Изменение вращения трехфазного двигателя: Трехфазный асинхронный двигатель

Содержание

Управление трехфазными двигателями — ООО «СЗЭМО Электродвигатель»

Содержание

  1. Переключение секций обмоток статора на разное число пар полюсов
  2. Частотный способ управления
  3. Изменение напряжения, подводимого к статору
  4. Параметрическое управление

Управление трехфазными двигателями может осуществляться несколькими способами. Мы расскажем о самых распространенных методах и рассмотрим их достоинства и недостатки.

Переключение секций обмоток статора на разное число пар полюсов

Древо- и металлообрабатывающие станки, подъемники и многие другие механизмы работают на разных скоростях и не нуждаются в плавном регулировании. Для управления ими достаточно привода со ступенчатым изменением скорости.

Вы можете обеспечить некоторое количество фиксированных скоростей вращения с помощью многоскоростного короткозамкнутого двигателя, переключая обмотку статора на различное число пар полюсов. Скорость вращения магнитного потока в этом случае изменяется благодаря распределению МДС в расточке статора. Если соотношение пар полюсов составляет 1:2, обмотки каждой из фаз представляют собой две секции. Изменяя направление тока в одной из них, вы измените число пар полюсов в 2 раза.

Частотный способ управления

Этот способ позволяет плавно регулировать скорость в достаточно широких пределах, сохраняя характеристики работы двигателя. Скорость вращения ротора изменяется путем изменения частоты питающего тока и скорости вращения магнитного поля.

Вам понадобится преобразователь частоты, способный преобразовать ток питающей сети 50 Гц в ток регулируемой переменной частоты, который плавно изменяется в широких пределах. Многие частотные преобразователи, выпускаемые современной промышленностью, выполняют векторное или бездатчиковое управление и регулируют выходные частоты в диапазоне 0-800 Гц.

Этот метод управления предполагает использование двух каналов управления – по напряжению и по частоте. При уменьшении частоты с целью сохранения магнитного потока неизменным требуется в то же время снижать уровень напряжения.

Изменение напряжения, подводимого к статору

Чтобы форма механической характеристики двигателя оставалась постоянной, а скорость достигала нужного вам значения, нужно воспользоваться способом изменения напряжения. На обычных двигателях диапазон регулирования скорости не слишком велик. Большего диапазона можно добиться на двигателях повышенного скольжения. Для обеспечения устойчивой работы агрегата необходимо применять замкнутую систему, которая гарантирует стабилизацию скорости.

Когда вы меняете статический момент, система регулирования начинает поддерживать заданный уровень скорости, и одна механическая характеристика переходит в другую. Источником с регулируемым напряжением служат тиристорные преобразователи (обычно функционирующие в импульсном режиме) либо магнитные усилители. Заданную скорость обеспечивает среднее напряжение, поддерживающееся на зажимах статора.

Использование автотрансформаторов с секционными обмотками и трансформаторов для регулирования напряжения на зажимах возможно, но не всегда целесообразно, поскольку эти агрегаты достаточно дороги и не могут обеспечить высокое качество регулирования, к тому же с ними доступно исключительно ступенчатое изменение напряжения. Автотрансформаторы обычно применяют, если необходимо ограничить пусковой ток в мощном двигателе.

Параметрическое управление

Этот способ означает введение добавочного сопротивления в цепи двигателя. Поскольку активное сопротивление цепи статора незначительно влияет на значение критического скольжения, введение в цепь статора дополнительного сопротивления малоэффективно, и такой метод практически не применяется. Если статический момент неизменен, скорость лишь слегка понизится.

Примерно такой же эффект дает введение в цепь статора индуктивного сопротивления. При этом немного уменьшается критическое скольжение, а вот момент двигателя снижается существенно, так как сопротивление увеличивается.

Добавочное сопротивление в цепи статора может ограничить пусковые токи. Тогда дополнительное активное сопротивление обеспечивают тиристоры, а дополнительное индуктивное сопротивление – дроссели.

Такой же незначительный эффект оказывает введение добавочного индуктивного сопротивления в цепь ротора. Гораздо лучше регулирует скорость добавочное активное сопротивление в цепи ротора.

Ввиду всего вышеизложенного, использование способа параметрического управления обосновано в том случае, когда необходимо кратковременное снижение скорости во время технологического процесса, либо если процессы управления скоростью полностью сочетаются с циклом пуска и торможения исполнительного механизма.

