Как подобрать конденсатор для трехфазного двигателя таблица: Расчёт конденсатора для электродвигателя 380 на 220: особенности, принцип работы электромоторов

Содержание

Расчет емкости конденсатора для трехфазного двигателя — онлайн калькулятор

Частый вопрос многих людей – какова должна быть емкость ходового и пускового конденсатора.

Содержание

Расчет емкости конденсатора для трехфазного двигателя

При подключении трехфазного асинхронного двигателя 380 В к однофазной сети 220 В необходимо рассчитать емкость конденсатора опережения фаз, а точнее двух конденсаторов – ходового и пускового. Онлайн-калькулятор для расчета емкости конденсатора для трехфазного двигателя можно найти в конце этой статьи.

Вы можете найти следующую запись в техническом паспорте выше:

Онлайн-расчет емкости конденсатора для электродвигателя

Здесь вы можете рассчитать емкость конденсатора, необходимую для подключения трехфазного двигателя к однофазной установке.

Конденсатор для электродвигателя необходимо рассчитывать только в зависимости от токапоскольку этот метод является наиболее точным и исключает возможность неправильного выбора емкости конденсатора, а также минимизирует потери мощности трехфазного двигателя при подключении к однофазной сети.

Номинальный ток электродвигателя берется из номинальная мощность двигателя взята из технического паспортаа если нет, то это может быть Если такой информации нет, ее можно определить путем расчетов.

О том, как подключить трехфазный двигатель к однофазной системе с помощью конденсатора, см. здесь. см. здесь.

Инструкции по использованию калькулятора:

Чтобы рассчитать емкость конденсатора для двигателя с помощью этого калькулятора, просто выполните 3 простых шага:

  1. Выберите схему подключения обмотки. Как правило, двигатель с напряжением 380 В на 220 В должен иметь соединение обмоток треугольником. Пожалуйста, обратитесь к паспорт двигателя на заводской табличке двигателя.

Пример технического паспорта двигателя показан ниже:

В приведенной выше таблице данных вы можете увидеть следующую запись:

“Δ/ Y 220/380 V 2.8/1.8 A” – это означает, что при схеме соединения “треугольное соединениесоединение “треугольник”, двигатель питается напряжением 220 вольт и потребляет от сети 2,8 ампера; “звездасоединение “звездаY”, двигатель питается напряжением 380 В и потребляет 1,8 А.

Подробнее о схемах подключения обмоток трехфазного двигателя вы можете прочитать на сайте здесь.

2. укажите номинальный ток в амперах, который также берется из технического паспорта двигателя в зависимости от способа подключения обмотки. Например, согласно приведенному выше примеру, введите 2,8 для соединения “треугольник” и 1,8 для соединения “звезда”.

3. выберите напряжение, к которому будет подключен двигатель: 220 вольт для треугольника или 380 вольт для звезды, как показано в примере.

Вот и все. Нажмите кнопку “Рассчитать”, и вы получите ответ

Показался ли вам полезным этот онлайн-калькулятор? А может быть, у вас все еще есть вопросы? Свяжитесь с нами в комментариях!

Вы не нашли статью по интересующей вас теме электрические темы, которые вас интересуют? Расскажите нам об этом. Мы ответим на ваши вопросы.

Выбранные пусковые конденсаторы должны соответствовать подаваемому напряжению. Их мощность не должна допускать перегрева двигателя во время работы и должна быть достаточной для запуска двигателя после включения. Особых трудностей при выборе компонентов не возникает.

Электрическая схема “Delta

Само подключение относительно простое, провод под напряжением подключается к пусковому конденсатору и к клеммам двигателя (или мотора). Проще говоря, двигатель имеет три токоведущие клеммы. 1 – нейтраль, 2 – рабочий, 3 – фаза.

Силовой провод предварительно терминирован и имеет два основных провода в синей и коричневой обмотках, коричневый провод подключается к клемме 1, туда же подключается один из проводов конденсатора, другой провод конденсатора подключается к другой рабочей клемме, а синий силовой провод подключается к фазе.

Если мощность двигателя небольшая, до 1,5 кВт, то в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большой мощностью обязательно использование двух конденсаторов, они соединены последовательно, но между ними находится пусковой механизм, в народе называемый “тепловым”, который отключает конденсатор при достижении необходимого объема.

Небольшое напоминание о том, что конденсатор с меньшей емкостью, пусковой конденсатор, будет включен на короткое время для увеличения пускового момента. Кстати, модно использовать механический выключатель, который пользователь сам включает на определенное время.

