Как на плате определить полярность конденсатора: «Как определить полярность конденсатора?» – Яндекс.Кью

Содержание

Как правильно паять конденсаторы на плате

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший ) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка , которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником.

Удачного ремонта!

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж:

16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший ) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка , которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Проверка ёмкости

Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

Проверка конденсатора цифровым мультиметром:

Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

Проверка в плате

Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

Меры предосторожности при измерении

Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

  • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
  • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
  • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

Как перепаивать конденсатор на «материнке»

Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

Последовательность действий такая:

  1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
  2. Снимают крышку и отвинчивают материнскую плату.
  3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
  4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
  5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
  6. Устанавливают и припаивают новый.

После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

Процесс пайки

Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

Как паять резисторы

Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.

После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.

Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.

Замена конденсаторов на мат.плате и в блоке питания

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Замена конденсаторов на материнской плате: основы пайки

Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.

Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.

Итак, для пайки нам понадобятся следующие инструменты:

  • ремонтируемая деталь (например, материнка),
  • пальник или термофен,
  • припой,
  • флюс,
  • оплётка,
  • плоскогубцы,
  • конденсатор,
  • обезжириватель,
  • кисточка.

Полный набор

Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.

На каждом конденсаторе имеется маркировка. Там указано 4 параметра:

  • напряжение в вольтах,
  • емкость в микрофарадах,
  • рабочая температура,
  • маркировка полярности.

Конденсаторы могут отличаться в размерах, но это практически ни на что не влияет. Можно использовать конденсаторы с повышенным объемом микрофарад (но конденсаторы с пониженной электроемкостью ставить не рекомендуется).

Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой.
На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.
Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации 😀 Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.

Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.

На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.

Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так

После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.

Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.

По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.

Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.

Те самые ножки

Лицевая сторона. Все готово!

Всем пока! 

Post Views: 621

Урок 2.3 — Конденсаторы

Конденсатор

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.
Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

 

Электрическая ёмкость конденсатора – это главный его параметр
Чем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.
1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):
• 1 микроФарад — 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

 

Номинальное напряжение конденсатора
Расстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.
Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

 

Типы конденсаторов
О разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).


Неполярные конденсаторы
Неполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

 

Маркировка неполярных конденсаторов
На корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:
10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.


Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

 

Код

Номинал

Код

Номинал

Код

Номинал

1R0

1 пФ

101

100 пФ

332

3.3 нФ

2R2

2.2 пФ

121

120 пФ

362

3.6 нФ

3R3

3.3 пФ

151

150 пФ

472

4.7 нФ

4R7

4.7 пФ

181

180 пФ

562

5.6 нФ

5R1

5.1 пФ

201

200 пФ

682

6.8 нФ

5R6

5.6 пФ

221

220 пФ

752

7.5 нФ

6R8

6.8 пФ

241

240 пФ

822

8.2 нФ

7R5

7.5 пФ

271

270 пФ

912

9.1 нФ

8R2

8.2 пФ

301

300 пФ

103

10 нФ

100

10 пФ

331

330 пФ

153

15 нФ

120

12 пФ

361

360 пФ

223

22 нФ

150

15 пФ

391

390 пФ

333

33 нФ

160

16 пФ

431

430 пФ

473

47 нФ

180

18 пФ

471

470 пФ

683

68 нФ

200

20 пФ

511

510 пФ

104

0.1 мкФ

220

22 пФ

561

560 пФ

154

0.15 мкФ

240

24 пФ

621

620 пФ

224

0.22 мкФ

270

27 пФ

681

680 пФ

334

0.33 мкФ

300

30 пФ

751

750 пФ

474

0.47 мкФ

330

33 пФ

821

820 пФ

684

0.68 мкФ

360

36 пФ

911

910 пФ

105

1 мкФ

390

39 пФ

102

1 нФ

155

1.5 мкФ

430

43 пФ

122

1.2 нФ

225

2.2 мкФ

470

47 пФ

132

1.3 нФ

475

4.7 мкФ

510

51 пФ

152

1.5 нФ

106

10 мкФ

560

56 пФ

182

1.8 нФ

 

 

680

68 пФ

202

2 нФ

 

 

750

75 пФ

222

2.2 нФ

 

 

820

82 пФ

272

2.7 нФ

 

 

910

91 пФ

302

3 нФ

 

 


Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции.
Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.
Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

 

Полярные (электролитические) конденсаторы
Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика.
Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.
На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

 

Скачать урок в формате PDF

Правила проверки и пайки конденсаторов

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Проверка ёмкости

Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

Проверка конденсатора цифровым мультиметром:

Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

Проверка в плате

Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

Меры предосторожности при измерении

Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

  • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
  • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
  • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

Как перепаивать конденсатор на «материнке»

Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

Последовательность действий такая:

  1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
  2. Снимают крышку и отвинчивают материнскую плату.
  3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
  4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
  5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
  6. Устанавливают и припаивают новый.

После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

Процесс пайки

Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

Как паять резисторы

Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.

После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.

Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.

Как проверить конденсатор мультиметром: инструкции, фото, видео

Конденсатор — часть разных микросхем. Если с ними возникли проблемы, нужно проверить именно этот элемент. В таком важном деле помогает с виду незатейливый, но очень полезный прибор — мультиметр. Чтобы вы смогли ощутить всю прелесть этого скромного измерителя, мы расскажем вам, как проверить конденсатор мультиметром.

Обязательно к прочтению!

Перед началом измерительных процессов учтите несложные, но очень важные правила проверки конденсатора мультиметром на работоспособность:

  1. Проверять разрешается только разряженные конденсаторы. Они копят электрозаряд, поэтому необходимо их разряжать. Для этого можно использовать отвертку: дотроньтесь до выводов для образования искры. После этого можно заниматься прозвонкой. Кстати, некоторые используют для проверки конденсатора кабели и лампы, но применение мультиметра отличается точностью и надежностью.
  2. Если ёмкость конденсатора больше 20 мкФ, даже и думать не стоит о простом коротком замыкании. Включите сопротивление на 5-20 КОм, которое подразумевает один-два Вт, между контактами. Если не учесть этого, в ходе разрядки будет мощная искра, а это уже риск для здоровья. Помните, что взаимодействовать с высокоёмкими элементами нужно в защитных очках!
  3. До того, как начать мерить, изучите внешнее состояние конденсатора. Когда нарушена изоляция, имеются трещины и прочие дефекты, лучше сразу менять его на рабочую деталь. Если видимых проблем нет, стоит использовать тестер.
  4. Важно понять тип конденсатора. Когда он с полярностями, важно их соблюдать, если вы не планируете распрощаться с устройством. Если неполярный, то можно не определять “-” и “+” выходы.
  5. Для проверки ёмкости конденсатора придется его выпаять. Если вы думаете, как прозвонить конденсатор мультиметром на плате, придется вас разочаровать: никак. Если вы попытаетесь проводить измерения прямо на плате, процесс будет подвергаться влиянию других составных цепи, то есть показания будут неточным. Впрочем, продаются определенные измерители, у которых на щупах напряжение снижено, что позволяет осуществлять проверку даже на плате.

Есть ещё момент в отношении того, на плате как проверить конденсатор мультиметром, не выпаивая. Без выпаивания допускается проверить возможность функционирования элемента, если нет зашунтирования низкоомной цепью. Неисправность можно проверять, например, с помощью функции постоянного напряжения. То есть, если не выпаять элемент, можно даже на плате узнавать, рабочий конденсатор или нет.

Видео о проверке конденсатора мультиметром, не выпаивая:

Как проверить конденсатор мультиметром на работоспособность

Мы уже упоминали о полярности. Что нужно для определения полярного устройства? На корпусе будет контрастная полоса (на светлом фоне темная полоса и наоборот). Она является отметкой для вывода со знаком “-”.

Перед тем как измерить конденсатор мультиметром, посмотрите на наличие полоски. Если её нет, расположение щупов не важно.

Видео, как проверить мультиметром конденсатор электролитический, то есть полярный:

Как измерить емкость конденсатора мультиметром: режим сопротивления

Вот как должен измеряться конденсатор:

  1. Выбрать на мультиметре функцию сопротивления (омметра). Благодаря такому режиму можно определить наличие замыкания или обрыва.
  2. Выставить границу значений. Если элемент неполярный, ставим 2МОм. Иначе нам понадобится значение в 200 Ом.
  3. Не забываем, что механизм должен быть отпаянным от платы.
  4. Щупами соединиться с конденсаторными выводами в зависимости от полярности. Если полярности нет, на расположение можно не обращать внимания.
  5. Орлиным глазом смотрим на дисплей включенного мультиметра. Там появятся цифры, постепенно увеличивающиеся до 1. Объясняется это просто: измеритель заряжает деталь.

Если появилась цифра 1, можно смело делать вывод о том, что с функционированием механизма всё в порядке. Если при соединении контактов сразу появилось это значение, радовать не чему: в детали есть обрыв и она не пригодна к дальнейшему использованию. Да и цифра 0 не особо оптимистична, ведь указывает на короткое замыкание.

