Как подобрать конденсатор для однофазного электродвигателя: Как подобрать пусковой конденсатор для однофазного двигателя

Содержание

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель) — Help for engineer

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель)

Однофазный асинхронный двигатель

Обмотка статора однофазного асинхронного двигателя занимает приблизительно 2/3 окружности, именно по этой причине его мощность на 1/3 меньше мощности трехфазного двигателя таких же габаритов.

Ток, протекая по обмотке статора, создает пульсирующее магнитное поле, которое можно представить как два поля, вращающиеся в разных направлениях. Поле, которое вращается в направлении ротора называется прямым полем, а второе – обратным. Они воздействуют на ротор и создают соответствующие моменты (Мпр и Мобр).

По причине разных направлений вращения эти электрические машины не могут самостоятельно совершить пуск, так как при неподвижном роторе, то есть при S=1, пусковой момент, он же Мрез, равен нолю (смотри Рисунок 1).

Однако, если придать движение ротору, то прямой и обратный моменты не будут равны и двигатель продолжит вращение в том же направлении (ток, протекающий по обмотке ротора будет оказывать размагничивающее действие и при этом будет ослабляться обратное поле).

Рисунок 1 — Зависимость механических характеристик от прямого и обратного вращающих полей

Пуск двигателя с помощью пусковых устройств

Для того чтоб запустить однофазный асинхронный двигатель применяют устройства для пуска двигателя:

— Конденсатор – C;

— Резистор – R.

Пуск трехфазных асинхронных двигателей осуществляется более простым способом из-за уже имеющегося в сети сдвига фаз на 120 электрических градусов

Для получения пускового момента используют пусковую обмотку статора, которая по отношению к рабочей обмотке сдвинута на 90 электрических градусов. Применяют фазосдвигающие элементы, которые подключают к пусковой обмотке. Эта обмотка работает, обычно, около 3 первых секунд, после чего принудительно отключается вручную или с помощью автоматов.

По этой причине ее изготовляют из провода меньшего сечения и с меньшим количеством витков по сравнению с рабочей обмоткой.

Пуск при помощи резистора производится при малых необходимых пусковых моментах, то есть если нагрузка на валу незначительна. Рисунок 2 иллюстрирует применение пускового а) конденсатора и б) резистора; где Р – рабочая обмотка, П – пусковая обмотка.

Рисунок 2 – Схема подключения однофазного асинхронного двигателя

Двухфазные асинхронные двигатели

Наличие конденсатора значительно улучшает характеристики двигателя, по этой причине используются двухфазные асинхронные двигатели. В них две обмотки являются рабочими, в одну из них вводится конденсатор для смещения угла между фазами на 90 градусов и создания кругового магнитного поля. Такие двигатели называют конденсаторными.

Расчет емкости конденсатора для двигателя:

Емкость такого конденсатора определяется по формуле:

,

где – ток, протекающий в обмотке статора,

sinφ1 – сдвиг фаз между напряжение и током без конденсатора,

f– частота питающей сети,

U – напряжение сети,

n – коэффициент трансформации.

,

Где и kоб1,kоб2 — обмоточные коэффициенты,

W1, W2, — количество витков обмоток статора и ротора.

Напряжение на зажимах конденсатора выше чем напряжение сети и определяется следующей формулой:

Для повышения пусковых характеристик Существуют двигатели в одну обмотку которых ставятся два конденсатора, один из которых пусковой, второй – рабочий. Пусковой конденсатор обычно имеет емкость в разы большую чем рабочий. При этом пусковой отключается при достижении 70-80% номинальной скорости электрической машины.

Рисунок 3 – Пример подключения пары конденсаторов (конденсаторный двигатель)

Преимущества и недостатки конденсаторных двигателей

Недостатки по сравнению с трехфазным двигателем:

— Меньшая мощность;

— Увеличенное скольжение при номинальном режиме;

— Скорость вращения вала при холостом ходу ниже;

— Пониженная кратность пускового момента;

— Повышенная кратность пускового тока.

Преимущества:

— Имеют высокую эксплуатационную надежность;

— Не требуют трехфазного источника тока.

Недостаточно прав для комментирования

Как подобрать конденсатор для подключения двигателя: расчет ёмкости в мкФ | Строительный журнал САМаСТРОЙКА

При подключении электродвигателя к сети 220 Вольт не обойтись без конденсатора. Этот маленький элемент электрической цепи служит для уменьшения времени входа мотора в рабочий режим (пусковой конденсатор).

Кроме пусковых, существуют и так называемые рабочие конденсаторы, которые постоянно задействованы во время работы двигателя. Основной задачей рабочих конденсаторов является обеспечение оптимальной нагрузочной способности двигателя.

Состоит конденсатор из нескольких пластин, которые защищены диэлектриком. Основная функция конденсаторов — это накопление и отдача электрической энергии. Как подобрать конденсатор для запуска электродвигателя? Что при этом нужно учитывать? Именно об этом вы и сможете узнать в данной статье строительного журнала samastroyka.ru.

Виды конденсаторов

Итак, конденсатор служит для накопления электрического заряда с последующей его отдачей в цепь. Конденсаторы бывают полярные, неполярные и электролитические, другое название «оксидные».

Для подключения электродвигателей в сеть переменного тока, полярные конденсаторы использовать нельзя. Из-за быстрого разрушения диэлектрика внутри, произойдёт замыкание, и такие конденсаторы очень быстро выйдут из строя.

Этого не произойдёт, если подключить к двигателю неполярный конденсатор. Обкладки неполярных конденсаторов одинаково взаимодействуют, как с источником, так и с диэлектриком.

Электролитические конденсаторы имеют внутри вместо пластин тонкую оксидную плёнку. Зачастую именно их и используют для подключения электродвигателей низкой частоты, поскольку максимально возможная ёмкость электролитических конденсаторов составляет 100000 мкФ.

Подбор конденсатора для трехфазного двигателя

Подбор емкости рабочего конденсатора для трехфазного двигателя осуществляется по следующей формуле: Сраб.=k*Iф / U сети.

  • k — это коэффициент, значение которого зависит от схемы подключения трехфазного электродвигателя. 4800 по схеме «треугольник» и 2800 по схеме «звезда»;
  • — обозначает номинальный ток статора. Узнать номинальный ток статора можно на корпусе электродвигателя или посредством специальных клещей;
  • U сети — сетевое напряжение 220 вольт.

Зная все вышеперечисленные параметры можно точно рассчитать емкость рабочего конденсатора в мкФ для электродвигателя. Есть и более простой способ расчёта емкости конденсаторов. Здесь действует правило: на 100 Вт мощности двигателя, берётся примерно 7 мкФ конденсаторной емкости.

Совсем по-другому обстоят дела с подбором пускового конденсатора в электродвигатель. Пусковой конденсатор работает очень непродолжительное время, всего лишь около 3 сек. в момент пуска двигателя. Основной задачей пускового конденсатора, является вывести ротор на номинальный уровень частоты вращения.

Подбирается пусковой конденсатор исходя из следующих параметров:

  • Емкость пускового конденсатора должна быть в 2,5-3 раза больше, чем емкость рабочего конденсатора;
  • Рабочее напряжение пускового конденсатора должно превышать сетевое, не менее чем в 1,5 раз.

Таким образом, зная все вышеперечисленные параметры, не составит особого труда подобрать рабочий и пусковой конденсатор для электродвигателя.

Как рассчитать емкость конденсатора для однофазного двигателя

При выборе и подключении конденсатора к однофазному двигателю, многое зависит от того, в каком именно режиме будет работать двигатель:

  • При подключении пускового конденсатора и дополнительной обмотки электродвигателя, емкость конденсатора рассчитывается по следующему принципу:
    70 мкФ на 1000 Вт
    мощности двигателя;
  • Общая ёмкость рабочего и пускового конденсаторов должна рассчитываться так: 1 мкФ на 100 Вт мощности. В этом случае рабочий конденсатор остаётся включённым во время работы электродвигателя.

Теперь что касается рабочего напряжения конденсаторов для подключения однофазного электродвигателя. В большинстве случае вполне хватит конденсатора с напряжением от 450 Вольт. Тем не менее, если было замечено, что электродвигатель сильно греется в процессе работы, то следует уменьшить ёмкость рабочего конденсатора.

Читайте также:

Как выбрать конденсатор для электродвигателя 380 на 220В, 12В и т.д.

Имея собственный дом, дачу или гараж иногда возникает необходимость изготовления электроприборов, где применяется электродвигатель. Конструкторы применяют для этих целей имеющийся под рукой двигатель, очень часто трехфазный. Для подключения таких устройств к однофазной сети применяются фазосдвигающие конденсаторы. Для мощных устройств требуется подобрать рабочий конденсатор и пусковой. Для электродвигателя небольшой мощности можно использовать один рабочий. В этой статье мы расскажем читателям сайта Сам Электрик, как выбрать конденсатор для электродвигателя.

Важно знать

Конструктор должен знать, что для разгона мощного электродвигателя в первый момент требуется большая емкость конденсатора. По мере набора оборотов, она должна уменьшаться. Т.е. номинал пускового конденсатора должен быть больше рабочего.