Следует понимать, что сама обмотка двигателя уже представляет собой соединение звездой, но электрики с помощью проводов превращают ее в треугольное соединение. Самое важное здесь – распределение проводов, идущих к распределительной коробке.

Схема соединения треугольника и звезды

Конденсаторы для трехфазного двигателя должны иметь достаточно большую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не подходят для этой цели, поскольку требуют однополярного подключения. Это означает, что выпрямитель с диодами и резисторами должен быть изготовлен специально для этих устройств.

Типы пусковых конденсаторов

Небольшие двигатели мощностью не более 200-400 Вт могут работать без стартера. Для них достаточно одного рабочего конденсатора. Однако, если при запуске возникают значительные нагрузки, требуются дополнительные пусковые конденсаторы. Он подключен параллельно рабочему конденсатору и удерживается во включенном положении во время ускорения специальной кнопкой или реле.

Чтобы рассчитать емкость пускового элемента, умножьте емкость рабочего конденсатора на коэффициент 2 или 2,5. При разгоне двигателю требуется все меньшая и меньшая емкость. По этой причине не рекомендуется держать пусковой конденсатор постоянно включенным. Высокая емкость на высоких скоростях приводит к перегреву и поломке машины.

Стандартная конструкция конденсатора состоит из двух пластин, обращенных друг к другу и разделенных диэлектрическим слоем. При выборе конкретного компонента необходимо учитывать его эксплуатационные и технические характеристики.

Существует три основных типа конденсаторов:

  • Полярный. Он не должен работать с электродвигателями, подключенными к переменному току. Деградирующий диэлектрический слой может вызвать нагрев устройства и, как следствие, короткое замыкание.
  • Неполяризованные. Наиболее часто используемые. Они могут работать в любом режиме включения-выключения за счет одинакового взаимодействия вставок с диэлектриком и источником тока.
  • Электролитический. В этом случае электроды представляют собой тонкий оксидный слой. Они могут достигать максимально возможной емкости до 100 000 мкФ и идеально подходят для низкочастотных двигателей.

Результаты расчета используются для выбора правильного номинала конденсатора. Маловероятно, что можно найти точно такой же рейтинг, поэтому правила отбора следующие:

Калькулятор для расчета емкости конденсаторов и пусковых конденсаторов

Схема подключения обычно обозначена на конденсаторе и может быть обозначена звездой или треугольником. Обычно это две разные формы, емкость которых рассчитывается по-разному:

Результаты расчета используются для выбора правильного номинала конденсатора. Маловероятно, что вы сможете найти точно такой же рейтинг, поэтому правила отбора следующие:

  • если рассчитанное значение точно совпадает с существующим рейтингом, то вам повезло – вы берете именно это значение.
  • Если совпадения нет, рекомендуется выбрать емкость с ближайшим меньшим номиналом. Не выбирайте большие значения (особенно для операционных конденсаторов), так как существует вероятность значительного увеличения рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы должны быть не менее чем в 1,5 раза выше напряжения сети, так как сам конденсатор при запуске всегда перенапряжен. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков – даже не менее 400 В.

Ниже приведена таблица номиналов конденсаторов серий CBV60 и CBV65. Эти конденсаторы чаще всего используются для подключения асинхронных двигателей. Серия CBV65 отличается от серии CBV60 металлическим корпусом. Электролитические конденсаторы серии CD60 часто используются в качестве пусковых конденсаторов. Однако опытные специалисты не рекомендуют использовать их в качестве рабочего конденсатора, так как длительное время работы быстро приведет к их разрушению.

Полипропиленовые пленочные конденсаторы серий CBV60 и CBV65Неполярные электролитические конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В400; 450; 630220-275; 300; 450
Номинальный диапазон, мкФ1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда экономически выгоднее использовать два или более конденсаторов для достижения необходимой емкости. Они могут быть подключены последовательно или параллельно. При параллельном соединении результирующая емкость суммируется; при последовательном соединении она будет меньше, чем емкость любого из конденсаторов. Для расчета этого соединения мы подготовили для вас специальный калькулятор.

Соединение треугольника и звезды.

Подключение трехфазного двигателя к однофазной системе

Автор: admin, 31 марта 2013 г.

В этой статье мы рассмотрим подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчет емкости пускового и рабочего конденсаторов, подключение трехфазного двигателя “звездой” и “треугольником”.