Если конденсатор без полярностей, работоспособная цифра — 2. Всё, что ниже, указывает на отсутствие функционирования конденсатора. Теперь вы знаете, как проверить емкость мультиметром у конденсатора. Но эта инструкция предназначена для цифровых измерителей. Кстати, советуем к прочтению материал о том, как пользоваться тестером.

Для аналоговых моделей процесс измерений ещё более простой. Главное — смотреть на движение стрелки.  Если она перемещается спокойно, всё в порядке. Если видите очень маленькое или большое значение, значит, конденсатор сломан.

Измерение конденсаторов мультиметром с функцией омметра осуществляется для элементов, ёмкость которых больше 0.25 мкФ. Если значение меньше, нужно использовать специальные измерители с высоким разрешением.

Измерение емкости мультиметром у конденсатора: используем специальную функцию

Сейчас поговорим о мультиметрах, у которых есть режим измерения ёмкости. Принцип действия практически такой же. Для начала выбираем нужную функцию мультиметра, затем:

  1. Выбираем значение измерений. Для этого смотрим, что написано на конденсаторе и выбираем ближайшее сверху значение. К примеру, мы видим, что на элементе стоит ёмкость в 1 мкФ. Тогда выставляем 2.
  2. Соединяем провода мультиметра с контактными выводами нашего конденсатора.
  3. Фиксируем на бумаге или просто у себя в голове показатели с дисплея.

Не замыкайте щупы на выводах собственноручно! Проводимость нашего организма по сравнению с конденсатором лучше, в результате чего ток тестера будет проходить по цепи из одной руки в другую. Поэтому на дисплее вы увидите цифры, которые относятся к вам, а не к конденсатору.

Есть тестеры с отверстиями для конденсаторов. Это удобно, так нужно только выбрать функцию и значения измерений, а затем вставить элемент в гнездо, после чего дисплей покажет значение проверки.

Теперь вы знаете самое необходимое о проверке емкости мультиметром.

Проверка обрыва через прозвонку

Здесь мы снова имеем дело с ёмкостью. А всё потому, что принцип анализа на обрыв основан на том, чтобы поймать хотя бы какие-то признаки того, что у конденсатора есть ёмкость. Один из способов это осуществить — сигнал на функции прозвонки.

Очень простая пошаговая инструкция, как проверить конденсатор мультиметром:

  1. Выбрать на измерителе функцию прозвонки.
  2. Дотронуться щупами до выводов конденсатора.
  3. Внимательно слушать.

Мультиметр должен выдать короткий писк. Он может звучать как щелчок, поэтому держите ухо востро.

Есть секрет, как сделать продолжительность сигнала больше. Для этого заранее зарядите конденсаторы напряжением со знаком “-”: приложите щупы в обратном порядке. За счет этого при следующей прозвонке измеритель сначала перезарядит элемент от “-” напряжение до 0, а потом от 0 до момента выключения писка. Так как этот процесс протекает дольше, писк тоже станет более продолжительным, и вам будет легче услышать его.

Посмотрите, как замерить конденсатор мультиметром:

Как проверить пусковой конденсатор мультиметром

Пусковой конденсатор нужен для стабильного функционирования электродвигателя. Проверить его работу мультиметром просто:

  1. Обесточить кондиционер.
  2. Разрядить конденсатор.
  3. Снять клемму.
  4. Выбрать на мультиметре функцию измерения ёмкости.
  5. Выбрать предел значений. Для этого, как обычно, смотрим на значения корпуса и выставляем на приборе параметр больше.
  6. Прислонить щупы к выводам.
  7. Устремляем взор на цифры, которые появились на экране.

Если значение отличается от того, что на корпусе, скорее всего, механизм нуждается в замене.

Как проверить керамический конденсатор мультиметром

Элементы из керамики обычно без полярностей. Как мы уже упоминали, их проверка практически такая же, отличается лишь норма полученных значений:

  1. На мультиметре выбираем функцию измерения сопротивления.
  2. Ставим максимальный предел замеров.
  3. Дотрагиваемся проводами мультиметра до контактов, но не прикасаемся к ним сами!

Если на дисплее вы увидели цифру от 2 Мом — всё в порядке. Если же значение меньше, конденсатор не пригоден для дальнейшего использования.

Теперь вы знаете самое главное о том, как проверить исправность конденсатора мультиметром и сможете сделать это самостоятельно.

Желаем вам безопасных и точных проверок!

Вопрос — ответ

Вопрос: Как можно проверить конденсатор обычным мультиметром на работоспособность?

Ответ: Сначала нужно разрядить конденсатор, а также определить его тип: если полярный, нужно соблюдать полярность. Если неполярный, то определять “-” и “+” выходы не обязательно. Также нужно выпаять конденсатор.

 

Вопрос: Как прозвонить конденсатор с помощью мультиметра?

Ответ: Нужно выбрать режим прозвонки, дотронуться щупами до выводов конденсатора и внимательно слушать. Мультиметр издаст короткий писк.

 

Вопрос: Как проверить конденсатор простым мультиметром, не выпаивая?

Ответ: Если оставить компонент на плате, результаты будут неточным. Без выпаивания можно только проверить, работает конденсатор или нет, если не зашунтирован низкоомной цепью. Для этого нужен режим проверки постоянного напряжения или сопротивлений.

 

Вопрос: Как правильно проверить электролитический конденсатор мультиметром?

Ответ: Электролитический или полярный конденсатор проверяется в режиме омметра или на функции измерения ёмкости. В первом случае выбираем режим омметра, устанавливаем пределы измерений (200 Ом), щупами касаемся выводов конденсатора в зависимости от полярности.

 

Вопрос: Как лучше всего проверить пусковой конденсатор мультиметром?

Ответ: Для этого нужно обесточить кондиционер, разрядить конденсатор и снять клемму. На мультиметре выбирается режим измерения ёмкости. Также выбирается предел значений в зависимости от того, что указано на корпусе. Клемма снимается, щупы присоединяются к конденсаторным выводам.

 

Как проверить конденсатор на исправность мультиметром

В прошлых статьях были рассмотрены вопросы: принципов работы, характеристик и схем соединения конденсаторов. Сейчас Я подробно расскажу как его проверить при помощи недорого и распространенного измерительного прибора- мультиметра, а так же как, его используя при наличии соответствующий функции, узнать величину емкости.

Перед проверкой конденсатор необходимо выпаять из схемы, потому что не выпаивая это сделать практически невозможно из-за влияния на измерения других компонентов схемы. В большинстве случаев, не выпаивая из схемы можно лишь проверить мультиметром только на пробой, при котором на выводах конденсатора будет короткое замыкание.

Некоторые радиолюбители используют метод для проверки на плате при помощи зарядки — разрядки конденсатора, меняя полярность перестановкой концов мультиметра или тестера. Сомнительный метод, Я один раз попробовал данным методом воспользоваться и у меня ничего не получилось проверить, потому что в схеме было много других конденсаторов. Рекомендую, если внешним осмотром ничего выявить не удалось, для правильной проверки выпаивать конденсатор.

Помните, что приступая к любым работам с конденсаторами— необходимо перед этим разрядить его выводы. Я для этого использую отвертку с изолированными ручкой, за которую держась необходимо  замкнуть контакты конденсатора.  Мощные модели во избежания повреждения искровым разрядом металлической части отвертки, лучше разрядить при помощи лампочки накаливания. Необходимо держась за изолированную часть проводов коснуться выводов конденсатора. Лампочка вспыхнет и погаснет, после этого произойдет полный разряд. Но одной лампочкой необходимо только разряжать при рабочем напряжении 220 Вольт, для 380 Вольт- используйте 2 последовательно соединенные между собой лампочки.

Как проверить конденсаторы внешним осмотром

Прежде чем выпаивать со схемы конденсатор сделайте внешний его осмотр. Очень часто визуально неисправность определяется при осмотре электролитических конденсаторов.
Если Вы обнаружили подтеки электролита в нижней части и следы коррозии (левая картинка) или вздутие в области перекрестия сверху (правая картинка), то такие конденсаторы необходимо заменить.

Довольно просто в большинстве случаев удается проверить конденсаторы на 220 Вольт следующим методом:

  1. Проверяем пробником или тестером на отсутствие короткого замыкания внутри конденсатора.
  2. Заряжаем конденсатор от электросети рабочим напряжением с соблюдением мер предосторожности.
  3. Отключаем его от электропитания.
  4. Закорачиваем или подключаем лампочку, как было описано выше- увидели искровой разряд или вспышку в лампочке, значит конденсатор в порядке.

Как проверить конденсатор мультиметром

Конденсаторы бывают полярные и неполярные. К полярным относятся только электролитические. Они впаиваются в схемы только с соблюдением полярности к плюсу плюсовой контакт, к минусу- минусовой контакт. Минус напротив контакта указывается галочкой на золотистой или светлой продольной линии на корпуса конденсатора.

Неполярные- без разницы какими контактами подключать или впаивать в схему.

