Способы регулирования асинхронного двигателя.
Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.
Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1 кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения. Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.
Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см. рис.1). Скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:
Рис.1. Классификация способов регулирования асинхронных двигателей Исходя из (1) принципиально возможны два способа регулирования скорости: регулирование скорости вращения поля статора и регулирование скольжения при постоянной величине ω0:
Скорость вращения поля статора определяется двумя параметрами (см.3.3): частотой напряжения, подводимого к обмоткам статора f1, и числом пар полюсов двигателя рп. В соответствии с этим возможны два способа регулирования скорости: изменение частоты питающего напряжения посредством преобразователей частоты, включаемых в цепь статора двигателя (частотное регулирование), и путем изменения числа пар полюсов двигателя. Регулирование скольжения двигателя при постоянной скорости вращения поля статора для короткозамкнутых асинхронных двигателей возможно путем изменения величины напряжения статора при постоянной частоте этого напряжения. Для асинхронных двигателей с фазным ротором, кроме того, возможны еще два способа: введение в цепь ротора добавочных сопротивлений (реостатное регулирование) и введение в цепь ротора добавочной регулируемой э.д.с. посредством преобразователей частоты, включаемых в цепь ротора (асинхронный вентильный каскад и двигатель двойного питания).
В настоящее время благодаря развитию силовой преобразовательной техники созданы и серийно выпускаются различные виды полупроводниковых преобразователей частоты, что определило опережающее развитие и широкое применение частотно-регулируемого асинхронного электропривода. Основными достоинствами этой системы регулируемого электропривода являются:
плавность регулирования и высокая жесткость механических характеристик, что позволяет регулировать скорость в широком диапазоне;
— экономичность регулирования, определяемая тем, что двигатель работает с малыми величинами абсолютного скольжения, и потери в двигателе не превышают номинальных;
Недостатками частотного регулирования являются сложность и высокая стоимость (особенно для приводов большой мощности) преобразователей частоты и сложность реализации в большинстве схем режима рекуперативного торможения.
Подробно принципы и схемы частотного регулирования скорости асинхронного двигателя рассмотрены ниже.
Изменение скорости переключением числа пар полюсов асинхронного двигателя позволяет получать несколько (от 2 до 4) значений рабочих скоростей, т.е. плавное регулирование скорости и формирование переходных процессов при этом способе невозможно.
Поэтому данный способ имеет определенные области применения, но не может рассматриваться, как основа для построения систем регулируемого электропривода.
2. Частотное регулирование асинхронных электроприводов:
Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2π f1 (1 — s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U1 ≈ Е1 = kФf1. Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастет, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.
Для наилучшего использования асинхронного двигателя при регулировании угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки. Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.
Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).
Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.
Для осуществления частотного регулирования угловой скорости находят применение преобразователи, на выходе которых по требуемому соотношению или независимо меняется как частота, так и амплитуда напряжения. Преобразователи частоты можно разделить на электромашинные и вентильные. В свою очередь электромашинные преобразователи могут быть выполнены с промежуточным звеном постоянного тока и непосредственной связью. В последних используют коллекторную машину переменного тока, на вход которой подают переменное напряжение с постоянной частотой и амплитудой, а на выходе ее получают напряжение с регулируемой частотой и амплитудой. Электромашинные преобразователи с непосредственной связью практического применения не получили.
Изменение скорости вращения ротора асинхронного двигателя | Эксплуатация электрических машин и аппаратуры | Архивы
Страница 31 из 74
В условиях эксплуатации электроустановок иногда возникает необходимость изменить поминальную скорость вращения ротора короткозамкнутых двигателей. В ряде случаев переключение данной обмотки статора двигателя на другое число полюсов предпочтительнее, чем перемотка двигателя на другую скорость, так как переключить обмотку можно сравнительно быстро без затраты обмоточного провода. Можно переключать на большую и меньшую скорость вращения обмотки двигателей присоединением в лобовых частях.
Переключать асинхронные двигатели на большую скорость вращения можно при однослойной и двухслойной обмотке на статоре.
При наличии на статоре однослойной обмотки (двухплоскостной или цепной не «вразвалку») увеличить скорость вращения ротора двигателя можно лишь вдвое. Число пар полюсов исходной обмотки должно быть четным, то есть скорость вращения до его переключения должна быть примерно 1500 и 750 об/мин. Увеличение скорости вращения ротора двигателя с однослойной обмоткой на статоре достигается изменением направления тока в получастях фаз на каждых четырех соседних полюсах исходной обмотки. При переключении двигателя с 1500 на 3000 об/мин (синхронных) достаточно изменить направление токов в полуфазах обмотки. На рисунке 101 показана принципиальная схема переключения одной фазы двигателя с однослойной обмоткой на вдвое большую скорость вращения.
Поэтому начало средней фазы переносится в другую катушечную группу, чтобы и при большей скорости вращения получить пространственное смещение фазных обмоток в 120 эл. градусов.
Рис. 101. Принципиальная схема переключения фазы двигателя с меньшей (а) на большую (б) скорость вращения.
Рис. 102. Принципиальная схема двухскоростного двигателя, полученного из односкоростного с однослойной обмоткой статора.
Переключение двигателя на большую скорость вращения сопровождается изменением индукции и магнитного потока машины. В результате немного увеличивается нагрев статора. Мощность К. п. д. и cosφ двигателя после переключения на большую скорость при номинальном напряжении не изменяются.
При двухслойной обмотке статора скорость вращения двигателя можно увеличить вдвое (при четном числе полюсов) и на ближайшую большую синхронную скорость.
Для увеличения скорости вращения двигателя вдвое необходимо увеличить число катушек в катушечной группе, что достигается последовательным соединением двух соседних катушечных групп в исходной обмотке.
При изменении скорости двигателя на ближайшую большую, например с 1000 на 1500 об/мин, нужно перегруппировать катушки в соответствии с новым числом полюсов обмотки. Для этого следует разъединить некоторые в определенных местах расположенные катушечные группы, чтобы образовать новые с требуемым числом катушек в них. Если обмотка при 1000 об/мин имела в группе по две катушки, то после переключения на 1500 об/мин катушечные группы должны содержать по три катушки. Для получения таких групп шесть групп исходной обмотки, равномерно расположенные по расточке статора, надо разъединить на две катушки и последовательно присоединить по одной к группам, расположенным справа и слева от расчлененной группы.
После образования групп с определенным числом катушек в них соединяют фазы обычным образом для двухслойных обмоток. В результате переключения получается обычная двухслойная обмотка с очень сильным укорочением шага. Это укорочение тем больше, чем на более высокую скорость переключен двигатель.
При неизменном напряжении на фазе двигателя после его переключения значительно возрастает индукция в статоре к ток холостого хода, что в ряде случаев вызывает нагрев к снижает cosφ двигателя. Для устранения этого требуется снижать напряжение на виток, что может быть достигнуто за счет переключения фаз с треугольника на звезду или уменьшения числа параллельных ветвей. При этом мощность двигателя уменьшается. За счет возможного увеличения тока при большей скорости вращения можно несколько повысить допустимую мощность двигателя после переключения при удовлетворительных значениях к. п. д. и соsφ.
Разбег двигателя после переключения на большую скорость удовлетворительный, так как характер магнитного поля не изменяется.
Асинхронный двигатель переключают на меньшую скорость вращения только при двухслойной обмотке на статоре при укороченном шаге. Если шаг обмотки такой Величины, что степень укорочения его при большей скорости вращения не меньше степени удлинения при меньшей скорости, то после переключения обмотки получаются удовлетворительные результаты работы двигателя.
Уменьшить скорость вращения двигателя с двухслойной обмоткой можно вдвое и на ближайшую меньшую синхронную скорость, например, можно переключать с 1500 на 1000 об/мин или с 1000 на 750 об/мин. Для переключения на меньшую скорость вращения необходимо расчленить в лобовых частях катушечные группы исходной обмотки, образовать новые группы с числом катушек в них, соответствующим уменьшенной скорости (большему числу полюсов). Если обмотка при 1500 об/мин имела группы из трех катушек, то при переключении на 1000 об/мин нужно образовать группы по две катушки. Вновь полученные группы для двухслойных обмоток соединяют в фазы.
Уменьшение скорости вращения переключением данной обмотки сопровождается ростом индукции, тока холостого хода, нагрева двигателя при низких к. п. д. и cos φ.
Длительная работа двигателя в этих условиях невозможна. Условия тем тяжелее, чем больше снижается скорость вращения двигателя Для устранения этого нужно уменьшить витковое напряжение фазы двигателя. Этого можно достичь, перейдя на ближайшее меньшее стандартное напряжение, переходом от схемы соединения фаз треугольником к звезде и уменьшением параллельных ветвей в фазах.
При переключении двухслойной обмотки на меньшую скорость можно получить двухскоростной двигатель. Наиболее просто это сделать, если переключить скорости с отношением 2:1. Для этого исходная обмотка должна быть со значительно укороченным шагом и иметь по две параллельные ветви в фазах. Меньшая скорость вращения достигается изменением направления тока в соответствующих полуфазах обмотки. Для этого используют удобную схему двойная звезда — одинарная звезда с шестью свободными выводами обмотки. На высшей скорости двигатель работает по схеме двойная звезда, на меньшей — по схеме одинарная звезда.
Двигатель с обычной двухслойной обмоткой можно переделать в двухскоростной и с другим соотношением скорости, например 3:2. Такой двигатель для изменения скорости вращения требует сложного переключающего устройства
Как можно регулировать скорость асинхронного двигателя
Асинхронный электродвигатели дешевы, надежны и удобны в эксплуатации. Возможность регулирования скорости вращения асинхронников дает возможность значительно расширить область использования асинхронных электродвигателей. В этой статье мы рассмотрим, как можно регулировать скорость вращения двигателей.