Важно! Нельзя использовать электролитические конденсаторы как рабочие. Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза. Для этих целей применяют старые советские типа МБГЧ, МГБО и т.п. или специально сконструированные пленочные комплектующие типа СВВ с металлическим напылением. 

Существуют специальные емкости, в корпусе которых совмещены два конденсатора – пусковой и рабочий, как показано на фото:

Они имеют два конденсатора разного номинала, конструктивно размещенные в одном корпусе.

Для чего предназначены конденсаторы

В трехфазной сети переменного тока фазы смещены относительно друг друга на 1200. Что позволяет создать вращающийся электромагнитный поток внутри двигателя.

При подключении к однофазной сети вращающийся поток отсутствует. Для его создания применяют фазосдвигающую емкость. Она позволяет создать вращающийся поток электрического поля.

Подбор конденсатора для асинхронного двигателя

Для подключения асинхронного трехфазного двигателя 380 вольт к однофазной сети необходим конденсатор. Электродвигатель имеет два вида соединения обмоток – звездой или треугольником. Соединение треугольником будет эффективнее работать в сети 220 вольт.

Для расчета конденсатора существуют специальные программы. Достаточно ввести данные двигателя и программа сама произведет расчет. Она выдаст рекомендации для подключения рабочего конденсатора и пускового. Таких программ в интернете существует множество. Они получили название калькулятор.

Существует формула, согласно которой производят расчет:

Cраб.=K*Iф/Uсети

По вышеприведенной схеме рассчитывается рабочая емкость конденсатора, где в формуле:

  • U – Напряжение питающей сети. В нашем случае это 220 вольт.
  • Iф – номинальный ток статора. Можно посмотреть на шильдике электродвигателя, или замерить токоизмерительными клещами.
  • К – коэффициент, который зависит от схемы соединения обмоток. Для соединения треугольником он равен 4800, а для соединения звездой 2800.

Если все параметры известны, то правильно рассчитать конденсатор несложно. Результат получаем в мкФ. Эта формула справедлива для выбора рабочей емкости.

Сложнее обстоит дело с пусковым конденсатором. Он подключается к обмоткам на небольшое время. Не более 3 сек в момент запуска двигателя.

Как показано подключение двигателя 380 на 220 Вольт на рисунке снизу:

Подбирают пусковую емкость исходя из условий, что она должна превышать рабочую в 2 -3 раза. Однако есть более простой способ подбора.

В интернете существуют таблицы, согласно которым можно определить необходимую емкость. На рисунке снизу представлена такая таблица. В ней указывают рабочий и пусковой конденсатор.

Таблица выбора емкости конденсатора

Существуют рекомендации, согласно которых легко определить необходимый параметр. На каждые 100 Вт устанавливают емкость, равною 7 мкФ. Пусковая будет составлять 14 мкФ. Рабочее напряжение конденсаторов должно быть не менее 1,5 U сети.

Подбор конденсатора для однофазного двигателя

Наибольшее распространение в быту получили однофазные электродвигатели с пусковой обмоткой. Они устанавливаются в большинстве бытовых приборах. Отсюда их распространение.

Они имеют две обмотки – рабочую и пусковую. Если в трехфазном двигателе конструкцией предусмотрен вращающийся поток, то в однофазном для этого применяется пусковая обмотка, а смещение фазы задается конденсатором. В некоторых схемах вместо емкости применяют резистор или индуктивность, но это скорее исключение.

Наиболее распространенная схема представлена ниже:

Для лучших пусковых характеристик применяется дополнительный конденсатор, подключенный параллельно рабочему. Его подключают кратковременно, не более трех секунд.

Применение электролитических конденсатора в сети переменного тока недопустимо. Т.к. включение полярного конденсатора в сеть переменного тока приводит к закипанию электролита внутри корпуса, что в конечном результате приведет к его взрыву.

Редко применяют схему с электролитическим, но при этом последовательно ему ставят диод. Такая схема оправдана, если необходимо сэкономить место, а двигатель работает кратковременно.

Выбор конденсатора для двигателя производят согласно схеме подключения:

  • Пусковая обмотка, и конденсатор подключаются кратковременно на время запуска. В этом случае на каждый 1 кВт мощности устанавливают 70 мкФ. Можно использовать электролитические с диодом.
  • Пусковая катушка и конденсатор постоянно подключены на все время работы мотора. В этом случае используют не полярные детали емкостью 23-35 мкФ на 1 кВт.
  • Параллельно рабочему конденсатору подключают кратковременно пусковой. В этом случае в качестве пусковой можно применить электролитическую емкость с диодом. Она должна быть в 2-3 раза больше рабочей. Однако, схема должна быть построена таким образом, чтобы пусковой кондер был подключен не более 3 секунд.

Несмотря на рекомендации по подбору, следует контролировать состояние электродвигателя.

Если мотор в процессе работы греется, стоит уменьшить номинал рабочего конденсатора. Если этого не сделать, двигатель перегреется и выйдет из строя.

Устанавливая электродвигатели на другое оборудование, применяйте родные детали, демонтированные вместе с ним с бытовой техникой, например, от стиральной машины. Если это невозможно, придерживайтесь изложенной рекомендации.

Двигатели постоянного тока

Конструктору попадаются маломощные двигатели постоянного тока. Обычно используются на напряжение 12 Вольт. На их корпусе смонтированы небольшие конденсаторы. Пример на фото:

Двигатель на 12В с конденсатором

Возникает вопрос, для чего они предназначены, если без него моторчик работает. Из схемы видно, что он подключается параллельно двигателю.

Это обеспечивает:

  • Защиту сети от высокочастотной составляющей, наводящей помехи на радиоаппаратуру.
  • Выполняет функцию искрогасящего элемента. Он обеспечивает нормальный режим работы, и не позволяет пригорать щеткам к коллектору. Без него коллектор двигателя постоянного тока быстро выйдет из строя. Таким образом, продлевается срок службы коллектора и щеток.

Мы рассмотрели основные нюансы выбора конденсатора для электродвигателя и рассказали, для чего вообще нужен конденсатор в схеме. Надеемся, предоставленная информация была для Вас полезной и интересной!

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Блиц-советы

Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.

Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.

Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.

При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду

Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.

Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Читайте далее:

Как подключить трехфазный двигатель к однофазной сети

Как подключить трехфазный двигатель к сети 220 вольт

Как переделать трехфазный двигатель для подключения в однофазную сеть

Подключение трехфазного двигателя к однофазной сети

Подключение трехфазного двигателя к трехфазной сети

Онлайн расчет конденсатора для двигателя

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Пусковой конденсатор позволяет организовать начальный момент вращения вала ротора электромотора. Подключение электрических двигателей в сеть напряжением 220 вольт требует кратковременного присоединения пусковой обмотки через подобную электрическую ёмкость.

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400… 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Как определить оптимальную величину емкости

Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.


Схемы движков с пусковым и рабочим конденсаторами

При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.

Расчет рабочей емкости

Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.

Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.

Подбор пусковой емкости

Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.

После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.

Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Специфика схем с конденсаторами

Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:

  • включение в «треугольник»;
  • подсоединение в «звезду».

К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.

Схемы подсоединения к линии 380 В

В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.

Включение мотора в трёхфазную сеть

Схемы включения в однофазную сеть

При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:

  • от рабочей катушки;
  • от дополнительной;
  • общий вывод для обеих обмоток.

Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.

Схема для запуска однофазного двигателя

Тип сборки «Треугольник»

Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.

Включение мотора по соединению «треугольник»

Тип сборки «Звезда»

Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.

Подключение «звездой»

Выбор конденсатора для электродвигателя — Вместе мастерим

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Электродвигатели используются в каждом доме, так как они являются движущей силой любого бытового прибора. Кроме того, они являются главным составляющим и электроинструментов. Именно по этой причине домашним мастерам хочется узнать побольше о работе прибора и его характеристиках.


В большинстве случаев электродвигатели имеют систему трехфазного подключения к сети. И для домашней сети они получаются слишком мощными и не отдают полностью свою рабочую силу.

Для таких случаев используется конденсатор для электродвигателя, фото такого прибора в большом количестве есть в сети.

Именно вопрос подключения конденсатора наиболее популярен при интересу к электродвигателю и именно о нем мы поговорим подробно.

Краткое содержимое статьи:

Разновидности конденсаторов пуска

Маломощные электродвигатели, работающие от 200-400 В не нуждаются в установке дополнительного конденсатора пуска. Дело в том, что в каждом устройстве конденсатор уже заранее установлен.

Для слабых по мощности двигателей его достаточно, а вот для того, чтобы работали устройства с повышенной мощностью потребуется дополнительный внешний пусковой конденсатор.

Конденсаторы для асинхронных электродвигателей необходимо подбирать опытным путем, проверяя каждый.

Такой прибор устанавливается параллельно к уже имеющемуся. На некоторое время при разгоне двигателя его оставляют включенным.

Включение и дальнейшая работа конденсатора возможна только при зажатой кнопке пуска. После разгона обязательно потребуется выключить конденсатор, так как при его постоянной работе двигатель будет крутиться на полную мощность.

А при обыкновенной домашней сети с одной фазой это приведет к перегреву и выходу из строя оборудования.