Перед началом проверки не забываем закоротить выводы. После этого берем мультиметр и переключаем его в режим прозвонки или измерения сопротивления. У исправного конденсатора сразу после подключения начнется зарядка постоянным током и сопротивление на табло будет минимальным (рисунок 1). Далее сопротивление будет плавно расти пока не достигнет  максимально большого значения или  бесконечности (рисунок 2).

При неисправности конденсатора:

  • При проверке мультиметром сразу высвечивается бесконечность. Это говорит о том, что внутри конденсатора произошел обрыв.
  • Мультиметр пищит и показывает нулевое сопротивление- в конденсаторе произошел пробой изолятора и возникло короткое замыкание.

В обоих случаях конденсаторы подлежат замене.

Неполярные конденсаторы проверяются гораздо проще. Устанавливаем предел измерения сопротивления на мультиметре Мега Омы и касаемся измерительными щупами контактов конденсатора. У неисправного конденсатора сопротивление будет меньше 2 Мега Ом.

Вы должны учитывать, что большинство моделей тестеров позволяют проверить лишь на короткое замыкание неполярные и полярные конденсаторы номиналом менее 0.25 мкФ.

Как определить емкость конденсатора

Все параметры наносятся на корпусе конденсаторов, для проверки соответствия емкости или если эту величину невозможно прочесть- необходимо воспользоваться мультиметром с функцией измерения емкости «Сх».

Для измерения величины емкости переключите мультиметр в режим Cx с предполагаемым максимальным пределом измерения для данного конденсатора. В некоторых моделях есть специальные гнезда для проверки небольших конденсаторов, в которые вставляются контактные ножки согласно пределам измерения. В других- для этого используются измерительные щупы.

На рисунке показан пример измерения конденсатора на 9.5 Микрофарад, поэтому предел выставлен на 20 Микрофарад.

Не забывайте только перед проверкой всегда разряжать конденсаторы.

Электролитические конденсаторы — условные обозначения конденсаторов

При проектировании посадочных мест для электролитических конденсаторов важно разместить четкие указательные метки, чтобы показать ориентацию компонентов. Поскольку этот тип конденсаторов поляризован (они должны быть размещены в определенной ориентации), они должны иметь на печатной плате метки, помогающие определить, как их следует размещать. Четкость маркировки компонентов является ключом к тому, чтобы изготовление вашей конструкции проходило гладко, и синий дым не выходил из ваших конденсаторов.Тем более, что электролитические конденсаторы сделаны из тантала, поскольку они имеют тенденцию к катастрофическим последствиям, когда они включаются в обратном направлении.

Электролитический конденсатор

Электролитические конденсаторы

— один из самых популярных типов конденсаторов, используемых в конструкции платы. Они дешевы и обеспечивают хороший баланс физического размера и емкости. Есть четыре физических вида электролитических конденсаторов; Банка SMT, корпус SMT, PTH радиальный и PTH осевой. Каждый стиль обозначен немного по-своему.Обычно они отмечены полосой на катодной стороне конденсатора, указывающей отрицательный вывод, но есть некоторые исключения. Это отличается от типичного схематического обозначения с положительной или анодной маркировкой!

Схематическое обозначение

Типичный поляризованный конденсатор будет выглядеть, как показано на схеме ниже. Положительная или анодная сторона конденсатора отмечена знаком «+». Поскольку электролитические конденсаторы поляризованы, я использую на схемах символ (показанный ниже).

Схематический символ поляризованных конденсаторов, как показано в Eagle.

Электролитический конденсатор в форме банки для поверхностного монтажа

Эти конденсаторы отмечены на верхней части банки черной меткой. Однако цвет марки иногда зависит от производителя. Пластиковая основа конденсатора также имеет фаску с положительной или анодной стороны.

SMT Can Electrolytic Capactor: Маркировка указывает на отрицательную или катодную сторону.

Площадь основания типичного электролитического конденсатора SMT.

Электролитический конденсатор в корпусе SMT

Конденсаторы этого типа обычно имеют внутри тантал или ниобий, но есть несколько электролитических полимеров. Стиль корпуса означает, что он имеет форму резистора 0805 или керамического конденсатора. В отличие от других корпусов для конденсаторов, они обычно имеют положительную или анодную маркировку.

Электролитические компоненты типа корпуса

SMT обычно имеют анодную / положительную маркировку. Осторожно!

Место для электролитических конденсаторов в корпусе SMT.

Радиальный электролитический конденсатор PTH

Радиальные крышки имеют как анод, так и катод, выходящие на одну сторону конденсатора.В 99% случаев они отмечены контрастной лентой на катоде или отрицательной стороне конденсатора.

Маркировка радиально поляризованных электролитических конденсаторов PTH.

Посадочное место для радиальных электролитических конденсаторов PTH.

Осевой электролитический конденсатор PTH

Конденсаторы осевого типа

используются не очень часто, но интересны тем, как они маркированы. Отрицательная или катодная полоса проходит по их стороне аналогично радиальному стилю, но на маркировке есть стрелка, указывающая, какая сторона отрицательная или катодная.

Электролитический осевой тип PTH. Катодная полоса направлена ​​на катод.

Площадь основания для электролитического конденсатора осевого типа PTH.

В следующий раз на файлах посадочных мест…

Самая важная вещь, которую следует помнить, — это свериться с таблицей данных деталей и увидеть, как полярность обозначена на детали. Копирование внешнего вида детали на ваших платах шелкография гарантирует гораздо больший успех при сборке платы. Я надеюсь, что это улучшит ваши следы на доске и упростит создание ваших продуктов и прототипов.В следующий раз в файлах посадочных мест мы поговорим о танталовых конденсаторах.

Ознакомьтесь с предыдущей публикацией из этой серии: Файлы отпечатков — диоды

Был ли этот пост полезным? Есть ли другие темы, которые вы хотели бы, чтобы мы обсудили? Если да, сообщите нам об этом в Твиттере.

Начни сегодня.

создать учетную запись

Маркировка общих деталей и полярность — записывающее оборудование для самостоятельного изготовления

За пять лет продажи комплектов мы получили пару тысяч билетов в службу поддержки.И я обнаружил, что ~ 90% проблем сводятся к двум распространенным ошибкам:

  1. Детали не в том месте
  2. Детали в неправильной ориентации

Хотя этих ошибок легко избежать, они не являются «глупыми» ошибками. Идентификация частей может сбивать с толку, поскольку каждая часть подчиняется разным соглашениям.

В этом выпуске «Объясни, как я 5» мы расскажем, как определить ценность и ориентацию наиболее распространенных частей.

Резисторы
Значение резистора
На резисторах

имеются цветные полосы, которые указывают их значение (сопротивление) и допуск (диапазон сопротивления).Чтобы идентифицировать резистор, сравните цвета полос с таблицей цветовых кодов или найдите их на калькуляторе цветовых кодов.

Однако, если у вас есть мультиметр, есть еще лучший вариант! Настройте измеритель на считывание сопротивления (символ Ω) и проверьте каждую сторону резистора. Просто имейте в виду, что фактическое сопротивление будет зависеть от допуска резистора. Например, резистор на фотографии ниже имеет номинальное сопротивление 910 Ом с допуском 1% и имеет размер 904 Ом.

Ориентация резистора

Резисторы не поляризованы, поэтому их нельзя правильно ориентировать.

Конденсаторы электролитические
Значение электролитической крышки

Электролитические компоненты — один из наименее щадящих компонентов: они поляризованы и имеют тенденцию эффектно взрываться, когда вставляются задом наперед. С другой стороны, это, пожалуй, наиболее полно и четко обозначенные части.

Значение (емкость) электролита и номинальное напряжение указаны прямо на корпусе, с указанием единиц измерения и всего остального!

Ориентация электролитической крышки

И производители настолько серьезно относятся к тому, чтобы убедиться, что вы не перевернули электролиты, что они отметили свою полярность дважды . Как мило с их стороны! Положительный провод электролита длиннее, а отрицательный вывод отмечен на корпусе полосой и знаком минуса.

Конденсаторы прочие
Максимальное значение

Если бы только все крышки были так же четко обозначены, как электролитические. Большинство крышек имеют трехзначный код для значения и одну букву для допуска.

Трехзначный код указывает значение ограничения в пикофарадах. Первые две цифры — это первые цифры значения, а третья цифра — количество нулей.Итак, на фото ниже ограничение слева составляет 100 пФ (10 + один ноль), а ограничение справа — 100 000 пФ (10 + четыре нуля).

Если вы, как и я, никогда не можете вспомнить метрические единицы, вы можете использовать онлайн-конвертер, чтобы преобразовать эти 100000 пФ в что-то более читаемое, например 100 нФ.

Ориентация крышки

В отличие от электролитических, большинство других крышек не поляризованы. У очень немногих исключений, таких как тантал, полярность обозначена на теле.

Диоды
Значение диода
Названия

диодов отмечены прямо на корпусе (хотя для их чтения может потребоваться лупа).

