Как одеть регулятор на батарею: Как правильно установить терморегулятор на батарею

Содержание

Как правильно установить терморегулятор на батарею

Содержание

  1. Как выбрать терморегулятор для радиаторов отопления
  2. Принцип работы термостатического клапана
  3. Рекомендации по выбору
  4. Как установить терморегулятор на батарею
  5. Какой регулятор тепла можно поставить на батарею
  6. Принцип работы
  7. Типы теплового агента
  8. Особенности термоклапана
  9. Как установить терморегулятор на батарею
  10. Выбор запорно-регулирующей арматуры
  11. Принцип работы регулятора
  12. Конструкция термостата
  13. Преимущества термостатов
  14. Жидкостные или газонаполненные терморегуляторы
  15. Место для установки термостата
  16. Установка термостата
  17. Настройка терморегулятора

Как выбрать терморегулятор для радиаторов отопления

В странах постсоветского пространства до 40% энергоресурсов уходит на нужды отопления и вентиляции зданий, это в несколько раз больше, чем у продвинутых европейских стран. Вопрос энергосбережения стоит остро, как никогда, особенно на фоне постоянного повышения стоимости энергоносителей. Одним из устройств, позволяющих экономить тепловую энергию в доме, является терморегулятор для батареи, чья установка может уменьшить расход тепла до 20%. Но для этого необходимо правильно подобрать регуляторы к системе отопления и выполнить их монтаж, о чем и будет рассказано в данной статье.

Первые термостаты для радиаторов, призванные поддерживать постоянную температуру в помещении, были изобретены еще в далеком 1943 году фирмой DANFOSS, ей же принадлежит первенство на рынке по производству и продаже подобных устройств. По этой причине наша статья будет опираться на материалы и рекомендации компании DANFOSS, чей многолетний опыт не подлежит сомнению.

За прошедшие с момента изобретения годы терморегуляторы для радиаторов видоизменились и стали такими, какими мы их знаем. Конструктивно они состоят из двух основных элементов: клапана и термоголовки, соединяющихся между собой фиксирующим механизмом. Назначение термоголовки – воспринимать температуру окружающей среды и для ее регулирования воздействовать на исполнительный механизм – клапан, он и перекрывает поток теплоносителя, поступающего в отопительный прибор.

Такой метод регулирования называется количественным, поскольку устройство влияет на расход проходящего в радиатор теплоносителя. Существует и другой метод – качественный, с его помощью меняется температура воды в системе. Это осуществляет регулятор температуры (смесительный узел), устанавливаемый в котельной или тепловом пункте.

Чтобы понять принцип работы термоголовки, предлагается изучить схему прибора, изображенного в разрезе:

Внутри корпуса элемента расположен сильфон, заполненный термочувствительной средой. Она бывает двух видов:

Жидкостные сильфоны проще в изготовлении, но проигрывают газовым по быстродействию, поэтому последние получили очень широкое распространение. Итак, при повышении температуры воздуха вещество в замкнутом пространстве расширяется, сильфон растягивается и нажимает на шток клапана. Тот, в свою очередь, перемещает вниз специальный конус, уменьшающий проходное сечение клапана. В результате расход теплоносителя уменьшается. При охлаждении окружающего воздуха все происходит в обратном порядке, количество протекающей воды растет до максимума, это и есть принцип работы терморегулятора.

Рекомендации по выбору

В зависимости от типа системы отопления и условий монтажа прибора, для управления потоком теплоносителя могут применяться комплекты клапан – термоголовка в различных сочетаниях. В однотрубных системах обогрева рекомендуется устанавливать клапаны с повышенной пропускной способностью и малым гидравлическим сопротивлением (маркировка изделия производства DANFOSS – RA-G, RA-KE, RA-KEW).

Та же рекомендация касается и двухтрубных самотечных систем, где теплоноситель циркулирует естественным образом, без принудительного побуждения. Если же схема обогрева – двухтрубная с циркуляционным насосом, то следует выбрать клапан с возможностью регулировки пропускной способности (маркировка DANFOSS – RA-N, RA-K, RA-KW). Эта регулировка производится достаточно просто и специальный инструмент для нее не нужен.

Когда вопрос с подбором клапана решен, нужно определиться с типом термоголовки. Они предлагаются в следующих исполнениях:

  1. С внутренним термоэлементом (как на схеме, представленной выше).
  2. С выносным температурным датчиком.
  3. С внешним регулятором.
  4. Электронные (программируемые).
  5. Антивандальные.

Обычный терморегулятор для радиаторов отопления с внутренним датчиком принимается к установке, если есть возможность расположить его ось горизонтально, чтобы воздух помещения свободно омывал корпус прибора, как показано на рисунке:

Внимание! Не допускается установка терморегулятора на батарею в вертикальном положении, тепловой поток, поднимающийся от подающего трубопровода и корпуса клапана, станет оказывать влияние на сильфон, в результате чего устройство будет работать некорректно.

Если горизонтальный монтаж головки невозможен, то лучше приобрести к ней выносной датчик температуры в комплекте с капиллярной трубкой длиной 2 м. Именно на таком расстоянии от радиатора можно расположить данное устройство, прикрепив его к стене:

Помимо вертикального монтажа для покупки выносного датчика бывают и другие объективные причины:

  • радиаторы отопления с регулятором температуры находятся за плотными шторами;
  • в непосредственной близости от термоголовки проходят трубы с горячей водой либо присутствует другой источник тепла;
  • батарея стоит под широким подоконником;
  • внутренний термоэлемент попадает в зону сквозняка.

В комнатах с высокими требованиями к интерьеру батареи зачастую прячут под декоративными экранами из различных материалов. В таких случаях попавший под кожух терморегулятор регистрирует температуру скапливающегося в верхней зоне горячего воздуха и может целиком перекрыть теплоноситель. Мало того, полностью закрыт доступ к управлению головкой. В этой ситуации выбор следует сделать в пользу выносного регулятора, совмещенного с датчиком. Варианты его размещения показаны на рисунке:

Электронные термостаты с дисплеем также бывают двух видов: со встроенным и съемным блоком управления. Последний отличается тем, чтоб электронный блок отсоединяется от термоголовки, после чего она продолжает функционировать в обычном режиме. Назначение подобных устройств — регулировка температуры в помещении по времени суток в соответствии с программой. Это позволяет снижать отопительную мощность в рабочее время, когда дома никого нет и в прочих подобных случаях, что приводит к дополнительной экономии энергоресурсов.