Из теории асинхронных двигателей известна формула для определения частоты вращения ротора двигателя:
n = no (1 — S) = (f1∙60)(1 — S)/p
где:
n — частота вращения вала двигателя
no — номинальная частота вращения
S — скольжение
f1 — частота питающего напряжения
p — число пар полюсов
Анализ этой формулы показывает, что теоретически могут существовать 3 подхода к изменению скорости асинхронника:
изменение числа пар полюсов;
управление частотой питающего напряжения;
управление величиной скольжения.
Условия регулирования скорости изменением числа пар полюсов
Данный вариант регулирования скорости вращения можно использовать только для асинхронников с короткозамкнутой конструкцией ротора. Такой ротор может обеспечить стабильную работу двигателя при любом числе пар полюсов. Двигатель с фазной обмоткой регулировать, таким образом проблематично. Это связано с тем, что для нормальной работы такого двигателя необходимо переключать число пар полюсов как на статоре, так и на роторе. Такое решение потребует значительного усложнения схемы управления.
Регулировка скорости изменение скольжения
Для изменения величины скольжения в цепь ротора монтируют дополнительное активное сопротивление. С изменение величины активного сопротивления изменяется величина скольжения. Таким образом, реализуют управлению скоростью путем изменения скольжения. Этот способ можно использовать для электродвигателей с фазным ротором. Существенным недостатком такого подхода можно считать значительные потери мощности в регулировочном реостате. При этом объем потерь прямопропорционален глубине регулирования скорости.
Изменение скорости вращения ротора двигателя частотным методом
Данное изменение скорости двигателя достигается с помощью специального устройства — частотного преобразователя или частотного регулятора. Этот метод позволяет достигать плавного регулирования оборотов двигателя с большой глубиной регулирования. данный метод ранее был очень проблематичен в силу сложности создания частотного регулятора. За последние 30-40 лет в силу прогресса в создании частотны преобразователей удалось создать множество моделей регуляторов для решения различных задач. В настоящее время данный метод активно внедряется в промышленности и ЖКХ. Этот метод дает возможность не только регулировать скорость, но и достигать значительной экономии электрической энергии.
Другие статьи по теме:
Как выполняется регулировка оборотов асинхронного двигателя
Изменение скорости вращения путем изменения первичного напряжения и другие
Страница 6 из 25
Скорость вращения двигателя можно регулировать путем изменения (уменьшения) напряжения на его зажимах. Это основано на зависимости M = f(s) (185), которую, предполагая постоянными параметры двигателя и неизменной частоту приложенного напряжения в пределах по s<sKр, можно записать в виде M = c1U1s. Отсюда следует, что при постоянном моменте па валу двигателя скольжение s меняется при изменении напряжения в соответствии с зависимостью
На рисунке 176 даны кривые вращающих моментов двигателя при различных значениях первичного напряжения; если скольжение s1 соответствует работе двигателя при напряжении.
Рис. 176. Механические характеристики асинхронного двигателя при различных величинах напряжения.
Как видно, диапазон регулирования скорости вращения, равной (1—s), весьма невелик. Расширение диапазона регулирования получается при более пологих механических характеристиках, то есть в двигателях с большим значением sK. Но следует помнить, что потери, возникающие во вторичной цепи, равны мощности скольжения [см. формулу (159)]. К недостаткам относится также и то, что при
снижении напряжения пропорционально его квадрату падает перегрузочная способность двигателя. К достоинствам этого способа относятся возможность применения его к короткозамкнутым двигателям, плавное регулирование скорости вращения, простота и надежность в работе. Напряжение на зажимах двигателя при неизменном напряжении сети изменяют при помощи установленных между сетью и статором двигателя регулируемого автотрансформатора или управляемых дросселей насыщения. При изменении значения постоянного тока подмагничивания индуктивное сопротивление дросселей изменяется, что вызывает изменение напряжения на зажимах двигателя.
Ухудшение охлаждения самовентилируемых двигателей при снижении скорости вращения приводит к необходимости повышать номинальную мощность двигателя (увеличивать габарит регулируемого двигателя по сравнению с нерегулируемым). Степень завышения мощности зависит от формы механической характеристики двигателя (ее пологости в области рабочих режимов), вида статической нагрузки и диапазона регулирования.
Выбор электродвигателя по мощности, дросселей насыщения или автотрансформатора для регулируемого привода представляет собой самостоятельный вопрос, рассматриваемый в курсах электропривода и в периодической литературе.
Способы регулирования скорости вращения изменением напряжения перспективны прежде всего для приводов с вентиляторной характеристикой момента, механизма или постоянным моментом, но при малом диапазоне регулирования. Такие приводы достаточно распространены в сельскохозяйственном производстве.
Метод регулирования скорости вращения изменением напряжения применяется также для двигателей с фазным ротором, причем в этом случае для получения более пологих механических характеристик двигателя в цепь ротора включают добавочные сопротивления.
Другие способы регулирования скорости вращения
Рассмотренные способы регулирования скорости вращения можно отнести к наиболее распространенным. Из возможных других можно назвать способ регулирования скорости вращения двигателя с фазным ротором при включении в цепь ротора индуктивных сопротивлений, наглухо присоединенных к цепи ротора и размещенных на одном валу с ним (двигатель Розова, рис. 178), а также способ импульсного регулирования. При импульсном регулировании непрерывно включают двигатель в сеть и отключают его от сети или при помощи контактора К шунтируют сопротивления, включенные между сетью и статором двигателя (рис. 179).
Рис. 178. Двигатель с индуктивными сопротивлениями в роторе:
а — электрическая схема; б — внешний вид; в — конструкция индуктивного сопротивления; 1 — катушка; 2 — корпус диска; 3 — крышка.
Рис. 179. Схема импульсного регулирования скорости вращения асинхронного двигателя.
В зависимости от частоты и продолжительности импульсов двигатель работает с некоторой приблизительно постоянной скоростью вращения. Регулирование сопряжено с ухудшением энергетических показателей, сопровождается толчками токов и применяется только для двигателей весьма малой мощности.
Преобразователи частоты для ваших приводов
Являясь одним из ведущих изготовителей приводной техники, к нашим механическим компонентам мы, конечно же, предлагаем и подходящую преобразовательную технику. Мы разрабатываем и производим приводные преобразователи и преобразователи частоты для управления и регулирования приводов в машинах и установках. И это не только для централизованного монтажа в электрошкафу или для настенного монтажа, но и для децентрализованного монтажа.
Что такое преобразователь частоты?
Преобразователи частоты – это электронные устройства, которые позволяют регулировать частоту вращения асинхронного двигателя. Обоснование: Если электрические машины или асинхронные двигатели работают непосредственно от сети переменного напряжения, у них есть только одна фиксированная частота вращения – в зависимости от числа полюсов и частоты местной электросети. Однако если приводной системе или производственному процессу требуется изменяемое переменное напряжение, т. е. регулируемая скорость, то применяются преобразователи частоты. Из фиксированного переменного напряжения они могут вырабатывать переменное напряжение с изменяемой амплитудой (величиной выходного напряжения) и частотой.
Как работает преобразователь частоты?
>Преобразователь частоты подключается перед двигателем, чтобы создавать соответствующее потребностям, изменяемое переменное напряжение. Таким образом, уже не электросеть создает частоту и величину напряжения, с которыми работает двигатель, а преобразователь частоты берет на себя эту задачу и регулирует выходную частоту и выходное напряжение.
Большое преимущество преобразователя частоты? С его помощью вы плавно изменяете частоту вращения двигателя почти от нуля до нужного номинального уровня и заметно расширяете ее диапазон. При этом вращающий момент двигателя остается неизменным. Таким образом пользователи оборудования всегда могут адаптировать свою приводную технику к текущим условиям. Кроме того, преобразователь частоты позволяет быстро менять направление вращения. Чтобы изменить порядок следования фаз, достаточно простого управляющего сигнала. После этого подключенный асинхронный двигатель будет работать в противоположном направлении.
Какие типы преобразователей существуют?
Бывают преобразователи с управлением по току и с управлением по напряжению. В работе они различаются следующим образом:
- Преобразователи частоты с управлением по току поддерживают отношение тока к частоте (I/f) всегда постоянным и применяются в верхнем мегаваттном диапазоне.
- А в нижнем мегаваттном и в киловаттном диапазонах последним словом техники являются преобразователи частоты с управлением по напряжению. Они поддерживают на постоянном уровне отношение напряжения к частоте: То есть если двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, должен работать с частотой 25 Гц, то и напряжение уменьшается вдвое до 115 В.
Проще говоря, в преобразователе частоты с управлением по напряжению происходит следующее: На входе имеется выпрямитель, который преобразует переменное напряжение электросети в постоянное напряжение. Затем это постоянное напряжение сглаживается и стабилизируется звеном постоянного тока. Далее действующий со стороны двигателя инвертор генерирует переменное напряжение с выходной частотой, необходимой для приводной системы. Получаемое при этом отношение „напряжение/частота“ определяет необходимую частоту вращения двигателя. Задание или расчет необходимой частоты вращения выполняет встроенный блок управления, который соединяет друг с другом все компоненты.
Где применяются преобразователи?