Ориентация диода

Катодный (отрицательный) вывод отмечен серой или черной полосой. Просто совместите полосу на диоде с полосой на печатной плате, и все готово.

Светодиоды
Значение светодиода

Нет ничего проще, чем определить светодиод. Ищете «красный светодиод» в спецификации? Это будет красный.

Ориентация светодиода

И так же, как и электролитические колпачки, положительный провод светодиода длиннее отрицательного.

Транзисторы
Значение транзистора
Транзисторы

очень просто идентифицировать, потому что вместо стоимости у них есть номер модели, нанесенный на корпус.

Ориентация транзистора

Поскольку у разных транзисторов разные названия выводов, наиболее надежный способ определить ориентацию — по форме. Просто совместите форму корпуса транзистора с формой, отмеченной на печатной плате.

Интегральные схемы (ИС)
Значение IC

Как и транзисторы, ИС имеют номер модели, нанесенный на корпус. Также часто есть номер партии, который можно игнорировать.

Ориентация ИС
Производители

ИС указывают ориентацию несколькими разными способами.Первый — с выемкой на одной стороне корпуса (между контактами 1 и 8). Эта выемка обычно присутствует и на печатной плате. Второй — с точкой рядом с контактом 1.

Практические соображения — Конденсаторы | Конденсаторы

Конденсаторы

, как и все электрические компоненты, имеют ограничения, которые необходимо соблюдать для обеспечения надежности и правильной работы схемы.

Рабочее напряжение конденсатора

Рабочее напряжение : Поскольку конденсаторы представляют собой не что иное, как два проводника, разделенных изолятором (диэлектриком), вы должны обращать внимание на максимальное допустимое напряжение на нем.Если приложить слишком большое напряжение, предел пробоя диэлектрического материала может быть превышен, что приведет к внутреннему короткому замыканию конденсатора.

Полярность конденсатора

Полярность : Некоторые конденсаторы производятся таким образом, что они могут выдерживать приложенное напряжение только одной полярности, но не другой. Это связано с их конструкцией: диэлектрик представляет собой микроскопически тонкий слой изоляции, нанесенный на одну из пластин постоянным напряжением во время производства.Они называются электролитическими конденсаторами , и их полярность четко обозначена.

Изменение полярности напряжения на электролитический конденсатор может привести к разрушению этого сверхтонкого диэлектрического слоя, что приведет к разрушению устройства. Однако тонкость этого диэлектрика обеспечивает чрезвычайно высокие значения емкости при относительно небольшом размере корпуса. По той же причине электролитические конденсаторы обычно имеют низкое номинальное напряжение по сравнению с другими типами конденсаторной конструкции.

Схема эквивалента конденсатора

Эквивалентная схема: Поскольку пластины конденсатора имеют некоторое сопротивление и поскольку диэлектрик не является идеальным изолятором, не существует такой вещи, как «идеальный» конденсатор. В реальной жизни конденсатор имеет как последовательное сопротивление, так и параллельное сопротивление (сопротивление утечки), которые взаимодействуют с его чисто емкостными характеристиками:

К счастью, относительно легко изготовить конденсаторы с очень малым последовательным сопротивлением и очень высоким сопротивлением утечке!

Физический размер конденсатора

Для большинства приложений в электронике минимальный размер является целью разработки компонентов.Чем меньше могут быть изготовлены компоненты, тем больше схем может быть встроено в меньший корпус, и, как правило, также сохраняется вес. Что касается конденсаторов, то существует два основных фактора, ограничивающих минимальный размер блока: рабочее напряжение и емкость . И эти два фактора, как правило, противоположны друг другу. При любом выборе диэлектрических материалов единственный способ увеличить номинальное напряжение конденсатора — это увеличить толщину диэлектрика. Однако, как мы видели, это приводит к уменьшению емкости.Емкость можно повысить, увеличив площадь пластины. но это делает устройство большего размера. Вот почему вы не можете судить о емкости конденсатора в фарадах просто по размеру. Конденсатор любого заданного размера может иметь относительно высокую емкость и низкое рабочее напряжение, наоборот, или некоторый компромисс между двумя крайностями. Для примера возьмем следующие две фотографии:

Это довольно большой по физическим размерам конденсатор, но у него довольно низкое значение емкости: всего 2 мкФ.Однако его рабочее напряжение довольно высокое: 2000 вольт! Если бы этот конденсатор был модернизирован так, чтобы между его пластинами был более тонкий слой диэлектрика, можно было бы достичь, по крайней мере, стократного увеличения емкости, но за счет значительного снижения его рабочего напряжения. Сравните фотографию выше с приведенной ниже. Конденсатор, показанный на нижнем рисунке, представляет собой электролитический блок, по размеру аналогичный приведенному выше, но с очень разными значениями емкости и рабочего напряжения:

Более тонкий диэлектрический слой дает ему гораздо большую емкость (20 000 мкФ) и значительно снижает рабочее напряжение (35 В непрерывно, 45 В прерывисто).

Вот несколько образцов конденсаторов разных типов, все меньше, чем показанные ранее:

Электролитические и танталовые конденсаторы имеют поляризацию и (чувствительны к полярности) и всегда имеют соответствующую маркировку. Отрицательные (-) выводы электролитических агрегатов обозначены стрелками на корпусах. У некоторых поляризованных конденсаторов полярность обозначена маркировкой положительного вывода.Большой электролитический блок емкостью 20 000 мкФ, показанный в вертикальном положении, имеет положительный (+) вывод, помеченный знаком «плюс». Керамические, майларовые, пластиковые пленочные и воздушные конденсаторы не имеют маркировки полярности, потому что это неполяризованные типы , (они не чувствительны к полярности).

Конденсаторы — очень распространенные компоненты в электронных схемах. Внимательно посмотрите на следующую фотографию — каждый компонент, отмеченный на печатной плате знаком «C», является конденсатором:

Некоторые конденсаторы, показанные на этой печатной плате, являются стандартными электролитическими: C 30 (верх платы, в центре) и C 36 (левая сторона, 1/3 сверху).Некоторые другие представляют собой особый вид электролитического конденсатора под названием тантал , потому что это тип металла, который используется для изготовления пластин. Танталовые конденсаторы имеют относительно высокую емкость для своего физического размера. Следующие конденсаторы на схемной плате, показанной выше, являются танталовыми: C 14 (слева внизу от C 30 ), C 19 (непосредственно под R 10 , что ниже C 30 ) , C 24 (нижний левый угол платы) и C 22 (нижний правый).

Примеры конденсаторов еще меньшего размера можно увидеть на этой фотографии:

Конденсаторы на этой печатной плате являются «устройствами для поверхностного монтажа», как и все резисторы, из соображений экономии места. Следуя правилам маркировки компонентов, конденсаторы можно идентифицировать по этикеткам, начинающимся с буквы «C».

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Типы конденсаторов и их конструкция

Доступные типы конденсаторов варьируются от очень маленьких тонких подстроечных конденсаторов, используемых в генераторах или радиосхемах, до конденсаторов с металлическими банками большой мощности, используемых в схемах коррекции и сглаживания высокого напряжения.

Сравнение различных типов конденсаторов обычно проводится в отношении диэлектрика, используемого между пластинами. Как и резисторы, существуют также конденсаторы переменного тока, которые позволяют изменять значение их емкости для использования в схемах радиосвязи или схемах типа «подстройка частоты».

Конденсаторы промышленного типа изготавливаются из металлической фольги, переплетенной с тонкими листами пропитанной парафином бумаги или майлара в качестве диэлектрического материала. Некоторые конденсаторы выглядят как трубки, это связано с тем, что пластины из металлической фольги свернуты в цилиндр, образуя небольшой корпус с изолирующим диэлектрическим материалом, зажатым между ними.

Маленькие конденсаторы часто изготавливаются из керамических материалов, а затем погружаются в эпоксидную смолу для их герметизации. В любом случае конденсаторы играют важную роль в электронных схемах, поэтому вот несколько наиболее «распространенных» типов доступных конденсаторов.

Конденсатор диэлектрический

Диэлектрические конденсаторы обычно бывают переменного типа, где для настройки передатчиков, приемников и транзисторных радиоприемников требуется постоянное изменение емкости. Конденсаторы с переменной диэлектрической проницаемостью представляют собой многопластинчатые конденсаторы с воздушным зазором, которые имеют набор неподвижных пластин (лопатки статора) и набор подвижных пластин (лопатки ротора), которые перемещаются между неподвижными пластинами.

Положение подвижных пластин по отношению к неподвижным пластинам определяет общее значение емкости. Емкость обычно максимальна, когда два набора пластин полностью зацеплены друг с другом. Настроечные конденсаторы высоковольтного типа имеют относительно большие промежутки или воздушные зазоры между пластинами с пробивным напряжением, достигающим многих тысяч вольт.

Символ переменного конденсатора

Наряду с плавно регулируемыми конденсаторами также доступны переменные конденсаторы предустановленного типа под названием Trimmers .Как правило, это небольшие устройства, которые можно отрегулировать или «предварительно установить» на конкретное значение емкости с помощью небольшой отвертки, они доступны с очень малой емкостью 500 пФ или меньше и не имеют поляризации.