Самый простой способ запустить трехфазный двигатель в однофазной цепи – использовать фазосдвигающий конденсатор в третьей обмотке. КПД двигателя в этом случае составит около 60% (по сравнению с трехфазным подключением).

При запуске небольшого асинхронного двигателя (до 500 Вт) или при запуске двигателя без нагрузки на валу можно использовать только так называемый выбегающий конденсатор.

Для более мощных двигателей необходимо дополнительно использовать пусковой конденсатор, который необходим для разгона двигателя.

Схема подключения однофазных двигателей

Подключение трехфазного двигателя

Схема подключения обозначена:

  • FU1, FU2 – предохранители.
  • S1 – это двухполюсный выключатель.
  • S2 – переключатель направления вращения вала двигателя (реверсивный).
  • S3 – кнопка подключения пускового конденсатора (запуск двигателя).
  • Sp – пусковой конденсатор.
  • Cp – рабочий конденсатор.
  • R1 – разрядный резистор.
  • M – двигатель.

После включения выключателя S1 нажмите одновременно кнопку S3, после запуска двигателя (2-3 секунды) отпустите кнопку.

Расчет элементов схемы коммутации двигателя

Емкость рабочего конденсатора для данной схемы (соединение обмоток двигателя треугольником) рассчитывается по следующей формуле:

Cp = 4800*I/U, где

Старший – емкость рабочего конденсатора в мкФ;
I – ток электродвигателя, А;
U – напряжение питания (220 В).

Если обмотки двигателя соединены, то емкость рабочего конденсатора определяется по формуле:

Cp = 2800*I/U символы одинаковые.

Если ток электродвигателя неизвестен, но известна мощность, то ток можно рассчитать по формуле:

I = P/(√3*U*ɳ*cosφ) где

P – мощность электродвигателя, Вт;
ɳ – КПД электродвигателя;
cosφ коэффициент мощности.

О сайте ɳ

=0,6, cosφ = 0.8. Тогда формула упрощается до:

I = P/(0.83*U).

Емкость пускового конденсатора должна быть в 2-3 раза больше емкости рабочего конденсатора.

Необходимую емкость конденсатора можно собрать из нескольких имеющихся конденсаторов, как это сделать, описано здесь. Лучше всего использовать бумажно-металлические или пленочные конденсаторы. Рабочее напряжение конденсаторов должно быть не менее 300 В.

В некоторых статьях предлагается использовать электролитические конденсаторы, соединив пару конденсаторов минусом и зашунтировав их диодами.

Я не рекомендую этого делать, потому что если диод выйдет из строя (если он разрушится электрически), переменный ток будет протекать через электролитический конденсатор, и он может взорваться из-за нагрева.

Разрядный резистор R1 используется для разрядки пускового конденсатора при выключении. Вы можете обойтись без него, но помните, что опасное напряжение может оставаться в устройстве даже после его выключения. Можно использовать резистор сопротивлением 0,5 – 1 мОм, с рассеиваемой мощностью не менее 0,5 Вт.

Все автоматические выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: Лучше всего использовать соединение треугольником, так как соединение звездой приводит к значительным потерям мощности двигателя.

На заводской табличке двигателя указано, как подключены обмотки, можно ли их менять, а также рабочее напряжение обмоток. Например: ∆/Ү 220/380 Это означает, что обмотка двигателя может быть соединена в треугольник с напряжением 220 В или в звезду с напряжением 380 В.

Назначение Ү 380 – указывает, что обмотки соединены звездой и настроены на 380 В и что в клеммной коробке двигателя имеется только три провода. В этом случае необходимо использовать соединение “звезда”, что приводит к потере мощности.

Конечно, можно добраться до двигателя и соединить недостающие клеммы в распределителе, но это задача для специалиста.

Рабочая емкость конденсатора (в мкФ) может быть приблизительно рассчитана путем умножения мощности двигателя (в кВт) на 100. Емкость пускового конденсатора может быть уменьшена путем его экспериментального подбора.

Если эта статья помогла вам, вы можете поделиться ею со своими друзьями, нажав на кнопки социальных сетей ниже.

Читайте далее:

  • Как найти начало и конец обмотки электродвигателя – ООО «СЗЭМО Электродвигатель».
  • Звезда или треугольник – Советы электрикам – Electro Genius.
  • Шаговые двигатели: свойства и практические схемы управления.
    Часть 2.
  • Основные параметры выпрямительных диодов; Школа для инженеров-электриков: Электротехника и электроника.
  • Пуск электродвигателя по схеме «звезда-треугольник.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Полупроводниковые диоды.

