершенно отсутствует какое бы то ни было вещество. В XVIII столетии Фарадей утверждал, что материя присутствует везде, и нет промежуточного пространства, не занятого ею.
В 1887 году русские ученые Столетов и Герц открыли явление фотоэлектронной эмиссии. Эти выдающиеся технические открытия заложили техническую и экономическую основу для бурного развития вакуумных технологий в мире.
В 1874 году шотландец Мак Леод изобрел компрессионный манометр, а итальянец Пирани – манометр сопротивления, позволяющие измерять давления в низком и среднем вакууме.
В 1884 году итальянский инженер Малиньяни впервые использовал сорбент (фосфор) для улучшения вакуума в электрической лампе. Зарождение идеи создания адсорбционных и геттерных вакуумных насосов.
В 1904 году француз Дюар впервые использовал активированный уголь, охлажденный жидким азотом для сорбции (откачки) газов. Всем известные сосуды Дюара для хранения жидкого азота.
В 1906 году немецкий инженер Геде изобрел вращательный ртутный, а затем вращательный масляный насосы. Пять лет позже он изобрел молекулярный вращательный насос. Потом появились современные турбомолекулярные насосы.
В период с 1914 по 1916 гг. парортутный диффузионный насос был практически одновременно изобретен в трех странах, разделенных границами Первой Мировой войны: в России – профессор Боровиком, в Германии – Геде, во Франции – Ленгмюром.
В 1916 году американский ученый Бакли изобрел ионизационный манометр. В 1928 году Берч изобрел паромасляный диффузионный насос, в котором ртуть была заменена маслом.
Фундаментальные основы вакуумной техники были созданы в начале ХХ века теоретическими работами Дешмана (Америка), Ленгмюра (Франция), Кэмпбелла (Англия), Кнудсена (Голландия), а также русскими учеными – академиком Иоффе и профессором Богуславским.
В настоящее время без вакуума не обходится ни одна сфера науки и промышленности. Испытания в вакууме, термовакуумные испытания, исследования физики вакуума, возникновения вселенной. Более подробно области применения вакуума описаны в статье, применение вакуума в науке и промышленности.
Вернемся к описанию вакуума, пространства и времени. Абсолютно любая область космического пространства всегда заполнена если не веществом, то какими-либо другими видами материи, будто магнитными полями, влиянием гравитации, излучениями и другими полями. Большая часть космоса состоит из темной материи и энергии, 96% космоса и только 4 % скопления газа и звезды. Состав и природа темной материи на настоящий момент не известны.
Подумайте только, вообразите себе на минуту, что нам каким-то образом удалось совершенно опустошить некоторую область пространства, откачать воздух и удалить из вакуумного объема вакуумной камеры все частицы, излучения и поля. Так вот даже в этом случае все равно осталось бы «Нечто». Определенный запас энергии, который у вакуума нельзя отобрать никакими способами. Что говорить о существовании неизведанной темной материи. Но человечество любопытно в своих стремлениях, и кто знает, какие ждут нас открытия в будущем.
Обнаружились неожиданные и интересные факты. Оказалось, что вакуум способен рождать элементарные частицы, порождать вещество. Мало того, с самим вакуумом могут происходить различные физические превращения, он способен взаимодействовать с чем-то и даже сам с собой.
Помню, учась в институте на первом курсе кафедры, нам преподавали основы вакуумной техники, отец меня спросил, решив поймать на вопросе: скажи мне, а существует Эхо в вакууме? Я задумался, в лесу распространение звука есть, мы слышим его в виде Эхо, а что происходит в вакууме? Я честно признаюсь, я колебался с ответом и не мог ответить на вопрос, но посетили мысли о том, как может звук распространяться в вакууме, ведь нет ничего, от чего он может отражаться.
Вакуум взаимодействует с вакуумом? Значит ли это, что рушится один из самых основных законов природы, закон сохранения материи? Меня часто посещают мысли, вакуум как нечто материальное, особая форма существовании материи, а некоторые ученые предлагают считать ВАКУУМ особым состоянием вещества. Тут больше философский интерес, ведь вакуум представляет собою нечто более универсальное и всеобъемлющее, чем любая другая известная нам форма существования материи. Может быть, вакуум и есть та «протосреда», из которой могут образовываться все другие виды вещества и материи.
В частности, советский ученый высказал интересные гипотезы о том, что вакуум представляет собой не что иное, как бесконечно большой запас энергии одного знака, компенсированный энергией другого знака. Таким образом, вакуум — это как бы совокупность, своеобразное единство противоположностей. Когда же из вакуума образуются другие формы материи, которые и составляют то, что мы называем Вселенной, эти противоположности разделяются. Не исключена возможность, что с подобной точки зрения удастся объяснить такие явления, как образование космических лучей высоких энергий, вспышки сверхзвезд, образование радиогалактик, а также начало расширения галактик.