Пленочный конденсатор типа

Пленочные конденсаторы — наиболее распространенные из всех типов конденсаторов, состоящие из относительно большого семейства конденсаторов, различающихся их диэлектрическими свойствами. К ним относятся полиэстер (майлар), полистирол, полипропилен, поликарбонат, металлизированная бумага, тефлон и т. Д.Конденсаторы пленочного типа доступны в диапазоне емкостей от 5 пФ до 100 мкФ в зависимости от фактического типа конденсатора и его номинального напряжения. Пленочные конденсаторы также бывают разных форм и стилей корпуса, в том числе:

  • Wrap & Fill (Oval & Round) — конденсатор обернут плотной пластиковой лентой, а концы заполнены эпоксидной смолой для герметизации.
  • Эпоксидный корпус (прямоугольный и круглый) — конденсатор заключен в формованный пластиковый корпус, который затем заполняется эпоксидной смолой.
  • Металлический герметичный (прямоугольный и круглый) — конденсатор заключен в металлическую трубку или баллончик и снова запечатан эпоксидной смолой.

со всеми вышеуказанными стилями корпуса, доступными как с осевыми, так и с радиальными выводами.

Пленочные конденсаторы , в которых в качестве диэлектриков используется полистирол, поликарбонат или тефлон, иногда называют «пластиковыми конденсаторами». Конструкция пластиковых пленочных конденсаторов аналогична конструкции бумажных пленочных конденсаторов, но вместо бумаги используется пластиковая пленка.Основное преимущество пластиковых пленочных конденсаторов по сравнению с конденсаторами с пропитанной бумагой заключается в том, что они хорошо работают в условиях высоких температур, имеют меньшие допуски, очень долгий срок службы и высокую надежность. Примерами пленочных конденсаторов являются прямоугольные металлизированные пленочные и цилиндрические пленочные и фольговые типы, как показано ниже.

Радиальный вывод

Осевой вывод

Конденсаторы пленочного и фольгированного типов изготавливаются из длинных тонких полосок тонкой металлической фольги с диэлектрическим материалом, скрученных вместе, которые наматываются в плотный рулон, а затем запечатываются в бумажные или металлические трубки.

Пленочный конденсатор

Для этих типов пленок требуется намного более толстая диэлектрическая пленка, чтобы снизить риск разрывов или проколов пленки, и поэтому они больше подходят для более низких значений емкости и больших размеров корпуса.

Конденсаторы из металлизированной фольги имеют металлизированную проводящую пленку, напыленную непосредственно на каждую сторону диэлектрика, что придает конденсатору свойства самовосстановления и, следовательно, позволяет использовать гораздо более тонкие диэлектрические пленки. Это позволяет использовать более высокие значения емкости и меньшие размеры корпуса для данной емкости.Пленочные и фольговые конденсаторы обычно используются для более высоких мощностей и более точных применений.

Конденсаторы керамические

Керамические конденсаторы или Дисковые конденсаторы , как их обычно называют, изготавливаются путем покрытия двух сторон небольшого фарфорового или керамического диска серебром, а затем складываются вместе, образуя конденсатор. Для очень низких значений емкости используется один керамический диск размером около 3-6 мм. Керамические конденсаторы имеют высокую диэлектрическую проницаемость (High-K) и доступны, так что относительно высокая емкость может быть получена при небольшом физическом размере.

Керамический конденсатор

Они демонстрируют большие нелинейные изменения емкости в зависимости от температуры и в результате используются в качестве развязывающих или шунтирующих конденсаторов, поскольку они также являются неполяризованными устройствами. Керамические конденсаторы имеют номиналы от нескольких пикофарад до одной или двух микрофарад (мкФ), но их номинальное напряжение обычно довольно низкое.

Конденсаторы керамического типа обычно имеют трехзначный код, напечатанный на их корпусе, чтобы идентифицировать значение их емкости в пикофарадах.Обычно первые две цифры указывают на номинал конденсаторов, а третья цифра указывает количество добавляемых нулей. Например, керамический дисковый конденсатор с маркировкой 103 будет показывать 10 и 3 нуля в пикофарадах, что эквивалентно 10 000 пФ или 10 нФ.

Аналогично, цифры 104 будут обозначать 10 и 4 нуля в пикофарадах, что эквивалентно 100 000 пФ или 100 нФ и так далее. Таким образом, на изображении керамического конденсатора над цифрами 154 обозначены 15 и 4 нуля в пикофарадах, что эквивалентно 150 000 пФ, или 150 нФ, или 0.15 мкФ. Буквенные коды иногда используются для обозначения их значения допуска, например: J = 5%, K = 10% или M = 20% и т. Д.

Конденсаторы электролитические

Электролитические конденсаторы обычно используются, когда требуются очень большие значения емкости. Здесь вместо использования очень тонкого металлического пленочного слоя для одного из электродов используется полужидкий раствор электролита в виде желе или пасты, который служит вторым электродом (обычно катодом).

Диэлектрик представляет собой очень тонкий слой оксида, который электрохимически выращивается на производстве, при этом толщина пленки составляет менее десяти микрон.Этот изолирующий слой настолько тонкий, что можно изготавливать конденсаторы с большим значением емкости при небольшом физическом размере, поскольку расстояние между пластинами d очень мало.

Конденсатор электролитический

Большинство электролитических типов конденсаторов — поляризованные , то есть напряжение постоянного тока, приложенное к клеммам конденсатора, должно иметь правильную полярность, т. Е. Положительную полярность к положительной клемме и отрицательную к отрицательной клемме, поскольку неправильная поляризация приведет к выходу из строя конденсатора. изоляционный оксидный слой может привести к необратимому повреждению.

Полярность всех поляризованных электролитических конденсаторов четко обозначена отрицательным знаком, указывающим на отрицательный вывод, и эту полярность необходимо соблюдать.

Электролитические конденсаторы обычно используются в цепях питания постоянного тока из-за их большой емкости и небольшого размера, чтобы помочь уменьшить пульсации напряжения или для приложений связи и развязки. Одним из основных недостатков электролитических конденсаторов является их относительно низкое номинальное напряжение, и из-за поляризации электролитических конденсаторов их нельзя использовать с источниками переменного тока.Электролитические обычно бывают двух основных форм; Алюминиевые электролитические конденсаторы и Танталовые электролитические конденсаторы .

Конденсатор электролитический

1. Алюминиевые электролитические конденсаторы

Существует два основных типа алюминиевых электролитических конденсаторов : с простой фольгой и с протравленной фольгой. Толщина пленки оксида алюминия и высокое напряжение пробоя дают этим конденсаторам очень высокие значения емкости для их размера.

Фольговые пластины конденсатора анодированы постоянным током. Этот процесс анодирования устанавливает полярность материала пластины и определяет, какая сторона пластины является положительной, а какая — отрицательной.

Протравленная фольга отличается от простой фольги тем, что оксид алюминия на анодной и катодной фольгах подвергался химическому травлению для увеличения площади поверхности и диэлектрической проницаемости. Это дает конденсатор меньшего размера, чем у обычного типа фольги эквивалентного номинала, но имеет недостаток, заключающийся в том, что он не может выдерживать большие токи постоянного тока по сравнению с обычным типом.Кроме того, их диапазон допуска довольно велик — до 20%. Типичные значения емкости алюминиевого электролитического конденсатора находятся в диапазоне от 1 мкФ до 47 000 мкФ.

Электролитические фильтры из фольги

лучше всего подходят для соединений, блокировки постоянного тока и байпасных цепей, в то время как плоские типы из фольги лучше подходят в качестве сглаживающих конденсаторов в источниках питания. Но алюминиевые электролиты — это «поляризованные» устройства, поэтому изменение направления приложенного напряжения на выводах приведет к разрушению изолирующего слоя внутри конденсатора вместе с конденсатором.Однако электролит, используемый в конденсаторе, помогает залечить поврежденную пластину, если повреждение небольшое.

Поскольку электролит обладает способностью к самовосстановлению поврежденной пластины, он также может повторно анодировать пластину из фольги. Поскольку процесс анодирования можно обратить вспять, электролит имеет способность удалять оксидное покрытие с фольги, как это произошло бы, если бы конденсатор был подключен с обратной полярностью. Поскольку электролит обладает способностью проводить электричество, если слой оксида алюминия будет удален или разрушен, конденсатор позволит току проходить от одной пластины к другой, разрушая конденсатор, «так что имейте в виду».

2. Танталовые электролитические конденсаторы

Танталовые электролитические конденсаторы и Танталовые шарики доступны как с мокрым (фольга), так и с сухим (твердый) электролитическим типом, причем наиболее распространенным является сухой или твердый тантал. В твердотельных танталовых конденсаторах в качестве второго вывода используется диоксид марганца, и они физически меньше, чем эквивалентные алюминиевые конденсаторы.

