Как поменять вращение на однофазном двигателе: Как изменить направление вращения однофазного асинхронного двигателя

Содержание

Как изменить направление вращения однофазного асинхронного двигателя

© 2010-2021 — ZIPSTORE.RU Запчасти и компоненты для торгового оборудования

Наш адрес: г. Москва, ул. Полярная, д. 31, стр. 1. Телефон: +7 495 649 16 77 (Skype, ICQ). Режим работы: понедельник — пятница с 9:00 до 18:00; суббота и воскресенье — выходной. Доставка по России, Белоруссии, Украине, Казахстану: Москва, Подольск, Сергиев Посад, Истра, Рязань, Курск, Липецк, Тула, Иваново, Воронеж, Ярославль, Тверь, Смоленск, Калуга, Белгород, Орел, Тамбов, Кострома, Брянск, Красноярск, Норильск, Кемерово, Новокузнецк, Новосибирск, Омск, Барнаул, Иркутск, Братск, Бийск, Улан-Удэ, Томск, Абакан, Чита, Горно-Алтайск, Кызыл, Санкт-Петербург, СПб, Выборг, Вологда, Череповец, Мурманск, Сыктывкар, Ухта, Архангельск, Северодвинск, Великий Новгород, Петрозаводск, Гомель, Гродно, Витебск, Могилев, Брест, Минск, Алма-Ата, Астана, Ереван, Киев, Днепропетровск, Львов, Ташкент, Могилев, Псков, Калининград, Нарьян-Мар, Уфа, Стерлитамак, Самара, Тольятти, Сызрань, Нижний Новгород, Арзамас, Саратов, Энгельс, Пермь, Ижевск, Казань, Набережные Челны, Бугульма, Пенза, Оренбург, Орск, Чебоксары, Новочебоксарск, Ульяновск, Киров, Йошкар-Ола, Саранск, Екатеринбург, Верхняя Пышма, Серов, Челябинск, Магнитогорск, Снежинск, Тюмень, Курган, Нижневартовск, Сургут, Надым, Ростов-на-Дону, Волгодонск, Таганрог, Волгоград, Волжский, Краснодар, Армавир, Астрахань, Майкоп, Владивосток, Уссурийск, Хабаровск, Комсомольск-на-Амуре, Советская Гавань, Южно-Сахалинск, Благовещенск, Петропавловск-Камчатский, Мирный, Ставрополь, Минеральные Воды, Махачкала, Нальчик, Алушта, Армянск, Джанкой, Евпатория, Керчь, Севастополь, Симферополь, Судак, Крым, Феодосия, Ялта.

Сайт отвечает на вопросы: Как отремонтировать, настроить, установить оборудование? Где скачать документацию (инструкцию, мануал)? Где посмотреть партномер? Где купить запчасти (запасные части, зип), комплектующие, аксессуары и термоэтикетка, чековая лента для весов, термопринтеров штрих-кода, чековых принтеров? Обслуживание весов, кассовых аппаратов, термопринтеров, терминалов сбора данных, сканеров штрих-кода: каким образом возможно своими силами? Вас интересует наличие, цена, купить запчасти за наличный и безналичный расчет? — сделайте запрос нашим менеджерам. Официальный сайт компании Zipstore.ru.

Как поменять вращение однофазного двигателя

Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.

Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).

  • точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
  • точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
  • стрелками указано направление вращения ротора асинхронного двигателя

Задача.

Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

Вариант №1

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.

Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Вариант №2

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.

Рис. 3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Важное замечание.

Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.

Рис.4 При таком подключении обмоток двигателя, реверс невозможен.

На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса. У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.

UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку.

Принцип такого включения изображен на рис.5

Рис. Нестандартный реверс асинхронного двигателя

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
  • три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Постановка задачи

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    Направление вращения электродвигателя | Полезные статьи

    Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.

    Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.

    Направление вращения вала электродвигателя

    Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.

    Правостороннее вращение

    Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.

    Изменение направления вращения вала в трехфазных электродвигателях 

    Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:

    • обесточить электродвигатель;
    • снять крышку клеммной коробки;
    • переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.

    Левостороннее вращение

    Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,

    которая подробно описана в статье «Схема подключения электродвигателя через контактор».

    Реверс однофазного электродвигателя

    Запустить вращение однофазного асинхронного электродвигателя можно переподключив фазу на начало рабочей обмотки.

    Зная, как поменять направление вращения электродвигателя, можно подключить однофазный электродвигатель с возможностью переключения правостороннего вращения на левостороннее с помощью трехконтактного переключателя.

     

     

     

     

     

     

     

     

    Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

     

    Как поменять направление вращения однофазного двигателя, схема включения асинхронного электродвигателя

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    Типовые конфигурации и принципы действия электродвигателей

    Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

    В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки. Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.

    Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз

    Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.

    Разница полюсов сдвигает ротор по кругу, достигая определенного угла, контакт с щетками перебрасывается на вторую рабочую обмотку, что обеспечивает непрерывное вращательное движение.

    Способы подключения асинхронных двигателей

    Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.

    Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.

    Рабочая обмотка может отличаться и визуальной толщиной в сечении. Она подключается к конденсатору, а вывод от статора напрямую к 220В.

    Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.

    Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.

    Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.

    Для подключения к сети с одной фазой необходимо наличие переходного конденсатора, но в этом случае будут потери мощности и скорости оборотов двигателя.

    Частотные преобразователи – важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

    Подготовка асинхронного электродвигателя к включению

    Виды электродвигателей

    На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

    Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

    Определение начала и конца обмотки

    Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

    Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

    Обмотки статора электродвигателя

    • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
    • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
    • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
    • Следующим этапом будет определение их начала и конца.

    ЭДС при различных вариантах соединения обмоток электродвигателя

    • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
    • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.

    Схема определения начала и конца обмоток электродвигателя

    • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
    • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
    • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

    Выбор схемы подключения электродвигателя

    Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

    Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

    Номинальные параметры на бирке электродвигателя

    • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
    • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.

    Разница между схемами соединения «звезда» и «треугольник»

    • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
    • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

    Подключение асинхронного электродвигателя

    Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

    В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

    Схема прямого включения асинхронного электродвигателя

    В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

    Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

    Трехполюсный автоматический выключательНо прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.
    Номинальные параметры пускателейСледующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.
    Кнопочный пост на две кнопкиПускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.
    Таблица выбора сечения проводаКроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

    Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

    1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
    2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

    Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

    Схема подключения первичных и вторичных цепей схемы включения электродвигателя

    Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

    • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.

    Расположение элементов пускателя

    • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
    • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.

    Нормально закрытые и нормально открытые контакты

    • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
    • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.

    Подключение кнопки «Пуск» и «Стоп»

    • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
    • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

    Схема реверсивного включения электродвигателя

    Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

    • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
    • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
    • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.

    Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

    • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
    • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».

    Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В

    • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
    • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
    • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

    С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

    Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

    На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

    Важное предупреждение

    Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

    Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

    В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

    Как состояние подшипников влияет на работу двигателя

    Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

    Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

    Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

    Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

    Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

    Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

    Что надо учитывать в конструкции статорных обмоток и как их подготовить

    Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

    Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

    Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

    Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

    Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

    Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

    Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

    Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

    Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

    Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

    Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

    Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

    • у трехфазных двигателей из статора могут выводиться:
      • три жилы при внутренней сборке схемы треугольника;
      • или четыре — для звезды;
    • однофазный электродвигатель может иметь:
      • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
      • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    • О — общий;
    • П — пусковой;
    • Р — рабочий.

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Со всеми этими

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Основная информация

    Синхронный однофазный двигатель переменного тока работает от общественной сети

    Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

    • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
    • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
    • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.

    Электрический двигатель в разрезе

    • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
    • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
    • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
    • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
    • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
    • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.

    Асинхронный двигатель переменного тока

    • Если сопоставить все эти моменты, то можно понять следующее.
    • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
    • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
    • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

    Принцип действия однофазного двигателя

    Однофазный синхронный двигатель переменного тока

    Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

    Как работает асинхронный электродвигатель однофазный

    • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
    • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
    • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
    • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.

    Однофазный коллекторный электродвигатель переменного тока – принцип работы

    • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
    • Эта обмотка требует включения только при пуске мотора.

    Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

    • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
    • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
    • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
    • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
    • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
    • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

    Подключение двигателя

    Как подключается коллекторный однофазный электродвигатель переменного тока

    Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

    Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

    Различные варианты подключения

    • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
    • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
    • Во втором она подключена через конденсатор постоянно.
    • В третьем вместо конденсатора используется сопротивление.

    Коллекторный однофазный двигатель переменного тока от стиральной машины

    • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
    • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
    • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

    Конденсаторный пуск имеет следующие особенности:

    • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
    • Конденсатор необходимо подбирать по потребляемому току.

    Конденсатор и переменный ток

    Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

    Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

    Строение асинхронного однофазного двигателя

    Однофазный коллекторный двигатель переменного тока

    Итак, мы вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

    Асинхронный двигатель

    Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

    • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
    • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
    • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.

    Коллекторные электродвигатели переменного тока однофазные

    • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
    • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
    • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.

    Двигатель с ротором фазного типа

    • С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.

    Строение фазного ротора

    • Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
    • Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
    • Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
    • Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
    • Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
    • Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.

    На фото – статор электродвигателя

    • Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
    • Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
    • У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.

    Помимо этих элементов двигатели имеют следующие составляющие:

    • Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
    • Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
    • Крыльчатка – активное охлаждение двигателя, располагается также на валу;
    • Подшипники вращения.