Расчёт ёмкости конденсатора для трехфазного электродвигателя

Содержание

  • 1 Особенности включения трехфазных моторов в однофазные сети
  • 2 Как подобрать номинал конденсатора
  • 3 Расчет ёмкости конденсатора по формуле
  • 4 Последовательное и параллельное подключение
  • 5 Резюме

Как подобрать рабочий и пусковой конденсаторы для подключения трехфазного мотора к бытовой однофазной сети. Формулы и эмпирическое правило для определения номиналов конденсаторов, подключаемых по схеме звезда и треугольник.

Отечественные электрические сети по своей природе – трехфазные. Электростанции всех типов генерируют электроэнергию с тремя сдвинутыми относительно друг друга на 120° фазами. Такой подход гарантирует удовлетворение нужд промышленности, где используются мощные потребители. В быту же это требование излишне, и допустимая мощность на одно частное домовладение ограничена 15 киловаттами. Поэтому из трех фаз используется только одна, и в подавляющем большинстве случаев этого вполне достаточно.

И все же имеется немало полезных приборов и устройств, в основу которых положено использование трехфазных электромоторов. Можно ли их применять в бытовой сети? Ответ будет отрицательным – будучи включенным в сеть 220 В, такой мотор попросту сгорит. Но если его немного переделать, то он сможет работать и в однофазной бытовой электросети.

Если разобраться, то фазы трехфазных сетей отличаются только временным сдвигом на треть периода между пиками переменного тока. Но и для одной фазы можно легко сделать три, просто включив в ее состав на уровне конечного прибора реактивные элементы, которыми в электротехнике являются индуктивности и емкости.

Если рассматривать конкретный пример, то есть электродвигатель, то индуктивность в нем присутствует изначально. Это обмотка статора. Останется только включить в схему конденсатор и перекоммутировать провода: тогда емкость, подключенная к одной из трех обмоток, будет сдвигать фазу в одну сторону, а соединив две другие, мы получим тот же сдвиг фазы, но уже в обратную сторону. И все это будет работать, будучи подключенным к однофазной сети.

Разумеется, если мощность такого мотора велика, может сработать вышеупомянутое ограничение, поэтому имеет смысл переделывать для работы в бытовой сети 220 В только не слишком требовательные к мощности электродвигатели.

Особенности включения трехфазных моторов в однофазные сети

Как мы уже знаем, у трехфазного двигателя имеются три обмотки, и они могут быть подключены одним из двух способов: звездой (принятое в электротехнике обозначение – Y) или треугольником (Δ).

Суть названий можно понять из приведенного рисунка. При включении трехфазного электромотора в однофазную сеть лучше использовать схему с треугольником. Если вы увидите на шильдике двигателя обозначение Y, то обмотки нужно перекоммутировать в треугольник, иначе переделка станет бессмысленной из-за большой потери мощности.

А теперь поговорим о том, как именно реализовать схему с подключением дополнительного элемента. Особенность асинхронных электромоторов заключается в повышенных номиналах тока, обеспечивающих их уверенный пуск. Стандартный способ будет иметь недостатки: если рассчитать параметры так, чтобы пуск действительно был беспроблемным, то мотор после выхода на рабочие частоты вращения вала будет перегреваться, что приведет к его ускоренному износу. Если ограничить ток по номиналу, двигатель будет плохо запускаться, а при наличии стартовой нагрузки вообще не сможет стартовать. Но выход есть: использование двух конденсаторов, пускового и рабочего. Пример такой схемы представлен на рисунке:

Здесь Спуск внедрен в схему параллельно рабочему. Если мощность электромотора невелика, номинал Спуск может быть равен номиналу Сраб. В продаже можно встретить специальные стартовые конденсаторы, о чем будет указывать слово starting в их обозначении.

Понятно, что назначение стартового аналога – помочь основному раскрутить мотор, после чего он должен быть отключен. Для этого в цепь включают выключатель, в простейшем виде – кнопочный. Более распространенным и удобным является использование комбинированной кнопки-включателя: для запуска мотора вы ее нажимаете и удерживаете, а когда мотор выйдет на рабочие обороты, кнопка отпускается, размыкая цепь Сстарт, но останется вжатой, то есть остальная цепь будет работать. Нажатие красной кнопки выключит двигатель.