Когда в доме есть маленькие дети, которым все хочется попробовать своими ручками, лучше установить терморегулятор антивандального типа с кожухом, предохраняющим настройки прибора от неквалифицированного вмешательства. Это касается и термостатов, стоящих в других общественных зданиях: детских садах, школах, больницах и так далее.

Как установить терморегулятор на батарею

Первая рекомендация – не ставить термоголовки на все нагреватели в пределах видимости. Здесь правило следующее: регулированию должны подвергаться радиаторы, чья суммарная мощность составляет 50% и более от всех, находящихся в одной комнате. Например, когда в помещении имеется 2 отопителя, то термостатом должна быть оснащена 1 батарея, чья мощность больше.

Совет. Если в качестве отопительных приборов применены чугунные радиаторы, то поддержание микроклимата с помощью термостатических клапанов будет неэффективным. Дело в том, что работа чугунных батарей очень инерционна, после перекрытия потока теплоносителя они еще долго излучают тепло и наоборот, долго разгоняются. Монтаж клапанов не имеет смысла, вы только напрасно потратите свое время и средства.

Первую часть устройства – клапан – рекомендуется монтировать на подводящий подающий трубопровод в момент подключения радиатора к отопительной системе. В случае когда его требуется врезать в собранную систему, то подводку подачи придется демонтировать. Это доставит некоторые сложности, если подключение выполнено стальными трубами, понадобится инструмент для резки труб и нарезания резьбы.

После того как термостат на батарею отопления установлен, термоголовка монтируется без всякого инструмента. Достаточно просто совместить метки на корпусах и плавным нажатием зафиксировать головку в гнезде. Сигналом послужит щелчок фиксирующего механизма.

Немного сложнее устанавливать антивандальный терморегулятор, для этого понадобится шестигранный ключ размером 2 мм. Совместив требуемые метки, как показано на схеме, нужно прижать термоголовку, а шестигранником закрутить фиксирующий болт, находящийся сбоку.

Монтаж выносного датчика и регулятора осуществляется на свободном от деталей интерьера и мебели участке стены, разместив их на высоте 1.2—1.6 м от пола, как показано на схеме:

Сначала дюбелями к стене прикрепляется монтажная пластина, а потом на нее простым нажатием защелкивается корпус. Капиллярная трубка закрепляется к стене пластмассовыми хомутиками, как правило, они идут в комплекте с изделием.

Помимо штатной регулировки температуры в головках предусмотрена настройка терморегулятора на максимальный и минимальный пределы, дальше которых поворот колеса станет невозможным. Для этого предусмотрены ограничительные штифты, находящиеся в задней части изделия. Нужно вытащить один из них и после отладки системы вставить в отверстие под соответствующей меткой:

Какой регулятор тепла можно поставить на батарею

Устанавливаемый на батарею терморегулятор является отличным инструментом для создания благоприятного микроклимата и дополнительным способом сэкономить на отоплении, поскольку позволяет уменьшить подачу теплоносителя. Терморегулятор для радиатора отопления выгодно использовать только тогда, когда батареи очень сильно нагреваются. Если же их максимальный нагрев создает оптимальную температуру, то терморегулятор, как таковой, не принесет никакой пользы.

Регуляторы температуры следует устанавливать на такие батареи:

Что касается чугунных изделий. то в этом случае регулятор является полностью бесполезным. Это потому, что чугунный радиатор или батарея имеют большую тепловую инерцию.

Конструкция любого терморегулятора состоит из двух основных элементов:

  1. Термоклапана (термостатического вентиля).
  2. Термоэлемента.

Во многом термоклапан является обычным клапаном или вентилем. То есть он представляет собой запорную арматуру, через которую проходит теплоноситель, и внутри которой находится седло и конус. Конус влияет на степень перекрытия рабочего сечения. Этот элемент может подниматься вверх и опускаться вниз, что в свою очередь приводит к изменению количества поступающего теплоносителя.

В обычном вентиле конусом двигает рука человека. В термостатическом это делает специальный механизм. Им является термоголовка. Она также известна как термостатический элемент.

  • основания;
  • крышки, которая же и представляет собой корпус. В некоторых моделях крышка может менять свое положение. Таким образом настраивается рабочая температура;
  • цилиндра;
  • теплового агента;
  • шпинделя. Его часто дополняют сильной пружиной.

Главным элементом является цилиндр. Его еще называют «сильфоном». Цилиндр представляет собой небольшую герметичную и эластичную емкость. Она заполнена тепловым агентом. Чаще всего он представлен газом и жидкостью. При этом газ и жидкость подбираются так, чтобы при малейших колебаниях температуры они могли быстро изменять свой объем. Некоторые производители используют твердые тепловые агенты. Однако из-за того, что они реагируют на изменения температуры через 30 минут и более, их используют немногие компании.

Цилиндр с тепловым агентом размещают под верхом крышки-корпуса. Под сильфоном находится шпиндель, который присоединяется к штоку термоклапана.

Принцип работы

Работает терморегулятор так:

  1. Меняется температура воздуха в помещении. Например, она растет. Это приводит к увеличению объема цилиндра. В результате сильфон растягивается.
  2. Увеличенный сильфон давит на размещенный под ним шпиндель.
  3. Шпиндель вызывает давление на шток и конус (золотник). Последний опускается вниз и частично или полностью перекрывает поток нагретой жидкости.
  4. Батарея начинает остывать, температура в помещении падает, что приводит к уменьшению объема сильфона.
  5. Пружина давит на шпиндель или конус, и оба элемента поднимаются вверх, что увеличивает поток теплоносителя.
  6. Радиатор нагревается, поднимая температуру в помещении. В то же время увеличивается цилиндр. Цикл повторяется.

Наиболее прогрессивные терморегуляторы для радиаторов способны регулировать температуру с точностью до 1 °С. Конечно, этот показатель может быть и хуже. Все зависит от того, какой тепловой агент находится в середине сильфона. Если он быстро реагирует на изменение климата в помещении, то точность является высокой.

Работа всех терморегуляторов на батареях приводит к тому, что часть радиаторов всегда остается холодной. Это понятно, ведь ограничивается поток теплоносителя. Однако холодными батареи могут быть и из-за засорения или наличия воздуха. Обнаруживают эти проблемы путем снятия термоголовки и ожидания. Если через некоторое время поверхность радиатора стала полностью теплой, то проблем нет.

Не всегда терморегуляторы для радиаторов могут корректно работать. Это происходит из-за следующих факторов:

  1. Закрытия шторой.
  2. Сквозняков.
  3. Попадания прямых солнечных лучей.
  4. Дополнительных источников тепла.