    Что происходит в обмотках при включении

    Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.

    • Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.

    Полный период синусоидального тока

    • Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
    • Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
    • Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
    • Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
    • Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.

    Как же создается сила, заставляющая ротор вращаться?

    Инструкция по работе однофазного двигателя переменного тока

    • Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
    • Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
    • Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
    • Как только ротор начинает вращаться, в нем создается ЭДС.
    • Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
    • За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
    • Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.

    То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.

    На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.

    Однофазный асинхронный двигатель: принцип работы

    Однофазный двигатель работает за счет вращающегося магнитного поля, которое возникает при смещении в пространстве двух обмоток статора, соединенных параллельно, относительно друг друга. Важным условием работы однофазного двигателя является сдвиг по фазе токов обмоток. Для этого в конструкции двигателя предусмотрен фазосмещающий элемент (как правило, это конденсатор), он подключен последовательно одной из статорных обмоток. Роль фазосмещающего сетевого элемента может выполнять активное сопротивление или индуктивность.

    В том случае если при работе двигателя цепь обмотки разрывается, прекращается движение магнитного потока (Ф) статора. Происходит инерционное вращение ротора, поэтому, поток остается вращающимся по отношению к обмотке ротора и наводит ЭДС, силу тока (I) и собственный магнитный поток (Ф), при этом движение магнитного потока (Ф) ротора совпадает со статорным магнитным потоком.

    Магнитный поток ротора изменяется. Данное действие основывается на синусоидальном законе согласно которому, изменяя направление на противоположное, ротор остается в состоянии вращения. В связи с этим запуск мотора возможен в том случае если наличествует внешний фактор, который способен осуществить возвратное вращательное движение ротора в первоначальное направление.

    Так как при запуске однофазного двигателя применяется пусковая катушка с применением фазосмещающего элемента. Сопротивление активного типа используется в этом роде очень часто, в связи с дешевизной.

    После запуска двигателя возникает отключение обмотки действующей для запуска. Обмотка пуска работает в кратковременном режиме, и для ее изготовления применяется более тонкий провод, чем идет на изготовление рабочей обмотки.

    Подключение однофазного асинхронного двигателя

    Рис. №1.Схемы подключения асинхронного двигателя к однофазной сети

    Для подключения однофазного асинхронного двигателя к однофазной сети прибегают к помощи резистора, используемого для запуска, и присоединенного к пусковой катушке (обмотке) последовательным методом, таким образом, между токами, которые присутствуют в обмотке двигателя, наблюдается сдвиг фаз на 30 о. этого хватает для запуска асинхронной машины в работу. В конструкции двигателя, в котором присутствует сопротивление пуска, наличие фазового угла объясняется неодинаковым комплексным сопротивлением в электрических цепях двигателя.

    Рис. №2. Схема включения асинхронного однофазного двигателя с распределенной статорной обмоткой, используемой в качестве привода активатора стиральных машин бытового назначения.

    Кроме, использования сопротивления пуска применяется подключение однофазного двигателя к однофазной цепи с конденсаторным пуском. Двигатель, выполняющий эту операцию, будет использовать расщепленную фазу. Особенность этого способа в том, что вспомогательная катушка, в которую встроен конденсатор используется в момент времени запуска. Чтобы достигнуть максимально возможного эффекта сдвиг токов относительно обмоток должен достигать максимально высокого значения угла – 90 о .

    Среди разнообразия элементов, используемых для сдвига фаз, только использование конденсатора дает возможность получения максимально лучшего пускового эффекта однофазного асинхронного двигателя .

    Однофазный двигатель с расщепленной фазой и экранированными полюсами

    При рассмотрении однофазных электродвигателей нельзя забыть о моделях двигателей в конструкции, которых применяются экранированные полюса, в такой машине присутствует расщепленная фаза и короткозамкнутая вспомогательная обмотка. Статор такого двигателя имеет явно выраженные полюса, каждый из которых разделен аксиальным пазом на две неодинаковые части, на меньшей части находится короткозамкнутый виток.

    При присоединении статора двигателя в электрическую сеть, магнитный поток, для которого характерно пульсирующее действие и созданный в магнитопроводе машины, делится на 2 части. Движение одной из них идет по части полюса без экрана, вторая следует по части полюса покрытой экраном. Индуктивность витка приводит к отставанию тока по фазе от наведенной магнитным потоком ЭДС. Магнитный поток короткозамкнутой обмотки создает результирующий поток, который движется в экранированной части полюса. В разноименных частях полюсов наблюдается сдвиг разных магнитных потоков на определенное значение угла, а также на разницу во времени.

    Недостаток этих моделей заключается в значительных электрических потерях, которые присутствуют в витках обмотки замкнутой накоротко.

    Используется в конструкции тепловентиляторов и вентиляторов.

    Как поменять полярность на электродвигателе

    Если вы уже подключили асинхронный электродвигатель по схеме, предусматривающей одностороннее вращение, но возникла необходимость реверса, перед вами встает вопрос: как поменять полярность на электродвигателе? Существуют несколько способов изменения направления вращения двигателя.

    Переподключаем рабочую обмотку

    Для этого можно вскрыть корпус, достать и перевернуть намотку, затем вернуть крышки на место. Но есть более эргономичный вариант, при котором вам не придется разбирать агрегат – достаточно переподключить контакты, которые выходят наружу (это работает только в том случае, если выведены 4 контакта). Итак, от вас требуется:

    • Отключить двигатель.
    • Определить, какая пара выводов соответствует началу и концу рабочей обмотки (вторая пара принадлежит пусковой обмотке и в данный момент вам не нужна).
    • Перекинуть фазу с начального конца обмотки на конечный, а ноль – с конечного конца на начальный (либо наоборот).

    В результате этих действий ротор станет вращаться в противоположную сторону, что вам и требовалось.

    Переподключаем пусковую намотку

    Ваши действия аналогичны тем, что описаны в предыдущем варианте, только местами меняются начало и конец пусковой обмотки. Это также можно сделать, не прибегая к вскрытию корпуса. Сначала выясните, какая пара проводов соответствует началу и концу пусковой обмотки. Затем подключите начало рабочей обмотки к началу пусковой обмотки (которая до этого была подключена к пускозарядному конденсатору), а емкость подключите к концу пусковой обмотки.

    Таким образом начало и конец пусковой обмотки меняются местами, что изменяет направление вращения двигателя.

    Меняем пусковую обмотку на рабочую или рабочую на пусковую

    Во многих моделях моторов наружу выходят только 3 вывода. Это сделано для того, чтобы обезопасить агрегат от поломки, вызванной вмешательством в его работу. Но и в этом случае вы можете заставить двигатель вращаться в другую сторону при соблюдении следующих условий:

    • Длина и площадь поперечного сечения рабочей и пусковой обмоток должны быть одинаковыми.
    • Провода выполнены из одного и того же материала.

    Эти данные влияют на сопротивление, которое должно оставаться постоянным. При смене полярности в случае, если длина или площадь сечения проводов не совпадают, сопротивление пусковой намотки станет таким же, как было у рабочей (или наоборот). Это будет препятствовать запуску мотора.

    Имейте в виду, КПД электродвигателя снизится, а его эксплуатация в рабочем режиме должна быть непродолжительной, иначе неизбежен перегрев агрегата с последующим выходом из строя.

    Чтобы сделать реверс, не разбирая устройство, вам необходимо:

    • Снять конденсатор с начального вывода пусковой обмотки.
    • Подсоединить его к конечному выводу рабочей обмотки.
    • Пустить отводки от обоих этих выводов и фазы.

    При такой схеме для вращения двигателя в одну сторону (например, по часовой стрелке) следует подключить фазу к отводку конца рабочей обмотки. Для вращения ротора в противоположную сторону нужно перекинуть фазный провод на отводок начала пусковой обмотки. Соединять и разъединять провода можно вручную, но лучше использовать ключ.

    Если предусматривается продолжительный рабочий период мотора, этим способом пользоваться не следует. Вскройте корпус двигателя и осуществите переподключение способом, описанным в первом или втором пунктах. В этом случае КПД агрегата не снизится.

    Всех этих манипуляций можно избежать, если изначально при подключении электродвигателя предусмотреть возможность реверсирования и установить кнопочный пост переключения.


    Как поменять вращение на однофазном двигателе. Как поменять направление вращения однофазного двигателя

    Реверсивное подключение однофазового асинхронного мотора своими руками

    Перед выбором схемы подключения однофазового асинхронного мотора принципиально найти, сделать ли реверс. Если для настоящей работы для вас нередко необходимо будет поменять направление вращения ротора, то целенаправлено организовать реверсирование с внедрением кнопочного поста. Если однобокого вращения для вас будет довольно, то подойдет самая обычная схема без способности переключения. Но что делать, если после подсоединения по ней вы решили, что направление необходимо все таки поменять?

    Постановка задачи

    Представим, что у уже подсоединенного с внедрением пускозарядной емкости асинхронного однофазового мотора вначале вращение вала ориентировано по часовой стрелке, как на картинке ниже.

    Уточним принципиальные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К исходной клемме A подсоединен провод кофейного, а к конечной – зеленоватого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К исходному контакту подсоединен провод красноватого, а к конечному – голубого цвета.
    • Направление вращения ротора обозначено при помощи стрелок.