Диэлектрические свойства оксида тантала также намного лучше, чем у оксида алюминия, что дает более низкие токи утечки и лучшую стабильность емкости, что делает их пригодными для использования в приложениях блокировки, обхода, развязки, фильтрации и синхронизации.

Кроме того, танталовые конденсаторы , хотя и поляризованы, гораздо легче переносят подключение к обратному напряжению, чем алюминиевые, но рассчитаны на гораздо более низкие рабочие напряжения. Твердотельные танталовые конденсаторы обычно используются в цепях, где напряжение переменного тока мало по сравнению с напряжением постоянного тока.

Однако некоторые типы танталовых конденсаторов содержат два конденсатора в одном, подключенных отрицательно к отрицательному, чтобы сформировать «неполяризованный» конденсатор для использования в низковольтных цепях переменного тока в качестве неполяризованного устройства.Обычно положительный вывод идентифицируется на корпусе конденсатора знаком полярности, при этом корпус конденсатора с танталовыми шариками имеет овальную геометрическую форму. Типичные значения емкости находятся в диапазоне от 47 нФ до 470 мкФ.

Алюминиево-танталовый электролитический конденсатор

Электролитические конденсаторы

— широко используемые конденсаторы из-за их низкой стоимости и небольших размеров, но есть три простых способа разрушить электролитический конденсатор:

  • Перенапряжение — чрезмерное напряжение вызовет утечку тока через диэлектрик, что приведет к короткому замыканию.
  • Обратная полярность — обратное напряжение вызовет саморазрушение оксидного слоя и выход из строя.
  • Превышение температуры — чрезмерное нагревание приводит к высыханию электролита и сокращает срок службы электролитического конденсатора.

В следующем руководстве по конденсаторам мы рассмотрим некоторые из основных характеристик, чтобы показать, что конденсатор — это нечто большее, чем просто напряжение и емкость.

Чего нельзя делать с крышками

Неправильное использование конденсаторов

Недавно мы опубликовали заметку о схеме конденсатора и, как всегда, получили много отличных отзывов от наших читателей.Чтобы ответить на ваши вопросы, мы попросили нашу службу технической поддержки рассказать нам о конденсаторах. Они поделились некоторыми ценными знаниями и рассказами из своего личного опыта. Тем временем наша команда по маркетингу продуктов решила, что показать вам, что именно происходит, когда вы меняете полярность конденсатора или подвергаете конденсатор воздействию перенапряжения, будет отличной возможностью для обучения.

Что такое конденсаторы и как они работают?

Конденсатор — это пассивный электрический компонент с двумя выводами.По сути, это два проводника, обычно с проводящими пластинами, разделенные изолятором, известным как диэлектрик. Он также имеет соединительные провода, которые подключаются к токопроводящим пластинам. Диэлектрик определяет тип конденсатора. Диэлектрический материал может быть разным, но он должен быть плохим проводником электричества.

Конденсатор предназначен для хранения энергии. Отрицательный вывод принимает электроны от источника питания, а положительный вывод теряет электроны. При необходимости конденсатор высвобождает накопленную энергию.Он работает аналогично аккумулятору, но может полностью разрядить его за доли секунды.

Обычными типами конденсаторов являются керамические конденсаторы, бумажные или пленочные конденсаторы и электролитические конденсаторы. Существует также семейство суперконденсаторов с высокой емкостью.

Применение конденсатора:

Конденсаторы имеют множество применений. Они играют решающую роль в цифровой электронике, поскольку защищают микрочипы от шума в сигнале питания за счет развязки. Поскольку они могут быстро сбросить весь свой заряд, они часто используются во вспышках и лазерах вместе с настраиваемыми схемными устройствами и емкостными датчиками.Цепи с конденсаторами демонстрируют частотно-зависимое поведение, поэтому их можно использовать со схемами, которые выборочно усиливают определенные частоты.

Выбор конденсатора:

Выбор конденсатора во многом зависит от электронного устройства, с которым вы работаете, и от того, какой ток используется (переменный, постоянный и т. Д.). Вы должны определить, нужен ли вам поляризованный или неполяризованный конденсатор. Для этого проверьте схему вашего проекта. Если конденсатор обозначен знаком плюс (+), то требуется поляризованный конденсатор.(-6), или одна миллионная фарада.

Напряжение конденсатора пропорционально заряду, накопленному в конденсаторе. Они способны блокировать сигналы постоянного тока при прохождении переменного тока. Конденсаторы также могут устранить рябь. Если линия, по которой проходит постоянное напряжение, имеет пульсации, конденсатор может выровнять напряжение, поглощая пики и заполняя впадины.

Напряжение на конденсаторе — это не номинал, а скорее то, какое напряжение вы можете подвергнуть конденсатору. Например, если ваш источник напряжения составляет 9 вольт, вы должны выбрать конденсатор, который как минимум в два раза больше напряжения, 18 вольт или даже 27 вольт, чтобы быть в безопасности.

Биполярные электролитические конденсаторы переменного тока или биполярные конденсаторы имеют два анода, подключенных с обратной полярностью. Электролитические конденсаторы постоянного тока поляризованы в процессе производства и поэтому могут работать только с постоянным напряжением. Напряжение с обратной полярностью, напряжение или пульсирующий ток выше, чем указано, могут разрушить диэлектрик и конденсатор. Разрушение электролитических конденсаторов может иметь катастрофические последствия, такие как пожар или взрыв. Если поляризованный конденсатор установлен неправильно, конденсатор со свистом взрывается.С другой стороны, неполяризованные конденсаторы в основном используются для фильтрации гармонических шумов почти в каждой цепи, более удобны в обращении.

«Некоторые большие электролитические конденсаторы могут сохранять заряд в течение длительного времени. Некоторые могут даже до некоторой степени заряжаться самостоятельно», — пояснил инженер технической поддержки Jameco. «Инженер-электронщик, с которым я работал, создавал прототип источника питания, настраивал схему, тестировал детали и т. Д. По своей привычке он вынул заглушку из схемы, чтобы заменить ее, и, не задумываясь, воткнул в нее один из выводов. его рот.Конденсатор более или менее мгновенно разрядил всю свою нагрузку и фактически заставил его упасть со стула. Он был в порядке, но это было страшно. Через несколько месяцев ему пришлось вырвать зуб прямо в том месте, где выпал колпачок. Он ударил этот зуб электрическим током ».

Не забывайте работать осторожно при обращении с конденсаторами и всегда следуйте спецификациям для вашего устройства или проекта. Конденсатор может быть важным компонентом, но он также может привести к разрушительным и опасным последствиям, если не используется надлежащим образом.

Конденсаторы: все, что вам нужно знать | ОРЕЛ

Нет, мы здесь не говорим о Grand Theft Auto! Закрывание крышки в мире электроники нехорошо, если вам не нравится видеть, как ваш электролитический конденсатор горит в огне. Конденсаторы играют важную роль в семействе пассивных электронных компонентов, и их можно использовать повсюду.

Помните вспышку в вашей цифровой камере? Конденсаторы делают это возможным. Или возможность переключать канал на телевизоре? Опять конденсаторы.Эти ребята — маленькие батарейки, которые «могут», и вам нужно знать все, что о них известно, прежде чем вы начнете работать над своим первым проектом в области электроники.

Это как бутерброд с мороженым

Для простоты — конденсатор накапливает электрический заряд , очень похоже на батарею. Также называемые caps , вы найдете этих парней в приложениях, где требуется накопление энергии, подавление напряжения и даже фильтрация сигналов. А как они выглядят? Ну бутерброд с мороженым!

Что бы вы сделали с баром «Клондайк»? Сравните это, конечно, с конденсатором! (Источник изображения)

Подумайте о том восхитительном бутерброде с мороженым, который вам понравился в тот знойный летний день.У вас есть восхитительная корочка с двух сторон и кремовый кусок ванильного мороженого посередине. Эта композиция из двух внешних слоев и одного внутреннего слоя — это то, как выглядит конденсатор. Вот из чего они сделаны:

  • Запуск снаружи. Сверху и снизу конденсатора вы найдете набор металлических пластин, также называемых проводниками. Электрический заряд находит эти металлические пластины очень привлекательными.
  • Сидит посередине. Посреди этих двух металлических пластин вы найдете изолятор или материал, к которому не притягивается электричество. Этот изолятор обычно называют диэлектриком и может быть изготовлен из бумаги, стекла, резины, пластика и т. Д.
  • Соединяем вместе. Две металлические пластины сверху и снизу крышки соединены двумя электрическими клеммами, которые соединяют ее с остальной частью цепи. Один конец конденсатора подключается к источнику питания, а другой течет к земле.

Внутренняя структура конденсатора, у нас есть две металлические пластины, внутренний диэлектрик и соединительные клеммы.