Как подобрать номинал конденсатора

Поскольку трехфазные моторы, как правило, отличаются повышенной мощностью, конденсаторы для включения его в однофазную цепь тоже нужны повышенных номиналов. Речь идет о десятках, а часто – сотнях микрофарад. Электролитические для этих целей малопригодны, поскольку они подключаются по однополярной схеме. То есть потребуется включение в цепь дополнительных элементов в виде диодного выпрямителя и нескольких сопротивлений. Второй их существенный недостаток – со временем они высыхают (испаряется электролит), вследствие чего их емкость постепенно падает, что проявляется их вздутием (пользователям компьютеров эта проблема известна очень даже хорошо). Если вовремя не заменить такую емкость, существует риск ее взрыва.

Поэтому задача подбора конденсаторов не так проста, как кажется, и обычно решается в несколько этапов.

Для начала делают приблизительный расчет исходя из простого правила: на каждые 100 Вт паспортной мощности электродвигателя необходимо 7 мкФ. То есть для 800-ваттного мотора потребуется подобрать ёмкостной элемент на 56 мкФ. Это правило касается рабочей емкости, для пусковой номинал должен быть увеличен в 1-3 раза, в зависимости от мощности двигателя. В среднем это двукратное превышение, для нашего случая это примерно 110 мкФ.

На практике следует изначально ставить изделия с номиналом, превышающим эти расчетные значения, чтобы воочию посмотреть, как будет вести себя электродвигатель в разных режимах: на старте, без нагрузки, под нагрузкой.

Сильное превышение чревато перегревом мотора, а если ёмкость конденсатора окажется меньше расчетной, двигатель потеряет в мощности при номинальной частоте вращения вала (поскольку этот показатель зависит от частоты напряжения сети, а не мощности).

Если мотор работает тихо, без натуги и без рывков – значит, мы выполнили подбор более-менее правильно. Но лучше все же ориентироваться на специальные расчетные формулы, которые обеспечат наиболее оптимальный режим работы электродвигателя.

На рисунке показана разводка проводов при подключении конденсаторов к трехфазному мотору (ПНВС – это пусковая кнопка промышленного изготовления). Непосредственно к выключателю подсоединяем провода, идущие от первой и третьей обмоток, провод от второй обмотки пускаем на емкостные входы, выходы коммутируем по отдельным контактам ПНВС. По такой схеме можно подключать двигатель в однофазную цепь и во время испытаний, и в окончательном варианте.

Расчет ёмкости конденсатора по формуле

Существуют специальные формулы для расчета номиналов емкостей.

Так, для соединения «звездой» расчёт ёмкости производится по формуле:

Cраб=2800*I/U, где I/U- ток/напряжение в сети соответственно. Но если напряжение сети хорошо известно, то ток – величина зависимая, определяемая по формуле I=P/(Кэф*√3*U*cosα), где P – мощность электромотора (указывается в ваттах на шильдике), Кэф – КПД электродвигателя, а cosα – приведенный коэффициент мощности, его часто тоже указывают на шильдике или в паспорте мотора.

Для расчета номинала емкости пускового конденсатора применяется иная приближенная формула: Cстарт≈2,5* Cраб.

Для соединения «треугольником» для рабочей ёмкости она тоже довольно проста: Cраб =4800*I/U, а посчитать ток и номинал пускового можно по тем же формулам, что приведены выше.

КПД мотора и его рабочий ток обычно указывается на шильдике или в паспорте устройства, так что с вычислениями номиналов проблем возникнуть не должно.

Превышать полученное значение не рекомендуется – высок риск перегрева обмоток. После реализации схемы можно измерить рабочий ток под оптимальной нагрузкой, чтобы скорректировать емкость, в этом случае можно использовать формулу зависимости от тока и напряжения. Если мощность АКДЗ менее 500 Вт, пусковой конденсатор, скорее всего, не понадобится, особенно если запуск мотора производится без нагрузки. А это такие инструменты, как наждак, циркулярная пила или фуганок. А, к примеру, для погружного насоса на 3КВт С

пуск не помешает, поскольку он сразу стартует с максимальной нагрузкой.

Кроме ёмкости конденсатора для трехфазного электромотора, при выборе нужно обращать внимание и на его номинальное напряжение. Дело в том, что в момент запуска увеличена не только сила тока, но и напряжение, так что для сети на 220В желательно выбирать емкость с минимум полуторакратным запасом по напряжению, то есть 360-450 В, но это касается только Спуск или если в схеме присутствует только рабочий.