Терморегуляторы для радиаторов бывают разных видов. Причем их классифицируют по двум признакам:

  1. Тип термоголовки.
  2. Вид теплового агента.

Согласно первому критерию бывает:

  1. Ручной терморегулятор для батарей отопления.
  2. Механический.
  3. Электронный.

Первый вид представляет собой обычный вентиль с простой крышкой, которую нужно крутить вправо-влево своими руками. Ее вращение приводит к поднятию/опусканию золотника в кране. Понятно, что такой регулятор нуждается в постоянной опеке, ведь когда становится слишком тепло, нужно перекрывать вентиль. а когда становится холодно, опять нужно подходить к терморегулятору и менять положение его крышки. Радует только то, что, когда такие манипуляции надоедают, можно легко снять крышку и на ее место поставить автоматический терморегулятор. Заменять клапан не нужно, ведь он универсален.

Термостат с механической головкой также требует ручной настройки. Однако она проводится только один раз. Далее температура регулируется в автоматическом порядке. Строение механической головки описано выше. Выставление нужного уровня температуры происходит путем поворота крышки термоголовки. В большинстве случаев на крышке есть отметки «больше-меньше» или цифры от 1 до 5-7.

Некоторые модели имеют выносной датчик. Он соединяется с основанием с помощью капиллярной трубки.

Электронные терморегуляторы на батареи являются самыми совершенными, ведь имеют очень много полезных опций. Также они отличаются наибольшими размерами. Это обусловлено тем, что электронный блок управления, а также сервопривод требуют электрической энергии. Во многих моделях ее источником выступают батарейки или съемные аккумуляторы. А находятся они, конечно, в корпусе.

Главная особенность электронных терморегуляторов для радиаторов заключается в возможности работать в нескольких режимах и самостоятельно изменять их. То есть на ночь, на выходные или на время отсутствия людей в квартире можно выставить сниженную температуру. Далее можно настроить термоголовку так, чтобы за несколько часов до появления жителей в квартире или доме произошла смена режима, и помещение прогрелось до нужной температуры.

Типы теплового агента

Наиболее часто в его роли используют жидкость и газ. Из-за этого выделяют такие виды термоголовок:

Более дешевыми и простыми являются регуляторы первого вида. По этой причине они представлены очень большим количеством моделей. Однако они управляют батареей более медленно.

Газовый регулятор для батареи отопления имеет меньшую инерционность, благодаря чему способен достаточно быстро среагировать на изменение температуры в помещении.

На практике разница между реакцией двух типов является весьма малой. Поэтому при выборе лучше сосредоточить внимание на качестве исполнения. Оно же зависит от производителя.

Практически все виды терморегуляторов способны устанавливать температуру, диапазон которой составляет +6…+28 °С. Конечно, есть варианты, рассчитанные на установку других уровней температуры. Однако с ростом диапазона температур поднимается цена.

Особенности термоклапана

Ранее упоминалось, что он является универсальным, то есть на него можно устанавливать любой вид термоголовки. Однако, несмотря на это, он имеет две разновидности. Они зависят от того, в какой системе отопления должен использоваться кран. однотрубной или двухтрубной.

Разновидностями термоклапана не стоит пренебрегать, ведь, установив в однотрубную систему кран для двухтрубной. радиатор будет плохо прогреваться. Причиной этого является то, что запорная арматура для 2-трубной системы имеет высокое гидравлическое сопротивление. Фактически оно вдвое больше такого показателя вентилей для 1-трубной системы. Чтобы достичь такого сопротивления, производители делают малое проходное сечение. Оно же позволяет уменьшить давление на вентили и сбалансировать давление в системе. Из-за этого при условии низкого давления (характерно для 1-трубной системы) через кран поступает мало теплоносителя.

Для 1-трубных систем подходят те вентили, проходная способность которых равна или превышает 3.

Монтируют электронный терморегулятор на батарею весьма просто. Для этого выполняют следующие действия:

  1. Перекрывают стояк и спускают воду.
  2. У радиатора отрезают кусок трубы. Его длина должна соответствовать длине термостатического вентиля. По сути дела трубу перерезают в одном месте.
  3. Демонтируют часть трубы, которая осталась в радиаторе. Эти шаги не выполняют, если система отопления только создается или стоит кран с такими размерами, как и у нужного вентиля.
  4. Откручивают от термовентиля штуцер с американкой.
  5. Штуцер фиксируют в радиаторе, а основание крана на трубе.
  6. Прикладывают кран до штуцера в радиаторе и затягивают американку. Вентиль должен находиться так, чтобы шток «смотрел» в сторону.
  7. Фиксируют электронную или механическую термоголовку.

Особенности установки являются такими:

  • термостат обычно ставят на вводную трубу. При этом стрелка на нем должна совпадать с направлением движения теплоносителя;
  • электронное устройство всегда должно находиться в горизонтальном положении. Запрещается размещение термоголовки над трубой. Это потому, что тепло от трубы будет нагревать цилиндр и вызывать ненужное перекрытие радиатора. Следствие — холодное помещение;
  • большинство электронных и механических регуляторов настроены для монтажа на высоте 40-60 см. Если же разместить их на высоте 10-15 см (нижнее подключение батареи), то в помещении будет слишком тепло. Решить проблему с нижним подключением можно благодаря перенастройке терморегулятора, использованию выносного датчика или покупкой специально предназначенного регулятора;
  • если система отопления является однотрубной, то вводную и выводную трубу правильно соединять дополнительной трубой. То есть надо создавать байпас.

Как установить терморегулятор на батарею

Установка терморегулятора на радиатор позволяет контролировать поступление теплоносителя в отопительное устройство. Таким образом, обеспечиваются комфортные температурные условия для жильцов, а также защищенность от аварийных случаев, когда необходимо отключение участков трубы от отопительной системы.

 

Выбор запорно-регулирующей арматуры

Для описанных выше функций используется один их трех видов регулирующей арматуры:

  • конусный вентиль;
  • шаровой кран;
  • автоматический регулятор.

Шаровые краны плохо справляются с регулировкой температурного режима, так как они работают в двух позициях: открыты или перекрыты. Если установить краник в промежуточное положение, утратится его герметичность, поскольку теплоноситель будет разрушать шаровой элемент.

Конусный вентиль является более эффективным способом контроля температурного режима. Он может находиться в полуоткрытом положении. При этом нельзя забывать о необходимости возврата его на стартовую позицию. Такой способ регулирование температуры неудобный и трудозатратный.

Оптимальным вариантом контроля температурного режима является использование автоматических термостатов, монтируемых рядом с батареями. Другое название этих устройств — терморегуляторы.