    Ставим впереди себя задачку – сделать реверс однофазового мотора без вскрытия его корпуса так, чтоб ротор начал крутиться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить 3-мя методами. Разглядим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтоб изменить направление вращения мотора, можно только поменять местами начало и конец рабочей (неизменной включенной) обмотки, как это показано на рисунке. Можно поразмыслить, что для этого придется вскрывать корпус, доставать намотку и крутить ее. Этого делать не надо, так как довольно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из их соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Обусловьте, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две полосы: фаза и ноль. При отключенном движке произведите реверс методом перекидывания фазы с исходного контакта намотки на конечный, а нуля – с конечного на исходный. Либо напротив.

    В итоге получаем схему, где точки С и D изменяются меж собой местами. Сейчас ротор асинхронного мотора будет крутиться в другую сторону.

    КАК ИЗМЕНИТЬ

    НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ

    Моторчик взят от бытовой мясорубки. Направление движения нас не устраивало, пришлось его поменять Всю инфо.

    Как изменить направление вращения трехфазного

    асинхронного двигателя ?

    Разберемся, как просто поменять направление вращения трехфазного двигателя на противоположное.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя своими руками. Как это сделать на практике (расчет и сборку), используя стандартные схемы управления или самодельные устройства , попробуем разобраться далее.

    Что такое асинхронный двигатель?

    Асинхронные электродвигатели бывают двух основных типов: с фазным ротором и с короткозамкнутым ротором, отличие которых состоит в разных исполнениях обмотки ротора. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Известно, что сопротивление холодной нити лампы накаливания в 10 раз меньше сопротивления раскаленной нити.

    Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой.

    В данном случае обмотки двигателя включают последовательно. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

    Конденсаторы использовались типа КБГ-МН или другие с рабочим напряжением не менее 400 В.При отключении генератора на конденсаторах оставался электрический заряд, поэтому их надежно ограждали, чтобы избежать поражения электрическим током.

    Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Двигатель начинает издавать характерный звук (гудеть). Переключение двигателя с одного напряжения на другое производится подключением обмоток. Не следует перегружать двигатель и работать «сутки напролет».

    Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.

    Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

    Если использовать диммер в соответствии с его назначением и соблюдать все условия использования, можно добиться хороших результатов по управлению источниками света в помещении и на воздухе.

    Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

    В прошлой статье мы говорили про, знакомились со схемой его подключения к электрической сети напряжением 220 (В), обозначением и маркировкой выводов.

    В той же статье я обещал Вам в ближайшее время рассказать о том, как можно организовать его реверс, т.е. управлять направлением вращения двигателя дистанционно, а не с помощью перемычек в клеммной коробке.

    Итак, приступим.

    В принципе ничего сложного нет. Принцип схемы управления аналогичен, за исключением некоторых деталей. Вообще то раньше мне не приходилось сталкиваться со схемой реверса однофазных двигателей, и данная схема была воплощена мною на практике впервые.

    Суть схемы сводится к изменению направления вращения вала однофазного конденсаторного двигателя дистанционно с помощью кнопок (кнопочного поста). Помните, в предыдущей статье мы вручную меняли на клеммнике двигателя положение двух перемычек, чтобы изменить направление рабочей обмотки (U1-U2). Теперь Вам нужно убрать эти перемычки, т.к. их роль в данной схеме будут осуществлять нормально-открытые (н.о.) контакты контакторов.

    Подготовка оборудования для реверса однофазного двигателя

    Для начала перечислим все электрооборудование, которое нам необходимо приобрести для организации реверса конденсаторного двигателя АИРЕ 80С2:

    1. Автоматический выключатель

    Применяем двухполюсный 16 (А), с характеристикой «С» от фирмы IEK.


    В этом кнопочном посту есть 3 кнопки:

    • кнопка «вперед» (черного цвета)
    • кнопка «назад» (черного цвета)
    • кнопка «стоп» (красного цвета)



    Разберем кнопочный пост.


    Мы видим, что каждая кнопка имеет 2 контакта:

    • нормально-открытый контакт (1-2), который замыкается в том случае, когда нажмете на кнопку
    • нормально-закрытый контакт (3-4), который замкнут до тех пор, пока не нажать кнопку


    Прошу заметить, что на фотографии самая крайняя кнопка слева перевернута. Если будете подключать схему реверса однофазного двигателя самостоятельно, то будьте внимательны, кнопки в кнопочном посту могут быть перевернуты. Ориентируйтесь на маркировку контактов (1-2) и (3-4).

    3. Контакторы

    Также необходимо приобрести два контактора. В своем примере я использую малогабаритные контакторы КМИ-11210 от фирмы IEK, которые устанавливаются на DIN-рейку. Эти контакторы имеют 4 нормально-открытых (н.о.) контакта и способны коммутировать нагрузку до 3 (кВт) при переменном напряжении 230 (В). Вот они как раз нам и подходят, т.к. наш испытуемый однофазный двигатель АИРЕ 80С2 имеет мощность 2,2 (кВт).

    Вместо контакторов можно приобрести, на примере которых я рассказывал их устройство и принцип действия.


    Катушки этого контактора рассчитаны на переменное напряжение 220 (В), что нужно будет учесть при сборке схемы управления реверсом однофазного двигателя.

    Вот, собственно говоря, мое произведение.

    Я уже говорил в прошлой статье, что один из читателей сайта «Заметки электрика» по имени Владимир, попросил меня помочь ему мощностью 2,2 (кВт) и составить (придумать) для него схему реверса. По моим эскизам (в том числе монтажным) Владимир собрал вышеприведенную схему в. Чуть позже отписался мне в почту, что схему испытал, все работает, претензий нет.



    Если у Вас по материалам сайта имеются какие то вопросы, то задавайте мне их в комментариях или на. В течение 12-24 часов, а может и быстрее, все зависит от моей занятости, я отвечу Вам.

    А сейчас я расскажу, как эта схема работает.

    Принцип работы схемы реверса однофазного двигателя

    Первым делом включаем питающий автомат.

    При нажатии на кнопку «вперед» катушка контактора К1 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «назад» — н.о. контакт (1-2) нажатой кнопки «вперед» — катушка контактора К1 (А1-А2) — ноль.

    Контактор К1 подтягивается и замыкает все свои нормально-открытые (н.о.) контакты:

    • 1L1-2T1 (самоподхват катушки К1)
    • 5L3-6T3 (имитирует перемычку U1-W2)
    • 13НО-14НО (имитирует перемычку V1-U2)

    Кнопку «вперед» удерживать не нужно, т.к. катушка контактора К1 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

    Однофазный двигатель начинает вращаться в прямом направлении.

    2. Вращение в обратном направлении

    При нажатии на кнопку «назад» катушка контактора К2 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «вперед» — н.о. контакт (1-2) нажатой кнопки «назад» — катушка контактора К2 (А1-А2) — ноль.

    Контактор К2 срабатывает и замыкает следующие свои нормально-открытые (н.о.) контакты:

    • 1L1-2T1 (самоподхват катушки К2)
    • 3L2-4T2 (фаза на двигатель в силовой цепи)
    • 5L3-6T3 (имитирует перемычку W2-U2)
    • 13НО-14НО (имитирует перемычку U1-V1)

    Кнопку «назад» удерживать пальцем не требуется, т.к. катушка контактора К2 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

    Однофазный двигатель начинает вращаться в обратном направлении.

    Чтобы остановить двигатель, нужно нажать на кнопку «стоп».

    3. Блокировка

    Представленная схема реверса конденсаторного однофазного двигателя имеет блокировку кнопок, т.е. если при включенном двигателе в прямом направлении Вы ошибочно нажмете на кнопку «назад», то вначале отключится контактор К1, а потом уже сработает контактор К2. И наоборот. Таким образом мы имеем блокировку от одновременно двух включенных контакторов К1 и К2.

    Можно применить и другие виды блокировок, но я ограничился только этой.

    P.S. На этом я завершаю свою статью. Если Вам понравилась моя статья, то буду очень благодарен, если Вы поделитесь ей в социальных сетях. А также не забывайте подписываться на мои новые статьи — дальше будет интереснее.

    Инструкция

    Независимо от того, каким образом асинхронный подключен к сети, отключите питание устройства, в котором он установлен. При наличии высоковольтных разрядите их перед прикосновения к любым деталям устройства.

    Обязательно убедитесь в том, что изменение направления вращения не повлечет за собой выход из строя или ускоренный износ устройства, в состав которого входит электродвигатель.

    Если питается от однофазной сети через , вначале обязательно убедитесь в том, что нагрузка на его валу мала, и что при изменении направления вращения она не возрастет. Помните, что возрастание нагрузки при таком способе питания может привести к остановке двигателя с последующим его возгоранием. Затем тот вывод конденсатора, который соединен не с , а с одним из питающих проводов, отключите от него и переключите на другой питающий провод. Если имеется второй, пусковой конденсатор, с ним проделайте то же самое (сохранив включенную последовательно с ним пусковую кнопку).

    В случае, если двигатель питается через трехфазный инвертор, никаких переключений не производите. Узнайте из инструкции к прибору, как осуществить реверс (перестановкой джампера, нажатием кнопки, изменением настроек через меню или особой комбинацией клавиш, и т.п.), после чего осуществите описанные там действия.