Особенности применения рабочей и стартовой емкостей описаны в следующей таблице:

 Рабочий конденсаторСтартовый конденсатор
Способ подключенияПоследовательно ко второй обмотке трёхфазного электромотораПараллельно рабочему
Для чего используетсяДля формирования вращающегося магнитного поля, нужного для создания вращающего момента в ротореДля увеличения момента вращения на этапе пуска электродвигателя
Когда активенВсе времяВ момент пуска мотора до его выхода на номинальные обороты

А теперь рассмотрим особенности достоинства и недостатки разных типов конденсаторов, используемых для подключения трехфазных двигателе к однофазным сетям:

 МеталлобумажныеПолипропиленовые пленочныеПусковые
Изображение
Технология производстваСлой металлизированной пленки, нанесенной на диэлектрик (конденсаторную бумагу)Аналогичная, но в качестве диэлектрика используется полипропиленовая лента малой толщиныОбертка из алюминиевой фольги, в которую заливается электролит.
Диэлектрик – диоксид алюминия
Номиналы по напряжению, В160/200/300/400/600,

1000

450/630200-460
Номиналы емкости, мкФ0.1-20.01.0-150.050.0-1500.0
Форма корпуса, материалПрямоугольная, металлЦилиндр, пластикЦилиндр, металл (покрытый термостойким поливинилхлоридом)
НазначениеCрабCраб/ CпускCстарт
ПлюсыДоступная стоимостьБольшой ресурс, стабильность характеристик, компактностьКомпактность, большая емкость
МинусыБольшие габариты, малый КПД, быстрое старениеСтоимостьУзкая сфера применения

Последовательное и параллельное подключение

Расчетный показатель может оказаться таким, что подобрать одно-единственное устройство с нужным расчетным значением не получается. При этом условие точного соответствия номинала расчетным параметрам соблюдать настоятельно рекомендуется по указанным выше причинам. Как в таких случаях поступать? Выход есть, но придется немного повозиться.

Как известно со школьного курса физики, параллельное подключение конденсаторов будет иметь результирующую ёмкость, равную сумме их значений. Таким образом, можно выполнять подбор, комбинируя их номиналы так, чтобы в итоге получить необходимое значение. Количество емкостных элементов при этом в принципе не ограничивается, но есть одно важное условие: все они должны иметь одинаковое значение рабочего напряжения, ведь при параллельном подключении разница потенциалов на их электродах будет одинаковой.

Здесь тоже желательно точное совпадение номиналов напряжения. Небольшая разница допустима, но если, скажем, все используемые устройства в батарее будут рассчитаны на 300 В, а один – на 160, его время жизни окажется очень коротким.

Многие сайты предлагают воспользоваться онлайн калькулятором расчета электрической схемы, так что от вас даже не потребуется знания математики.

Сегодня металлобумажные конденсаторы практически не используют, а до появления металлополипропиленовых аналогов их приходилось помещать в специальный бокс, и для мощного промышленного оборудования такой бокс мог иметь впечатляющие размеры. Миниатюризация элементной базы, в том числе емкостей, позволила размещать сборные батареи большой емкости непосредственно на корпусе электромотора.

Что касается последовательного соединения, то результирующая емкость батареи будет определяться не суммой отдельных элементов, как это было при их параллельном подключении, а с помощью формулы 1/Срез=1/С1+1/С2+…+1/ Сn. В самом простом случае формула будет иметь вид Срез=С1*С2/( С1+С2). Из этого следует, что суммарная емкость всегда будет меньше номинала самого слабого из подключенных последовательно конденсаторов.

Напрашивается очевидный вывод, что никакого резона в использовании последовательного соединения нет, разве что для уменьшения номинала, но для этого можно просто взять устройство с меньшим значением номинала.

Действительно, зачем подключать последовательно два элемента по 40 мкФ каждая, если в итоге получим всего 20 мкФ?

Но из рисунка видно, что отличие между последовательным и параллельным подключением заключается не только в расчете итогового номинала емкости – результирующее напряжение тоже будет разным. В случае последовательного соединения – равным сумме напряжений между каждым конденсатором.

Это означает, что если подключить по такой схеме две емкости, каждая из которых имеет рабочее напряжение 250 вольт, в итоге получим 500 В. А чем больше номинал напряжения, тем выше стоимость. То есть здесь уже можно заниматься расчетами, что выгоднее, подключить один Срабоч на 20 мкФ с рабочим напряжением 500 В, или два на 40 мкФ, но напряжением 250 В.