Принцип работы регулятора

Терморегулятор является герметичной камерой (так называемый сильфон), который заполнен рабочей средой. Когда температура повышается, происходит расширение теплоносителя, и сильфон распрямляется. Затем запорный клапан перекрывает движение теплоносителя в батарею, снижая, таким образом, температуру в помещении. Если снижается температура, наступает обратный эффект: сжатие термоголовки, которая отворяет клапан, в результате чего поступление теплоносителя в батарею растет.

Терморегуляторы могут предназначаться для работы в однотрубных или двухтрубных системах.

 

Термостат включает в себя термическую головку и особый клапан. Данные механизмы работают не потребляя энергию и поддерживая между собой связь.

Термоголовка имеет привод, регулятор и жидкостный компонент, который можно сменить на газовый, либо упругий.

 

  • термический клапан;
  • термический элемент;
  • чувствительный элемент;
  • золотниковый клапан;
  • разъем;
  • передающий шток;
  • накидная гайка;
  • компенсаторный механизм;
  • кольцо фиксатора;
  • шкала.

В продаже имеются термостаты двух видов: жидкостные и газовые. Все они должны быть сертифицированы. Средний период службы таких устройств составляет примерно 20 лет.

  • продуманный дизайн, удачно вписывающийся в любой интерьер;
  • комфортное управление температурным режимом;
  • простота в монтаже;
  • возможность эксплуатации на протяжении всего периода службы без проведения профилактики и техобслуживания;
  • после установки термостата на батарею нет нужды открывать окна, чтобы понизить слишком высокую температуру в помещении;
  • термостаты работают при выбранной пользователем температуре — от 5 до 27 градусов;
  • устройства позволяют равномерно распределять носитель тепла по системе отопления;
  • терморегуляторы позволяют избежать чрезмерного прогревания воздуха, если помещение обогревается солнечными лучами или электроприборами;
  • термостат позволяет экономить до четверти расхода топлива;
  • установка устройства позволяет улучшить микроклимат в доме;
  • использование термостатов оптимально в частных домах, где они обычно окупаются на протяжении одного года.

Жидкостные или газонаполненные терморегуляторы

Газонаполненные или жидкостные термостаты активнее откликаются на колебания температуры в помещении. Жидкостные термостаты точнее отзываются на изменения внутреннего давления в гофрированном цилиндре и эффективнее направляют его на исполнительную часть механизма.

 

Конструкции терморегуляторов, наполняемых газом, характеризуются рядов существенных плюсов:

  • Газовая конденсация осуществляется в самой холодной секции устройства, которая находится дальше всего от корпуса клапана. В результате этого реакция наступает быстро, поскольку процесс не зависит от водной температуры.
  • Термостат данного вида быстро реагирует на температурную динамику в здании, что обеспечивает эффективное поступление тепла.

На функционирование регулятора влияют такие обстоятельства:

  • наличие прямых солнечных лучей;
  • циркуляция воздуха в комнате;
  • температурный режим вне здания;
  • посторонние источники холода или тепла в комнате.

В частных строения термостаты, прежде всего, устанавливаются на верхних этажах, поскольку разогретый воздух идет к верху и температурная разница на верхних и нижних уровнях дома сильно разнится. Регуляторы нужно ставить по горизонтали труб, неподалеку от точки ввода в обогревательный прибор.

В частном доме рациональнее всего ставить панельные батареи малой емкости и оснащать их термостатами, быстро откликающимися на манипуляции термостатическими клапанами. Однако при этом нужно избегать радиаторов, прикрытых занавесками, декоративными покрытиями или решетками, а также другими предметами. В противном случае будет нарушена возможность правильной оценки температурного режима в помещении. Эту рекомендацию можно обойти, если установить дистанционный датчик, находящийся от клапана на расстоянии 2-7 метров, что позволит контролировать температуру возле местонахождения контролирующего устройства.

 

Обратите внимание! В многоквартирных домах монтаж терморегулятора нужно начинать там, где колебания температур особенно ощутимы: кухня, главная комната, помещения, подверженные прямым солнечным лучам.

Перед установкой терморегулятора отключаем подающий стояк. Сливаем воду из отопительной системы.

Установочные работы производятся так:

  • отрезаем горизонтальные подводки на определенном расстоянии от батареи;
  • снимаем с батареи отрезанную трубу и краник;
  • открепляем хвостовики и гайки от клапана термостата и запорного крана;
  • заворачиваем их в пробки радиатора;
  • проводим сборку трубной обвязки и ставим все на запланированное место;
  • соединяем обвязку с находящимися по горизонтали трубами подводки, которые присоединены к стояку.

Если речь идет об однотрубной системе, при подключении термостата понадобится замена схемы подключения батареи. Для этого нужно установить перемычку для стыковки обратной и прямой подводки устройства. Такая перемычка, именуемая байпасом, дает возможность передвижения теплоносителю, если понадобится перекрыть отопление терморегулятором. Для осуществления схемы нужно снять прибор, не забыв перекрыть вентили.

Контролировать поступление теплоносителя в батарею в двухтрубной схеме можно, если применить термостат радиатора, поставленный на верхней подводке.

Настройка терморегулятора

 

Для правильной настройке регулятора температуры нужно понизить до минимально возможных потери тепла в помещении. Термометр должен располагаться там, где будет постоянная температура. После этого прокручиваем головку термального регулятора влево до конца, открывая клапан, в результате чего достигается максимальная отдача тепла. Как только температура увеличится на 5-6 градусов, клапан перекрывается прокручиванием головки в обратную сторону. После достижения нужно уровня температуры, начинаем осторожно открывать клапан. Настройка заканчивается, когда станет слышен шум воды в регуляторе и станет ощутим быстрый нагрев клапана.

Установку терморегуляторов на радиаторы отопления лучше всего поручить профессионалам, которые проведут подключение согласно инструкции производителя. Правильно установленное оборудования позволит создать оптимальный температурный режим в помещении и обеспечит рациональный расход тепловой энергии, что благоприятно отразится на финансовых расходах семьи.

 

 

Как вам статья?

Сборка квадрокоптера на раме ZMR250 (часть 1)

  • Часть 2 — настройка
  • Часть 3 — установка FPV
  • Фотогалерея

Угробив свой Blade 350QX и так и не добившись от него повторной взаимности, я впал в долгое размышления, куда двигаться дальше. Сначала было желание собрать квадрик или гексу размером 450 или больше на Naza-M и продолжить летать с подвесом, но теперь уже по FPV. А потом как-то достаточно неожиданно для себя я прикинул, а почему бы не пойти в сторону 250-х гоночных квадрокоптеров опять же с FPV?