    Источники:

    • как поменять вращение двигателя

    В наше время асинхронные агрегаты используются главным образом в режиме двигателя. Устройства, имеющие мощность более 0.5 кВт обычно изготавливают трёхфазными, меньшей мощности – однофазными. За свое долгое существование асинхронные двигатели нашли широкое применение в разных отраслях промышленности и сельского хозяйства. Их используют в электроприводе подъёмно-транспортных машин, металлорежущих станков, транспортёров, вентиляторов и насосов. Менее мощные двигатели применяют в устройствах автоматики.

    Вам понадобится

    Инструкция

    Возьмите трехфазный асинхронный . Снимите клеммную коробку. Для этого выкрутите отверткой два винта, которыми она крепится к корпусу. Концы обмоток двигателя обычно выведены на 3-х или 6-и клеммную колодку. В первом случае это означает, что фазные статорные обмотки соединены «треугольником» или «звездой». Во втором — не подключены между собой. В этом случае на первый план выходит их правильное соединение. Включение «звездой» предусматривает объединение одноименных выводов обмоток (конец или начало) в нулевую точку. При подключении «треугольником» следует соединить конец первой обмотки с началом второй, затем конец второй — с началом третьей, а затем конец третьей — с началом первой.

    Возьмите омметр. Его используйте в том случае, когда выводы обмоток асинхронного электродвигателя не маркированы. Определите прибором три обмотки, обозначьте их условно I, II и III. Соедините две любые из них последовательно, чтобы найти начало и конец каждой из обмоток. Подайте на них переменное напряжение величиной 6 — 36 В. К двум концам третьей обмотки подключите вольтметр переменного тока. Возникновение переменного напряжения говорит о том, что обмотки I и II были подключены согласно, если его нет, то встречно. В этом случае поменяйте местами выводы одной из обмоток. Затем отметьте начало и конец I и II обмоток. Для определения начало и конца третьей обмотки, поменяйте местами концы обмоток, допустим, II и III, и по вышеописанной методике повторите измерения.

    Подключите к трехфазному асинхронному двигателю, который включен в однофазную сеть, фазосдвигающий конденсатор. Определить его требуемую емкость (в мкФ) можно по формуле С = k*Iф/U, где U — напряжение однофазной сети, В, k — коэффициент, который зависит от соединения обмоток, Iф — номинальный фазный ток электродвигателя, A. Учитывайте, что когда обмотки асинхронного электродвигателя соединены «треугольником», то k = 4800, «звездой» — k = 2800. Примените бумажные конденсаторы МБГЧ, К42-19, которые должны быть рассчитаны на напряжение не меньше, чем напряжение питающей сети. Помните, что даже при правильно рассчитанной емкости конденсатора, асинхронный электродвигатель разовьет мощность не более 50-60 % от номинала.

    Источники:

    • Подключение трехфазного асинхронного двигателя к однофазной сети

    Асинхронная машина представляет собой устройство, работающее на электричестве с переменным током, причем частота вращения машины не равна частоте вращения магнитного поля, которое создается в результате тока обмотки статора. Так какие существуют типы подобных устройств и по какому принципу они работают?

    Инструкция

    В некоторых странах к подобным устройствам также относят коллекторные машины и называют асинхронные еще и индукционными, что объясняется процессом, в ходе которого ток в обмотке ротора индуцируется полем статора. Современный мир нашел применение асинхронным машинам в качестве электродвигателей, являющихся преобразователями энергии электричества в механическую силу.

    Большая востребованность подобных устройств объясняется двумя их достоинствами – легкое и достаточно простое изготовление и отсутствие контакта электричества в роторе с неподвижной частью машины. Но есть у асинхронных машин и свои недостатки – это сравнительно малый пусковой момент и значительный пусковой ток.

    История создания устройств асинхронного типа идет еще от англичанина Галилео Феррариса и Николы Теслы. Первый в 1888 году опубликовал собственные исследования, в которых были изложены теоретические основы подобного двигателя. Но Феррарес ошибался, считая, что асинхронная машина обладает небольшим КПД. В том же году статью Галилео Феррариса прочитал россиянин Михаил Осипович Доливо-Добровольский, который уже в 1889-ом получил патент на трехфазный асинхронный двигатель, устроенный по типу короткозамкнутого ротора «беличье колесо». Именно эта троица и является первооткрывателем эры массового применения машин на электричестве в промышленности, а сейчас асинхронные устройства представляют собой самые распространенные двигатели.

    Принцип действия асинхронных устройств состоит в подаче переменного напряжения по обмоткам с током и с дальнейшим созданием вращающегося магнитного поля. Последнее, в свою очередь, оказывает воздействие на обмотку ротора, согласуясь с законом электромеханической индукции, и вступает во взаимодействие с полем статора, которое вращается. Результатом этих действий является воздействие на каждый зубец ротора силы, складывающейся исключительно по окружности и создающей вращающийся электромагнитный момент. Именно данные процессы и заставляют ротор вращаться.

    Современные и применяемые асинхронные двигатели разделяются по способам управления на следующие типы – реостатные, частотные, с переключением обмоток по схеме «звезда», импульсные, с изменением числа пар полюсов, с изменением амплитуды питающего напряжения, фазовые, амплитудно-фазовые, с включением в цепь подпитки статора реактора, а также с сопротивлением индуктивного типа.

    Видео по теме

    Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

    Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

    Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

    На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

    • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
    • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
    • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

    Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте .

    Реверс однофазных синхронных машин

    Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

    Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

    В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

    • Сетевое напряжение подается на клеммы W2 и V1.
    • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
    • Концы второй обмотки подключают к клеммам W2 и V2.
    • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
    • Клемма W1 остается свободной.

    Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

    Реверс коллекторных двигателей

    Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

    При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

    1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
    2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

    Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

    Как сменить вращение трехфазного двигателя. Как поменять направление вращения однофазного двигателя

    Из большого числа типов электродвигателей переменного тока, применяющихся в современной электротехнике, наиболее широко распространенным, удобным и экономичным является двигатель с вращающимся магнитным полем, основанный на применении трехфазного тока.

    Чтобы понять основную идею, лежащую в основе конструкции этих двигателей, вернемся снова к опыту, изображенному на рис. 264. Мы видели там, что металлическое кольцо, помещенное во вращающееся магнитное поле, приходит во вращение в ту же сторону, в какую вращается поле. Причиной этого вращения является то обстоятельство, что при вращении поля изменяется магнитный поток через кольцо и при этом в кольце индуцируются токи, на которые поле действует с уже знакомыми нам силами, создающими вращающий момент.

    При наличии трехфазного тока, т. е. системы трех токов, сдвинутых по фазе друг относительно друга на (треть периода), очень легко получить вращающееся магнитное поле без механического вращения магнита и без всяких дополнительных устройств. Рис. 351,а показывает, как это осуществляется. Мы имеем здесь три надетые на железные сердечники катушки, расположенные друг относительно друга под углом 120°. Через каждую из этих катушек проходит один из токов системы, составляющей трехфазный ток. В катушках создаются магнитные поля, направления которых отмечены стрелками . Магнитная индукция же каждого из этих полей изменяется с течением времени по тому же синусоидальному закону, что и соответствующий ток (рис. 351,б). Таким образом, магнитное поле в пространстве между катушками представляет собой результат наложения трех переменных магнитных полей, которые, с одной стороны, направлены под углом 120° друг относительно друга, а с другой стороны, смещены по фазе на . Мгновенное значение результирующей магнитной индукции представляет собой векторную сумму трех составляющих полей в данный момент времени:

    .

    Если мы теперь станем искать, как изменяется со временем результирующая магнитная индукция , то расчет показывает, что по модулю магнитная индукция результирующего поля не изменяется ( сохраняет постоянное значение), но направление вектора равномерно поворачивается, описывая полный оборот за время одного периода тока.

    Рис. 351. Получение вращающегося магнитного поля при сложении трех синусоидальных полей, направленных под углом 120° друг относительно друга и смещенных по фазе на : а) расположение катушек, создающих вращающееся поле; б) график изменения индукции полей со временем; в) результирующая индукция постоянна по модулю и за периода поворачивается на окружности

    Не входя в подробности расчета, поясним, каким образом сложение трех полей дает постоянное по модулю вращающееся поле. На рис. 351,б стрелками отмечены значения магнитной индукции трех полей в момент , когда , в момент , когда , и в момент , когда , а на рис. 351,в выполнено сложение по правилу параллелограмма магнитных индукций и в эти три момента, причем направления стрелок и , и , и соответствуют рис. 351,а. Мы видим, что результирующая магнитная индукция имеет во все три указанных момента один и тот же модуль, но направление ее поворачивается за каждую треть периода на одну треть окружности.

    Если в такое вращающееся поле поместить металлическое кольцо (или, еще лучше, катушку), то в нем будут индуцироваться токи так же, как если бы кольцо (катушка) вращалось в неподвижном поле. Взаимодействие магнитного поля с этими токами и создает силы, приводящие во вращение кольцо (катушку). В этом заключается основная идея трехфазного двигателя с вращающимся полем, впервые осуществленного М. О. Доливо-Добровольским.

    Устройство такого двигателя ясно из рис. 352. Его неподвижная часть – статор – представляет собой собранный из листовой стали цилиндр, на внутренней поверхности которого имеются пазы, параллельные оси цилиндра. В эти пазы укладываются провода, соединяющиеся между собой по торцовым сторонам статора так, что они образуют три повернутые друг относительно друга на 120° катушки, о которых шла речь в предыдущем параграфе. Начала этих катушек 1, 2, 3 и концы их 1″, 2″, 3″ присоединены к шести зажимам, находящимся на щитке, укрепленном на станине машины. Расположение зажимов показано на рис. 353.