Конденсаторы всех форм и размеров

Конденсаторы

бывают разных форм и размеров, каждый из которых определяет, насколько хорошо они могут удерживать заряд. Три наиболее распространенных типа конденсаторов, с которыми вы столкнетесь, включают керамический конденсатор, электролитический конденсатор и суперконденсатор:

Конденсаторы керамические

Это конденсаторы, с которыми вы, вероятно, будете работать в своем первом электронном проекте с использованием макета.В отличие от своих электролитических аналогов, керамические конденсаторы удерживают меньший заряд, но и меньше пропускают ток. Они также оказываются самыми дешевыми конденсаторами из всей группы, так что запасайтесь! Вы можете быстро определить керамический конденсатор со сквозным отверстием, посмотрев на маленькие желтые или красные лампочки с двумя торчащими из них выводами.

Три типа керамических конденсаторов, вы будете использовать их на макетных платах. (Источник изображения)

Конденсаторы электролитические

Эти парни выглядят как маленькие консервные банки, которые вы найдете на печатной плате, и в их крошечном следе могут удерживаться огромные электрические разряды.Они также являются единственным типом конденсаторов, которые поляризованы, а это означает, что они будут работать только при подключении с определенной ориентацией. На этих электролитических конденсаторах есть положительный вывод, называемый анодом, и отрицательный вывод, называемый катодом. Анод всегда нужно подключать к более высокому напряжению. Если вы подключите его наоборот, когда на катоде будет более высокое напряжение, приготовьтесь к взрыву крышки!

Электролитический конденсатор, обратите внимание на положительный вывод и более длинный (анод) и более короткий отрицательный вывод (катод).(Источник изображения)

Несмотря на то, что электролитические колпачки способны удерживать большое количество электрического заряда, они также хорошо известны тем, что пропускают ток быстрее, чем керамические колпачки. Из-за этого они не лучший выбор, когда вам нужно хранить энергию.

Суперконденсаторы

Supercaps — супергерои семейства конденсаторных, они могут хранить большое количество энергии! К сожалению, суперкапс не очень хорошо справляется с избыточным напряжением, и вы окажетесь без колпачка, если превысите максимальное напряжение, указанное в таблице данных.ПОП!

В отличие от электролитических конденсаторов, вы обнаружите, что суперконденсаторы используются для хранения и разряда энергии, как и батареи. Но в отличие от аккумулятора, суперкапсы высвобождают свой заряд сразу, и вы никогда не получите такой же срок службы, как от обычного аккумулятора.

Посмотрите на этот мощный supercap ! Он имеет огромную емкость 3000F. (Источник изображения)

Обозначения конденсаторов

Идентифицировать конденсатор на вашей первой схеме очень просто, так как они бывают только двух типов: стандартные и поляризованные.Обратите внимание на символ стандартного конденсатора ниже. Вы заметите, что это всего лишь две простые линии с пробелом между ними. Это две металлические пластины, которые вы найдете сверху и снизу физического конденсатора.

Поляризованный конденсатор выглядит немного иначе и имеет дугообразную линию в нижней части, а также положительный вывод наверху. Этот положительный вывод очень важен и указывает, как этот поляризованный конденсатор должен быть подключен. Положительная сторона всегда подключается к источнику питания, а сторона дуги подключается к земле.

Два наиболее распространенных типа конденсаторов, которые вы увидите на схеме для США, стандартные и поляризованные.

Кто изобрел эти вещи?

Хотя многие считают английского химика Майкла Фарадея пионером современного конденсатора, он не был первым, кто его изобрел. То, что сделал Фарадей, было важно — он продемонстрировал первые практические примеры конденсатора и то, как использовать его для хранения электрического заряда в своих экспериментах. И благодаря Фарадею у нас также есть способ измерить заряд, который может удерживать конденсатор, известный как емкость, который измеряется в Фарадах!

Гениальный английский химик Майкл Фарадей, пионер конденсаторов, которые мы используем сегодня.(Источник изображения)

До Майкла Фарадея некоторые записи указывают на то, что покойный немецкий ученый Эвальд Георг фон Клейст изобрел первый конденсатор в 1745 году. Спустя несколько месяцев голландский профессор по имени Питер ван Мушенбрук придумал похожий дизайн, теперь известный как Лейденская банка. Странное время, правда? Однако все это было просто совпадением, и оба ученых в равной степени получили признание за свои первоначальные изобретения конденсатора.

Самый ранний образец конденсатора, лейденская банка.(Источник изображения)

Знаменитый Benjamin Franklin позже был усовершенствован в конструкции лейденской банки, созданной Musschenbroek. Франклин также смог обнаружить, что использование плоского куска стекла было отличной альтернативой целой банке. Так родился первый плоский конденсатор, получивший название площади Франклина.

Крышки в действии — как они работают

Давайте подробно рассмотрим, как работают эти мощные конденсаторы, на практическом примере. Вы ведь раньше пользовались цифровым фотоаппаратом? Тогда вы знаете, что есть несколько коротких моментов между нажатием кнопки, чтобы сделать снимок, и моментом срабатывания вспышки.

Что здесь происходит? К вспышке прикреплен конденсатор, который заряжается после того, как вы нажмете кнопку, чтобы сделать снимок. Как только этот конденсатор полностью заряжается аккумулятором камеры, вся эта энергия взрывается наружу в ослепляющей вспышке света!

Обратите внимание, конденсатор, который делает возможной вспышку в этой камере. (Источник изображения)

Так как же все это произошло? Заглянем изнутри в загадочный мир конденсатора:

  1. Начинается с заряда. Электрический ток от источника питания сначала течет в конденсатор и застревает на первой пластине. Почему застревает? Потому что есть изолятор, который не пропускает отрицательно заряженную электронику.
  2. Накапливаются заряды. По мере того, как все больше и больше электронов прилипают к этой первой пластине, она становится отрицательно заряженной и в конечном итоге отталкивает все лишние электроны, с которыми она не может справиться, к другой пластине. Затем эта вторая пластина становится положительно заряженной.
  3. Заряд сохраняется. По мере того, как две пластины конденсатора продолжают заряжаться, отрицательные и положительные электроны отчаянно пытаются соединиться, но этот надоедливый изолятор в середине не позволяет им, создавая электрическое поле. Вот почему колпачок продолжает удерживать и накапливать заряд, потому что существует бесконечный источник напряжения между отрицательной и положительной сторонами двух пластин, которые не разрешены.
  4. Заряд высвобождается. Рано или поздно две пластины в нашем конденсаторе не смогут удерживать заряд, так как они на пределе емкости.Но что происходит сейчас? Если в вашей цепи есть путь, по которому электрический заряд может течь куда-то еще, то все электроны в вашей крышке будут разряжены , а , наконец, прекратит свое напряжение, когда они будут искать другой путь друг к другу.

Измерение заряда

Как можно измерить, сколько заряда хранится в конденсаторе? Каждый колпачок рассчитан на определенную емкость. Он измеряется в фарадах по имени английского химика Майкла Фарадея. Поскольку в одном фараде содержится тонна электрического заряда, вы обычно видите конденсаторы, измеряемые в пикофарадах или микрофарадах.Вот полезная диаграмма, которая показывает, как разбиваются эти измерения:

Имя Сокращение Фарады
Пикофарад пФ 0,000000000001 Факс
нанофарад нФ 0,000000001 Факс
Микрофарад мкФ 0,000001 ф.
Милифарад мФ 0.001 F
Килофарад кФ 1000 Ф.

Теперь, чтобы выяснить, сколько заряда в настоящее время хранит конденсатор, вам понадобится это уравнение:

В этом уравнении полный заряд представлен как (Q) , и соотношение этого заряда можно найти, умножив емкость конденсатора ( C ) на приложенное к нему напряжение ( В ). Следует отметить, что емкость конденсатора напрямую зависит от его напряжения.Таким образом, чем больше вы увеличиваете или уменьшаете источник напряжения в цепи, тем больший или меньший заряд будет у вашего конденсатора.

Емкость в параллельных и последовательных цепях

Когда вы размещаете конденсаторы в цепи параллельно, вы можете определить общую емкость, сложив все отдельные емкости вместе.

Получить общую емкость в параллельной цепи так же просто, как 1 + 1, просто сложите их все вместе! (Источник изображения)

При последовательном размещении конденсаторов общая емкость вашей цепи является обратной величиной всех ваших суммированных емкостей.Вот краткий пример. Если у вас есть два конденсатора по 10 Ф, соединенные последовательно, то они будут давать общую емкость 5 Ф.

Получить общую емкость в последовательной цепи немного сложнее. Емкость уменьшается вдвое. (Источник изображения)

Начало работы

Теперь, когда у нас есть твердое представление о том, что такое конденсаторы, как они работают и как измеряются, давайте рассмотрим три распространенных применения конденсаторов. Сюда входят такие приложения, как развязывающие конденсаторы, накопители энергии и емкостные сенсорные датчики.

Конденсатор развязки

В наши дни вам будет сложно найти схему, в которой нет интегральной схемы или ИС. В этих типах схем конденсаторы должны выполнять критически важную работу, удаляя весь высокочастотный шум, обнаруживаемый в сигналах источника питания, которые питают ИС.