Видов конденсаторов для электродвигателя в настоящее время существует три:

Полярные. Данный вид способен работать только при постоянной подаче тока. Переменное питание быстро выведет из строя электродвигатель.

Неполярные. Они более популярны за счет разнообразных условий работы. То есть такие конденсаторы можно устанавливать и при постоянном токе и при переменном.

С электролитом. Данный вариант конденсатора электродвигателя имеет обычно небольшую емкость и наиболее подходящим вариантом они послужат в использовании к низкочастотным электродвигателям.

Как подобрать конденсатор для двигателя

При выборе конденсатора на трехфазный двигатель важно помнить о том, что мощность в нем должна иметь десятки и сотни микрофарад.

Но электролитические конденсаторы с такой целью выбирать не рекомендуется.

Для них понадобится однополярное подключение, а это потребует установки дополнительного оборудования.

Кроме того, данный вариант может привести к быстрому выходу двигателя из строя в связи с перегревом.

Так же необходимо уметь отличать рабочий конденсатор от пускового. Первый вариант работает на протяжении всего цикла действий двигателя, а второй только помогает ему запуститься.

Рабочий не стоит выбирать, так как его мощность вдвое меньше чем у пускового.

При правильно сделанном выборе конденсатора его рабочие показатели повысятся.

Кроме того, конденсатор, подходящий к двигателю позволит значительно продлить жизнь мотора.

Как подключать конденсаторы

Подключение любого вида конденсаторов должно производиться по точной схеме. Рабочий конденсатор подключается снизу, а пусковой выше параллельно ем.

Кроме того, важно не забыть подключить кнопку пуска, при этом следите за последовательностью проводов.

При помощи такой схемы можно подключать и конденсаторы на проверку. При суммировании мощностей рабочего и пускового конденсаторов будет получаться, что мощность меняется.

Здесь уже требуется наблюдать за состоянием работы непосредственно самого электродвигателя. Если он работает хорошо, то выбрана нужная мощность.

Также можно подключать последовательно несколько конденсаторов пускового типа и смотреть за двигателем.

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

53.Однофазные электродвигатели

53.Однофазные электродвигатели 

Однофазными электродвигателями оборудовано большое количество маломощных холодильных агрегатов, используемых в быту (домашние холодильники, морозильники, бытовые кондиционеры, небольшие тепловые насосы…).
Несмотря на очень широкое распространение, однофазные двигатели с вспомогательной обмоткой зачастую недооцениваются по сравнению с трехфазными двигателями.
Целью настоящего раздела является изучение правил подключения однофазных электродвигателей, их ремонта и обслуживания, а также рассмотрение узлов и элементов, необходимых для их работы (конденсаторы, пусковые реле). Конечно, мы не будем изучать, как и почему вращаются такие двигатели, но все особенности их использования в качестве двигателей для компрессоров холодильного оборудования мы постараемся изложить.
А) Однофазные двигатели с вспомогательной обмоткой
Такие двигатели, установленные в большинстве небольших компрессоров, питаются напряжением 220 В. Они состоят из двух обмоток (см. рис. 53.1).

► Основная  обмотка  Р,   называемая                      ________
часто рабочей обмоткой, или по-английски Run (R), имеет провод толстого сечения, который в течение всего периода работы двигателя остается под напряжением и пропускает номинальную силу тока двигателя.
► Вспомогательная обмотка А, называемая также пусковой обмоткой, или по-английски S (Start), имеет провод более тонкого сечения, следовательно, большее сопротивление, что позволяет легко отличить ее от основной обмотки.

Вспомогательная или пусковая обмотка, согласно названию, служит для обеспечения запуска двигателя.
Действительно, если попытаться запустить двигатель, подав напряжение только на основную обмотку (и не запитать вспомогательную), мотор будет гудеть, но вращаться не начнет. Если в этот момент вручную крутануть вал, мотор запустится и будет вращаться в том лее направлении, в котором его закрутили вручную. Конечно, такой способ запуска совсем не годится для практики, особенно если мотор спрятан в герметичный кожух.
Пусковая обмотка как раз и служит для того, чтобы запустить двигатель и обеспечить величину пускового момента выше, чем момент сопротивления на валу двигателя.
Далее мы увидим, что последовательно с пусковой обмоткой в цепь вводится, как правило, конденсатор, обеспечивающий необходимый сдвиг по фазе (около 90°) между током в основной и пусковой обмотках. Эта искусственная расфазировка как раз и позволяет запустить двигатель.

Внимание! Все замеры должны быть выполнены с большой аккуратностью и точностью, особенно, если модель двигателя вам незнакома или схема соединения обмоток отсутствует.

Случайное перепутывание основной и вспомогательной обмоток, как правило, заканчивается тем, что вскоре после подачи напряжения мотор сгорает!
Не стесняйтесь повторить измерения несколько раз и набросать схему мотора, снабдив ее максимумом пометок, это позволит вам избежать многих ошибок!
ПРИМЕЧАНИЕ
Если двигатель трехфазный, омметр покажет одинаковые значения сопротивлений между всеми тремя клеммами. Таким образом, представляется, что трудно ошибиться, прозванивая этот тип двигателя (по трехфазным двигателям см. раздел 62).
В любом случае, возьмите в привычку читать справочные данные на корпусе двигателя, а также подумайте о том, как заглянуть вовнутрь клеммной коробки, сняв ее крышку, поскольку там часто приводится схема соединения обмоток двигателя.

Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрических (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств, плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла) неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре…).

Одна из обмоток может быть оборвана . В этом случае омметр при измерении ее сопротивления будет показывать очень большую величину вместо нормального сопротивления. Удостоверьтесь, что ваш омметр исправен и что его зажимы имеют хороший контакт с клеммами обмотки. Не стесняйтесь проверить омметр с помощью хорошего эталона.
Напомним, что обмотка обычного мотора имеет максимальное сопротивление в несколько десятков Ом для небольших двигателей и несколько десятых долей Ома для огромных двигателей. Если обмотка оборвана, нужно будет либо заменить двигатель (или полностью агрегат), либо перемотать его (в том случае, когда такая возможность имеется, перемотка тем более выгодна, чем больше мощность двигателя).
Между двумя обмотками может существовать короткое замыкание. Чтобы выполнить такую проверку, необходимо убрать соединительные провода (и соединительные перемычки на трехфазном двигателе).
Когда вы проводите отсоединение, никогда не стесняйтесь предварительно разработать детальную схему замеров и сделать максимум пометок, чтобы в дальнейшем спокойно и без ошибок вновь поставить на место соединительные провода и перемычки.

В омметр должен показывать бесконечность. Однако, он показывает ноль (или очень низкое сопротивление), что без сомнения означает возможность короткого замыкания между двумя обмотками.
Такая проверка менее показательна для однофазного двигателя с вспомогательной обмоткой в случае, если две обмотки невозможно разъединить (когда общая точка С, соединяющая две обмотки, находится внутри двигателя). Действительно , в зависимости от точного места нахождения короткого замыкания, замеры сопротивлений, осуществленные между тремя клеммами (С —> А, С —> Р и Р —> А), дают пониженные, но достаточно несвязанные между собой величины. Например, сопротивление между точками А и Р, может не соответствовать сумме сопротивлений С —> А + С —> Р.
Также, как и в случае обрыва обмоток, при коротком замыкании между обмотками необходимо либо заменить, либо перемотать двигатель.


Обмотка может быть замкнута на массу. Сопротивление изоляции нового двигателя (между каждой из обмоток и массой) должно достигать 1000 MQ. Со временем это сопротивление уменьшается и может упасть до 10… 100 MQ. Как правило, принято считать, что начиная с 1 MQ (1000 kQ) нужно предусматривать замену двигателя, а при величине сопротивления изоляции 500 kQ и ниже, эксплуатация двигателя не допускается (напомним: 1 MQ = 103kQ = 10°>Q).
Обмотка замкнута на массу
Сопротивление стремится к нулю
Если изоляция нарушена, измерение сопротивления между клеммой обмотки и корпусом мотора дает нулевую ветмчину (или очень низкое сопротивление) вместо бесконечности (см. рис. 53.8). Заметим, что такое измерение должно быть выполнено на каждой клемме двигателя с помощью наиболее точного омметра. Перед каждым измерением убедитесь, что ваш омметр в исправном состоянии, и что его зажимы имеют хороший контакт с клеммой и металлом корпуса двигателя (при необходимости, соскоблите краску на корпусе, чтобы добиться хорошего контакта).
В примере на рис. 53.8 измерение указывает на то, что обмотка несомненно может быть замкнута на корпус.
Рис. 53.8.
Однако контакт обмотки с массой может быть и не полным. Действительно, сопротивление изоляции между обмотками и корпусом может становиться достаточно низким, когда двигатель находится под напряжением, чтобы вызывать срабатывание предохранительного автомата, в то же время оставаясь достаточно высоким, чтобы в отсутствие напряжения не быть обнаруженным с помощью обычного омметра.
В этом случае необходимо использовать мегомметр (или аналогичный прибор), который позволяет контролировать сопротивление изоляции с использованием постоянного напряжения от 500 В, вместо нескольких вольт для обычного омметра
При вращении ручного индуктора мегомметра, если сопротивление изоляции в норме, стрелка прибора должна отклоняться влево (поз. 1) и указывать бесконечность (оо). Более слабое отклонение, например, на уровне 10 MQ (поз. 2), указывает на снижение изоляционных характеристик двигателя, которое хотя и недостаточно для того, чтобы только оно привело к срабатыванию защитного автомата, но, тем не менее, должно быть отмечено и устранено, поскольку даже незначительные повреждения изоляции, вдобавок к уже существующим, в большинстве случаев рано или поздно приведут к полной остановке агрегата.
Отметим также, что только мегомметр может позволить выполнить качественную проверку изоляции двух обмоток между собой, когда их невозможно разъединить (см. выше проблему короткого замыкания между обмотками в однофазном двигателе). В заключение укажем, что проверку подозрительного электродвигателя необходимо проводить очень строго.
В любом случае недостаточно только заменить двигатель, но необходимо также найти, вдобавок к этому первопричину неисправности (механического, электрического или иного характера) с тем, чтобы радикально исключить всякую возможность ее повторения. В холодильных компрессорах, где имеется большая вероятность наличия кислоты в рабочем теле (обнаруживаемой простым анализом масла), после замены сгоревшего мотора необходимо будет предпринять дополнительные меры предосторожности. Не следует пренебрегать и осмотром электроаппаратуры (при необходимости, заменяя контактор и прерыватель, проверяя соединения и предохранители…).