О том, что ВАКУУМ — НЕ ПУСТОТА, а сложная физическая система, лучше всего свидетельствует открытие одного из самых поразительных явлений — так называемой «поляризации вакуума», к которому пришла квантовая электродинамика.
Квантовая электродинамика, или квантовая теория электромагнитного поля, — один из сравнительно молодых и наиболее сложных разделов современной физики. Она занимается изучением всевозможных взаимодействий фотонов электромагнитного поля с заряженными частицами. Вакуум оказался еще значительно сложнее, чем мы это себе представляли. Но тем интереснее узнавать о нем больше и познавать его.
В вакууме, который рассматривается как особое состояние материи, скрыты не только электроны и позитроны, но и пары «протон—антипротон». Такие пары, если к ним подвести энергию в форме, например, фотонов, становятся реальными: их можно зарегистрировать.
Если в вакууме покоится заряженная частица — протон, то согласно законам квантовой механики вокруг него будут непрерывно рождаться и уничтожаться электроны и позитроны. Создается своеобразная «плазма» наподобие той, которая возникает в газовом разряде. Поэтому вблизи протона вакуум приобретает суммарный отрицательный заряд, а на большом расстоянии от него — суммарный положительный. В результате заряд протона несколько уменьшается — «экранируется». Это и есть поляризация.
Следовательно, частица, оказавшаяся в вакууме, расталкивает вокруг себя заряды, расталкивает «плазму». Именно это обстоятельство и дает возможность наблюдать эффект, о котором идет речь.
Хотя возникающие в «плазме» заряженные частицы «живут» лишь десять в минус двадцать первой степени секунды и наблюдать их нельзя, свойства электронного поля вблизи протона, как уже говорилось, изменяются. Это явление можно наблюдать экспериментально. Однако расчет величины подобного эффекта долгое время наталкивался па непреодолимые трудности. Соответствующие эксперименты были проведены учёными на ускорителях, получив непосредственное опытное подтверждение природы вакуума.
Мне хочется верить в предположение ряда ученых, что в будущем на смену современной физической картине мира, которая базируется на взаимодействие различных полей электромагнитных, гравитационных и других — придет вакуумная картина. Такая картина должна исходить из того, что основой всего во Вселенной является вакуум, а все существующее, по меткому выражению одного известного ученого, не более как «легкая рябь» на его поверхности. Обычное вещество может оказаться в определенном смысле конечным, а суть всех вещей заключаться именно в вакууме.
Еще с появлением теории относительности была обнаружена тесная связь между свойствами материи и свойствами пространства и времени. При этом до сих пор мы исходили из предположения, что определяющую роль играют свойства материи вещества, частицы, полей, а свойства пространства и времени являются вторичными, производными. Однако в принципе не исключена возможность, что в действительности все обстоит наоборот: свойства материи представляют собой не что иное, как проявление определенных геометрических свойств, так сказать, пространственно-временного «каркаса».
Согласно современным физическим воззрениям, реальное пространство Вселенной, в котором мы живем, является «трехмерным» и «односвязным». Первое из этих свойств означает, что в нашем пространстве через одну точку можно провести только три взаимно перпендикулярные прямые линии. Правда, согласно теории относительности Альберта Эйнштейна в природе существует и еще одно, четвертое измерение: Время. Но это четырехмерное «пространство-время» теории относительности фактически является лишь математическим приемом, позволяющим в удобной форме описывать различные физические процессы. Поэтому говорить о том, что мы с точки зрения теории относительности живем в четырехмерном мире, можно лишь в том смысле, что все происходящие в природе события совершаются не только в пространстве, но и во времени.
Есть и зоны, где происходят явления, которые вообще трудно даже себе представить: здесь временная координата меняется ролями с одной из пространственных, время как бы превращается в расстояние, а расстояние — Время.
Разумеется, в любом случае высшим и окончательным судьей истинны или ложности любой теории остается эксперимент. Но, тем не менее, физический анализ способен оказывать весьма существенную помощь при оценке тех или иных ситуаций, складывающихся в процессе изучения природы вакуума и выборе наиболее эффективных путей дальнейшего исследования.
Компания ВАКТАЙМ занимается поставкой специализированных исследовательских комплексов, разработкой научного и инновационного вакуумного оборудования, проектированием сложных вакуумных систем, монтажом вакуумных систем откачки, систем имитации условий космического пространства. Таких как имитация космоса, холодного космического пространства, где температуры могут достигать температур жидкого азота, имитация вакуума и теплового излучения земли, излучения солнца, испытаний объектов в вакууме.