Способы регулирования скорости трехфазных двигателей выбираются в зависимости от целей, которые вы преследуете, типа и модели двигателя и рабочего механизма, особенностей технологического процесса и т.д.


Принцип работы асинхронного электродвигателя | Русэлт

Асинхронные электродвигатели – это устройства, главным назначением которых является преобразование энергии переменного электротока в механическую. Своим названием двигатель обязан асинхронному типу вращения ротора относительно частоты вращения магнитного поля, индуцирующего электроток в обмотке статора.

Принцип работы на примере асинхронного электродвигателя трехфазного тока

Этот тип электрического двигателя наиболее часто применяется в различных сферах промышленности. Двигатель имеет 3-и обмотки на статоре, со смещением на 120 градусов. Обмотки запитаны переменным током и объединены по схеме «звезда» или «треугольник». При подаче напряжения на обмотку статора во всех трёх фазах появится магнитный поток.

Вместе с изменением частоты напряжения на обмотке статора, изменяется и магнитный поток. Фазы и магнитные потоки смещены относительно друг друга на сто двадцать градусов. Суммарный магнитный поток и будет вращающимся магнитным потоком, создающим электродвижущую силу (ЭДС). ЭДС, в замкнутой электроцепи обмотки ротора, индуцирует электроток. Во взаимодействии с магнитным потоком статора, ток создает пусковой момент электрического двигателя. Ротор начинает вращение в таком же направлении, что и магнитное поле статора при превышении пусковым моментом двигателя его тормозного момента.

Преимущества и недостатки асинхронных электродвигателей

Простота эксплуатации и хорошая ремонтопригодность – главные достоинства асинхронного двигателя, сделавшие его наиболее востребованным в очень разных сферах машиностроения и приборостроения. Привлекает и:

  • Сравнительно невысокая цена;
  • Надёжность
  • Несложность подсоединения в общую электроцепь устройств.

Асинхронные электродвигатели имеют и ряд недостатков:

  • Трудности с точным регулированием скорости;
  • Большой пусковой ток;
  • Относительно невысокий коэффициент мощности.

По типу обмотки ротора, короткозамкнутой или фазной, асинхронные двигатели, подразделяются на 2 типа:

  • Электродвигатели с короткозамкнутым ротором имеют обмотку, замыкающуюся на сам ротор;
  • Электродвигатели с фазным ротором – обмотку с концами, выведенными на щеточно-коллекторный узел.

Преимущество двигателя с фазным ротором в том, что скорость вращения можно регулировать путем подключения дополнительных сопротивлений (реостатного регулирования).

Новости: трехфазные асинхронные двигатели

Устройство трехфазных асинхронных двигателей (статор и ротор асинхронных двигателей)

Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.

Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется «беличьей клеткой». Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.

Получение вращающегося магнитного поля

Обмотка статора асинхронного двигателя в виде трех катушек уложена в пазы расположенные под углом в 120 градусов. Начало и конца катушек обозначаются соответственно буквами A, B, C и X,Y,Z. При подаче на катушки трехфазного напряжения в них установятся токи Ia, Ib, Ic и катушки создадут собственное переменное магнитное поле. Ток в любой катушке положительный, когда он направлен от начала к ее концу и отрицательный при обратном направлении. Векторы намагничивающей силы совпадают с осями катушек, а их величина определяется значениями токов, направление результирующего вектора совпадает с осью катушки. Вектор результирующей намагничивающей силы поворачивается на 120 градусов сохраняя величину совпадает с осью соответствующей катушки. Таким образом за период, результирующее магнитное поле статора совершает оборот с неизменной скоростью. Работа трехфазного асинхронного двигателя основана на взаимодействии вращающегося магнитного поля с токами наводимыми в проводниках ротора.

Принцип работы трехфазного асинхронного двигателя

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

Пуск асинхронных двигателей

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов — для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат. В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя. Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

Изменение частоты вращения ротора трехфазного асинхронного двигателя

Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой выполненный на тиристорах.

Способы торможения двигателей 

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться. Асинхронные двигатели нашли широкое применение в промышленности. В строительных механизмах, на металлообрабатывающих станках, в кузнечно-прессовом оборудовании, в силовых приводах прокатных станов, в радиолокационных станциях и многих других отраслях.