Преобразователи частоты используются в самых разных отраслях и задачах промышленности. Будь то приводы насосов и вентиляторов, обрабатывающих станков, конвейеров и сборочных линий, кранов или роботизированных систем: представить себе промышленное производство без преобразователей частоты уже невозможно. Ведь там адаптированная или непрерывно регулируемая частота вращения обеспечивает оптимизированные технологические процессы – с тем дополнительным преимуществом, что приводы с регулированием частоты вращения способствуют экономии энергии при работе
Преобразователи для любых установок и машин
В зависимости от спроса и требований наши преобразователи частоты доступны в различных исполнениях и с множеством дополнительных функций. К тому же очень важно, где нужно разместить преобразователь частоты – на стене, в центральном и защищенном месте в электрошкафу или прямо в цеху, то есть децентрализованно. И в зависимости от того, насколько проста или сложна та или иная приводная система, применяются либо простые преобразователи частоты, либо так называемые специальные преобразователи с большим объемом функций или многоосевые сервоусилители
SEW-EURODRIVE был первой компанией, которая разработала децентрализованную технику и вывела на рынок соответствующие преобразователи частоты и мехатронные приводы. С их помощью пользователи оборудования значительно сокращают затраты на монтаж и создают себе много возможностей для модульного построения своих систем, независимых от электрошкафа. Кроме того, в нашем ассортименте в области преобразовательной техники есть устройства рекуперации энергии в сеть, которые комбинируются с одним или несколькими преобразователями частоты и приводными преобразователями. Также мы предлагаем простые пускатели двигателя для встраивания в
Преобразователи частоты для монтажа в электрошкафу
От простого преобразователя до стандартного или специального преобразователя и далее до модульного сервопреобразователя – мы предлагаем вам широкий ассортимент приводной электроники для централизованного размещения в электрошкафу или распределительном щите:
Преобразователи частоты для настенного монтажа
Еще одна и при этом менее затратная возможность централизованного размещения преобразователей частоты – это настенный монтаж. Он всегда используется в тех случаях, когда приобретать дорогой электрошкаф нерационально. Наши преобразователи частоты, которые подходят для такого способа монтажа, имеют соответствующую степень защиты от IP 54 до IP 66 (для пыльных и влажных условий окружающей среды).
Пускатели двигателя для децентрализованного монтажа
Достаточно ли для вашей приводной системы функции именно преобразователя? Или вам нужно простое включение/выключение двигателя или переключение направления вращения двигателя с левого на правое? Подходящие продукты в ассортименте SEW-EURODRIVE найдутся и для этого случая:
Преобразователи частоты для децентрализованного монтажа
Для размещения вашей приводной электроники рядом с двигателем или мотор-редуктором мы предлагаем широкий выбор преобразователей частоты: от простого преобразователя с настройкой темпа для надежного применения в простых системах до стандартного преобразователя с расширенными функциями регулирования и далее до свободно программируемого специального преобразователя для систем сложной архитектуры. А если вам нужно децентрализованным образом реализовать многоосевые перемещения, а также системы с цепочкой рабочих модулей, то лучшим выбором будут многоосевые сервоусилители. Децентрализованные преобразователи в нашем ассортименте:
Асинхронный двигатель на постоянных магнитах
В воздушных винтовых компрессорах GA VSD + установлен асинхронный электродвигатель на постоянных магнитах, который имеет множество преимуществ.
У этого электродвигателя высокий КПД, что гарантирует эффективное использование электроэнергии компрессором. Его класс энергоэффективности соответствует стандарту IE5, что говорит о его высоком качестве работы и относит к категории super premium. А высокий крутящий момент двигателя позволяет избежать его перегрузки при запуске винтового компрессора.
Возможность регулировать реактивную мощность
Асинхронный двигатель на постоянных магнитах винтовых компрессоров GA VSD+ дает возможность регулировать реактивную мощность в сети предприятия. Но что такое реактивная мощность? Это технические потери электроэнергии, вызывающие нагрев и избыточную нагрузку на сеть. И возможность регулировать эту мощность, то есть работать компенсатором реактивной мощности позволяет сократить нагрузку в сети предприятия и таким образом избежать энергозатрат.
Не требуется воздух для охлаждения двигателя, следовательно, меньше двигатель вентилятора
Во время работы винтового компрессора нагрев электродвигателя неизбежен. Это вызывает необходимость в его охлаждении, с чем справляется вентилятор. Но двигатель вентилятора тоже потребляет энергию, что приводит к энергозатратам.
В воздушных винтовых компрессорах GA VSD+ этот вопрос решен иначе. Электродвигатель имеет масляное охлаждение, как и компрессор. Этот факт ведет к тому, что охлаждение двигателя воздухом не требуется, это означает, что у двигателя нет вентилятора, следовательно энергозатраты ниже.
Класс защиты IP66 (пыль и вода)
В любых условиях работы оборудование всегда подвержено попаданию пыли и влаги, что влечет за собой неисправности. Особенно остро этот вопрос касается движущихся частей машины, а именно электродвигателя, который приводит в движение винтовой элемент компрессора. Поэтому при выборе компрессоров нельзя упускать из внимания класс защиты электродвигателя.
В воздушных винтовых компрессорах GA VSD + установлен асинхронный двигатель на постоянных магнитах с классом защиты IP66. IP66 – это высокий показатель, который гарантирует полную пыленепроницаемость и надежную защиту от влаги, что исключает поломки и неисправности двигателя от пыли или воды.
Меньше конденсация влаги в масле
Конденсация влаги в масле промышленного компрессора является проблемой, внимание на которую не обращать просто нельзя. Этот фактор приводит масло в негодность и влечет за собой скорый выход системы подачи сжатого воздуха из строя.
Поскольку в новых винтовых компрессорах GA VSD + электродвигатель находится в отсеке с контролируемой температурой, конденсацию влаги в масле удалось значительно уменьшить. Это гарантирует надежную работу воздушного компрессора в течение долгого времени.
Двигатель на постоянных магнитах расположен вертикально
Во время сжатия газа в винтовых компрессорах возникают радиальные и осевые газовые силы. Они вызывают значительные нагрузки на движущиеся элементы внутри машины (валы, подшипники) и от этого потери на их преодоление.
Уникальное вертикальное расположение асинхронного двигателя на постоянных магнитах в промышленных винтовых воздушных компрессорах GA VSD+ позволяет за счет силы тяжести компенсировать направленные вертикально вверх газовые силы, возникающие при сжатии газа. Это позволяет уменьшить нагрузку на подшипники винтового элемента и продлить их срок службы.
Двигатель занимает меньше места на 60%
Расположение электродвигателей в обычных винтовых компрессорах в большинстве случаев горизонтальное. Этот факт зачастую определяет габариты машины, от которого нужно жестко отталкиваться.
В промышленных воздушных винтовых компрессорах GA VSD + электродвигатель имеет уникальное расположение внутри корпуса. Он установлен вертикально, что существенно снижает габаритные размеры, делая его компактнее.
Подшипник, который смазывается автоматически
Любое компрессорное оборудование нуждается в сервисном обслуживании для долгой и надежной работы. И одними из самых важных элементов при таком обслуживании являются подшипники, поскольку без них валы машины просто не смогут вращаться. Поэтому их нужно регулярно смазывать.
В винтовых компрессорах GA VSD+ двигатель имеет один подшипник, а благодаря масляному охлаждению двигателя он смазывается автоматически. Таким образом этот факт позволяет экономить время на сервисном обслуживанию и обеспечивает дополнительную защиту воздушного компрессора.
Уменьшения элементов, требующих охлаждения
В винтовых компрессорах GA VSD+ электродвигатель имеет масляную рубашку охлаждения за счет чего количество элементов, требующих дополнительного охлаждения, значительно уменьшилась. Это позволило уменьшить двигатель вентилятора и сократить потребление электроэнергии.
Потребление энергии как у компрессоров с фиксированной скоростью вращения
Технология VSD+ винтовых компрессоров GA VSD+ позволяет регулировать скорость вращения электродвигателя, меняя нагрузку согласно потребности в сжатом воздухе. Но, кроме этого, благодаря двигателю GA VSD+ может работать и на максимальной нагрузке практически все время, потребляя при этом столько энергии сколько и обычные компрессоры с фиксированной скоростью вращения. Это говорит о том, что GA VSD+ ничего не теряет в своих характеристиках даже при максимальной загрузке.
Проверенная надежная конструкция, прошедшая испытания, которые включали тысячи часов наработки
Воздушные винтовые компрессоры GA VSD+ гарантируют надежное исполнение, поскольку перед выходом на рынок они прошли все проверки и испытания, включающие тысячи часов работы в самых сложных условиях эксплуатации.
При заключении контракта планового технического обслуживания РМ мы даем официальную гарантию 5 лет от завода изготовителя Atlas Copco Airpower на винтовой элемент и двигатель для компрессоров GA 15-110 VSD+.