Вдобавок к этому, замена компрессора требует от персонала высокой квалификации и строгого соблюдения правил: слива хладагента, при необходимости промывая после этого контур, возможной установки антикислотного фильтра на всасывающей магистрали, замены фильтра-осушителя, поиска утечек, обезвоживания контура путем вакуумирования, заправки контура хладагентом и полного контроля функционирования… Наконец, особенно если изначально установка была заправлена хладагентом типа CFC (R12, R502…), может быть будет возможным и целесообразным воспользоваться заменой компрессора, чтобы поменять тип хладагента?
Б) Конденсаторы
Чтобы запустить однофазный двигатель со вспомогательной обмоткой, необходимо обеспечить сдвиг по фазе переменного тока во вспомогательной обмотке по отношению к основной. Для достижения сдвига по фазе и, следовательно, обеспечения требуемого пускового момента (напомним, что пусковой момент двигателя обязательно должен быть больше момента сопротивления на его валу) используют, в основном, конденсаторы, установленные последовательно со вспомогательной обмоткой. Отныне мы должны запомнить, что если емкость конденсатора выбрана неправильно (слишком малая или слишком большая), достигнутая величина фазового сдвига может не обеспечить запуск двигателя (двигатель стопорится).
В электрооборудовании холодильных установок мы будем иметь дело с двумя типами конденсаторов:
► Рабочие (ходовые) конденсаторы (бумажные) небольшой емкости (редко более 30 мкф), и значительных размеров.
► Пусковые конденсаторы (электролитические), имеющие, наоборот, большую емкость (может превышать 100 мкф) при относительно небольших размерах. Они не должны находиться постоянно под напряжением, иначе такие конденсаторы очень быстро перегреваются и могут взорваться. Как правило, считается, что время их нахождения под напряжением не должно превышать 5 секунд, а максимально допустимое число запусков составляет не более 20 в час.
С одной стороны, размеры конденсаторов зависят от их емкости (чем больше емкость, тем больше и размеры). Емкость указывается на корпусе конденсатора в микрофарадах (др, или uF, или MF, или MFD, в зависимости от разработчика) с допуском изготовителя, например: 15uF±10% (емкость может составлять от 13,5 до 16,5 мкФ) или 88-108 MFD (емкость составляет от 88 до 108 мкФ).
Кроме того, размеры конденсатора зависят от величины напряжения, указанного на нем (чем выше напряжение, тем больше конденсатор). Полезно напомнить, что указанное разработчиком напряжение является максимальным напряжением, которое можно подавать на конденсатор, не опасаясь его разрушения. Так, если на конденсаторе указано 20мкф/360В, это значит, что такой конденсатор свободно можно использовать в сети с напряжением 220 В, но ни в коем случае нельзя подавать на него напряжение 380 В.

 53.1. УПРАЖНЕНИЕ


Попробуйте для каждого из 5 конденсаторов, изображенных на рис. 53.10 в одном и том же масштабе, определить, какие из них являются рабочими (ходовыми), а какие пусковыми.

Конденсатор №1 самый большой по размерам из всех представленных, имеет довольно низкую емкость в сравнении с его размерами. По-видимому, это рабочий конденсатор.
Конденсаторы №3 и №4, при одинаковых размерах, имеют очень небольшую емкость (заметим, что конденсатор №4, предназначенный для использования в сети с напряжением питания, большим, чем конденсатор №3, имеет более низкую емкость). Следовательно, эти два конденсатора также рабочие.
Конденсатор №2 имеет, в сравнении с его размерами, очень большую емкость, следовательно это пусковой конденсатор. Конденсатор №5 имеет емкость несколько меньше, чем №2, но он предназначен для более высокого напряжения: это также пусковой конденсатор.

Проверка конденсаторов. Измерения при помоши омметра, когда они дают те результаты, которые мы только что рассмотрели, являются превосходным свидетельством исправности конденсатора. Тем не менее, они должны быть дополнены измерением фактической емкости конденсатора (вскоре мы увидим, как выполнить такое измерение).
Теперь изучим типичные неисправности конденсаторов (обрыв цепи, короткое замыкание между пластинами, замыкание на массу, пониженная емкость) и способы их выявления. Прежде всего следует заметить, что совершенно недопустимым является вздутие корпуса конденсатора.

В конденсаторе может иметь место обрыв вывода
Тогда омметр, подключенный к выводам и установленный на максимальный диапазон, постоянно показывает бесконечность. При такой неисправности все происходит как в случае отсутствия конденсатора. Однако, если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты…).
Внутри конденсатора может иметь место короткое замыкание между пластинами
При такой неисправности омметр будет показывать нулевое или очень низкое сопротивление (используйте небольшой диапазон). Иногда компрессор может запуститься (далее мы увидим, почему), но в большинстве случаев короткое замыкание в конденсаторе приводит к срабатыванию тепловой защиты.
Пластины могут быть замкнуты на массу
Пластины конденсатора, также как и обмотки электродвигателя, изолированы от массы. Если сопротивление изоляции резко падает (опасность чего проявляется при чрезмерном перегреве), утечка тока обусловливает отключение установки автоматом защиты.
Такая неисправность может возникать, если конденсатор имеет металлическую оболочку. Сопротивление, измеренное между одним из выводов и корпусом в этом случае стремится к 0, вместо того, чтобы быть бесконечным (проверять нужно оба вывода).
Емкость конденсатора может быть пониженной
В этом случае действительная величина емкости, измеренная на его концах, ниже емкости, указанной на корпусе с учетом допуска изготовителя.

В  измеренная емкость должна была бы находиться в пределах от 90 до 110 мкФ. Следовательно, на самом деле, емкость слишком низкая, что не обеспечит требуемые величины сдвига по фазе и пускового момента. В результате двигатель может больше не запуститься.

Рассмотрим теперь, как осуществить измерение фактической емкости конденсатора с помощью несложной схемы, легко реализуемой в условиях монтажной площадки.
О
ВНИМАНИЕ! Чтобы исключить возможные опасности, необходимо перед сборкой этой схемы проверить конденсатор с помощью омметра.
Внешне исправный конденсатор достаточно подключить к сети переменного тока напряжением 220 В и измерить потребляемый ток (конечно, в этом случае, рабочее напряжение конденсатора должно быть не ниже 220 В).
Схему необходимо защитить либо автоматом защиты, либо плавким предохранителем с рубильником. Измерение  должно быть как можно более коротким (пусковой конденсатор опасно долго держать под напряжением).

При напряжении 220 В действительная емкость конденсатора (в мкФ) примерно в 14 раз больше потребляемого тока (в амперах).

Например, вы хотите проверить емкость конденсатора (очевидно, это пусковой конденсатор, поэтому время его нахождения под напряжением должно быть очень небольшим, см. рис. 53.21). Поскольку на нем указано, что рабочее напряжение равно 240 В, его можно включить в сеть напряжением 220 В.

Если емкость, обозначенная на конденсаторе составляет 60 мкФ ± 10% (то есть от 54 до 66 мкФ), теоретически он должен потреблять ток силой: 60 / 14 = 4,3 А.
Установим автомат или плавкий предохранитель, рассчитанный на такой ток, подключим трансформаторные клещи и установим на амперметре диапазон измерения, например, 10 А. Подадим напряжение на конденсатор, считаем показания амперметра и тотчас отключим питание.

ВНИМАНИЕ, ОПАСНОСТЬ! Когда вы измеряете емкость пускового конденсатора, время его нахождения под напряжением не должно превышать 5 секунд (практика показывает, что при небольших затратах на организацию процесса измерения, этого времени вполне достаточно для выполнения замера).
В нашем примере, фактическая емкость составляет около 4,1 х 14 = 57 мкФ, то есть конденсатор исправный, поскольку его емкость должна находиться между 54 и 66 мкФ.
Если замеренный ток составил бы, например, 3 А, фактическая емкость была бы 3 х 14 = 42 мкФ. Эта величина выходит за пределы допуска, следовательно нужно было бы заменить конденсатор.