Источник: http://ruaut.ru/

Возврат к списку

 

Трехфазный асинхронный электродвигатель

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов
Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле
Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый роторМагнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Нужна помощь, чтобы изменить направление вращения моего двигателя

Я новичок в этом. Мне удалось спасти мотор стиральной машины. Как я узнаю, могу ли я отменить его вращение? И как я смогу это исправить, если это произойдет?

Также как я узнаю, что это асинхронный двигатель? Однофазный или трехфазный?

Ничего подобного на заводской табличке не сказано.

Вот подробности на заводской табличке.

Welling YXB170-4B RMOTS0007PLZZ
220 ~ 240 В 50/60 Гц
170 Вт $ P
1.4A кл. E

FOSHAN WELLING WASHER MOTOR MANUFACTURING CO LTD.

Справа есть какая-то диаграмма.

11 мкФ / 450 В, затем СИНИЙ (CCW), ЧЕРНЫЙ, КРАСНЫЙ (CW)

ОБНОВЛЕНИЕ:

Я открыл коробку, куда идут провода, и вот как это выглядит внутри.

К сожалению, когда я его открыл, там выскочила пружина и что-то запутала внутри. Я пытался собрать все вместе как можно лучше, но не совсем уверен, все ли я сделал правильно.На данный момент я бы не осмелился воткнуть его в электрическую розетку, потому что не хочу, чтобы он взорвался мне в лицо или что-то в этом роде: D.

А есть ли вообще как нибудь от батарейки запустить? Надеюсь, так будет безопаснее.

Спасибо, если кто-нибудь проведет меня через это.

ОБНОВЛЕНИЕ 2018/05/19:

После того, как испортил коробку со всеми шестернями, я немного боюсь подключать ее к питанию, так как не уверен, что будет. В любом случае, я хотел бы попросить о помощи. Вот еще пара изображений, которые я надеюсь помочь мне объяснить, что мне нужно делать.

Рисунок 1.0

На изображении выше я пометил объекты, исходя из своего понимания.

A — Мотор
B — Это была коробка с ручкой для включения стиральной машины.
C — Конденсатор. На этикетке написано «SH КОНДЕНСАТОР. SH.M 400 В переменного тока, 50/60 Гц, 11 мкФ (-5 / + 10%) NUINTEK / KOREA».

Рисунок 2.0

Изображение выше — это крупный план коробки (B на Рисунке 1.0). Я обозначил то, что меня беспокоит.

A — Металл, который подключается к белому проводу, который подключается к источнику питания (не уверен, что положительный или отрицательный).
B — Металл, который подключается к синему проводу, который соединяется с двигателем.
C — Металл, который подключается к красному проводу, который соединяет конденсатор и двигатель. Затем черный провод подключает конденсатор к источнику питания.

Мои вопросы:

  1. Металлы (рис. 2.0) B и C в настоящее время не подключены к металлу A. Я еще не пробовал, но предполагаю, что если я подключу его к источнику питания, ничего не произойдет, так как эти металлы (B, C) не соединен с металлом (A). Если я хочу включить двигатель, должен ли я соединить металл (B, C) с металлом (A)? Если да, могу ли я их подключить постоянно?

  2. Если я хочу изменить направление вращения, нужно ли подключить к конденсатору синий провод вместо красного?

Спасибо.

Мощность

— Объясните, что трехфазный двигатель работает в обратном и прямом направлении. Мощность

— Объясняет, что трехфазный двигатель работает в обратном и прямом направлении. — Обмен электротехническими стеками.
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 637 раз

\ $ \ begingroup \ $

Хотите улучшить этот вопрос? Добавьте подробности и проясните проблему, отредактировав этот пост.

Закрыт 2 года назад.

Определить трехфазный двигатель, работающий в обратном и прямом направлении, останавливается только одним кустом

Создан 03 авг.

\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $

Вот наименее сложная из известных мне схем для реверсирования полного напряжения трехфазного двигателя.Обратите внимание, что в нем есть реле перегрузки (OL), которое остановит двигатель при обнаружении продолжительного чрезмерного тока. Также обратите внимание, что контакторы управляются непосредственно кнопками, питание катушки подается через трансформатор цепи управления, вспомогательные контакты контакторов используются для поддержания катушек под напряжением после отпускания кнопок мгновенного действия и для предотвращения подачи питания на обе катушки при отпускании. в то же время. Механизмы контакторов также имеют механическую блокировку для предотвращения одновременного включения контакторов.

Добавить комментарий

Ваш адрес email не будет опубликован.

*