Почему это необходимая работа для нашего конденсатора? Любые колебания напряжения могут быть фатальными для ИС и даже могут привести к неожиданному отключению питания микросхемы. Помещая конденсаторы между ИС и источником питания, они успокаивают колебания напряжения, а также действуют как второй источник питания, если первичная мощность падает до уровня, достаточного для выключения ИС.

Разделительный конденсатор для контроля колебаний напряжения.

Накопитель энергии

Конденсаторы

имеют много общих характеристик с батареями, включая их способность накапливать энергию. Однако, в отличие от батареи, конденсаторы не выдерживают такой большой мощности. Но хотя они не могут угнаться за количеством, они компенсируют свое стремление разрядиться как можно быстрее! Конденсаторы могут поставлять энергию намного быстрее, чем аккумулятор, что делает их идеальными для питания вспышки в камере, настройки радиостанции или переключения каналов на телевизоре.

Емкостные сенсорные датчики

Одно из последних достижений в области применения конденсаторов связано с бурным ростом технологий сенсорных экранов. Стеклянные экраны, из которых состоят эти сенсорные датчики, имеют очень тонкое прозрачное металлическое покрытие. Когда ваш палец касается экрана, это вызывает падение напряжения, определяющее точное местоположение вашего пальца!

Емкостные сенсорные датчики в действии с защитной накладкой и печатной платой. (Источник изображения)

Практика — выбор конденсатора

Давайте перейдем к сфере практичности и поговорим о том, на что обращать внимание при выборе следующего конденсатора.Необходимо учитывать пять переменных, в том числе:

  • Размер — сюда входит как физический размер вашего конденсатора, так и его общая емкость. Не удивляйтесь, если выбранный вами конденсатор будет самой большой частью вашей печатной платы, так как чем больше вам потребуется емкости, тем больше они станут.
  • Допуск — Конденсаторы, как и их аналоги с резисторами, имеют переменный допуск. Вы найдете допуск для конденсаторов от ± 1% до ± 20% от заявленного значения.
  • Максимальное напряжение — Каждый конденсатор имеет максимальное напряжение, с которым он может работать. В противном случае он взорвется! Вы найдете максимальное напряжение от 1,5 до 100 В.
  • Эквивалентное последовательное сопротивление (ESR) — Как и любой другой физический материал, выводы конденсатора имеют очень маленькое сопротивление. Это может стать проблемой, если вам нужно помнить о потерях тепла и энергии.
  • Ток утечки — В отличие от наших батарей, в конденсаторах происходит утечка накопленного заряда.И пока он истощается медленно, вам стоит обратить внимание на то, насколько сильно протекает ваш конденсатор, если его основная функция — накопление энергии.

Все заряжены

Вот и все, что вам нужно знать о конденсаторах, чтобы полностью зарядиться для вашего следующего проекта в области электроники! Конденсаторы — это очаровательная небольшая группа, способная накапливать электрический заряд для множества применений, и они даже могут выступать в качестве вторичного источника питания для этих чувствительных интегральных схем.При работе с конденсаторами внимательно следите за максимально возможным напряжением. В противном случае вы получите несколько взрывающихся крышек, как вы увидите на видео:

Знаете ли вы, что Autodesk EAGLE бесплатно включает тонну библиотек конденсаторов? Начните со своего следующего проекта в области электроники и забудьте о создании собственных деталей! Попробуйте Autodesk EAGLE бесплатно сегодня.

Танталовый конденсатор | Типы | Направляющая конденсатора

Что такое танталовые конденсаторы?

Танталовые конденсаторы — это подтип электролитических конденсаторов.Они изготовлены из металлического тантала, который действует как анод, покрыт слоем оксида, который действует как диэлектрик, и окружен проводящим катодом. Использование тантала позволяет получить очень тонкий диэлектрический слой. Это приводит к более высокому значению емкости на единицу объема, превосходным частотным характеристикам по сравнению со многими другими типами конденсаторов и превосходной стабильности во времени. Танталовые конденсаторы обычно поляризованы, что означает, что их можно подключать к источнику постоянного тока только с соблюдением правильной полярности клемм.Обратной стороной использования танталовых конденсаторов является их неблагоприятный режим отказа, который может привести к тепловому выходу из строя, пожарам и небольшим взрывам, но этого можно избежать с помощью внешних отказоустойчивых устройств, таких как ограничители тока или плавкие предохранители. Технологические достижения позволяют использовать танталовые конденсаторы в самых разных схемах, которые часто встречаются в ноутбуках, автомобильной промышленности, сотовых телефонах и других устройствах, чаще всего в виде устройств поверхностного монтажа (SMD). Эти танталовые конденсаторы для поверхностного монтажа занимают гораздо меньше места на печатной плате и обеспечивают большую плотность упаковки.

Определение танталового конденсатора

Танталовые конденсаторы — это электролитические конденсаторы, в которых в качестве анода используется металлический тантал. Это поляризованные конденсаторы с превосходными частотными и стабильными характеристиками.

Характеристики

Общие характеристики

Танталовые конденсаторы

производятся со значениями емкости от 1 нФ до 72 мФ, и они намного меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Номинальное напряжение танталовых конденсаторов варьируется от 2 В до более 500 В.Их эквивалентное последовательное сопротивление (ESR) в десять раз меньше, чем ESR алюминиевых электролитических конденсаторов, что позволяет пропускать большие токи через конденсатор с меньшим выделением тепла. Танталовые конденсаторы очень стабильны во времени, и их емкость не меняется с возрастом значительно, особенно по сравнению с алюминиевыми электролитическими конденсаторами. При правильном обращении они очень надежны, а срок их хранения практически неограничен.

Полярность

Танталовые электролитические конденсаторы представляют собой исключительно поляризованные устройства.В то время как алюминиевые электролитические конденсаторы, которые также являются поляризованными, могут выдерживать кратковременное приложение обратного напряжения, танталовые конденсаторы очень чувствительны к обратной поляризации. Если приложить напряжение обратной полярности, диэлектрический оксид разрушается, иногда образуя короткое замыкание. Это короткое замыкание может впоследствии вызвать тепловой пробой и разрушение конденсатора.

Следует отметить, что танталовые конденсаторы обычно имеют маркировку положительных выводов, в отличие от алюминиевых электролитических конденсаторов, отрицательные выводы которых отмечены на корпусе.

Режим отказа

Танталовые конденсаторы имеют потенциально опасный режим отказа. В случае скачков напряжения танталовый анод может контактировать с катодом из диоксида марганца, и, если энергия скачка достаточна, может начаться химическая реакция. Эта химическая реакция производит тепло и является самоподдерживающейся и может образовывать дым и пламя. Для предотвращения этого теплового разгона необходимо использовать внешние отказоустойчивые схемы, такие как ограничители тока и плавкие предохранители, в сочетании с танталовыми конденсаторами.

Конструкция и свойства танталовых конденсаторов

Танталовые электролитические конденсаторы, как и другие электролитические конденсаторы, состоят из анода, небольшого количества электролита и катода. Анод изолирован от катода, поэтому через конденсатор может протекать только очень небольшой постоянный ток утечки. Анод изготовлен из чистого металлического тантала. Металл измельчается в мелкий порошок и спекается в гранулы при высоких температурах. Это образует очень пористый анод с большой площадью поверхности.Большая площадь поверхности напрямую приводит к увеличению значения емкости.

Затем анод покрывается слоем изолирующего оксида, который действует как диэлектрик. Этот процесс называется анодированием. Этот шаг необходимо точно контролировать, чтобы уменьшить допуски и гарантировать правильные значения емкости, поскольку степень роста оксида определяет толщину диэлектрика.

Электролит добавляется к аноду путем пиролиза в случае твердотельных танталовых конденсаторов. Затем твердые танталовые конденсаторы погружают в специальный раствор и обжигают в печи для получения покрытия из диоксида марганца.Процесс повторяется до тех пор, пока на всех внутренних и внешних поверхностях гранулы не появится толстое покрытие. Наконец, таблетку, используемую в твердотельных танталовых конденсаторах, окунают в графит и серебро, чтобы обеспечить хорошее катодное соединение. В отличие от твердотельных танталовых конденсаторов, в мокрых танталовых конденсаторах используется жидкий электролит. После спекания анода и выращивания диэлектрического слоя его погружают в жидкий электролит внутри корпуса. Корпус и электролит вместе служат катодом в мокрых танталовых конденсаторах.

Применения для танталовых конденсаторов

В приложениях, использующих танталовые конденсаторы, используются преимущества их низкого тока утечки, высокой емкости, долговременной стабильности и надежности. Например, они используются в схемах выборки и удержания, которые используют низкий ток утечки для достижения большой продолжительности удержания. Они также обычно используются для фильтрации источников питания на материнских платах компьютеров и сотовых телефонах из-за их небольшого размера и долговременной стабильности, чаще всего в форме для поверхностного монтажа.Танталовые конденсаторы также доступны в версиях для военных спецификаций (MIL-SPEC), которые обеспечивают более жесткие допуски и более широкий диапазон рабочих температур.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*