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры…).

В большинстве случаев (но не всегда) эти реле подключаются непосредственно к компрессору при помощи двух или трех (в зависимости от моделей) гнезд, в которые входят штеккеры обмоток электродвигателя, предотвращая возможные ошибки при подключении реле к вспомогательной и основной обмоткам. На верхней крышке реле, как правило, нанесены следующие обозначения:
Р / М —> Рабочая (Main) —> Основная обмотка А / S -> Пусковая (Start) —> Вспомогательная обмотка L         Линия (Line)     —> Фаза питающей сети
Если реле перевернуть верхней крышкой вниз, можно отчетливо услышать стук подвижных контактов, которые скользят свободно.
Поэтому, при установке такого реле необходимо строго выдерживать его пространственную ориентацию, чтобы надпись «Верх» (Тор) находилась сверху, так как если реле перевернуто, его нормально разомкнутый контакт будет постоянно замкнут.

При проверке омметром сопротивления между контактами пускового реле тока (в случае его правильного расположения) между гнездами A/S и Р/М, а также между гнездами L и A/S, должен иметь место разрыв цепи (сопротивление равно со), поскольку при снятом питании контакты реле разомкнуты.
Между гнездами Р/М и L сопротивление близко к 0, соответствуя сопротивлению катушки реле, которая мотается проводом толстого сечения и предназначена для пропускания пускового тока.
Можно также проверить сопротивление реле в перевернутом состоянии. В таком случае, между гнездами A/S и L вместо бесконечности должно быть сопротивление, близкое к нулю.
При монтаже реле тока в перевернутом положении ) его контакты будут оставаться постоянно замкнутыми, что не позволит отключать пусковую обмотку. В результате возникает опасность быстрого сгорания электродвигателя.

Изучим теперь работу пускового реле тока в схеме, приведенной на  в отсутствие напряжения.
Как только на схему будет подано напряжение, ток пойдет через тепловое реле защиты, основную обмотку и катушку реле. Поскольку контакты A/S и L разомкнуты, пусковая обмотка обесточена и двигатель не запускается — это вызывает резкое возрастание потребляемого тока.
Повышение пускового тока (примерно пятикратное, по отношению к номиналу) обеспечивает такое падение напряжения на катушке реле (между точками L и Р/М), которое становится достаточным, чтобы сердечник втянулся в катушку, контакты A/S и L замкнулись и пусковая обмотка оказалась под напряжением.

Благодаря импульсу, полученному от пусковой обмотки, двигатель запускается и по мере того, как число его оборотов растет, потребляемый ток падает. Одновременно с этим падает напряжение на катушке реле (между L и Р/М). Когда мотор наберет примерно 80% от номинального числа оборотов, напряжение между точками L и Р/М станет недостаточным для удержания сердечника внутри катушки, контакт между A/S и L разомкнётся и полностью отключит пусковую обмотку.
Однако, при такой схеме пусковой момент на валу двигателя очень незначительный, поскольку в ней отсутствует пусковой конденсатор, обеспечивающий достаточную величину сдвига по фазе между током в основной и пусковой обмотках (напомним, что главным назначением конденсатора является увеличение пускового момента). Поэтому данная схема используется только в небольших двигателях с незначительным моментом сопротивления на валу.
Если речь идет о небольших холодильных компрессорах, в которых в качестве расширительного устройства обязательно используются капиллярные трубки, обеспечивающие выравнивание давления в конденсаторе и давления в испарителе при остановках, то в этом случае запуск двигателя происходит при минимально возможном моменте сопротивления на валу {см. раздел 51. «Капиллярные расширительные устройства»).
При необходимости повышения пускового момента последовательно с пусковой обмоткой необходимо устанавливать пусковой конденсатор (Cd). Поэтому часто реле тока выпускаются с четырьмя гнездами, как например, в модели, представленной.
Реле такого типа поставляются с шунтирующей перемычкой между гнездами 1 и 2. При необходимости установки пускового конденсатора шунт удаляется.
Отметим, что при прозвонке такого реле омметром между гнездами М и 2 сопротивление будет близким к нулю и равным сопротивлению обмотки реле. Между гнездами 1 и S сопротивление равно бесконечности (при нормальном положении реле) и нулю (при реле, перевернутом крышкой вниз).

ВНИМАНИЕ! При замене неисправного реле тока новое реле всегда должно быть с тем же индексом, что и неисправное.

Действительно, существуют десятки различных модификаций реле тока, каждая из которых имеет свои характеристики (сила тока замыкания и размыкания, максимально допустимая сила тока…). Если вновь устанавливаемое реле имеет отличные от заменяемого реле характеристики, то либо его контакты никогда не будут замыкаться, либо будут оставаться постоянно замкнутыми.

Если контакты никогда не замыкаются, например, из-за того, что пусковое реле тока слишком мощное (рассчитано на замыкание при пусковом токе 12 А, в то время как на самом деле пусковой ток не превышает 8 А), вспомогательная обмотка не может быть запитана и мотор не запускается. Он гудит и отключается тепловым реле защиты.
Заметим, что эти же признаки сопровождают такую неисправность, как поломка контактов реле
В крайнем случае, проверить эту гипотезу можно замкнув накоротко на несколько секунд контакты 1 и S, например. Если мотор запускается, это будет доказательством неисправности реле.
Если контакт остается постоянно замкнутым, например, из-за низкой мощности пускового реле тока (оно должно размыкаться при падении тока до 4 А, а двигатель на номинальном режиме потребляет 6 А), пусковая обмотка окажется все время под напряжением. Заметим, что то же самое произойдет, если вследствие чрезмерной силы тока, контакты реле «приварятся» или если реле установлено верхом вниз*, из-за чего контакты будут оставаться постоянно замкнутыми.
Компрессор будет тогда потреблять огромный ток и, в лучшем случае, отключится тепловым реле защиты (в худшем случае он -сгорит). Если при этом в схеме присутствует пусковой конденсатор, он также будет все время под напряжением и при каждой попытке запуска будет сильно перегреваться, что в конечном счете приведет к его разрушению.

Нормальную работу пускового реле тока можно легко проверить с помощью трансформаторных клещей, установленных в линии конденсатора и пусковой обмотки. Если реле работает нормально, то в момент запуска ток будет максимальным, а когда контакт разомкнётся, амперметр покажет отсутствие тока.
Наконец, чтобы завершить рассмотрение пускового реле тока, нужно остановиться на одной неисправности, которая может возникать при чрезмерном росте давления конденсации. Действительно, любое повышение давления конденсации, чем бы оно ни обусловливалось (например, загрязнен конденсатор), неизбежно приводит к росту потребляемого двигателем тока (см. раздел 10. «Влияние величины давления конденсации на силу тока, потребляемого электромотором компрессора»). Этот рост иногда может оказаться достаточным, чтобы привести к срабатыванию реле и замыканию контактов, в то время как двигатель вращается. Последствия такого явления вы можете себе представить!
* Установка пускового реле в горизонтальной плоскости, как правило, дает такой же результат и также является неверной (прим. ред.).


Когда мощность двигателя растет (становясь выше, чем 600 Вт), возрастает и сила потребляемого тока, и использование пускового реле тока становится невозможным из-за того, что увеличивается потребный диаметр катушки реле. Пусковое реле напряжения тоже имеет катушку и контакты, но в отличие от реле тока, катушка реле напряжения имеет очень высокое сопротивление (наматывается тонким проводом с большим числом витков), а его контакты нормально замкнуты. Поэтому, вероятность перепутать эти два устройства очень незначительна.
 представлен внешний вид наиболее распространенного пускового реле напряжения, представляющего собой герметичную коробку черного цвета. Если прозвонить клеммы реле с помощью омметра, можно обнаружить, что между клеммами 1 и 2 сопротивление равно 0, а между 1-5 и 2-5 оно одинаково и составляет, например 8500 Ом (заметим, что клеммы 4 не включаются в схему и используются только для удобства соединения и разводки проводов на корпусе реле).

Контакты реле наверняка находятся между клеммами 1 и 2, поскольку сопротивление между ними равно нулю, однако к какой из этих клемм подключен один из выводов катушки определить нельзя, так как результат при измерениях будет одинаковым (см. схему на рис. 53.29).
Если у вас есть схема реле, проблем с определением общей точки не будет. В противном случае вам потребуется выполнить дополнительно маленький опыт, то есть подать питание вначале на клеммы 1 и 5, а затем 2 и 5 (измеренное между ними сопротивление составило 8500 Ом, следовательно, один из концов катушки подключен либо к клемме 1, либо к клемме 2).