Узнать подробности
Регулирование скорости вращения асинхронных двигателей
Изменение частоты вращения вала компрессора — универсальный способ изменения характеристики компрессора при условии, что двигатель допускает экономичное изменение частоты вращения. Способ применяется для компрессоров, имеющих привод от газовой или паровой турбины или от двигателя внутреннего сгорания, преимущественно от дизеля, допускающего большое изменение скорости вращения—около 50%. Частота вращения вала газомоторных компрессоров в небольших пределах регулируется автоматическим приспособлением. В случае привода от трехфазного электродвигателя возможно ступенчатое регулирование, если двигатель имеет переменное число полюсов. Однако этот двигатель имеет крупные габариты и высокую стоимость. Существует метод плавного регулирования асинхронных электродвигателей с фазовым ротором при помощи так называемого вентильного каскада. Эта схема нашла некоторое применение на компрессорных станциях магистральных газопроводов. [c.273]В исключительных случаях, если необходимо регулирование скорости вращения, можно применять также двигатели постоянного тока или специальные асинхронные двигатели с фазовым ротором. [c.165]
Регулирование воздуходувок с приводом от электродвигателя намного сложнее. Жесткая механическая характеристика синхронных и короткозамкнутых асинхронных двигателей позволяет изменять скорость вращения ротора воздуходувки лишь с помощью гидравлических или электромагнитных муфт. Однако первые сложны в изготовлении и эксплуатации и потому не находят практического применения, вторые экономически целесообразны лишь для мощностей до [c.149]
При переработке порошкообразных композиций бункер оснащается устройствами принудительной подачи материала в экструдер. Электромеханический привод загрузочного шнека в данном случае должен быть выполнен на основе асинхронного двигателя в сочетании с вариатором для бесступенчатого регулирования скорости вращения шнека. [c.245]
Существует несколько разновидностей асинхронных муфт, позволяющих осуществлять гибкую связь между приводным двигателем и валом машины или аппарата, с регулированием скорости вращения ведомого вала [120]. [c.25]
В стайках токарной группы характерной особенностью является осуществление главного движения за счет вращения обрабатываемого изделия, поступательное перемещение суппортов обеспечивает подачу резцов. В главных приводах токарных станков малых и средних размеров основным типом привода является привод от асинхронного короткозамкнутого двигателя в сочетании с коробкой скоростей. Регулирование скорости вращения шпинделя осуществляется переключением шестерен коробки скоростей. Диапазон регулирования скорости привода может быть увеличен при применении двух- и трехскоростных двигателей. [c.13]
Электропривод аппарата АНП-5,5М состоит из асинхронных короткозамкнутых электродвигателей и вариаторов с дистанционным регулированием скорости вращения механизмов с помощью исполнительных двигателей. [c.95]
Применяют также способ уменьшения числа оборотов путем введения регулируемого сопротивления в фазовую обмотку ротора асинхронных двигателей. Этот способ энергетически невыгоден регулирование скорости вращения производится в сравнительно узких пределах. [c.523]
Однако приводом большинства компрессоров, используемых на нефтехимических предприятиях, служат асинхронные двигатели с нерегулируемой частотой вращения вала. В этом случае внедрение регулирования частоты вращения вала потребовало бы сооружения мощных редукторов и вариаторов скоростей, что не всегда способствовало бы повышению экономичности установки по сравнению с более простыми, но менее экономичными способами регулирования. В связи с этим рассмотрим наиболее распространенные способы регулирования поршневых компрессоров. [c.238]
Универсальные расточные станки служат для обработки деталей, имеющих отверстия, связанные с точными расстояниями на них выполняют сверление, растачивание, фрезерование торцевыми фрезами, обтачивание и нарезку резьбы. Главным движением на этих станках является вращение шпинделя или планшайбы, Движение подачи сообщается либо инструменту, либо изделию, установленному на столе. Средние и крупные универсальные горизонтально-расточные станки имеют главный привод от асинхронных односкоростных и многоскоростных короткозамкнутых двигателей, с электромеханическим регулированием скорости. Система управления обеспечивает реверсирование шпинделя, рабочий и наладочный режим. Для быстрой остановки шпинделя предусматривается принудительное электрическое торможение двигателя противовключением. На некоторых станках предусматривается дистанционное переключение шестерен коробки скоростей. Схема управления главным приводом расточного станка от двухскоростного двигателя с короткозамкнутым ротором приведена на рис. 1.5. [c.14]
Основным показателем глубины регулирования является диапазон регулирования, представляющий собой отношение максимальной скорости вращения к минимальной. Обычно этот показатель невелик (не превышает 3 у асинхронных двигателей и 4 у двигателей постоянного тока). В то же время в системе Г—Д диапазон регулирования достигает 20—30, а при использовании вместо возбудителя специальных электромашинных усилителей (см. стр, 75) диапазон регулирования возрастает до 100 и выше. [c.52]
Регулирование угловой скорости (частоты вращения) асинхронных электродвигателей осуществляют введением сопротивлений в цепь ротора двигателей с фазным ротором. Этим способом можно изменять угловую скорость двигателя только в сторону уменьщения номинальной угловой скорости за счет увеличения скольжения. [c.36]
Регулирование воздуходувок с приводом от электродвигателя намного сложнее. Жесткая механическая характеристика синхронных и короткозамкнутых асинхронных двигателей позволяет изменять скорость вращения ротора лишь с помощью гидравлических или электромагнитных муфт. Однако первые сложны в изготовлении и эксплуатации и потому не находят практического применения, вторые экономически целесообразны лишь для мощностей 200—250 кВт. Асинхронный двигатель с фазным ротором, регулируемый по схеме вентильного и машинно-вентильного каскадов, имеет более высокий к. п. д. Однако, применение его для серийных воздуходувок, работающих на станциях аэрации, ограничено снижением напора воздуходувки из-за неизбежного уменьшения номинальной скорости ротора на 5%. [c.172]
Изменение скорости вращения возможно, если приводом служат паровые или газовые турбины, регулируемые электродвигатели и т. п. Если необходимо ступенчатое регулирование, то приводом служат трехфазные асинхронные электродвигатели, в которых изменяется число пар включенных полюсов кроме того применяют также коробки передач или гидромуфты (например, для нагнетателей авиационных и судовых двигателей). [c.251]
Регулирование скорости изменением скольжения осуществляется введением сопротивления в роторную цепь двигателя с контактными кольцами. При этом увеличиваются критическое скольжение и наклон механической характеристики. Следовательно, при том же моменте нагрузки возрастает скольжение и уменьшается скорость вращения. Этот способ регулирования скорости двигателя неэкономичен из-за больших потерь в добавочных сопротивлениях, а также резкого изменения скорости при колебаниях нагрузки. Вследствие этого асинхронный двигатель можно пускать без применения ограничивающих пусковой ток сопротивлений лишь в том случае, когда его мощность не превышает 25% мощности трансформаторов, питающих сеть цеха. [c.15]
Автоматическое управление в функции скорости применяется в машинах для контроля за процессом торможения противовключением асинхронных двигателей, для дистанционного управления скоростью отдельных валов, а также в замкнутых системах автоматического регулирования электроприводов. Часто в схемах управления торможением электродвигателей используется реле контроля скорости типа РКС, которое соединяется с валом двигателя посредством поводка с эластичной шайбой. Реле рассчитано для работы при скоростях врашения от 200 до 3000 об/мин и допускает до 30 срабатываний в 1 мин. Оно действует при вращении в любую сторону. [c.23]
Частотное регулирование установочной скорости вращения напорных насосов в диапазоне 2 1 производится вариатором Вар, связывающим синхронный генератор ЗСГ с приводным асинхронным двигателем 10Д. К стабильности частоты напряжения генера- [c.109]
Исполнительный двигатель ДР (двухпозиционное регулирование) состоит из однофазного асинхронного электродвигателя 1 и редуктора 5 в общем литом кожухе (рис. 8,а). Синхронная скорость вращения двигателя 1500 об/мин. Редуктор, состоящий из шести пар шестерен, можно настроить на 10 значений скорости выходного вала, близких к указанным [c.284]
Для асинхронных короткозамкнутых двигателей возможно также регулирование частоты вращения уменьшением питающего напряжения или периодическим включением двигателя в сеть и отключением его от сети (импульсное регулирование скорости). Однако в связи с пониженными энергетическими показателями эти способы регулирования применяются только для двигателей очень малой мощности. [c.162]
В состав установки входит манипулятор с вращающимся столом 2, сварочная головка 3 и аппаратура управления 4. Стол может наклоняться под углом до 90° и вращаться. Вращение стола осуществляется трехфазным асинхронным двигателем через редуктор и коробку скоростей с несколькими ступенями регулирования. Установка АДК-500-3 укомплектована сменными головками для сварки под флюсом и в защитных газах. Сменная головка имеет водяное охлаждение. [c.191]
Изменение частоты тока требует дополнительного преобразователя, поэтому первым методом как неэкономичным пользуются редко. Чаще всего применяется второй метод. Изготавливаются асинхронные двигатели с переключаемым числом полюсов в статоре, что позволяет получить несколько скоростей вращения двигателя, меняющихся, однако, скачкообразно. Плавное регулирование числа оборотов может быть достигнуто изменением сопротивления в цепи ротора. Поскольку крутящий момент асинхронного двигателя зависит от величины напряжения в квадрате, а момент сопротивления мешалки пропорционален квадрату числа ее оборотов, существует прямая завнснмость между числом оборотов мешалки и сопротивлением в цепи ротора. Этот способ, однако, неэкономичен, так как он ведет к резкому снижению к. н. д. двигателя. Кроме того, такой метод регулирования не может применяться при небольших нагрузках, так как в асинхронных двигателях трудно в этом случае добиться значительного снижения числа оборотов. [c.87]