ДИСКЛЕЙМЕР
Во многих аспектах, данная статья выражает
субъективное мнение автора.
Спорить с ним бесполезно, он упёртый.

Собирать самому или купить готовый?

Первоначально я присматривался к уже готовым моделям. Больше всех понравилась Walkera Runner 250 (обзор от Игоря Рубина). Но почти все готовые модели обладали огромным минусом: плата с полётным контроллером по совместительству была деталью рамы. То есть, если она ломалась при падении (а квадрокоптеры такого класса падают едва ли не чаще всех остальных), то ремонт обходился неоправданно дорого. Да и вообще, общение с Блэйдом научило меня, что проприетарные детали — зло и трата денег. А в случае с Валкерой были ещё и негативные отзывы на форумах (например, это и этот).

Короче, как ни верти, надо было собирать квадрик самому и я начал искать информацию. Оказалось, что статей и обучающих видео много. Правда, многие статьи больше похожи на фото-отчёты с минимумом текста. Из видео в первую очередь попались ролики от Юлиана Гиневского о трёх частях: первая часть, вторая часть и третья, она же заключительная. Ролики очень подробные, тем они и нравятся новичкам вроде меня. На форумах иногда обсуждаются эти уроки и не все из числа умудрённых опытом с ними согласны, но в целом резюмированные высказывания выглядят примерно так:

«подбор деталей сейчас уже устаревший, детали выбирались подешевле, получился добротный народный квадрик». Я комплектующие брал почти те же самые, но сейчас, потратив немало времени на чтение форумов, кое-что бы переиграл. О комплектующих, рекомендуемых на момент написания статьи можно узнать здесь. И ещё пара полезных ссылок:

  • Поисковик деталей для квадрокоптеров. Удобно, что сразу показывает цены в разных магазинах.
  • Drone Configurator — калькулятор конфигурации. Очень забавный инструмент, позволяющий выбрать комплектующие, а потом на их основе отображающий массу, тягу и прочие параметры квадрокоптера. Каталог деталей пока не очень большой, но для каждого товара есть ссылка на магазины, где его можно приобрести.

Подбор комплектующих

На момент, когда все детали были заказаны, а часть уже и получена, появился весьма пользительный FAQ по подбору комплектующих. Там много полезных ссылок, но мало (надеюсь, пока) объяснений «почему именно так, а не иначе».

Первоначально я заказал детали непосредственно для самого квадрокоптера, а FPV-оборудование решил заказать и установить позднее (об этом будет третья часть статьи). Итак, мой список комплектующих таков:

  • карбоновая рама ZMR250 и пара запасных лучей (конкретно эти лучи — вариант сомнительный, так как их парафинят за низкое качество), 29€ + €5
  • полётный контроллер OpenPilot CC3D EVO (чуть подробнее о полётных контроллерах читайте ниже), 15€
  • 4 мотора DYS 1806, 4 * 9€. Они хороши для первого квадрика «на пробу», но всё же я поспешил. Мощности этих моторов хватает только на пропеллеры 5030, на 5040 они уже будут греться. Намного предпочтительнее использовать моторы размера 2204 (1806 и 2204 — это размеры статора мотора: 18мм x 6мм и 22мм x 4мм соответственно), которые обладают большей мощностью. Рекомендуемый вариант —
    Cobra 2204
  • 4 регулятора RCTimer 12A SimonK, 4 * 10€. Для купленных мной моторов они подходят отлично, хотя и большеваты по размерам. А вот для мотора 2204 их силы может быть недостаточно (зависит от пропеллеров), разумнее брать 20А. Вдобавок, новые регуляторы имеют такие функции, как OneShot и активное торможение и имеют более современную прошивку BlHeli вместо SimonK. Также при выборе регулятора надо смотреть, если в названии есть аббривиатура OPTO, значит регулятор не имеет своего BEC’а (регулятора бортового питания) и тогда придётся использовать дополнительный.
  • 2 комплекта пропеллеров Gemfan 5×3, 2 * 2€. Для моторов 1806 это оптимальный размер. Опять же, если используете моторы 2204, можно выбрать пропеллеры 5040. На форумах очень хвалят эти пропеллеры. Также не следует покупать трёхлопастные и карбоновые пропеллеры. Первые делают квадрокоптер маневреннее, но очень сложно балансируются. Со вторыми всё ещё сложнее. Во-первых, они достаточно дороги, а учитывая, что пропеллер в 250-м классе — расходник, в итоге полёты выйдут очень накладными. Во-вторых, что важнее, они весьма прочные и при аварии, вместо того, чтобы погасить удар, передадут его дальше. Результатом будет погнутый вал мотора или сломанная рама.
  • плата распределения питания Diatone ZMR250 PDB, 6€
  • 3S батарея Turnigy nano-tech 1300mAh 3S 45~90C с разъёмом XT60, 16€ (вместе с доставкой). Вообще, такой объём пойдёт только для достаточно спокойных полётов. При более агрессивном пилотаже — 1500-1800. На форумах рекомендуют синие Turnigy и синие или желтые Zippy.
  • «пищалка» для батареи, 2€
  • разъём XT60 с проводом, 2€
  • 2 «фары» (это своего рода дань Walkera Runner 250, передние фары которой мне очень понравились и захотелось сделать нечто похожее), 2 * 3€
  • приёмник FrSky D4R-II, 22€ (вместе с доставкой)
  • шасси, 4€

Из мелочей понадобилось следующее: пластиковые болтики/проставочки, металлические болтики и гаечки (гайки M5 с нейлоновым уплотнителем и болты M2 x 6мм, M3 x 15мм, M3 x 20мм и M3 x 35мм) и термоусадочные трубки разных диаметров, стяжки для проводов и двухсторонний скотч. Также в обязательном порядке необходимы «синий» Loctite (средней фиксации) и диэлектрелизующий лак Plastik 70.

На самом деле, деталей было куплено больше, но многие не пригодились, так как идеи компановки несколько раз менялись до начала и непосредственно в процессе сборки.

В частности, уже после заказа львиной доли комплектующих, подумалось, что использование 3D-печати сильно мне поможет. Таким образом я заказал у 3D-печатников следующие детали:

  • проставку для нижней части рамы с местом под разъём XT60 (конкретно детали из файлов Unibody_CC3D.stl и Unibody_CC3D_XT60.stl)
  • 4 защитных кожуха для моторов (предотвращают попадание грязи внутрь мотора, правда, конкретно эти кожухи чуть великоваты, так как расчитаны на 2204 моторы)

На момент подготовки статьи, на Banggood’е появились в продаже распечатанные проставки, так что если у вас нет доступа к 3D-принтеру, не всё потеряно.