    Рис. 352. Трехфазный двигатель переменного тока в разобранном виде: 1 – статор, 2 – ротор, 3 – подшипниковые щитки, 4 – вентиляторы, 5 – вентиляционные отверстия

    Рис. 353. Расположение зажимов на щитке двигателя

    Внутри статора помещается вращающаяся часть двигателя – его ротор. Это – также набранный из отдельных листов стали цилиндр, укрепленный на валу, вместе с которым он может вращаться в подшипниках, находящихся в боковых щитках (крышках) двигателя. На краях этого цилиндра имеются вентиляционные лопасти, которые при вращении ротора создают в двигателе сильную струю воздуха, охлаждающую его. На цилиндрической поверхности ротора, в пазах, параллельных его оси, расположен ряд проводов, соединенных кольцами на торцах цилиндра. Такой ротор, изображенный отдельно на рис. 354, носит название «короткозамкнутого» (иногда его называют «беличьим колесом»). Он приходит во вращение, когда в пространстве внутри статора возникает вращающееся магнитное поле.

    Рис. 354. Короткозамкнутый ротор трехфазного двигателя

    Вращающееся поле создается трехфазной системой токов, подводимых к обмоткам статора, которые могут быть соединены между собой либо звездой (рис. 355), либо треугольником (рис. 356). В первом случае (§ 170) напряжение на каждой обмотке в раз меньше линейного напряжения сети, а во втором – равно ему. Если, например, напряжение между каждой парой проводов трехфазной сети (линейное напряжение) равно 220 В, то при соединении обмоток треугольником каждая из них находится под напряжением 220 В, а если они соединены звездой, то каждая обмотка находится под напряжением 127 В.

    Рис. 355. Включение обмоток статора звездой: а) схема включения двигателя; б) соединение зажимов на щитке. Зажимы 1″, 2″, 3″ соединены «накоротко» металлическими шинами; к зажимам 1, 2, 3 присоединены провода трехфазной сети

    Рис. 356. Включение обмоток статора треугольником: а) схема включения двигателя; б) соединение зажимов на щитке. Металлическими шинами соединены зажимы 1 и 3″, 2 и 1″, 3 и 2″; к зажимам 1, 2, 3 присоединены провода трехфазной сети

    Таким образом, если обмотки двигателя рассчитаны на напряжение 127 В, то двигатель может работать с нормальной мощностью как от сети 220 В при соединении его обмоток звездой, так и от сети 127 В при соединении его обмоток треугольником. На табличке, прикрепленной к станине каждого двигателя, указываются поэтому два напряжения сети, при которых данный двигатель может работать, например 127/220 В или 220/380 В. При включении в сеть с меньшим линейным напряжением обмотки двигателя соединяют треугольником, а при питании от сети с более высоким напряжением их соединяют звездой.

    Вращающий момент двигателя создается силами взаимодействия магнитного поля и токов, индуцируемых им в роторе, а сила этих токов (или соответствующая э. д. с.) определяется относительной частотой вращения поля по отношению к ротору, который сам вращается в ту же сторону, что и поле. Поэтому, если бы ротор вращался с той же частотой, что и поле, то никакого относительного движения их не было бы. Тогда ротор находился бы в покое относительно поля и в нем не возникала бы никакая индуцированная э. д. с., т. е. в роторе не было бы тока и не могли бы возникнуть, силы, приводящие его во вращение. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько отличающейся от частоты вращения поля, т. е. от частоты тока. Поэтому такие двигатели в технике принято называть «асинхронными» (от греческого слова «синхронос» – совпадающий или согласованный во времени, частица «а» означает отрицание).

    Таким образом, если поле вращается с частотой , а ротор – с частотой , то вращение поля относительно ротора происходит с частотой , и именно этой частотой определяются индуцируемые в роторе э. д. с. и ток.

    Величина называется в технике «скольжением». Она играет очень важную роль во всех расчетах. Обычно скольжение выражается в процентах.

    Когда мы включаем в сеть ненагруженный двигатель, то в первые моменты равно или близко к нулю, частота вращения поля относительно ротора велика и индуцированная в роторе э. д. с. соответственно также велика – она раз в 20 превосходит ту э. д. с., которая возникает в роторе при работе двигателя с нормальной мощностью. Ток в роторе при этом тоже значительно превосходит нормальный. Двигатель развивает в момент пуска довольно значительный вращающий момент, и так как инерция его сравнительно невелика, то частота вращения ротора быстро нарастает и почти сравнивается с частотой вращения поля, так что относительная частота их становится почти равной нулю и ток в роторе быстро спадает. Для двигателей малой и средней мощности кратковременная перегрузка их при пуске не представляет опасности, при запуске же очень мощных двигателей (десятки и сотни киловатт) применяются специальные пусковые реостаты, ослабляющие ток в обмотке; по мере достижения нормальной частоты вращения ротора эти реостаты постепенно выключают.

    По мере того как возрастает нагрузка двигателя, частота вращения ротора несколько уменьшается, частота вращения поля относительно ротора возрастает, и вместе с тем растут ток в роторе и развиваемый двигателем вращающий момент. Однако для изменения мощности двигателя от нуля до нормального значения требуется очень небольшое изменение частоты вращения ротора, примерно до 6 % от максимального значения. Таким образом, асинхронный трехфазный двигатель сохраняет почти постоянную частоту вращения ротора при очень широких колебаниях нагрузки. Регулировать эту частоту в принципе возможно, но соответствующие устройства сложны и неэкономичны и потому на практике применяются очень редко. Если машины, приводимые в действие двигателем, требуют иной частоты вращения, чем этот двигатель дает, то предпочитают применять зубчатые или ременные передачи с различными передаточными числами.

    Само собой разумеется, что при возрастании нагрузки двигателя, т. е. отдаваемой им механической мощности, должен возрастать не только ток в роторе, но и ток в статоре для того, чтобы двигатель мог поглощать из сети соответствующую электрическую мощность. Это осуществляется автоматически вследствие того, что ток в роторе также создает в окружающем пространстве свое магнитное поле, воздействующее на обмотки статора и индуцирующее в них некоторую э. д. с. Связь между магнитным потоком ротора и статора, или, как говорят, «реакция якоря», обусловливает изменения тока в статоре и обеспечивает согласование электрической мощности, отбираемой из сети, с механической мощностью, отдаваемой двигателем. Детали этого процесса довольно сложны, и мы в них входить не будем.

    Очень важно, однако, помнить, что хотя недогруженный двигатель и отбирает от сети такое количество энергии, которое соответствует совершаемой им работе, но при недогрузке его, когда ток в статоре падает, это обусловлено возрастанием индуктивного сопротивления статора, т. е. уменьшением коэффициента мощности (§ 163), что портит условия эксплуатации сети в целом. Если, например, для работы станка достаточно мощности 3 кВт, а мы установим на нем мотор 10 кВт, то данное предприятие почти не понесет ущерба – мотор все равно возьмет только ту мощность, которая требуется для его работы, плюс потери в самом двигателе. Но такой недогруженный мотор имеет большое индуктивное сопротивление и уменьшает коэффициент мощности сети. Он убыточен с точки зрения народного хозяйства в целом. Чтобы стимулировать борьбу за повышение коэффициента мощности, организации, отпускающие потребителям электроэнергию, применяют систему штрафов за слишком низкий по сравнению с установленной нормой коэффициент мощности и поощрений за его повышение.

    Поэтому при работе с двигателями необходимо твердо соблюдать следующие правила:

    1. Необходимо всегда подбирать двигатель такой мощности, какую фактически требует приводимая им в действие машина.

    2. Если нагрузка двигателя не достигает 40 % нормальной, а обмотки статора включены треугольником, то целесообразно переключить их на звезду. При этом напряжение на обмотках уменьшается в раз, а намагничивающий ток – почти в три раза. В тех случаях, когда такое переключение приходится производить часто, двигатель включают в сеть при помощи перекидного рубильника по схеме, изображенной на рис. 357. В одном положении рубильника обмотки включены треугольником, в другом — звездой.

    Рис. 357. Схема переключения обмоток двигателя с треугольника (положение рубильника I, I, I) на звезду (положение рубильника II, II, II)

    Для того чтобы изменить направление вращения вала двигателя на обратное, необходимо поменять местами два линейных провода, присоединенных к двигателю. Это легко осуществить при помощи двухполюсного переключателя, как показано на рис. 358. Переводя переключатель из положения I-I в положение II-II, мы меняем направление вращения магнитного поля и вместе с тем направление вращения вала двигателя.

    Рис. 358. Схема включения для изменения направления вращения трехфазного двигателя

    Мы видели, что при наличии в статоре двигателя трех катушек, смещенных друг относительно друга на 120°, магнитное поле вращается с частотой тока, т. е. совершает один оборот за часть секунды, или 3000 оборотов в минуту. Почти с такой же частотой будет вращаться и вал двигателя. Во многих случаях такая частота вращения является чрезмерно большой. Чтобы уменьшить ее, в статоре двигателя размещают не три катушки, а шесть или двенадцать и соединяют их так, чтобы северные и южные полюсы по окружности статора чередовались. При этом поле поворачивается за каждый период тока только на половину или четверть оборота, т. е. вал машины вращается c частотой около 1500 или 750 оборотов в минуту.