Для возможности регулирования числа оборотов асинхронных двигателей посредством переключения обмоток на различное число пар полюсов электродвигатели должны иметь специально выполненную обмотку на статоре, переключаемую во время работы двигателя а различные схемы. Благодаря этому скорость вращения изменяется ступенями соответственно числу пар полюсов. Двигатели этого типа строятся двух-, трех- и четырехскоростными. [c.114]
Для получения требуемой плавности регулирования и необходимого диапазона регулирования скорости вращения существуют системы электромеханического и бесступенчатого регулирования. Электромеханическое ступенчатое регулирование скорости главных приводов с асинхронными короткозамкнутыми двигателями осуществляется путем переключения шестерен коробки передач и применением многоскоростпых асинхронных двигателей. [c.7]
Производство синтетического капронового волокна включает следующие основные процессы приготовление расплава капролактама, получение полимера— поликапроамида, формование, вытягивание, кручение и отделка волокна. Основным технологическим оборудованием являются аппараты непрерывной полимеризации и плавильно-прядильные агрегаты. Электрооборудование этих аппаратов и агрегатов включает электронагреватели с контрольной, регистрирующей и пускорегулирующей аппаратурой, предназначенные для электрообогрева труб непрерывной полимеризации и электроприводов мешалок, насосов, тянущих вальцов резальных машин. Эти электроприводы осуществляются от асинхронных короткозамкнутых двигателей и вариаторов с дистанционным регулированием скорости вращения механизмов с помощью серводвигателей. Электронагревание прядильных головок осуществляется трубчатыми электронагревательными элементами ТЭНами. Для электронагрева применяют систему автоматического двухпозиционного регулирования температуры с датчиками температуры, расположенными в головке, дросселями насыщения и электронными потенциометрами. [c.224]
Из приведенной схемы видно, что электропривод дозирующих насосов целлофановой машины выполнен на переменном токе с использованием частотного регулирования скорости вращения синхронно-реактивных двигателей. Электропривод намоточной части машины выполнен на постоянном токе по схеме Г—Д с приводом генератора от асинхронного трехфазного двигателя с контактными кольцами АД, который является также гонным двигателем для генератора 1ГПТ преобразователя частоты (ПЧ). [c.84]
Плавильно-формовочное устройство оснащено плоской алюминиевой решеткой с электрическим обогревом посредством электро-лагревательных трубок. Машина имеет 18 плавильно-формовочных мест. Наличие системы электрического обогрева плавильно-формовочных устройств позволяет осуществлять автоматическое регулирование температуры плавильного и формовочного блоков на каждом рабочем месте. Все основные элементы машины, определяющие толщину волокна, — дозирующие насосы, прядильные диски, фрикционные цилиндры и нитераскладчики — имеют индивидуальные электроприводы от асинхронных короткозамкнутых двигателей с частотным регулированием скорости вращения при помощи поставляемых вместе с машиной преобразовательных агрегатов АГ-31 и АГ-12. В преобразовательном агрегате АГ-31 все три синхронных генератора (для питания электродвигателей привода дозирующих [c.124]
В этих условиях обслулдиапазона регулирования работы вентиляторной установки одним асинхронным двигателем (как это проектировалось) нецелесообразно, так как его os ф значительно падает. Возникает необходимость в замене электродвигателя большей мощности, при этом рационально изменить и скорость вращения вентилятора, что дает возможность повысить к. п. д. вентиляторной установки. [c.309]
Регулируемые двигатели могут быть постоянного тока (ш5 НТ0-вые) или асинхронные многоскоростные. Первые обеспечивают плавное регулирование чисел оборотов в диапазоне до 100—200 и больше (системы Леонарда с электромашипными усилителями), вторые обеспечивают лишь две, три или четыре различные скорости вращения. [c.297]
Для регулирования частоты вращения двигателей может быть предложено несколько решений использование асинхронных каскадов, двигателей постоянного тока, питаемых от регулируемых выпрямителей, мггогоскоростных асинхронных или синхронных двигателей с коробками передач и др. Возможно применение синхронных двигателей с плавным регулированием их скорости за счет изменения частоты, достигаемого применением полупроводникового преобразователя частоты. [c.305]
Если кинематическая цепь привода состоит из нескольких редукторов, то обычно их соединяют один с другим и с валом машины зубчатыми муфтами прн песбходнмостн передачи движения от редуктора к валу, ось которого меняет свое положение при работе машины, используют шарнирные муфты (наиример, в приводах смесителей). В машинах, где одновременно приводится во вращение ряд рабочих органов (многовальные машины), предпочтительно использование блок-редукторов или индивидуальных электродвигателей. Двигатели постоянного тока, асинхронные с фазным ротором или тиристорным преобразователем, рационально использовать во всех случаях, когда необходимо регулирование рабочих скоростей машины в широком диапазоне. [c.138]
Что определяет скорость вращения двигателя?
Электродвигатели отличаются разнообразием и широким диапазоном типоразмеров. Существуют двигатели с дробной мощностью (л.с.) для небольших бытовых приборов и двигатели мощностью в тысячи л.с. для тяжелого промышленного использования. Другие характеристики, указанные на паспортных табличках двигателей, включают их входное напряжение, номинальный ток, энергоэффективность и скорость в об / мин.
Скорость вращения электродвигателя зависит от двух факторов: его физической конструкции и частоты (Гц) источника питания.Инженеры-электрики выбирают скорость двигателя в зависимости от потребностей каждого приложения, подобно тому, как механическая нагрузка определяет требуемую мощность.
Убедитесь, что в вашем здании есть подходящий электродвигатель для каждого применения.
Как частота напряжения соотносится со скоростью двигателя
В зависимости от страны источник питания будет иметь частоту 60 Гц или 50 Гц. Хотя трехфазный двигатель будет вращаться с обоими входами мощности, возникнут проблемы с производительностью, если двигатель указан для одной частоты и будет использоваться с другой.
Поскольку источник напряжения 60 Гц переключает полярность на 20% быстрее, чем источник питания 50 Гц, двигатель, рассчитанный на 50 Гц, будет вращаться на 20% выше об / мин. Крутящий момент двигателя остается относительно постоянным, а более высокая скорость приводит к большей мощности на валу. Двигатель также выделяет больше тепла, но охлаждающий вентилятор также ускоряется вместе с валом, помогая отводить лишнее тепло. Двигатель также имеет тенденцию потреблять больше реактивного тока, что снижает его коэффициент мощности.
Подключение двигателя 60 Гц к источнику питания 50 Гц — более тонкий вопрос.Снижение скорости при том же напряжении может привести к насыщению магнитопровода двигателя, увеличению тока и перегреву агрегата. Самый простой способ предотвратить насыщение — снизить входное напряжение, и в идеале соотношение В / Гц должно оставаться постоянным:
- Двигатель 60 Гц, работающий при 50 Гц, составляет 83,3% от номинальной частоты.
- Чтобы поддерживать постоянное соотношение В / Гц, входное напряжение также следует снизить до 83,3%.
- Если электродвигатель обычно работает при 240 В и 60 Гц, входное напряжение при 50 Гц должно быть 200 В, чтобы соотношение составляло 4 В / Гц.
Электропроводка двигателя и количество полюсов
Постоянный магнит имеет два полюса, но двигатели могут быть подключены так, чтобы их магнитное поле имело большее количество полюсов. Двухполюсный двигатель совершает полный оборот с одним изменением полярности, в то время как четырехполюсный двигатель вращается только на 180 ° с одним переключателем полярности. Чем больше полюсов, тем ниже скорость двигателя: если все остальные факторы равны, 4-полюсный электродвигатель будет вращаться со скоростью, вдвое меньшей, чем 2-полюсный электродвигатель.
- Источник питания 60 Гц меняет полярность 60 раз в секунду, а двухполюсный двигатель будет вращаться со скоростью 3600 об / мин при подключении к этому источнику.Четырехполюсный двигатель будет вращаться только со скоростью 1800 об / мин.
- Для двигателей с частотой 50 Гц скорость составляет 3000 об / мин при 2 полюсах и 1500 об / мин при 4 полюсах.
Эту концепцию можно резюмировать следующим уравнением:
Используя это уравнение, 4-полюсный двигатель с частотой 60 Гц имеет скорость 1800 об / мин, а 6-полюсный двигатель с частотой 50 Гц имеет скорость 1000 об / мин. Однако на самом деле это скорость магнитного поля, называемая синхронной скоростью, которая не всегда равна скорости вала.
- В синхронном двигателе , ротор использует постоянный магнит или электромагнит для вращения с расчетной скоростью.
- С другой стороны, асинхронный двигатель будет работать немного ниже расчетной скорости вращения. Так работает электромагнитная индукция, и ее не следует рассматривать как неисправность.
Если электродвигатель имеет паспортную скорость 1800 об / мин, можно сделать вывод, что это 4-полюсный синхронный двигатель, рассчитанный на 60 Гц.С другой стороны, если скорость на паспортной табличке имеет меньшее значение, например 1760 об / мин, это асинхронный двигатель.
Преобразователь частоты может управлять скоростью двигателя, регулируя входную частоту, как следует из его названия. ЧРП также может модулировать напряжение, чтобы поддерживать соотношение В / Гц ниже точки, в которой магнитный сердечник насыщается. Благодаря этой функции частотно-регулируемый привод не повреждает двигатель, даже если скорость снижается ниже значения, указанного на паспортной табличке. Основным недостатком частотно-регулируемых приводов являются гармонические искажения, поскольку они являются нелинейными нагрузками, но это можно компенсировать с помощью фильтров гармоник.
2-3-2. Принцип вращения асинхронного двигателя
Рис. 2.35 Силовой двигатель для промышленного использованияКак описано в главе 1, существует много типов двигателей с вращающимся магнитным полем.
В этой главе рассматриваются силовые двигатели, используемые на заводах (рис. 2.35), и асинхронные двигатели , , широко используемые в домашних условиях для электрических вентиляторов и стиральных машин.
Вводная книга по двигателям объясняет принцип вращения асинхронного двигателя с использованием диска Араго (см.рис.2.42).