Допустим, что при подаче напряжения на клеммы 1-5, реле будет работать в режиме «дребезга» (как зуммер) и вы отчетливо различите постоянное замыкание и размыкание его контакта (представьте последствия такого режима для двигателя). Это будет признаком того, что клемма 2 является общей и один из концов катушки подключен именно к ней. В случае
неуверенности вы можете проверить себя, подав питание на клеммы 5 и 2 (контакты 1 и 2
разомкнутся и будут оставаться разомкнутыми).
ВНИМАНИЕ! Если вы подадите напряжение на клеммы 1 и 2 (клеммы нормально замкнутых контактов), то получите короткое замыкание, что может быть очень опасным

Чтобы выполнить такую проверку, вы должны использовать напряжение 220 В, если реле предназначено для оснащения двигателя на 220 В (настоятельно рекомендуем использовать в цепи плавкий предохранитель, чтобы защитить схему от возможных ошибок при подключении). Однако может случиться так, что контакты реле не будут размыкаться ни при подаче питания на клеммы 1 и 5, ни при его подаче на клеммы 2 и 5, хотя катушка будет исправной (при прозвонке омметром сопротивление 1-5 и 2-5 одинаково высокое). Это может быть обусловлено самим принципом, заложенным в основу работы схемы с реле напряжения (сразу после данного абзаца мы его рассмотрим), который требует для срабатывания реле повышенного напряжения. Чтобы продолжить проверку, вы можете увеличить напряжение до 380 В (реле при этом ничего не угрожает, так как оно способно выдержать напряжение до 400 В).

Как только на схему подается питание, ток проходит через тепловое реле защиты и основную обмотку (С—>Р). Одновременно он проходит через пусковую обмотку (С—»А). нормально замкнутые контакты 2-1 и пусковой конденсатор (Cd). Все условия для запуска соблюдены и двигатель начинает вращение.
По мере того, как двигатель набирает обороты, в пусковой обмотке наводится дополнительное напряжение, которое добавляется к напряжению питания.

В конце запуска наведенное напряжение становится максимальным и напряжение на концах пусковой обмотки может достигать 400 В (при напряжении питания 220 В). Катушка реле напряжения сконструирована таким образом, чтобы разомкнуть контакты точно в тот момент, когда напряжение на ней превысит напряжение питания на величину, определенную разработчиком двигателя. Когда контакты I -2 разомкнутся, катушка реле остается запитанной напряжением, наведенным в пусковой обмотке (эта обмотка, намотанная на основную обмотку, представляет собой как бы вторичную обмотку трансформатора).
Во время запуска очень важно, чтобы напряжение на клеммах реле в точности соответствовало напряжению на концах пусковой обмотки. Поэтому пусковой конденсатор всегда должен включаться в схему между точками I и Р, а не между А и 2 Отметим, что при размыкании контактов 1-2 пусковой конденсатор полностью исключается из схемы.
Существует множество различных моделей реле напряжения, отличающихся своими характеристиками (напряжением замыкания и размыкания контактов…).

Поэтому, при необходимости замены неисправного реле напряжения, для этого нужно использовать реле той же самой модели.
Если реле для замены не вполне соответствует двигателю -это значит, что либо его контакты при запуске не будут замкнуты, либо будут замкнуты постоянно.
Когда при запуске контакты реле оказываются разомкнутыми, например из-за того, что реле слишком маломощное (оно срабатывает при 130 В, то есть сразу после подачи напряжения и пусковая обмотка запитана только как вторичная обмотка), двигатель не сможет запуститься, будет гудеть и отключится тепловым реле защиты (см. рис. 53.33).

Отметим, что такие же признаки будут иметь место в случае поломки контакта. В крайнем случае, всегда можно проверить эту гипотезу, замкнув на мгновение накоротко контакты 1 и 2. Если двигатель запустится, значит контакт отсутствует.

Запуск при помощи термистора (СТР)

Термистор, или терморезистор (СТР* — сокращение, в переводе означает положительный температурный коэффициент, то есть повышение сопротивления при росте температуры) включается в цепь так, как показано на рис. 53.37.
При неподвижном роторе мотора СТР холодный (имеет окружающую температуру) и его сопротивление очень низкое (несколько Ом). Как только на двигатель подается напряжение, запитывается основная обмотка. Одновременно ток проходит через низкое сопротивление СТР и пусковую обмотку, в результате чего двигатель запускается. Однако ток, текущий через пусковую обмотку, проходя через СТР, нагревает его, что обусловливает резкое повышение его температуры, а следовательно и сопротивления. По истечении одной-двух секунд температура СТР становится более 100°С, а его сопротивление легко превышает 1000 Ом.
Резкое повышение сопротивления СТР снижает ток в пусковой обмотке до нескольких миллиампер, что эквивалентно отключению этой обмотки так, как это сделало бы обычное пусковое реле. Слабый ток, не оказывая никакого влияния на состояние пусковой обмотки, продолжает проходить через СТР, оставаясь вполне достаточным, чтобы поддерживать его температуру на нужном уровне.
Такой способ запуска используется некоторыми разработчиками, если момент сопротивления при запуске очень малый, например, в установках с капиллярными расширительными устройствами (где при остановке неизбежно выравнивание давлений).
Однако, когда компрессор остановился, длительность остановки должна быть достаточно большой, чтобы не только обеспечить выравнивание давлений, но и, главным образом, охладить СТР (по расчетам для этого нужно как минимум 5 минут).
Всякая попытка запуска двигателя при горячем СТР (имеющим, следовательно, очень высокое сопротивление) не позволит пусковой обмотке запустить двигатель. За такую попытку можно поплатиться значительным возрастанием тока и срабатыванием теплового реле защиты.
Терморезисторы представляют собой керамические диски или стержни и основным видом неисправностей этого типа пусковых устройств является их растрескивание и разрушение внутренних контактов, наиболее часто обусловленное попытками запуска при горячих СТР, что
неизбежно влечет за собой чрезмерное повышение пускового тока.
. Мы часто указывали на важность соблюдения идентичности моделей при замене неисправных элементов электрооборудования (тепловые реле защиты, пусковые реле…) на новые, либо на те, которые рекомендуются для замены разработчиком. Мы советуем также при замене компрессора менять и комплект пусковых устройств (реле + конденсатор(ы)).
* Иногда встречается термин РТС, который означает то же самое, что и СТР {прим. peo.j.

Г) Обобщение наиболее часто встречающихся схем пусковых устройств

В документации различных разработчиков встречается множество схем с несколькими экзотическими названиями, которые мы сейчас разъясним. Воспользовавшись этим случаем, мы пополним наши знания и увидим роль рабочих конденсаторов.
Для лучшего понимания дальнейшего материала напомним, что в отличие от пусковых конденсаторов, рабочие конденсаторы рассчитаны на постоянное нахождение под напряжением и что конденсатор включается в схему последовательно с пусковой обмоткой, позволяя повысить крутящий момент на вачу двигателя.
1) Схема PSC (Permanent Split Capacitor) — схема с постоянно подключенным конденсатором является самой простой, поскольку в ней отсутствует пусковое реле.
Конденсатор, постоянно находясь под напряжением (см. рис. 53.40\ должен быть рабочим конденсатором. Поскольку с ростом емкости такой тип конденсаторов быстро увеличивается в размерах, их емкость ограничивается небольшими значениями (редко более 30 мкФ).
Следовательно, схема PSC используется, как правило, в небольших двигателях с незначительным моментом сопротивления на валу (малые холодильные компрессоры для капиллярных расширительных устройств, обеспечивающих выравнивание давлений при остановках, вентиляторные двигатели небольших кондиционеров).
  При подаче напряжения на схему, постоянно подключенный кон-
денсатор (Ср) дает толчок, позволяя запустить двигатель. Когда двигатель запущен, пусковая обмотка остается под напряжением вместе с последовательно включенным конденсатором, что ограничивает силу тока и позволяет повысить крутящий момент при работе двигателя.
2) Схема СТР. изученная ранее, называется также РТС (Positive Temperature Coefficient) и используется в качестве относительно простого пускового устройства.
Она может быть усовершенствована добавлением постоянно подключенного конденсатор.
При подаче напряжения на схему (после остановки длительностью не менее 5 минут), сопротивление термистора СТР очень низкое и конденсатор Ср, будучи замкнутым накоротко, не влияет на процесс запуска (следовательно, момент сопротивления на валу должен быть незначительным, что требует выравнивания давлений при остановке).
В конце запуска сопротивление СТР резко возрастает, но вспомогательная обмотка остается подключенной к сети через конденсатор Ср, который позволяет повысить крутящий момент при работе двигателя (например, при росте давления конденсации).
Поскольку конденсатор все время находится под напряжением,
пусковые конденсаторы в схемах этого типа использовать нельзя.

 53.2. УПРАЖНЕНИЕ 2

Однофазный двигатель с напряжением питания 220 В, оснащенный рабочим конденсатором с емкостью 3 мкФ, вращает вентилятор кондиционера. Переключатель имеет 4 клеммы: «Вход» (В), «Малая скорость» (МС), «Средняя скорость» (СС), «Большая скорость» (БС), позволяющие скоммутировать двигатель с сетью таким образом, чтобы выбрать требуемое значение (МС, СС или БС) числа оборотов.

Решение


Набросаем, согласно нашему предположению внутреннюю схему двигателя, сверяясь с данными измерения сопротивлений (например, между Г и Ж должно быть 290 Ом, а между Г и 3 — 200 Ом).
Остается только включить в схему переключатель, помня о том, что максимальная скорость вращения (БС) достигается, если двигатель напрямую подключен к сети . И напротив, минимальное число оборотов будет обеспечено при самом слабом напряжении питания, следовательно, при задействовании максимального значения гасящего сопротивления.