Резюме

Как видим, самостоятельный расчет номиналов Срабоч и Сстарт при подключении трехфазного мотора к однофазной бытовой сети несложен, если известны исходные данные. Намного сложнее будет подобрать такой номинал – скорее всего, придется прибегнуть к соединению нескольких емкостей параллельно.

Калькулятор размера конденсатора для трехфазных двигателей

Размер конденсатора Калькулятор для 3-фазных двигателей – Вы должны заполнить Номинальные данные двигателя и текущий коэффициент мощности (от счетчика). Результирующий размер конденсатора будет в кВАр.

Размер конденсатора Калькулятор для трехфазных двигателей

Поскольку мы знаем, что двигатель является индуктивной нагрузкой. Который потребляет как активную, так и реактивную мощность. То есть помимо активной мощности есть еще и реактивная мощность. Поскольку мы знаем, что реальная мощность — это фактическая мощность, которая работает для привода двигателя, а реактивная мощность — это своего рода потеря мощности из-за этой потери. Но энергия, израсходованная электросчетчиком, соответствует сумме как активной, так и реактивной мощности. Чтобы уменьшить реактивную мощность, которая является своего рода потерями, конденсатор используется в фазе R Y B двигателя, чтобы можно было минимизировать эти потери. Если мы установили конденсатор, то реальная мощность, которая используется для привода двигателя, измеряется счетчиком, а реактивная мощность обнуляется через конденсатор. В этой статье мы расскажем вам о

Калькулятор размера конденсатора для трехфазных двигателей и сколько конденсаторных батарей номинала (KVR) будет использоваться. Для этого требуются два параметра: первый — номинальная мощность двигателя, а второй — коэффициент мощности электродвигателя, считываемый счетчиком. Следовательно, коэффициент мощности регистрируется с помощью электрического счетчика, установленного на двигателе. Мы сможем рассчитать емкость конденсатора рядом с двигателем по формуле, приведенной ниже, используя номинальную емкость двигателя и коэффициент мощности, полученный с помощью измерителя.

Формула для расчета емкости конденсатора для трехфазных двигателей-

Требуемая емкость конденсатора (в кВАр) = P (Tan θ1 – Tan θ2)
, где P= номинальная мощность двигателя
Tan θ1= тангенс угла между истинной мощностью и кажущаяся мощность (для текущего коэффициента мощности)
Tan θ2 = тангенс угла между истинной мощностью и кажущейся мощностью (для требуемого коэффициента мощности)

Преимущество использования конденсатора в трехфазном двигателе-
счет идет меньше по сравнению с без конденсаторов, это связано с тем, что потери уменьшаются, если мы используем конденсатор.
И срок службы мотора тоже увеличивается. Потому что двигатель должен выполнять больше работы из-за больших потерь.

в этом калькуляторе нам нужна только номинальная мощность двигателя и коэффициент мощности поступающий в счетчик. тогда мы можем легко рассчитать номинал конденсатора, необходимый для его размещения.

Как работает калькулятор размера конденсатора для трехфазных двигателей-

Давайте рассмотрим несколько примеров для расчета размера конденсатора-
Например, предположим, что имеется трехфазный асинхронный двигатель мощностью 50 кВт, который имеет
.0009 P.F (коэффициент мощности) с отставанием 0,8. Какой размер конденсатора в кВАр требуется для повышения коэффициента мощности до 0,99?

Потребляемая мощность двигателя = P = 50 кВт
Исходный коэффициент мощности = Cosθ1 = 0,8
Окончательный коэффициент мощности = Cosθ2 = 0,99
θ1 = Cos-1 = (0,8) = 36°,86; Tan θ1 = Tan (36°,86) = 0,74
θ2 = Cos-1 = (0,90) = 8°,10; Tan θ2 = Tan (8°,10) = 0,14
Требуемая мощность конденсатора, кВАр, для улучшения коэффициента мощности с 0,8 до 0,99
Требуемая мощность конденсатора, кВАР = P (Tan θ1 – Tan θ2)
= 5 кВт (0,74 – 0,14)
= 30 квар
И номинал конденсаторов, подключенных к каждой фазе
30/3 = 10 квар
, поэтому в идеале требуется конденсатор на 30 квар, но часто рекомендуется использовать на 5% меньше, чем 30 квар из-за перегрузки. проблема с напряжением. поэтому в этом случае идеально подходит 28,5 кВАр.