Ротор обычных асинхронных двигателей имеет конструкцию, показанную на рис. 2.36 (а). Если вы разберете ротор, вы увидите, что это не диск и что он состоит из пластины из кремнистой стали и алюминиевой детали в форме клетки, как показано на Рис. 2.36 (b). Такой ротор называется короткозамкнутым ротором .
Использование диска Араго для объяснения принципа вращения двигателей, оснащенных короткозамкнутым ротором, неуместно. Это может быть лучше объяснено подходом, используемым для двигателей постоянного тока.
Рис. 2.36 Конструкция ротора с короткозамкнутым роторомКак показано на Рис. 2.37, замкнутая катушка помещена в магнитное поле, а внешний магнит вращается. Затем, как видно из принципа выработки энергии в двигателях постоянного тока, в катушке происходит выработка энергии, и через катушку протекает ток.
По мере протекания тока катушка создает крутящий момент, который взаимодействует с исходным магнитным полем, а затем катушка начинает вращаться.
Если увеличить количество витков, как показано на рис.2.38 можно заменить катушки на обойму.
А именно, обойма асинхронных двигателей соответствует обмотке двигателей постоянного тока.
Рис. 2.37 Принцип вращения асинхронных двигателей Рис. 2.38 Замена с короткозамкнутым роторомНиже приводится краткое описание принципа вращения асинхронных двигателей.
- <1> Вращение магнитного поля
- <2> Генерация индукционного тока
- <3> Возникновение силы при взаимодействии тока и магнитного поля
- <4> Вращение ротора
На реальных двигателях механизм последовательно возбуждает несколько катушек вместо перемещения магнитов для получения того же эффекта.Чтобы изменить возбуждение, необходимы две или несколько синусоид, сдвинутых во времени.
Обычно на заводах используются трехфазные 200 В переменного тока, сдвинутые на 120 градусов друг от друга (рис. 2.39).
Рис. 2.39 При использовании трехфазного переменного тока с фазами, смещенными друг от друга на 120 градусовПоскольку источник питания для домашнего использования однофазный 100 В переменного тока, мы должны создать, так или иначе, синусоидальную волну, смещенную от этого источника питания при использовании асинхронного двигателя. Один из способов — увеличить фазу тока катушки на 90 градусов с помощью конденсатора.Двигатель, работающий таким образом, называется однофазным двигателем с конденсаторным управлением.
Однофазный двигатель с конденсаторным питанием создает вращающееся магнитное поле с помощью набора из двух обмоток, одна из которых является главной обмоткой, которая подключена непосредственно к источнику питания, а другая — вспомогательной обмоткой, которая подключена к источнику питания через конденсатор. .
Конструкция конденсаторного двигателя показана на рис. 1.2 главы 1.
Вращающееся магнитное поле — обзор
6.6.2 Самовозбуждающийся индукционный генератор
В предыдущих разделах мы подчеркивали, что вращающееся магнитное поле или возбуждение обеспечивается током намагничивания, потребляемым от источника питания, поэтому было бы очевидно, что двигатель не может генерировать, если источник питания не был предоставлен для обеспечения ток намагничивания. Тем не менее, можно заставить машину «самовозбуждаться», если условия подходящие, и, учитывая надежность двигателя с кожухом, это может сделать его привлекательным предложением, особенно для небольших изолированных установок.
В главе 5 мы видели, что когда асинхронный двигатель работает с нормальной скоростью, вращающееся магнитное поле, которое создает токи и крутящий момент на роторе, также индуцирует сбалансированные трехфазные наведенные ЭДС в обмотках статора, величина ЭДС не намного меньше напряжения электросети. Итак, чтобы действовать как независимый генератор, мы хотим создать вращающееся магнитное поле без необходимости подключения к активному источнику напряжения.
Мы обсуждали аналогичный вопрос в главе 3 в связи с самовозбуждением шунта d.c. машина. Мы видели, что если после выключения машины в полюсах поля остается достаточно остаточного магнитного потока, то э.д.с. возникающий при вращении вала, мог начать подавать ток на обмотку возбуждения, тем самым увеличивая магнитный поток, дополнительно повышая ЭДС. и инициирование процесса положительной обратной связи (или начальной загрузки), который в конечном итоге стабилизировался характеристикой насыщения железа в магнитной цепи.
К счастью, то же самое может быть достигнуто с помощью изолированного асинхронного двигателя.Мы стремимся извлечь выгоду из остаточного магнетизма в железе ротора и, поворачивая ротор, генерировать начальное напряжение в статоре, чтобы запустить процесс. Э.д.с. индуцированный должен затем управлять током, чтобы усилить остаточное поле и способствовать положительной обратной связи для создания бегущего поля магнитного потока. В отличие от постоянного тока Однако асинхронный двигатель имеет только одну обмотку, которая обеспечивает функции возбуждения и преобразования энергии, поэтому, учитывая, что мы хотим довести напряжение на клеммах до его номинального уровня, прежде чем подключать любую электрическую нагрузку, которую мы планируем подавать, очевидно, что необходимо обеспечить замкнутый путь для потенциального тока возбуждения.Этот путь должен способствовать нарастанию тока намагничивания и, следовательно, напряжения на клеммах.
«Возбуждение» тока означает обеспечение пути с очень низким импедансом, так что небольшое напряжение вызывает большой ток, и поскольку мы имеем дело с переменным током. величин, мы, естественно, стремимся использовать явление резонанса, размещая набор конденсаторов параллельно (индуктивным) обмоткам машины, как показано на рис. 6.17.
Рис. 6.17. Самовозбуждающийся индукционный генератор. Нагрузка подключается только после того, как на статоре нарастает напряжение.
Реактивное сопротивление параллельной цепи, состоящей из чистой индуктивности ( L ) и емкости ( C ) на угловой частоте ω, определяется как X = ωL − 1ωC, поэтому на низких и высоких частотах реактивное сопротивление очень велико, но на так называемой резонансной частоте (ω0 = 1LC) реактивное сопротивление становится равным нулю. Здесь индуктивность — это намагничивающая индуктивность каждой фазы индукционной машины, а C — добавленная емкость, значение выбирается так, чтобы обеспечить резонанс на желаемой частоте генерации.Конечно, схема не идеальна из-за сопротивления в обмотках, но, тем не менее, индуктивное реактивное сопротивление можно «отрегулировать» путем выбора емкости, оставляя контур циркуляции с очень низким сопротивлением. Следовательно, вращая ротор со скоростью, при которой желаемая частота создается остаточным магнетизмом (например, 1800 об / мин для 4-полюсного двигателя, генерирующего 60 Гц), начальная умеренная ЭДС. производит непропорционально высокий ток, и поток увеличивается до тех пор, пока не будет ограничен нелинейной характеристикой насыщения железной магнитной цепи.Затем мы получаем сбалансированные трехфазные напряжения на клеммах, и нагрузка может быть приложена путем включения переключателя S (рис. 6.17).
Приведенное выше описание дает только общую схему механизма самовозбуждения. Такая схема была бы удовлетворительной только для очень ограниченного диапазона приводимых скоростей и нагрузок, и на практике требуются дополнительные функции управления для изменения эффективной емкости (обычно с использованием управления симистором), чтобы поддерживать постоянным напряжение при нагрузке и / или скорость варьируется в широких пределах.
Скольжение в электрических асинхронных двигателях
Асинхронный двигатель переменного тока (переменного тока) состоит из статора и ротора, и взаимодействие токов, протекающих в стержнях ротора, и вращающегося магнитного поля в статоре создает крутящий момент, который вращает двигатель . При нормальной работе с нагрузкой скорость ротора всегда отстает от скорости магнитного поля, позволяя стержням ротора разрезать магнитные силовые линии и создавать полезный крутящий момент.
Разница между синхронной скоростью магнитного поля электродвигателя и скоростью вращения вала составляет скольжение — измеряется в оборотах в минуту или частоте.
Скольжение увеличивается с увеличением нагрузки, обеспечивая больший крутящий момент.
Обычно скольжение выражается как отношение скорости вращения вала к скорости синхронного магнитного поля.
s = (n s — n a ) 100% / n s (1)
где
s = скольжение
n
n = синхронная скорость магнитного поля (об / мин, об / мин)
n a = скорость вращения вала (об / мин, об / мин)
Когда ротор не вращается, скольжение 100% .
Проскальзывание при полной нагрузке варьируется от менее 1% в двигателях с высокой мощностью до более 5–6% в двигателях с малой мощностью.
Размер двигателя (л. 2,5 1,7 | 0,8 | |
---|
Число полюсов, частоты и скорость синхронного асинхронного двигателя
No.магнитных полюсов | Частота (Гц) | ||
---|---|---|---|
50 | 60 | ||
2 | 3000 | 3600 | |
4 | 902 902 902 33 902 902 902 1800 1000 | 1200 | |
8 | 750 | 900 | |
10 | 600 | 720 | |
12 | 500 | 600 | 500 | 600 | 902
20 | 300 | 360 |
Скольжение и напряжение
Когда двигатель начинает вращаться, скольжение составляет 100% , а ток двигателя максимальный.Скольжение и ток двигателя уменьшаются, когда ротор начинает вращаться.
Частота скольжения
Частота уменьшается при уменьшении скольжения.
Реактивное сопротивление скольжения и индуктивное сопротивление
Индуктивное реактивное сопротивление зависит от частоты и скольжения. Когда ротор не вращается, частота скольжения максимальна, как и индуктивное сопротивление.