    Наконец, еще одно практически важное замечание. При повреждении (пробое) изоляции станины и кожухи электрических машин и трансформаторов оказываются под напряжением относительно Земли. Прикосновение к этим частям машин может при таких условиях быть опасным для людей. Для предупреждения этой опасности следует при напряжениях свыше 150 В относительно Земли заземлять станины и кожухи электрических машин и трансформаторов, т. е. надежно соединять их металлическими проводами или стержнями с Землей. Это выполняется по специальным правилам, которые необходимо строго соблюдать во избежание несчастных случаев.

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

  • 15. Мощность трехфазной электрической цепи.
  • 16. Соединение трехфазного потребителя электрической энергии звездой с N-проводом (схема и формула для расчета напряжения UN).
  • 18. Измерение активной мощности трехфазных электрических цепей методом двух ваттметров.
  • 19. Основные понятия о магнитных цепях и методах их расчета.
  • 20. Магнитные цепи с постоянной магнитодвижущей силой.
  • 21. Магнитные цепи с переменной магнитодвижущей силой
  • 22. Катушка с ферромагнитным сердечником.
  • 2. Полупроводниковые диоды, их свойства и область применения.
  • 3. Принцип действия транзистора.
  • 4, 5, 6. Схема включения транзистора с общей базой и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 7, 8, 9. Схема включения транзистора с общим эмиттером и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 10, 11, 12. Схема включения транзистора с общим коллектором и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 13. Однополупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 14. Двухполупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 15. Емкостной электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • 16. Индуктивный электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • III. Электрооборудование промышленных предприятий.
  • 1. Устройство и принцип действия трансформатора.
  • 2. Схема замещения и приведение параметров трансформатора.
  • 3. Потери мощности и КПД трансформатора.
  • 4. Опыт холостого хода трансформатора и его назначение.
  • 5. Опыт короткого замыкания трансформатора и его назначение.
  • 6. Внешняя характеристика трансформатора и ее влияние на режим работы потребителя электроэнергии.
  • 7. Устройство трехфазного асинхронного электродвигателя.
  • 8. Принцип действия и реверс (изменение направления вращения) трехфазного асинхронного двигателя.
  • 9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.
  • 10. Способы пуска трехфазного асинхронного двигателя.
  • 11. Способы регулирования частоты (скорости) вращения трехфазного асинхронного электродвигателя с короткозамкнутой обмоткой ротора.
  • 13. Устройство и принцип действия синхронного генератора и его применение в промышленности.
  • 14. Внешняя характеристика синхронного генератора.
  • 15. Регулировочные характеристики синхронного генератора.
  • 17. Способы пуска синхронного двигателя.
  • 18. Угловая и механическая характеристики синхронного двигателя.
  • 19. U-образные характеристики синхронного двигателя (регулирование реактивного тока и реактивной мощности).
  • 20. Устройство и принцип действия генератора постоянного тока.
  • 21. Классификация генераторов постоянного тока по способу возбуждения и их электрические схемы.
  • 22. Сравнение внешних и характеристик генераторов постоянного тока с различными схемами возбуждения.
  • 23. Устройство и принцип действия двигателя постоянного тока.
  • 24. Способы пуска в ход двигателей постоянного тока.
  • 26. Способы регулирования частоты вращения двигателей постоянного тока.
  • На рисунке представлена электромагнитная схема АД с короткозамкнутой обмоткой ротора в разрезе, включающая статор (1), в пазах которого расположены три фазные обмотки статора (2), представленные одним витком. Начала фазных обмоток A, B, C, а концы соответственно X, Y, Z. В цилиндрическом роторе (3) двигателя расположены стержни (4) короткозамкнутых обмоток, замкнутых по торцам ротора пластинами.

    При подаче на фазные обмотки статора трехфазного напряжения в витках обмотки статора протекают токи статора iA , iB , iC , создающие вращающееся магнитное поле с частотой вращения n1 . Это поле пересекает стержни короткозамкнутой обмотки ротора и в них индуцируются ЭДС, направление которых определяется по правилу правой руки. ЭДС в стержнях ротора создают токи ротора i2 и магнитное поле ротора, которое вращается с частотой магнитного поля статора. Результирующее магнитное поле АД равно сумме магнитных полей статор и ротора. На проводники с током i2 , расположенные в результирующем магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усиление Fрез , приложенное ко всем проводникам ротора, образует вращающий эле5ктромагнитный момент M асинхронного двигателя.

    Вращающий электромагнитный момент М, преодолевая момент сопротивления Мс на валу, принуждает вращаться ротор с частотой n2 . Ротор вращается с ускорением, если момент М больше момента сопротивления Мс , или с постоянной частотой, если моменты равны.

    Частота вращения ротора n2 всегда меньше частоты вращения магнитного поля машины n1 , т. к. только в этом случае возникает вращающий электромагнитный момент. Если частота вращения ротора будет равна частоте вращения МП статора, то ЭМ момент равен нулю (стержни ротора не пересекают МП двигателя, и ток равен нулю). Разница частот вращения МП статора и ротора в относительных единицах называется скольжением двигателя:

    s = n 1− n 2. n 1

    Скольжение измеряется в относительных единицах или процентах по отношению к n1 . В рабочем режиме близком к номинальному скольжение двигателя составляет 0.01-0.06. Частота вращения ротораn 2 = n 1 (1− s ) .

    Таким образом, характерной особенностью асинхронной машины является наличие скольжения — неравенства частот вращения магнитного поля двигателя и ротора. Поэтому машину называют асинхронной.

    При работе асинхронной машины в двигательном режиме частота вращения ротора меньше частоты вращения МП и 0

    Если ротор АД заторможен (s = 1) – это режим короткого замыкания. В случае, если частота вращения ротора совпадает с частотой вращения МП, то вращающий момент двигателя не возникает. Это режим идеального холостого хода.

    Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения МП. Для реверса двигателя нужно изменить порядок чередования фаз подведенного напряжения, т. е. Переключить две фазы.

    9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.

    Rн =R» ——

    Rн =R» ——

    E =E»

    В схеме асинхронная машина с электромагнитной связью статорной и роторной цепей заменена эквивалентной приведенной схемой замещения. При этом параметры обмотки ротора R2 и x2 приводятся к обмотке статора при условии равенства E1 = E2 » . E2 » , R2 » , x2 » – приведенные параметры ротора.

    включенное в обмотку неподвижного ротора, т. е. машина имеет активную нагрузку.

    Величина этого сопротивления определяется скольжением, а, следовательно, механической нагрузкой на валу двигателя. Если момент сопротивления на валу двигателя Мс = 0, то скольжение s = 0; при этом величинаR н =∞ и I2 » = 0, что соответствует работе

    двигателя в режиме холостого хода.

    В режиме холостого хода ток статора равен току намагничивания I 1 =I 0 . Магнитная цепь машины представляется намагничивающим контуром с параметрами x0 , R0 – индуктивное и активное сопротивления намагничивания обмотки статора. Если момент сопротивления на валу двигателя превышает его вращающий момент, то ротор останавливается. При этом величина Rн = 0, что соответствует режиму короткого замыкания.

    Первая схема называется Т-образной схемой замещения АД. Она может быть преобразована в более простой вид. С этой целью намагничивающий контурZ 0 = R 0 + jx 0

    выносят на общие зажимы. Чтобы при этом намагничивающий ток I 0 не изменял своей величины, в этот контур последовательно включают сопротивления R1 и x1 . В полученной Г- образной схеме замещения сопротивления контуров статора и ротора соединены последовательно. Они образуют рабочий контур, параллельно которому включен намагничивающий контур.

    Величина тока в рабочем контуре схемы замещения:

    I» 2 =

    Где U1 – фазное

    » 1 − s 2

    √ (R 1 +

    R» 2

    √ (R 1+ R 2+ R 2s

    ) +(x 1 +x 2 )

    ) +(x 1 +x 2 )

    напряжение сети.

    Электромагнитный момент АД создается взаимодействием тока в обмотке ротора с вращающимся МП машины. Электромагнитный момент М определяется через электромагнитную мощность:

    P эм

    2 πn 1

    Угловая частота вращения МП статора.

    P э2

    m1 I2 » 2 R» 2

    Т. е. ЭМ момент пропорционален мощности электрических

    ω 1s

    ω 1s

    потерь в обмотке ротора.

    2 R 2″

    2 ω 1 [(R 1 +

    ) +(x 1 +X 2 » )2 ]

    Приняв в уравнении число фаз двигателя m1 = 3; x1 + x2 » = xк , исследуем его на экстремум. Для этого приравниваем производную dM / ds к нулю и получаем две экстремальные точки. В этих точках момент Мк и скольжение sк называются критическими и соответственно равны:

    ±R » 2

    √ R1 2 + sк 2

    Где «+» при s > 0, “-” при s

    M к =

    3U 1 2

    2 ω 1 (R 1 ±√

    R1 2 + Xк 2

    Зависимость ЭМ момента от скольжения M(s) или от частоты вращения ротора M(n2 ) называется механической характеристикой АД.

    Если разделить M на Mк , получим удобную форму записи уравнения механической характеристики АД:

    2 Mк (1 + asк )

    2asк

    R2 »

    2 Mк

    3 Uф 2

    R2 »

    2 ω 1x к

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    Со всеми этими

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайн ие (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском ( , например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Реверсивное подключение однофазового асинхронного мотора своими руками

    Перед выбором схемы подключения однофазового асинхронного мотора принципиально найти, сделать ли реверс. Если для настоящей работы для вас нередко необходимо будет поменять направление вращения ротора, то целенаправлено организовать реверсирование с внедрением кнопочного поста. Если однобокого вращения для вас будет довольно, то подойдет самая обычная схема без способности переключения. Но что делать, если после подсоединения по ней вы решили, что направление необходимо все таки поменять?