Связанный артикул – Распределительный трансформатор: конструкция | Тип | Рейтинг – ЭЛЕКТРОРАСПРЕДЕЛЕНИЕ (electricalsells.com)

Расчет рабочих конденсаторов и пусковых конденсаторов

Взгляните на некоторые эмпирические правила в качестве руководства при расчете параметров рабочих и пусковых конденсаторов.

ПРИМЕЧАНИЕ! См. все значения ниже в качестве указания. Для полной уверенности следуйте рекомендациям производителя двигателя.

Петер Кьельстранд

Материал обмотки катушки менеджера по продукции

Тел: +46 499-271 63
Отправить электронное письмо

Емкость рабочего конденсатора, однофазный двигатель (мкФ)

Размер двигателя

0,075 кВт
(0,1 л.с.)
Скорость / Полюсы:
3000 RPM -500027
3000 RPM -500027
9 3000 RPM -5000177
-50. 50.777.
3000 RPM -500097

8
. 70089
.
1500 rpm — 50 Hz / 
4 pole
6,3 µF
 

Motor size
 
0,18 kW
(0,25 hp )
Speed/poles:

3000 rpm — 50 Hz /
2 pole
10 µF
 
1500 rpm — 50 Hz / 
4 pole
12,5 µF
 
1000 rpm — 50 Hz / 
6 pole
10 µF
 

Motor size
 
0,37 kW
(0,5 hp)
Speed/poles:
3000 rpm — 50 Hz /
2 pole
16 µF
 
1500 rpm — 50 Hz / 
4 pole
16 µF
 
1000 rpm — 50 Hz / 
6 pole
20 µF
 

Motor size
 
0,55 kW
(0,75 hp )
Скорость/Полюсы:
3000 об/мин — 50 Гц/
2 Полюс
20 мкл
1500 RPM -50 HZ/
4 40100
1500 rpm -500027 4 40094
1500 rpm -500027 4. rpm — 50 Hz / 
6 pole
25 µF
 

Motor size
 
0,75 kW
(1 hp)
Speed/poles:
3000 rpm — 50 Hz /
2 pole
25 µF
 
1500 rpm — 50 Hz / 
4 pole
25 µF
 
1000 rpm — 50 Hz / 
6 pole
25 µF
 

Motor size 0,92 kW
(1,25 hp)
Speed/poles:
3000 об/мин — 50 Гц/
2 pole
30 µF
1500 rpm — 50 Hz / 
4 pole
28 µF
1000 rpm — 50 Hz / 
6 pole
30 µF

Motor size
 
1,1 kW
(1,5 hp)
Speed/poles: 
3000 rpm — 50 Hz /
2 pole
32 µF
 
1500 rpm — 50 Hz / 
4 pole
32 µF
 
1000 rpm — 50 Hz / 
6 pole
36 µF
 

Motor size
 
1,5 kW
(2 hp)
Speed/poles:
3000 rpm — 50 Hz /
2 pole
40 µF
 
1500 rpm — 50 Hz /
4 Полюс
40 мкф
1000 об/ мин-50 Гц/ *
6 Полюс
50 мкф

.

Motor size
 
0,18 kW
(
0,25 hp)
Full load 12,5 µF

Motor size
 
0,37 kW
(0,5 hp)
Full load 25 µF

Motor size
 
0,55 kW
(0,75 hp)
Full load 38 µF

Motor size
 
0,75 kW
(1 hp)
Полная нагрузка 50 мкл

Размер двигателя
0,92 KW

(10089 0,92 KW

(10089 0,92 KW

(10089 0,92 KW

.

Motor size
 
1,1 kW
(1,5 hp)
Full load 75 µF

Motor size
 
1,5 kW
(2 hp)
Full load 100 µF

Capacity start capacitor (µF)

Motor size
  
0,075 kW
(0,1 hp)
Operating voltage
capacitor 220 V
20 µF
Operating voltage
capacitor 280 V
10 µF

Motor size
 
0,18 kW
(0,25 hp)
Operating voltage
capacitor 220 V
50 µF
Operating voltage
capacitor 280 V
25 µF

Motor size
 
0,37 kW
(0,5 hp)
Operating voltage
capacitor 220 V 
100 µF
Operating voltage
capacitor 280 V
50 µF

Размер двигателя
 
0,55 кВт
(0,75 л.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

© 2011-2025 Компания "Кондиционеры"