Двигатель имеет сопротивление и индуктивность, и когда ротор вращается, индуктивное реактивное сопротивление низкое, а коэффициент мощности приближается к на .
Скольжение и полное сопротивление ротора
Индуктивное реактивное сопротивление будет изменяться с проскальзыванием, поскольку полное сопротивление ротора является суммой фаз постоянного сопротивления и переменного индуктивного реактивного сопротивления.
Когда двигатель начинает вращаться, индуктивное реактивное сопротивление высокое, а полное сопротивление в основном индуктивное. Ротор имеет низкий коэффициент мощности. Когда скорость увеличивается, индуктивное реактивное сопротивление уменьшается до уровня сопротивления.
Классификация асинхронных двигателей
Электрические асинхронные двигатели предназначены для различных применений в отношении таких характеристик, как момент срабатывания, тяговый момент, скольжение и т. Д. — проверьте классификацию асинхронных электродвигателей NEMA A, B, C и D.
Вращение ротора двигателей переменного тока
Как упоминалось в нашей предыдущей статье о вращающихся магнитных полях двигателей переменного тока, в этой статье будет рассмотрено, как магнитное поле на самом деле создает крутящий момент и вращает нагрузку. Если вы новичок в этой серии, вы можете начать с нашей статьи о конструкции двигателей переменного тока. В противном случае мы сразу перейдем к вращению ротора.
ПОСТОЯННЫЙ МАГНИТ
Чтобы проиллюстрировать, как работает ротор, представьте установку магнита на вал в качестве замены ротора с короткозамкнутым ротором.Как подробно рассказывалось в нашей последней статье, когда энергия проходит через обмотки статора, образуется вращающееся магнитное поле. Вращающееся магнитное поле, образованное обмотками статора, затем будет взаимодействовать с отдельным магнитным полем, создаваемым установленным на валу магнитом. Это взаимодействие между магнитными полями следует основам моторного магнетизма и полярности.
Например, южный полюс магнита притягивается к северному полюсу вращающегося магнитного поля. Точно так же северный полюс магнита притягивается к южному полюсу вращающегося магнитного поля.В результате магнит может вращаться, когда его тянет вращающееся магнитное поле. Эта конструкция, используемая в некоторых двигателях, известна как синхронный двигатель с постоянными магнитами.
ЭЛЕКТРОМАГНИТ НАПРЯЖЕНИЯ НАПРЯЖЕНИЯ
Теперь давайте вернем ротор с короткозамкнутым ротором вместо установленного на валу магнита. В основном они ведут себя одинаково. Если на статор подается электричество, ток будет проходить через обмотку и расширять электромагнитное поле. Это расширенное поле будет пересекать стержни ротора.
Напряжение (или электродвижущая сила [ЭДС]) индуцируется, когда стержень ротора или другой тип проводника попадает в магнитное поле. В стержне ротора индуцированное напряжение создает ток. Ток протекает через стержни ротора и вокруг концевого кольца. По мере протекания тока вокруг каждого стержня ротора создается больше магнитных полей.
В цепи переменного тока ток регулярно меняется по направлению и величине. Вот почему ток также вызывает регулярное изменение полярности магнитного поля ротора и статора.В результате ротор с короткозамкнутым ротором образует электромагнит с чередующимися северным и южным полюсами.
На рисунке ниже представлен момент времени, когда ток через обмотку A1 создает северный полюс. Увеличивающееся магнитное поле распространяется по соседнему стержню ротора, что индуцирует напряжение. В результате в зубе ротора создается магнитное поле южного полюса. Затем ротор следует вращающемуся магнитному полю статора.
SLIP
Поскольку ротор следует вращающемуся магнитному полю статора, необходимо различать скорость.Причина этого в том, что если бы оба они вращались с одинаковой скоростью, они бы не разделяли относительное движение. Без относительного движения никакие линии магнитного потока не будут обрезаны, а ротор не получит индуцированного напряжения. Различие в скорости известно как «скольжение». ТРЕБУЕТСЯ ПРОКЛАДКА ДЛЯ СОЗДАНИЯ МОМЕНТА МОМЕНТА . Величина нагрузки определяет скольжение. Если величина нагрузки увеличивается, скольжение увеличивает или замедляет ротор. При уменьшении нагрузки скольжение уменьшится или ускорит ротор. Скольжение отображается в процентах и рассчитывается по формуле ниже.
В качестве примера представьте, что четырехполюсный двигатель 60 Гц имеет синхронную скорость (NS) 1800 об / мин. Предположим, что частота вращения ротора (при полной нагрузке) составляет 1765 об / мин (NR). Если следовать формуле, скольжение составляет 1,9%.
ДВИГАТЕЛЬ С НАБИВКОЙ РОТОРА
Теперь давайте отойдем от более распространенного ротора с короткозамкнутым ротором и исследуем намотанный ротор. Одно из отличий ротора с обмоткой от ротора с короткозамкнутым ротором состоит в том, что он состоит из катушек, а не стержней. Эти катушки подключены к внешним переменным резисторам через щетки и контактные кольца.Напряжение индуцируется в обмотках ротора вращающимся магнитным полем. Скорость двигателя можно регулировать, увеличивая или уменьшая сопротивление обмотки ротора:
- Скорость двигателя можно уменьшать на увеличивая сопротивление обмоток ротора, что вызывает меньший ток.
- Скорость двигателя может быть увеличена на уменьшена сопротивление обмоток ротора, что позволяет пропускать больший ток.
Третий тип двигателя переменного тока — это синхронный двигатель, который не является асинхронным.Один тип построен аналогично ротору с короткозамкнутым ротором; однако он имеет обмотки катушки И стержни ротора. Щетки и контактные кольца подключают обмотки катушки к внешнему источнику постоянного тока. Когда к статору подается переменный ток, синхронный двигатель запускается подобно ротору с короткозамкнутым ротором. После того, как двигатель наберет максимальную скорость, на катушки ротора подается постоянный ток. Это создает сильное постоянное магнитное поле в роторе, которое соответствует вращающемуся магнитному полю. В результате ротор вращается с той же скоростью, что и вращающееся магнитное поле (или синхронной скоростью).Следовательно, нет пробуксовки. Различные типы синхронных двигателей имеют ротор с постоянными магнитами. В этом случае внешний источник постоянного тока не нужен, поскольку ротор представляет собой постоянный магнит. Эти типы можно найти на синхронных двигателях малой мощности.
ПОДРОБНЕЕ О ДВИГАТЕЛЯХ ПЕРЕМЕННОГО ТОКАМы надеемся, что это руководство по вращению ротора двигателей переменного тока помогло вам лучше понять, как работают электродвигатели. Если вы хотите узнать больше, ознакомьтесь с другими нашими ресурсами, посвященными терминологии двигателей переменного тока и тому, как читать паспортные таблички электродвигателей.
Определение направления вращения двигателя | EC&M
Вы только что отремонтировали или купили двигатель на замену и собираетесь его подключить. Какую критическую задачу необходимо выполнить для правильной работы подключенной нагрузки двигателя? Правильно: определение правильного вращения двигателя.
Все мы знаем, что направление вращения трехфазного двигателя можно изменить, поменяв местами два его вывода статора. Это переключение, если хотите, меняет направление вращающегося магнитного поля внутри двигателя.
Если мы знаем, что на подключенную нагрузку не повлияет обратное вращение двигателя, мы можем временно включить двигатель и наблюдать за его направлением вращения. Если это неправильное направление, мы можем просто поменять местами любые два провода.
Но что делать, если подключенная нагрузка выйдет из строя из-за обратного вращения двигателя? Мы должны определить правильное вращение до того, как двигатель будет подключен к нагрузке. Мы можем временно включить двигатель, пока он не отсоединен от нагрузки, и наблюдать за его направлением вращения.А после смены проводов, если требуется, двигатель можно подключить к его нагрузке. Есть другой вариант, менее затратный по времени и более эффективный.
Использование измерителя поворота фаз
Измеритель чередования фаз с помощью своих шести клеммных выводов сравнивает чередование фаз двух различных трехфазных соединений. Три вывода, обозначенные «A», «B» и «C», подключены к стороне тестового устройства, обозначенной «MOTOR». Три других провода имеют такую же маркировку, но подключены к другой стороне тестового устройства, обозначенной «LINE».«В измерителе также есть вольтметр с нулевым центром, на одной стороне которого написано« НЕПРАВИЛЬНО », а на другой -« ПРАВИЛЬНО ».
Во-первых, вы «обнулили» счетчик в соответствии с инструкциями производителя. Затем вы устанавливаете селекторный переключатель измерителя в положение «MOTOR» и подключаете три вывода MOTOR к выводам двигателя. Наконец, вы вручную поворачиваете вал двигателя в желаемом направлении, наблюдая за показаниями вольтметра, который сразу же поворачивается в ПРАВИЛЬНО или НЕПРАВИЛЬНО. Особое примечание: хотя игла будет качаться в противоположном направлении после того, как вал перестанет вращаться, вы должны использовать первую индикацию вольтметра для определения направления вращения.
Если вам повезет и первая конфигурация подключения верна, вы помечаете провода двигателя буквами «A», «B» и «C», чтобы они совпадали с подключенными проводами от измерителя чередования фаз.
Допустим, вам не повезло, и вольтметр показывает НЕПРАВИЛЬНО. Затем вы должны поменять местами любые два провода ДВИГАТЕЛЯ и снова вручную провернуть вал двигателя. Теперь вольтметр должен показывать ПРАВИЛЬНО, и вы должны пометить провода двигателя «A», «B» и «C», чтобы они совпадали с подключенными проводами от измерителя чередования фаз.Однако вы еще не закончили с установкой двигателя.