Подобъём финансы: 178€ за комплектующие (цены округлял до целых в большую сторону) + 35€ за 3D-печать. Мелочи не из списка и расходники не учитываю.

Naze32 или CC3D?

Перед тем как приступить к сборке, как и обещал, немного о полётных контроллерах. Наиболее популярными и массовыми для 250-х квадрокоптеров являются

CC3D и Naze32. Вкратце, вот чем они отличаются:

  • проект OpenPilot (ПО для CC3D) фактически закрыт, а команда разделилась на два отдельных проекта: Tau Labs занимается новыми OpenPilot Revolution, LibrePilot — более старыми CC3D
  • поддержка CC3D прекращена
  • проект Cleanflight (ПО для Naze32) активно развивается и имеет бОльшую аудиторию, следовательно, легче найти настройки под похожий конфиг коптера
  • CC3D можно перепрошить на Cleanflight, но места на чипе впритык и новые версии (1.10 бета) туда просто не влезают. Сам я по пока не планирую этого делать, но вот пара видео-уроков по установке и настройке
  • в Naze32 есть контроль заряда батареи и «пищалка»
  • у Naze32 есть бародатчик для удержания высоты, но, насколько я понял, на 250-х квадрокоптерах его использование сомнительно
  • Naze32 хорошо работает с телеметрией (например, для Taranis вообще не нужно никаких дополнительных датчиков). С CC3D, если хочется видеть не только время полёта и заряд батареи, нужно искать кастомную прошивку для OSD, которая не факт что дальше вообще будет поддерживаться
  • CC3D не может работать одновременно с OneShot и PPM-приёмниками. Это кажется нелогичным, так как регуляторы и приёмник никак не связаны между собой. Всё дело в процессоре CC3D, где недостаточно таймеров чтобы обрабатывать столько каналов приёмника и одновременно с этим управлять регуляторами с большой частотой

Здесь можно почитать подробнее о различиях между Naze32 и CC3D, но и так видно, что Naze32 предпочтительнее. Так почему же я выбрал CC3D? Из-за цены. Оригинальная Naze32 в самой «бедной» версии (минимальное количество датчиков) в 2 раза дороже CC3D, а с «полным фаршем» — под 50€. Есть дешёвый клон под названием Flip32, но в его адрес много нареканий на форумах. В первую очередь жалуются на то, что USB-разъём для прошивки отваливается от платы. Поэтому для себя я решил: появится более доступная версия Naze32 или лишние деньги — куплю, а пока буду летать на CC3D.

Сборка квадрокоптера

Сборка квадрокоптера — процесс творческий. Вариантов компоновки не счесть, так что можно поднапрячь своего инженерного гения. В любом случае, перед началом надо запомнить несколько важных вещей:

  1. Карбон проводит ток. Так что всё надо хорошо изолировать, чтобы нигде ничего не замыкало на раму.
  2. Всё, что выступает за пределы рамы, при аварии вероятнее всего, будет сломано или оторвано. В данном случае речь идёт, в первую очередь, о разъёмах. Провода тоже могут быть перерублены винтом, так что и их надо прятать.

На одном из форумов я увидел такую фразу:

впихнуть невпихуемое — всегда было романтикой авиастроения

И с тех пор она не выходит у меня из головы. Дело в том, что рама ZMR250 спроектирована таким образом, что регуляторы крепятся на лучах, вся остальная электроника помещается внутрь рамы, а батарея располагается на верхней пластине «снаружи» рамы.

Но при такой компоновке, при падении батарея с вероятностью, стремящейся к 100%, отвалится и, скорее всего, повредится. Поэтому я отошёл от такого расположения деталей и решил поместить электронику вниз рамы, между двух пластин, фиксирующих лучи. У кого нет доступа к 3D-принтеру, используют металлические (чаще всего латунные) проставки, ну а я для этого распечатал проставку. Дополнительным её плюсом является место для разъёма XT60. Я вообще сторонник того, что разъём питания надо фиксировать на плате, а не оставлять провод болтаться, так как в случае аварии его может легко перерубить пропеллером.

И только приложив к раме проставку, я понял, насколько невпихуемое мне придётся впихнуть. Началась своего рода борьба за миллиметры и на алтарь компактности легло многое. Сразу стало ясно, что все контакты на полётном контроллере для подключения регуляторов придётся удалять и паять провода напрямую. Здесь очень полезной оказалась плата распределения питания Diatone. Она позволила сэкономить места за счёт проводов, но у неё есть несколько неприятных нюансов. Во-первых, в сочетании с карбоновой рамой (мой случай), при закручивании болтиков можно поцарапать ими лак на плате, что может привести к короткому замыканию (примерно так). Жалоб на это было действительно много, так что новые версии платы поставляются вместе с картонными шайбами, которые надо ставить под болты. Во-вторых, BEC’и на этой плате весьма посредственные и из-за особенности конструкции сильно греются, так что многие пользователи их меняют. Вдобавок, токи они выдают слабые — 0,5А. Также были случаи, когда при запуске моторов происходил скачок напряжения на 5-вольтовом BEC’е и то, что к нему подключено, сгорало. Третьим моментом является то, что отверстия для болтов на этой раме не соответствуют оным на деталях рамы. Устраняется надфилем.

Короче, на Diatone ZMR250 PDB я смотрел с опаской. Её BEC’и я демонтировал сразу. Благо везде, кроме полётного контроллера, можно было использовать 12В напрямую с батареи. На нижней стороне платы расположены контакты для подсветки, но я не планировал их использовать, так что следовало заизолировать их, иначе могут «коротнуть», если сесть, например, на мокрую траву. Я покрыл плату лаком Plastik 70 в несколько слоёв, предварительно прикрыв изолентой все нужные мне контакты. Не всем он нравится (например, потому, что препятствует охлаждению), но никакого другого изолирующего средства у меня не было. В любом случае, хорошая изоляция крайне важна. Здесь можно узнать, какие ещё варианты изоляции плат существуют.

По проводке вырисовывалась такая схема: все регуляторы питались напрямую от батареи, от первого регулятора к полётному контроллеру идут все три провода управления (для обеспечения питания ПК), от остальных регуляторов — только сигнальный (белый) провод. Надо сразу понимать такой момент: BEC первого регулятора будет питать ПК и через него ещё и приёмник. Регулятор RCTimer 12A SimonK выдаёт 2А, чего вполне достаточно. Если силы тока недостаточно, то питающий регулятор может отключаться во время полёта, что приведёт к аварии. «Пищалка» для батареи, как и положено, будет крепиться к балансировочному разъёму.