Такие двигатели, редко встречающиеся в настоящее время, могут однако использоваться в качестве привода сальниковых компрессоров. Чтобы изменить направление вращения двигателя, достаточно крест-накрест поменять точку соединения пусковой и основной обмоток.
В качестве примера на рис.  показано, как конец пусковой обмотки стал началом, а начало — концом.
Заметим, что в этом случае направление прохождения тока по пусковой обмотке изменилось на противоположное, что позволяет дать в момент запуска импульс магнитного поля в обратном направлении.
Наконец, отметим также двухпроводные двигатели с «витком Фраже» или с «фазосдвигаю-щим кольцом», широко используемые для привода небольших вентиляторов с низким моментом сопротивления (как правило, лопастных). Эти двигатели очень надежные, хотя и имеют малый крутящий момент, и при их включении в сеть отсутствуют какие-либо особые проблемы, поскольку они имеют всего два провода (конечно, плюс заземление).

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры…).

Калькулятор расчета конденсатора однофазного двигателя

Однофазный двигатель Вычислитель конденсатора:

Введите входное напряжение, мощность двигателя в ваттах, КПД в процентах, частоту, затем нажмите кнопку расчета, вы получите необходимое значение емкости.

Формула для расчета конденсатора однофазного двигателя:

Изначально однофазный двигатель требует небольшого толчка ротора для вращения ротора с номинальной частотой вращения. Выбор правильного конденсатора для однофазного двигателя действительно сложен, он может привести к запуску двигателя или нет.

Однофазная емкость C (мкФ) в микрофарадах равна произведению мощности P (Вт) в ваттах и ​​КПД η, умноженного на 1000, на произведение напряжения V (В) в квадрате вольт и частота F (Гц) . Формула для расчета емкости конденсатора

C (мкФ) = (P (W) x η x 1000) / (V (V) x V (V) x f)

Посмотрите на формулу, требуемое значение емкости прямо пропорционально мощности двигателя.Следовательно, при увеличении размера двигателя размер емкости также будет увеличиваться.

Расчет номинального напряжения конденсатора:

Номинальное напряжение конденсатора равно произведению напряжения, измеренного на обоих концах основной обмотки, в вольтах, на корень из единицы и отношение витков n квадрат.

В (К) = Vp √ (1 + n 2 )

n равно отношению витков основной / вспомогательной обмотки. Вышеприведенная формула используется для определения приблизительного напряжения на конденсаторе.

Пример 1:

Рассчитайте требуемое значение номинальной емкости для однофазного двигателя, 220 В, 1 л.с., 50 Гц, 80% двигателя.

1 л.с. = 746 Вт.

Воспользуйтесь нашей формулой расчета емкости.

C (мкФ) = 746 x 80 x 1000 / (220 x 220 x 50) = 24,66 мкФ.

Следовательно, двигателю мощностью 1 л.с. требуется емкость 24,66 мкФ для плавного пуска двигателя. Но на рынке можно получить 25 мкФ.

Диапазон напряжения конденсатора должен составлять 440 В мин.

Пример 2:

Таким же образом возьмем другой пример:

Рассчитайте пусковую емкость для однофазного вентилятора 70 Вт, 220 В, 50 Гц, КПД 85%.

C (мкФ) = 70 x 80 x 1000 / (230 x 230 x 50) = 2,459 мкФ. ок. 2,5 мкФ.

Следовательно, вы можете проверить наш расчет с вашим вентилятором.

Диапазон напряжения конденсатора должен составлять 440 В мин.

Подбор размеров однофазных конденсаторов — Центр электротехники

При установке двигателя, использующего конденсатор для запуска или запуска, мы должны определить номинал конденсатора, подходящий для двигателя, чтобы получить правильный пусковой крутящий момент и избежать перегрева обмотки, который может вызвать повреждение.

Это в основном вопрос конструкции двигателя. Не существует прямой закономерной зависимости между емкостью и мощностью двигателя в кВт.

При замене этих конденсаторов значение емкости и напряжение следует брать с заводской таблички на двигателе или со старого конденсатора. Это должно быть правильно в пределах ± 5%, а иногда оговаривается с точностью до долей мкФ. рабочий конденсатор даже более ограничен, чем пусковой конденсатор.

Как правильно подобрать пусковой конденсатор?

1) На протяжении многих лет было разработано эмпирическое правило, которое помогает упростить этот процесс.Чтобы выбрать правильное значение емкости, начните с 30–50 мкФ / кВт и при необходимости отрегулируйте значение при измерении мощности двигателя.

Мы также можем использовать эту базовую формулу для расчета размера конденсатора:

2) Определите номинальное напряжение конденсатора.

Когда мы выбираем номинальное напряжение для конденсатора, мы должны знать значение нашего источника питания. В целях безопасности умножьте напряжение источника питания на 30%. Факторы, которые влияют на выбор правильного номинального напряжения конденсатора, включают:
• Коэффициент снижения напряжения
• Требования агентства по безопасности.
• Требования к надежности
• Максимальная рабочая температура
• Свободное место

Как определить размер рабочего конденсатора?

При выборе рабочих конденсаторов двигателя все указанные выше требуемые параметры должны быть определены в рамках организованного процесса. Помните, что важны не только физические и основные электрические требования.

Но следует изучить тип диэлектрического материала и технику металлизации.Неправильный выбор здесь может отрицательно повлиять на общую производительность конденсаторов. Пожалуйста, обратитесь к паспортной табличке двигателя или обратитесь к поставщику или производителю, чтобы получить точное значение конденсатора. Руководство по выбору пускового конденсатора

Руководство по выбору пускового конденсатора

Пусковой конденсатор используется для кратковременного сдвига фазы в пусковой обмотке однофазного электродвигателя с целью увеличения крутящего момента. Пусковые конденсаторы обладают очень большим значением емкости для своего размера и номинального напряжения.В результате они предназначены только для периодического использования. Из-за этого пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи на двигателе.

Индекс

Обзор
Конденсаторы пусковые и рабочие »
Резисторы и их размеры»
Устранение неисправностей »

Технические характеристики
Напряжение»
Емкость »
Частота (Гц)»
Тип соединительной клеммы »
Форма корпуса»
Размер корпуса »


Обзор

Старт vs.Рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого (секунд) периода времени. Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.


Взаимозаменяемы ли пусковой и рабочий конденсаторы?

Да и нет.В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов. Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно (всего пару секунд).

Посмотрите видеоинструкцию ниже, чтобы узнать о различиях между пусковыми и рабочими конденсаторами.


Что такое резистор и нужен ли он?

Большинство заменяемых пусковых конденсаторов не имеют резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.

Узнайте, как установить спускной резистор на пусковой конденсатор.


Поиск и устранение неисправностей

Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов конденсатора электродвигателя может быть одного из двух типов:

«Стартовый колпачок вырвался наружу!» Это то, что мы называем катастрофическим отказом.Обычно это вызвано тем, что пусковая цепь электродвигателя задействована слишком долго для кратковременного режима работы пускового конденсатора. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены.

Разрыв пузыря сброса давления Точно так же, но не столь драматично, на стартовой крышке может просто появиться разорванный пузырек сброса давления. В любом случае легко сказать, что стартовый колпачок нуждается в замене.

Мой мотор медленно заводится.Мой пусковой конденсатор плохой?

Ответ на этот вопрос: возможно. Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя.

Посмотрите видео ниже о том, как заменить пусковой конденсатор.


Технические характеристики

В большинстве применений пусковых конденсаторов используется номинальная емкость 50–1200 мкФ и напряжения 110/125, 165, 220/250 и 330 В переменного тока.Они также обычно всегда рассчитаны на 50 и 60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов. Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на каждый соединительный столб.

Напряжение

Выберите конденсатор с номинальным напряжением, равным или превышающим номинальное напряжение конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт. Блок на 440 вольт действительно прослужит дольше. Конденсатор будет иметь маркированное напряжение, указывающее допустимое пиковое напряжение, а не рабочее напряжение.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все заменяемые конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти в каждом конденсаторе используется вставной коннектор «в виде флажка.Следующий вопрос: «Сколько клемм на клеммную колодку необходимо для двигателя приложения?» Большинство пусковых конденсаторов имеют две клеммы на стойку, а большинство рабочих конденсаторов имеют 3 или 4 клеммы на стойку. Убедитесь, что выбранный вами конденсатор имеет как минимум такое же количество соединительных клемм на соединительную клемму, как и у оригинального конденсатора двигателя.

Форма корпуса

Практически все пусковые конденсаторы имеют круглый корпус. Конденсаторы круглого сечения являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию.С точки зрения электричества разницы нет. Подгонка — единственный вопрос здесь. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.