    Постановка задачи

    Представим, что у уже подсоединенного с внедрением пускозарядной емкости асинхронного однофазового мотора вначале вращение вала ориентировано по часовой стрелке, как на картинке ниже.

    Уточним принципиальные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К исходной клемме A подсоединен провод кофейного, а к конечной – зеленоватого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К исходному контакту подсоединен провод красноватого, а к конечному – голубого цвета.
    • Направление вращения ротора обозначено при помощи стрелок.

    Ставим впереди себя задачку – сделать реверс однофазового мотора без вскрытия его корпуса так, чтоб ротор начал крутиться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить 3-мя методами. Разглядим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтоб изменить направление вращения мотора, можно только поменять местами начало и конец рабочей (неизменной включенной) обмотки, как это показано на рисунке. Можно поразмыслить, что для этого придется вскрывать корпус, доставать намотку и крутить ее. Этого делать не надо, так как довольно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из их соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Обусловьте, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две полосы: фаза и ноль. При отключенном движке произведите реверс методом перекидывания фазы с исходного контакта намотки на конечный, а нуля – с конечного на исходный. Либо напротив.

    В итоге получаем схему, где точки С и D изменяются меж собой местами. Сейчас ротор асинхронного мотора будет крутиться в другую сторону.

    КАК ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ

    Моторчик взят от бытовой мясорубки. Направление движения нас не устраивало, пришлось его поменять Всю инфо.

    Как изменить направление вращения трехфазного асинхронного двигателя?

    Разберемся, как просто поменять направление вращения трехфазного двигателя на противоположное.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    sis26.ru

    Как изменить направление вращения однофазного асинхронного двигателя

    Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.

    Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).

    На рисунке 1

    • точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
    • точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
    • стрелками указано направление вращения ротора асинхронного двигателя

    Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

    Вариант №1

    Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.

    Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

    Вариант №2

    Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.

    Рис.3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

    Важное замечание.

    Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.

    Рис.4 При таком подключении обмоток двигателя, реверс невозможен.

    На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса. У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.

    UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку. Принцип такого включения изображен на рис.5

    Рис. Нестандартный реверс асинхронного двигателя

    zival.ru

    Как уменьшить обороты электродвигателя схемы и описание | ProElectrika.com

    егулировка оборотов электродвигателя часто бывает необходима как в производственных, так и каких то бытовых целях. В первом случае для уменьшения или увеличения частоты вращения применяются промышленные регуляторы напряжения – инверторные частотные преобразователи. А с вопросом, как регулировать обороты электродвигателя в домашних условиях, попробуем разобраться подробнее.

    Необходимо сразу сказать, что для разных типов однофазных и трехфазных электрических машин должны применяться разные регуляторы мощности. Т.е. для асинхронных машин применение тиристорных регуляторов, являющихся основными для изменения вращения коллекторных двигателей, недопустимо.

    Лучший способ уменьшить обороты вашего устройства – не в регулировке частоты вращения самого движка, а посредством редуктора или ременной передачи. При этом сохранится самое главное – мощность устройства.

    Немного теории об устройстве и области применения коллекторных электродвигателей

    Электродвигатели этого типа могут быть постоянного или переменного тока, с последовательным, параллельным или смешанным возбуждением (для переменного тока применяется только первые два вида возбуждения).

    Коллекторный электродвигатель состоит из ротора, статора, коллектора и щеток. Ток в цепи, проходящий через соединенные определенным образом обмотки статора и ротора, создает магнитное поле, заставляющее последний вращаться. Напряжение на ротор передается при помощи щеток из мягкого электропроводного материала, чаще всего это графит или медно-графитовая смесь. Если изменить направление тока в роторе или статоре, вал начнет вращаться в другую сторону, причем это всегда делается с выводами ротора, что бы не происходило перемагничивание сердечников.

    При одновременном изменении подключения и ротора и статора реверсирования не произойдет. Существуют также трехфазные коллекторные электродвигатели, но это уже совсем другая история.

    Электродвигатели постоянного тока с параллельным возбуждением

    Обмотка возбуждения (статорная) в двигателе с параллельным возбуждением состоит из большого количества витков тонкого провода и включена параллельно ротору, сопротивление обмотки которого намного меньше. Поэтому для уменьшения тока во время запуска электродвигателей мощностью более 1 Квт в цепь ротора включают пусковой реостат. Управление оборотами электродвигателя при такой схеме включения производится путем изменения тока только в цепи статора, т.к. способ понижения напряжения на клеммах очень не экономичен и требует применение регулятора большой мощности.

    Если нагрузка мала, то при случайном обрыве обмотки статора при использовании такой схемы частота вращения превысит максимально допустимую и электродвигатель может пойти “вразнос”

    Электродвигатели постоянного тока с последовательным возбуждением

    Обмотка возбуждения такого электродвигателя имеет небольшое число витков толстого провода, и при ее последовательном включении в цепь якоря ток во всей цепи будет одинаков. Электродвигатели этого типа более выносливы при перегрузках и поэтому наиболее часто встречаются в бытовых устройствах.

    Регулировка оборотов электродвигателя постоянного тока с последовательно включенной обмоткой статора может производиться двумя способами:
    1. Подключением параллельно статору регулировочного устройства, изменяющего магнитный поток. Однако этот способ довольно сложен в реализации и не применяется в бытовых устройствах.
    2. Регулирование (снижение) оборотов с помощью уменьшения напряжения. Этот способ применяется практически во всех электрических устройствах – бытовых приборах, инструменте и т.д.
    Электродвигатели коллекторные переменного тока

    Эти однофазные моторы имеют меньший КПД, чем двигатели постоянного тока, но из за простоты изготовления и схем управления нашли наиболее широкое применение в бытовой технике и электроинструменте. Их можно назвать “универсальными”, т.к. они способны работать как при переменном, так и при постоянном токе. Это обусловлено тем, что при включении в сеть переменного напряжение направление магнитного поля и тока будет изменяться в статоре и роторе одновременно, не вызывая изменения направления вращения. Реверс таких устройств осуществляется переполюсовкой концов ротора.

    Для улучшения характеристик в мощных (промышленных) коллекторных электродвигателях переменного тока применяются дополнительные полюса и компенсационные обмотки. В двигателях бытовых устройств таких приспособлений нет.

    Регуляторы оборотов электродвигателя

    Схемы изменения частоты вращения электродвигателей в большинстве случаев построены на тиристорных регуляторах, ввиду своей простоты и надежности.

    Принцип работы представленной схемы следующий: конденсатор С1 заряжается до напряжения пробоя динистора D1 через переменный резистор R2, динистор пробивается и открывает симистор D2, управляющий нагрузкой. Напряжение на нагрузке зависит от частоты открывания D2, зависящее в свою очередь от положения движка переменного сопротивления. Данная схема не снабжена обратной связью, т.е. при изменении нагрузки обороты также будут меняться и их придется подстраивать. По такой же схеме происходит управление оборотами импортных бытовых пылесосов.

    Вот так работает хороший регулятор оборотов двигателя:

    Изменение скорости вращения вала двигателя в стиральной машине, например, происходит с задействованием обратной связи от таходатчика, поэтому ее обороты при любой нагрузке постоянны.

    proelectrika.com

    Управление скоростью вращения однофазных двигателей

    Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

    Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.


    Регулировать скорость вращения таких двигателей необходимо, например, для:

    • изменения расхода воздуха в системе вентиляции
    • регулирования производительности насосов
    • изменения скорости движущихся деталей, например в станках, конвеерах

    В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

    Способы регулирования

    Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

    Рассмотрим способы с изменением электрических параметров:

    • изменение напряжения питания двигателя
    • изменение частоты питающего напряжения

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    n1 — скорость вращения магнитного поля

    n2 — скорость вращения ротора

    При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

    Автотрансформаторное регулирование напряжения

    Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

    На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

    Преимущества данной схемы:

        • неискажённая форма выходного напряжения (чистая синусоида)
        • хорошая перегрузочная способность трансформатора

    Недостатки:

        • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
        • все недостатки присущие регулировке напряжением


    Тиристорный регулятор оборотов двигателя

    В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

    Достоинства тиристорных регуляторов:

        • низкая стоимость
        • малая масса и размеры

    Недостатки:

        • можно использовать для двигателей небольшой мощности
        • при работе возможен шум, треск, рывки двигателя
        • при использовании симисторов на двигатель попадает постоянное напряжение
        • все недостатки регулирования напряжением

    Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

    Транзисторный регулятор напряжения

    Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

    Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

    Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

    Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

    Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

    Плюсы электронного автотрансформатора:

          • Небольшие габариты и масса прибора
          • Невысокая стоимость
          • Чистая, неискажённая форма выходного тока
          • Отсутствует гул на низких оборотах
          • Управление сигналом 0-10 Вольт

    Слабые стороны:

          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
          • Все недостатки регулировки напряжением

    Частотное регулирование

    Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

    Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

    На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

    Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

    Однофазные двигатели могут управляться:

    • специализированными однофазными ПЧ
    • трёхфазными ПЧ с исключением конденсатора
    Преобразователи для однофазных двигателей

    В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

    Это модель Optidrive E2

    Для стабильного запуска и работы двигателя используются специальные алгоритмы.