Часто на пятый канал ПК ставят ещё одну «пищалку», (такую), которую можно активизировать с пульта, если квадрокоптер потерялся. Хотя сразу надо сказать, что не очень стоит на неё надеятся, так как при большинстве аварий (особенно, если батарея расположена сверху рамы, а не внутри, как у меня), как уже писалось выше, батарея отлетает, квадрокоптер обесточивается и все «пищалки» перестают работать. Для этого случая у меня ещё есть GPS-трекер. Тем не менее, вот пара ссылок, которые могут помочь при установке «пищалки» и настройке передатчика:

  • Setting up a Discovery Buzzer with Taranis and FRSKY D4R-II on CC3D
  • видео mr. FlyMode (на русском)
  • видео Painless360
  • видео FunFly FPV

Теперь непосредственно сборка. Она очень хорошо показана у Юлиана, так что я буду опираться на это видео. Итак, начал я с самого простого — моторов. Сначала я удалил с лучей недоразумение, выполняющее роль шасси, а затем прикрутил адаптеры пропеллеров, отбалансировал моторы, и припаял их провода к регуляторам, сохраняя необходимое направление вращения (2 мотора по часовой стрелке и 2 — против). С регуляторами на прошивке BlHeli направлением вращения можно не заморачиваться, так как его можно изменить программно. Провода между моторами и регуляторами я старался делать как можно короче. Во-первых, из соображений компактности, а во-вторых, длинные провода переменного тока создают достаточно большие шумы.

После этого я закрепил болтами на лучах защитные кожухи и моторы (здесь и далее все резьбовые соединения скрепляются Локтайтом). Для моторов я использовал не штатные болтики, а M2 x 6мм. Дело в том, что 7мм болтики из комплекта могут повредить изоляцию проводов и замкнуть их на раму.

Также имеет смысл приклеить по кусочку двухстороннего скотча снизу на каждый луч в месте крепления мотора. Во-первых, он защитит подшипник мотора от пыли. Во-вторых, если по какой-то причине один из болтиков открутиться, он не выпадет при полёте и не потеряется.

Отдельно хочется сказать про крепление регуляторов: где и чем? Их можно закрепить на луче и под ним. Я выбрал первый вариант, так как мне кажется, что в этом положении регулятор более защищён (это мои домыслы, не подтверждённые практикой). Вдобавок, при креплении на луче, регулятор отлично охлаждается воздухом от пропеллера. Теперь о том, как закрепить регулятор. Способов много, наиболее популярный — двухсторонний скотч + одна-две стяжки. «Дёшево и сердито», к тому же демонтаж трудностей не доставит. Хуже то, что при таком креплении можно повредить плату регулятора (если ставить стяжку на неё) или провода (если крепить на них). Так что я решил крепить регуляторы термоусадочной трубкой (25мм) и запаял их вместе с лучами. Есть один нюанс: сам регулятор тоже должен быть в термоусадке (мои в ней и продавались), чтобы не соприкасаться контактами с карбоном луча, иначе — КЗ. Получилось симпатично:

Забегая вперёд, скажу, что такой вариант крепления хорош только на один раз. Если по какой-то причине пришлось срезать термоусадку, новую уже не одеть, так как с одной стороны регулятора уже припаян мотор, а с другой — PDB. В итоге я вышел из положения закрепив регулятор к лучу двухсторонним скотчем и обмотав их обоих изолентой по всей длине регулятора.

Далее я припаял провод питания к PDB и закрепил проставку и лучи. Изначально хотелось поставить лучи поверх проставки, но такой вариант затруднял проведение проводов, так что пришлось ставить под неё. Маленькую деталь, зажимающую разъём XT60 (из файла Unibody_CC3D_XT60.stl) я не стал ставить, так как она была великовата. Вместо этого я приклеил разъём к большой проставке двухсторонним скотчем.

После этого можно было паять все необходимые провода от регуляторов к плате распределения питания. Также я сразу вывел два 2-контактных разъёма с питанием 12В (через них будут питаться «фары» и видеопередатчик для FPV) и припаял 3-контактный разъём-«маму» к дорожкам, идущим к регуляторам (2-й, 3-й и 4-й регуляторы). Затем я покрыл верхнюю сторону платы изолирующим лаком и на всякий случай наклеил изоленту в место соприкосновения с лучами. С пайкой PDB было покончено.

С полётным контроллером я разобрался быстро: отпаял все контакты для регуляторов и припаял вместо них два 3-контактных разъёма-«папы»: на 1-й канал (для обеспечения питания ПК) и на сигнальные контакты 2-го, 3-го и 4-го каналов. После этого я опять же покрыл полётный контроллер лаком в несколько слоёв, предварительно прикрыв изолентой все разъёмы. Чтобы провода в месте спайки с платой не отломались от вибраций, разумно нанести немного термоклея. Когда лак высох, я взял 4 нейлоновые проставки, укоротил их до минимально возможного размера и жестко закрепил на них полётный контроллер к PDB.

Некоторые моделисты пытаются демпфировать его специальными площадками (в моём случае она шла в комплекте с ПК) или пено-скотчем ради уменьшения количества вибраций, получаемых ПК. На форумах не советуют этого делать, так как очень трудно настроить фильтрацию частотных помех, эти помехи просто не доходят до контроллера и ситуация только ухудшается. Лучшим подходом является жесткое крепление ПК и использование программной фильтрации (если это возможно). Кроме того, сам гироскоп имеет встроенный низкочастотный фильтр.

Так же надо сразу подумать о том, что подключать полётный контроллер к компьютеру придётся неоднократно и каждый раз разбирать для этого раму — верх непрактичности. Следовательно, надо обестпечить доступ к USB-разъёу контроллера. Мне для этого пришлось развернуть ПК на 90 градусов (чтобы USB-разъём оказался по левому борту) и сделать прорезь в проставке.

Следующим этапом стало подключение приёмника. На самом деле, изначально я купил FrSky V8FR-II, но чтобы он поместился внутрь проставки пришлось бы убирать у него корпус и отпаивать контакты. В итоге я решил, что разумнее будет заказать приёмник, который поместится без лишних манипуляций — FrSky D4R-II. Ещё одним его плюсом является возможность использования протокола PPM (фазо-импульсной модуляции), в то время, как с FrSky V8FR-II — только PWM (широтно-импульсная модуляция). Плюсами PPM-подключения являются меньшее количество проводов (всего три, так как используется только один канал) и 8 каналов (в режиме PWM приёмник FrSky D4R-II имеет только 4 канала, а этого недостаточно). Минус — задержка сигнала, хотя не всякий пилот её заметит, а начинающий и подавно.