Технические специалисты компании ВАКТАЙМ окажут поддержку и консультацию в вопросах подбора вакуумного оборудования для проведения Ваших исследований, предложат различные варианты компоновок вакуумных систем, посоветуют аналитическое оборудование для определения остаточного состава атмосферы в вакуумной камере, спроектируют и изготовят вакуумные камеры для Ваших задач.
Компания ВАКТАЙМ поставляет и изготавливает вакуумные откачные стенды для создания сверхвысокого вакуума менее 10-11 Паскаля. Сверхвысоковакуумная камера для Ваших исследований и экспериментов в вакууме. Узнайте больше в разделе вакуумные камеры.
Компания ВАКТАЙМ поставляет средства измерения вакуума для низкого и высокого вакуума, в том числе известный вакуумметр итальянского ученого Пирани. В честь этого ученого названы самые распространённые вакуумметры мира. Более подробно вы можете ознакомиться в статье «Cредства измерения вакуума, история вакуумметры».
Какие бы перед Вами задачи в области исследования и применения вакуума не стояли, компания ВАКТАЙМ поможет Вам с решением, предложит необходимые способы реализации с помощью самого современного вакуумного оборудования. Если Вы хотите купить вакуумный насос, купить вакуумный датчик, ищите лучшее предложение по цене и технике, но не знаете цену на вакуумный насос, позвоните нашим инженерам и мы поможем подобрать оптимальный вариант для Вас.
экспериментальной физики — Удалось ли нам создать идеальный вакуум?
Как сказал Зонк, идеального вакуума не бывает. Даже «вакуум» космоса содержит в среднем несколько атомов на кубический метр.
В лаборатории отсутствие высокого вакуума обычно возникает из-за отсутствия насоса, который может эффективно извлекать достаточное количество частиц из камеры, которую вы пытаетесь эвакуировать.
Существует несколько различных типов насосов, в зависимости от того, насколько «хороший» вакуум вы хотите получить: механические форвакуумные насосы, ионные насосы, турбомолекулярные насосы и другие. Каждый работает либо путем переноса частиц газа, либо путем их захвата. Поскольку перенос работает, преимущественно заставляя молекулы газа двигаться в определенном направлении, он не может удалить ВСЕ частицы (как в случае с электронами внутри провода: в среднем вы можете направить ток предпочтительно в направлении приложенного напряжения, но каждый отдельный электрон будет перемещаться). вокруг во все стороны). Улавливающий насос лучше удаляет частицы, но он по-прежнему ограничен тем, сколько материалов они уже захватили и могут насытить.
Даже если бы у нас был идеальный насос, вам все равно нужно было бы следить за тем, что находится внутри камеры или из чего она сделана. Смазка для отпечатков пальцев, цинк (и латунь) и пластик фактически выделяют газ при достаточно высоком вакууме. Это означает, что частицы, которые обычно задерживаются при атмосферном давлении, могут вырваться и загреметь внутри вашего пылесоса, если вы не будете осторожны.
Кроме того, насосы, такие как механические насосы, используют смазочное масло для работы (хотя некоторые более сложные, такие как ионные насосы, не используют), и оно также может попасть в камеру и увеличить количество частиц.
Возможно, это больше, чем вы хотели знать, но вот оно.
Я не думаю, что тег «физика элементарных частиц» является точным. Физика элементарных частиц обычно относится к субатомной физике и включает в себя такие вещи, как кварки, КЭД и бозон Хиггса. Возможно, «экспериментальная физика» была бы лучше?
(Добавлю еще один ответ, так как мой ответ на вопрос Hurricane слишком длинный для комментариев)
Рад, что помог. Ричард Терретт прав, (заряженная) антиматерия заключена в магнитной ловушке в максимально возможном вакууме. Незаряженная антиматерия должна удерживаться с помощью лазерных ловушек («оптический пинцет» — это то, на что стоит обратить внимание, если вам любопытно). 921 молекула. Так что UHV — чертовски хороший пылесос.
Вакуум | Определение и факты
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- В этот день в истории
- Викторины
- Подкасты
- Словарь
- Биографии
- Резюме
- Популярные вопросы
- Инфографика
- Демистификация
- Списки
- #WTFact
- Товарищи
- Галереи изображений
- Прожектор
- Форум
- Один хороший факт
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- Britannica объясняет
В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы. - Britannica Classics
Посмотрите эти ретро-видео из архивов Encyclopedia Britannica. - Demystified Videos
В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы. - #WTFact Видео
В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти. - На этот раз в истории
В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
- Студенческий портал
Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д. - Портал COVID-19
Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня. - 100 женщин
Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.