Определение вращения линии источника питания
Теперь вам нужно проверить вращение линии, подающей питание на двигатель. Здесь также можно использовать ваш измеритель чередования фаз.
После обесточивания силового питателя двигателя и применения необходимых устройств блокировки / маркировки вы устанавливаете селекторный переключатель агрегата в положение «ЛИНИЯ» и подключаете три провода ЛИНИИ к питателю. Затем включите питатель и посмотрите на вольтметр.
Если вам снова повезет и вольтметр показывает ПРАВИЛЬНО, вы помечаете выводы питающего фидера буквами «A», «B» и «C» после того, как питатель будет обесточен и снова установлены устройства блокировки / маркировки, чтобы они совпадали с подключенными LINE ведет от счетчика чередования фаз.
Если вам снова не повезло, вы отключите питание питателя двигателя и примените необходимые устройства блокировки / маркировки и поменяйте местами любые два провода LINE. При повторном включении фидера вольтметр покажет ПРАВИЛЬНО.Теперь вы можете пометить проводники фидера «A», «B» и «C», чтобы они совпадали с подключенными выводами LINE от измерителя чередования фаз.
Все, что осталось сделать, это совместить маркированные провода двигателя с маркированными проводами фидера и выполнить необходимые соединения. Двигатель будет вращаться правильно.
Другое приложение для счетчика чередования фаз
Подобно тому, как мы проверили вращение двигателя и его источника питания, мы можем сделать то же самое для двух отдельных источников питания.Предположим, вы построили временную службу с устройствами защиты от сверхтоков при замене существующего распределительного щита или щита. Очевидно, что временное вращение источника питания должно быть таким же, как и вращение существующего сервиса, чтобы любые подключенные двигатели работали в правильном направлении.
Выполнив все требования по блокировке / маркировке, вы сначала подключаете LINE-выводы измерителя чередования фаз к стороне нагрузки существующего сервисного переключателя, который находится в разомкнутом положении.Затем, когда прибор находится в закрытом положении, вы проверяете вольтметр измерителя поворота фаз. Если он показывает ПРАВИЛЬНО, переведите сервисный разъединитель в разомкнутое положение и пометьте проводники на стороне нагрузки, чтобы они совпадали с подключенными выводами ЛИНИИ от измерителя чередования фаз. Если вольтметр показывает НЕПРАВИЛЬНО, поменяйте местами два провода ЛИНИИ и сделайте соответствующую маркировку на проводниках со стороны нагрузки.
Затем, перед подключением временной службы к существующей нагрузке, вы подключаете ЛИНИЮ ЛИНИИ измерителя чередования фаз к линии временной службы.Когда временный сервисный разъединитель находится в разомкнутом положении, замкните существующий сервисный разъединитель и посмотрите на вольтметр. Если отображается ПРАВИЛЬНО, пометьте провода временной линии обслуживания, чтобы они совпадали с подключенными выводами ЛИНИИ от измерителя чередования фаз. Если вольтметр показывает НЕПРАВИЛЬНО, поменяйте местами любые два провода ЛИНИИ и сделайте соответствующую маркировку.
Как рассчитать частоту вращения двигателя
При эксплуатации, мониторинге, ремонте или замене двигателя важно понимать его характеристики.Одним из важнейших показателей является количество оборотов в минуту, или RPM, которое описывает скорость двигателя. В этом руководстве мы обсудим, как рассчитать частоту вращения двигателя и почему это так важно.
Какая частота вращения двигателя?
об / мин — это измерение, используемое для описания скорости двигателя. Он обозначает количество оборотов в минуту и описывает скорость, с которой вращается ротор, то есть количество раз, когда вал ротора совершает полный оборот в минуту. Его можно использовать для измерения скорости двигателей, турбин, центрифуг, конвейеров и другого оборудования.
Почему важно рассчитывать число оборотов в минуту
Расчет оборотов двигателя, а также другие измерения, такие как крутящий момент, напряжение и мощность, важны при выборе двигателя для конкретного применения. Расчет скорости двигателя может помочь вам выбрать правильный тип двигателя при замене компонентов и помочь вам принять более правильные решения по ремонту. Вам также необходимо понимать число оборотов в минуту, чтобы эффективно контролировать и контролировать работу двигателя.
Запросить цену
Скорость асинхронного двигателя переменного тока
Двигатели переменного токапредназначены для работы на определенных скоростях.Эти скорости одинаковы даже для разных моделей и производителей. Скорость данного двигателя зависит от частоты сети источника питания, а не от напряжения, а также от количества полюсов, которые он имеет. Двигатели переменного тока часто имеют два или четыре полюса, но может быть и больше. Взаимосвязь между полюсами и частотой вращения двигателя связана с магнитным полем, создаваемым в полюсах статора. Это поле приводит к созданию магнитных полей в роторе, которые зависят от частоты поля в статоре.
Также необходимо учитывать скольжение, которое представляет собой разницу между синхронной скоростью статора и фактической рабочей скоростью. Ротор всегда вращается немного медленнее, чем магнитное поле статора, и всегда пытается его «догнать», что и создает крутящий момент, необходимый для запуска двигателя.
Для регулировки скорости трехфазного двигателя переменного тока вы можете отрегулировать частоту источника питания двигателя переменного тока с помощью элемента управления. Многие элементы управления переменного тока также имеют однофазный вход, что позволяет запускать трехфазные двигатели, даже если трехфазное питание отсутствует.С другой стороны, большинство однофазных двигателей переменного тока не регулируются, поскольку они подключаются непосредственно к стандартной розетке и используют доступную частоту.
Скорость двигателя постоянного тока
Как и асинхронные двигатели переменного тока, двигатели постоянного тока с постоянными магнитами также имеют полюса, но они не влияют на скорость, как в двигателях переменного тока. Несколько других факторов влияют на скорость в двигателях постоянного тока, включая рабочее напряжение двигателя, силу магнитов и количество витков проволоки, которые имеет якорь.Двигатели постоянного тока могут работать только на скоростях, рассчитанных на доступное им напряжение.
Если аккумулятор, на котором работает двигатель, начинает разряжаться и подавать меньшее напряжение, скорость двигателя снижается. Если вы подключите двигатель к источнику питания, скорость увеличится, хотя это может вызвать дополнительный износ вашего двигателя. Вы также можете использовать элементы управления для регулировки скорости двигателя постоянного тока, который работает путем изменения напряжения, доступного для двигателя.
Ремонт двигателей постоянного и переменного тока
Как рассчитать число оборотов двигателя
Для расчета числа оборотов асинхронного двигателя переменного тока необходимо умножить частоту в герцах (Гц) на 60 — количество секунд в минуте — на два для отрицательного и положительного импульсов в цикле.Затем делите на количество полюсов двигателя:
.- (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки
Вы также можете рассчитать коэффициент скольжения, вычтя номинальную скорость при полной нагрузке из синхронной скорости, разделив полученный ответ на синхронную скорость и умножив полученный ответ на 100:
- ((номинальная синхронная скорость при полной нагрузке) / (синхронная скорость)) x 100 = номинальное скольжение
Затем, чтобы найти число оборотов в минуту при полной нагрузке, вы конвертируете номинальное скольжение в число оборотов в минуту, а затем вычитаете его из числа оборотов холостого хода:
- Чтобы преобразовать номинальное скольжение в об / мин: об / мин x рейтинг скольжения = скольжение об / мин.
- Для расчета об / мин при полной нагрузке: об / мин — скольжение об / мин = об / мин при полной нагрузке
Число оборотов двигателя постоянного тока зависит от напряжения, подаваемого на двигатель.Обычно производитель двигателя сообщает вам ожидаемую скорость вращения при различных напряжениях. Затем для достижения желаемых оборотов вы можете отрегулировать напряжение в соответствии с инструкциями.
Примеры расчета оборотов двигателя
Давайте рассмотрим несколько примеров. Для двигателя переменного тока количество полюсов и частота определяют обороты холостого хода. Для системы 60 Гц с четырьмя полюсами расчет для определения числа оборотов в минуту будет:
- (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки
- (60 х 60 х 2) / 4
- 7200/4 = 1800 об / мин
Величина скольжения незначительно меняется в зависимости от конструкции двигателя.Приемлемая скорость при полной нагрузке для четырехполюсного двигателя 60 Гц составляет 1725 об / мин. Скольжение — это разница между скоростью холостого хода и скоростью полной нагрузки. В данном случае это будет:
- Об / мин при полной нагрузке — об / мин без нагрузки = скольжение об / мин
- 1800-1725 = 75 об / мин
При 60 Гц двухполюсный двигатель работает со скоростью 3600 об / мин без нагрузки и около 3450 об / мин с нагрузкой:
- (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки
- (60 х 60 х 2) / 4
- 7200/2 = 3600 об / мин
При 60 Гц шестиполюсный двигатель будет работать со скоростью 1200 об / мин без нагрузки и со скоростью примерно 1175 об / мин под нагрузкой.Двигатель с восемью полюсами будет работать со скоростью 900 об / мин без нагрузки и около 800 об / мин под нагрузкой. 12-полюсные двигатели, которые встречаются даже реже, чем шестиполюсные и восьмиполюсные модели, работают со скоростью 600 об / мин без нагрузки, а 16-полюсные двигатели работают со скоростью 450 об / мин.
Ремонт двигателей от Global Electronic Services
Важно понимать технические характеристики вашего оборудования, чтобы вы могли лучше его эксплуатировать и обслуживать.