Если говорить о задержке сигнала, то у протоколов PPM, PWM и сателлитов Spektrum обновление данных происходит каждые 22мс. Гораздо быстрее работает протокол S.Bus. Его время обновления составляет всего 7мс. Вдобавок, протоколы PPM и PWM требуют дополнительного декодирования в контроллере, так что их реальная задержка — это время обновления + время декодирования. В итоге, для PPM задержка составляет ~88мс, так как используется скользящее среднее по четырем сэмплам. Кроме того, как писалось выше, на CC3D OneShot работает только при подключении PPM или S.Bus и это тоже следует помнить. Здесь можно прочитать подробнее о разных протоколах подключения.

Подключение приёмника полностью описано в официальной документации, в этой статье либо в этом видео. Так как я использую PPM, но не использую OneShot, мне нужно подключать лишь один 3-контактный разъём (№1 на фото ниже) к 1-му каналу приёмника. Также надо установить джампер-перемычку на сигнальные контакты 3-го и 4-го каналов, чтобы активизировать PPM.

Перед подключением обязательно надо проверить расположения проводов питания на 8-контактном разъёме кабеля, который идёт вместе с CC3D. Так как это китайское производство, бывали случаи, когда провода меняли местами и при включении приёмник сгорал. Правильное расположение такое: слева (1-й контакт) — чёрный провод («минус»), справа (2-й контакт) — красный («плюс»). Все остальные провода я отрезал и заизолировал. Сам приёмник я закрепил двухсторонним скотчем, но не к нижней, а к средней плате рамы. В этом случае я могу намертво закрепить антенны приёмника, а при разборке квадрокоптера просто отсоединять кабель от приёмника. Антенны я вывел по стойкам рамы на самую верхнюю плату, где закрепил на стяжках (как в видео Юлиана). Все стойки (с антеннами и без) я для красоты запаял в термоусадку (5мм).

Идея, пришедшая мне в голову уже после сборки: перевернуть приёмник и приклеить его так, чтобы светодиоды и кнопка F/S были видны в прорезь пластины рамы. В этом случае приёмник можно перебиндить без разборки квадрокоптера.

Кстати, так как стойки выполнены из достаточно мягкого алюминия, штатные болтики «съедают» резьбу за несколько разборок. Поэтому я использовал более длинные 15мм болтики.

Надо сразу понимать, что внутреннее расстояние между стойками 25-27 мм и батарея влезет туда только боком. Если такой вариант вас не устраивает, можно просверлить новые отверстия для стоек и сместить к краям. Подробнее об этом рассказано в этом видео. Впрочем, можно отверстия не сверлить, а использовать те, которыми крепятся лучи. В этом случае сверху рамы придётся ставить не штатную, более узкую пластину, а такую же, как и в середине (в моём случае она как раз свободна), а заднюю пару стоек не ставить вообще. Пример на фото ниже:

Теперь необходимо забиндить приёмник и настроить на нём failsafe. Как это сделать и как вообще производить самое первое подключение квадрокоптера к батарее, читайте в следующей части. Когда всё это сделано, можно произвести заключительную сборку рамы. Нижнюю половину (PDB с лучами и проставкой) я скрутил с верхней (средняя пластина рамы с приёмником, соединённая через 4 алюминиевые стойки с верхней) болтами. На каждый луч пошло по три болта M3 x 20мм и одному M3 x 35мм, на которых я также закрепил шасси. Кстати, многие пилоты вообще не ставят шасси. Мне же кажется, что без них квадрокоптер имеет несколько незавершённый вид, так что я их поставил.

Осталось поставить 4 последние алюминиевые стойки. Для этого я сверху использовал болты M3 x 20мм, а снизу M3 x 35мм, так как они идут насквозь через всю нижнюю часть рамы. Как и две предыдущие, эти стойки я заранее заплавил в 5мм-термоусадку.

Квадрокоптер практически готов, осталось несколько мелочей. «Пищалку» для батареи я закрепил на самой верхней пластине, но это временная мера. Позднее, при установке FPV-оборудования, я её переставлю.

Как я писал выше, батарея у меня будет располагаться внутри рамы, что должно защитить её при авариях. У такого расположения есть лишь один серьёзный недостаток: при фронтальном столкновении, батарея по инерции уходит вперёд, сметая и ломая всё на своём пути (в первую очередь полётную камеру). Самый простой способ защиты от этого, который пришёл мне в голову — капроновый ремешок (такие часто используют на рюкзаках), пришитый к стойкам рамы. Он совсем не растягивается, вдобавок, зная заранее размер своих батарей, можно оптимально отрегулировать длину этого ремешка. Честно говоря, не знаю насколько действенным окажется этот способ, хочется испытать его как можно позже.

Вероятно, вы обратили внимание, что «фары» остались неиспользованными. Я долго думал, как и где их крепить, учитывая, что они сильно греются. В итоге оптимальным вариантом было крепление их рядом с курсовой камерой, так что к ним я вернусь в следующей статье, где поделюсь опытом выбора и установки FPV-оборудования.

Последнее, что осталось — закрепить пропеллеры. Тут тоже есть нюанс. В комплекте с моторами DYS 1806 идут красивые и удобные гаечки-конусы. К сожалению, резьба на всех адаптерах в одну сторону, а это значит, что две гайки у нас будут самозатягивающимися, а две — наоборот будут постоянно стремиться открутиться. Поэтому разумнее вообще отказаться от штатных гаек и использовать обычные гайки M5 с нейлоновым уплотнителем, предотвращающим откручивание. Кстати, гаек этих лучше купить с запасом, так как пропеллеры будут ломаться часто, откручивать гайки тоже придётся часто и уплотнители будут стираться. Также важно не перетянуть гайку, так как она металлическая, а сам адаптер алюминиевый, а значит ощутимо мягче.

Чтобы не перепутать какой пропеллер куда ставится, есть простой способ: если смотреть на квадрокоптер сбоку (любого), ближайшие к вам лопасти должны быть скошены к центру. Ну и вдобавок надо помнить, что одинаковые пропеллеры ставятся по диагонали.

Теперь необходимо настроить полётный контроллер. Как это сделать, читайте в следующей части.

  • Часть 2 — настройка
  • Часть 3 — установка FPV
  • Фотогалерея

Топологии регуляторов для систем с батарейным питанием