Выбор продукции

110/125 В переменного тока

220/250 В переменного тока

165V

330В

Пусковой конденсатор двигателя | Приложения

Конденсаторы моторные

Асинхронные двигатели

переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента.Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

Однофазные асинхронные двигатели переменного тока

Однокатушечные асинхронные двигатели переменного тока

Асинхронные двигатели

переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении.Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

Пусковой конденсатор асинхронных двигателей переменного тока

Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя.Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле.В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

Асинхронные двигатели переменного тока с конденсаторными пусковыми / пусковыми установками

Еще один способ дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой — это введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы. В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы.Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя. На рисунке ниже показан этот тип конструкции.

Конденсаторы запуска и работы двигателя

Пусковые конденсаторы

Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя.Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

Рабочие конденсаторы

В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывной работы и остаются под напряжением всякий раз, когда двигатель запитан, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с низкими потерями.Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне от 1,5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

Приложения

Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока.Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах. Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются пусковые и работающие конденсаторы двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

Пусковые конденсаторы двигателя

— Caldwell Electric

Пусковые конденсаторы

используются для увеличения пускового момента однофазных электродвигателей за счет увеличения тока через пусковые обмотки во время запуска. Обычно они остаются в цепи всего несколько секунд, прежде чем отключатся центробежным или электронным переключателем внутри двигателя. Если ваш однофазный двигатель не запускается, очень часто пусковой конденсатор (если он есть) может быть неисправен. Это типичный вид отказа однофазных двигателей.

Однофазный двигатель обычно имеет как пусковые, так и рабочие конденсаторы. Рабочие конденсаторы имеют меньшую емкость, чем пусковой конденсатор, и предназначены для непрерывной работы, поскольку они все время остаются в цепи. Важно никогда не использовать пусковой конденсатор вместо рабочего конденсатора, потому что пусковые конденсаторы не предназначены для непрерывной работы.

Caldwell Electric может диагностировать проблемы с электродвигателем и предложить решения для ремонта или замены.Пусковые конденсаторы также можно приобрести прямо на нашем веб-сайте на этой странице.

Выбор пускового конденсатора

Двумя наиболее важными показателями при замене конденсатора являются емкость и номинальное напряжение. Физический размер — третий критерий.

  • Емкость: Для электродвигателей это измеряется в мкФ. Обычно печатается на конденсаторе в виде числа или диапазона чисел, за которым следуют буквы MFD или мкФ. Заменяемый конденсатор должен почти точно соответствовать первоначальной емкости.
  • Номинальное напряжение: Запасной конденсатор должен иметь номинальное напряжение , по крайней мере, на больше, чем у исходного конденсатора. Это нормально, и даже лучше, если запасной конденсатор будет иметь номинальное напряжение на выше, чем у оригинала. Однако более высокое номинальное напряжение обычно приводит к образованию конденсатора большой емкости. Так что размер также следует учитывать.
  • Размер: Физический размер заменяемого конденсатора должен быть таким, чтобы он мог поместиться в корпус конденсатора двигателя.Обычно увеличение емкости или напряжения приводит к увеличению емкости конденсатора.

Зачем однофазным асинхронным двигателям конденсаторы

Однофазный асинхронный двигатель — популярный двигатель-рабочая лошадка с преимуществами дешевизны, надежности и возможности прямого подключения к однофазной сети, что делает их особенно распространенными в быту и в домашних условиях. мелкая торговая техника. Однако, в отличие от трехфазных двигателей, они не запускаются автоматически и требуют дополнительной обмотки, приводимой в действие конденсатором, для ускорения с места.

Вращающиеся магнитные поля

Для запуска асинхронного двигателя в статоре должно создаваться вращающееся магнитное поле (RMF), которое вызывает вращение и крутящий момент в роторе. Поскольку статор физически не движется, вращение магнитного поля создается взаимодействием между электромагнитными силами, возникающими в обмотках статора. В трехфазном двигателе, когда на каждую обмотку подается напряжение, которое на 120 градусов не совпадает по фазе с другими обмотками, сумма создаваемых сил представляет собой вектор, который непрерывно вращается.Это означает, что трехфазное питание может вызывать крутящий момент в роторе в состоянии покоя, а трехфазные двигатели могут запускаться самостоятельно без дополнительных компонентов.

Однако однофазный асинхронный двигатель питается от однофазного источника питания, который проходит через единственную обмотку статора. Одна обмотка статора сама по себе не может создать RMF — она ​​просто создает пульсирующее магнитное поле, состоящее из двух противоположных полей, разнесенных на 180 градусов.

Это создает две проблемы:

Во-первых, двигатель не запускается самостоятельно, потому что магнитное поле, создаваемое статором, не вращается.

Во-вторых, хотя одна обмотка может приводить в движение двигатель, когда он набирает скорость, она не создает постоянного крутящего момента в роторе во время полного оборота, что приводит к снижению эффективности и производительности. Ротор испытывает максимальный крутящий момент при проскальзывании примерно 10% (разница во вращении ротора и обмотки статора). Следовательно, ротор будет проводить большую часть каждого оборота с очень низким крутящим моментом.

Вспомогательная обмотка

В однофазных асинхронных двигателях для решения этих проблем используется вторая обмотка статора, называемая «вспомогательной обмоткой» или «пусковой обмоткой».’Эта обмотка повернута на 90 градусов от основной обмотки и с помощью конденсатора, который изменяет фазу напряжения питания, питается напряжением, которое не совпадает по фазе с напряжением, подаваемым на главную обмотку. Это означает, что взаимодействие между двумя обмотками создает вращающееся магнитное поле, и двигатель может запускаться самостоятельно.

Однофазные асинхронные двигатели используют два конденсатора с разными характеристиками на разных этапах их работы.

Пусковые конденсаторы

Пусковой конденсатор — это конденсатор, который используется для обеспечения пускового момента двигателя.Это электролитические конденсаторы со значением емкости от 50 мкФ до 1500 мкФ. Они имеют относительно высокие потери и низкий КПД и не рассчитаны на продолжительную работу; их необходимо отключить, как только двигатель наберет скорость, используя центробежный выключатель или какое-либо реле.

Рабочие конденсаторы

Рабочие конденсаторы используются для сглаживания крутящего момента двигателя во время каждого оборота, повышения эффективности и производительности. Обычно он намного меньше пускового конденсатора, часто менее 60 мкФ, и масляного типа, чтобы уменьшить потери энергии.

Ограничения

Даже с дополнительной вспомогательной обмоткой однофазный асинхронный двигатель имеет несколько ограничений по сравнению с трехфазным двигателем. Фазовый сдвиг, обеспечиваемый рабочим конденсатором, изменяется в зависимости от скорости двигателя, что означает, что эффективность не постоянна, поскольку двигатель изменяет скорость. На КПД также влияет RMF, создаваемый двумя обмотками статора. Это не так близко к идеальному кругу, как трехфазный RMF, а это означает, что крутящий момент все еще значительно изменяется во время каждого оборота, снижая производительность и увеличивая вибрацию.Компоненты, необходимые для самозапуска однофазных асинхронных двигателей, в том числе конденсаторы и центробежный выключатель, обеспечивают возможность теплового и механического износа, что создает проблемы при техническом обслуживании.

Для более крупных промышленных применений, требующих высокой эффективности, работающих в областях, где доступно трехфазное питание, трехфазный двигатель может лучше подойти.

Резюме

Однофазные асинхронные двигатели обычно используются везде, где используется однофазное питание.Когда они оснащены пусковым конденсатором, они могут развивать достаточный пусковой момент для самозапуска, а рабочий конденсатор повышает их эффективность и производительность во время работы.

Тип двигателей | Бэй Мотор Продактс

Двигатель с экранированными полюсами

Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называется однофазным асинхронным двигателем, просто подключив его к одной линии напряжения, и для его вращения требуется внешний конденсатор.Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска. Четыре основных типа — это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.

Электродвигатель с разделенной фазой

Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.

Конденсаторный пусковой двигатель

Конденсаторный пусковой двигатель — это конденсаторный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента. Этот двигатель более дорогой из-за требуемых коммутационных и конденсаторных компонентов.

Постоянный разделенный конденсатор

Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы.Эти двигатели не будут работать при высоких пусковых нагрузках. Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.

Конденсаторный пуск / Конденсаторный двигатель

Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи.После достижения полного пуска пусковой конденсатор отключается. Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и переключающего устройства. Надежность также играет важную роль в механизме переключения.

Технология

Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низким энергопотреблением, для которых они лучше всего подходят.В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает меньшую скорость индукции и гораздо более высокое сопротивление, чем у других типов. Такие простые модели можно использовать только при небольшой нагрузке и небольшом пусковом приводе.

Для некоторых применений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с разделенной индукцией.Однако разница в мощности может окупиться для разных промышленных нужд. От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.

Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно долго при минимальном техническом обслуживании.

Электродвигатели асинхронные

имеют разные классификации в зависимости от источника электроэнергии и типа конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают с использованием переменного тока (AC), создаваемого электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в двигателях переменного тока других типов. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.

Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они по-прежнему очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.

Асинхронные двигатели

состоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы со сплошным сердечником.

Эти двигатели лучше всего подходят для нужд малой мощности и приложений, где было бы неэффективно использовать более мощные механизмы. Многие однофазные двигатели идеально подходят для применений с низким моментом инерции, в то время как другие спроектированы с учетом требований к высокому пусковому крутящему моменту.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*