    При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

    f — частота тока

    С — ёмкость конденсатора

    В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

    Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

    Преимущества специализированного частотного преобразователя:

          • интеллектуальное управление двигателем
          • стабильно устойчивая работа двигателя
          • огромные возможности современных ПЧ:
            • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
            • многочисленные защиты (двигателя и самого прибора)
            • входы для датчиков (цифровые и аналоговые)
            • различные выходы
            • коммуникационный интерфейс (для управления, мониторинга)
            • предустановленные скорости
            • ПИД-регулятор

    Минусы использования однофазного ПЧ:

          • ограниченное управление частотой
          • высокая стоимость
    Использование ЧП для трёхфазных двигателей

    Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

    Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

    Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое, а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

    В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

    При работе без конденсатора это приведёт к:

    • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
    • разному току в обмотках

    Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

    Преимущества:

            • более низкая стоимость по сравнению со специализированными ПЧ
            • огромный выбор по мощности и производителям
            • более широкий диапазон регулирования частоты
            • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

    Недостатки метода:

            • необходимость предварительного подбора ПЧ и двигателя для совместной работы
            • пульсирующий и пониженный момент
            • повышенный нагрев
            • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

    masterxoloda.ru

    Cпособы регулирования скорости асинхронного двигателя

    Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

    Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

    1. скорость электромагнитного поля статора;
    2. скольжение двигателя.

    Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

    • частоты,
    • количества полюсных пар,
    • напряжения.

    В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

    • изменение напряжения питания;
    • присоединение элемента сопротивления в цепь ротора;
    • использование вентильного каскада;
    • применение двойного питания.

    Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

    Частотное регулирование

    Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

    На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

    Однофазные же двигатели управляются:

    • специальными однофазными преобразователями частоты;
    • 3-фазными преобразователями частоты с устранением конденсатора.

    Схемы регуляторов оборотов асинхронного двигателя

    Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

    Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

    Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

    Заключение

    На технорынке сегодня предлагаются в большом ассортименте регуляторы и частотные преобразователи для асинхронных электродвигателей переменного тока.

    Управление способом варьирования частоты на данный момент – самый оптимальный способ, т. к. он позволяет плавно регулировать скорость асинхронного ЭД в широчайшем диапазоне, без значительных потерь и снижения перегрузочных способностей.

    Тем не менее, на основе расчёта, можно самостоятельно собрать простое и эффективное устройство с регулированием оборотов вращения однофазных электродвигателей с помощью тиристоров.

    electricdoma.ru


    Реверсивные однофазные асинхронные двигатели

    Реверсивные однофазные асинхронные двигатели

    Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

    Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора.Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.

    Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если он подвергается воздействию вращающегося магнитного поля, он будет пытаться следовать за ним. (подробнее об этом здесь)

    В трехфазном двигателе, естественно, три фазы на трех обмотках. создать вращающееся магнитное поле.Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.

    Реверс двигателя с расщепленной фазой

    В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

    Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, чередующееся по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

    Реверс двигателя — это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (М) — фазосдвинутой.

    На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные количество оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

    Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).

    Обмотки стартера на более мощных двигателях

    Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее.Обмотки распределены по множеству пазов. в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

    Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

    Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S).В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

    Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

    Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно.Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

    Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

    Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так уж и элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор представляет собой электролитический конденсатор и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

    Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этой в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного лошадиных сил. Это 1,75 лошадиных сил.

    Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

    Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго функция тока.

    Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

    На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Тем не менее, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может привести к срабатыванию автоматического выключателя, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

    Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

    В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

    Совсем недавно я случайно заклинил выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и мотор отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

    Реверс конденсаторного пускового двигателя

    Так как же нам поменять местами конденсаторный пусковой двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, переставив полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор в обратном порядке. Порядок выключателя и конденсатора не важно, если вы подключены последовательно.

    Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

    Если бы вам пришлось поменять местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Однако, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

    Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

    Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

    Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

    Но на реверсивных двигателях этикетка всегда указывает на то, что нужно поменять местами два провода, чтобы поменять местами.

    Провода для реверса — это всегда провода, ведущие к обмотке стартера.

    Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете поменять местами мотор.Если, однако, есть только из обмоток выходят три провода, затем основная и пусковая обмотки имеют один конец, связанный вместе, и двигатель не реверсивный.

    Для 120-вольтового двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

    У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

    Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

    Как реверсировать конденсаторный пусковой конденсаторный двигатель?

    После запуска однофазный асинхронный двигатель будет успешно работать в любом направлении. Чтобы перевернуть , нам нужно изменить направление вращающегося магнитного поля, создаваемого основной обмоткой и обмоткой пускателя .И это можно сделать, если поменять местами полярность обмотки пускателя .

    Нажмите, чтобы увидеть полный ответ


    Соответственно, можно ли реверсировать двигатель переменного тока?

    Чтобы изменить направление двигателя переменного тока , необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении. Поскольку каждый провод состоит из положительного и отрицательного тока в магнитных полях, перекручивание основного и стартового проводов заставляет двигатель вращаться в обратном вращении .

    Аналогично, что заставит однофазный двигатель вращаться в обратном направлении? Изменение полярности входного напряжения заставит простой двигатель постоянного тока работать в обратном направлении. Переключение проводов обмотки стартера заставит однофазный электродвигатель переменного тока вращать в обратном направлении. Двигатель с фазой 3 будет вращать в обратном направлении, переключая одну ветвь входной мощности.

    В связи с этим может ли неисправный конденсатор привести к обратному вращению двигателя?

    Причина в том, что изменение полярности щупов также меняет полярность батареи в омметре.Есть также ряд симптомов, которые сообщит , если конденсатор на двигателе неисправен : Двигатель не запустит свою нагрузку , но если вы раскрутите нагрузку вручную, двигатель будет работать с правильно.

    Можно ли реверсировать двигатель на 120 в?

    После запуска однофазный асинхронный двигатель будет работать в любом направлении. Чтобы перевернуть это, нам нужно изменить направление вращающегося магнитного поля, создаваемого основной и пусковой обмотками.И этот может быть выполнен с помощью , если поменять местами полярность обмотки стартера.

    Как изменить направление вращения однофазного двигателя вентилятора?

    После запуска однофазный асинхронный двигатель будет работать в любом направлении . Чтобы перевернуть , нам нужно изменить направление вращающегося магнитного поля, создаваемого основной и пусковой обмотками.А этого можно добиться, поменяв полярность пусковой обмотки.

    Нажмите, чтобы увидеть полный ответ


    Аналогично, что заставит однофазный двигатель вращаться в обратном направлении?

    Переключение полярности входного напряжения заставит простой двигатель постоянного тока вращаться в обратном направлении. Переключение проводов обмотки стартера заставит однофазный электродвигатель переменного тока вращать в обратном направлении. Двигатель с фазой 3 будет вращать в обратном направлении, переключая одну ветвь входной мощности.

    Следовательно, возникает вопрос, может ли неисправный конденсатор привести к обратному вращению двигателя? Причина в том, что изменение полярности щупов также меняет полярность батареи в омметре. Есть также ряд симптомов, которые сообщит , если конденсатор на двигателе неисправен : Двигатель не запустит свою нагрузку , но если вы раскрутите нагрузку вручную, двигатель будет работать с правильно.

    Также знайте, можно ли реверсировать двигатель переменного тока?

    Чтобы изменить направление двигателя переменного тока , необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении.Поскольку каждый провод состоит из положительного и отрицательного тока в магнитных полях, перекручивание основного и стартового проводов заставляет двигатель вращаться в обратном вращении .

    Какое стандартное направление двигателя?

    Однонаправленные электрические двигатели работают только в одном направлении: по часовой стрелке (CW) или против часовой стрелки (CCW), но не в обоих направлениях. Во многих приложениях оборудование, приводимое в движение электрическим двигателем , не будет работать должным образом, если приводной вал двигателя не будет вращаться в заранее заданном направлении : по часовой стрелке или против часовой стрелки.

    Как реверсировать электродвигатель

    Возможно, вы только что установили заменяющий двигатель, или, может быть, вы устанавливаете новую силовую передачу. Вы включаете электродвигатель и … он вращается не в том направлении! Что, черт возьми, происходит? Есть ли что-то, что вы можете сделать, чтобы перевернуть мой электродвигатель?

    Ответ — да, в большинстве случаев есть. Первый шаг к выяснению того, как решить проблемы с вращением, — это определить, является ли это двигателем переменного или постоянного тока.Оттуда решение зависит от того, с каким именно двигателем вы работаете.

    Асинхронный двигатель переменного тока

    Если у вас асинхронный двигатель переменного тока, вам необходимо определить, является ли он трехфазным или однофазным, прежде чем пытаться изменить направление вращения.

    Трехфазные двигатели

    Трехфазные асинхронные двигатели переменного тока являются наиболее часто используемым типом двигателей в промышленности. Это в первую очередь потому, что они очень эффективны и, по сравнению с однофазными, стоят потерь.

    Трехфазные двигатели переменного тока имеют вращающееся магнитное поле, которое заставляет ротор вращаться в определенном направлении. Если двигатель вращается в неправильном направлении, это означает, что он не в правильной последовательности фаз. Это простое решение: все, что вам нужно сделать, это поменять местами любые два провода питания, чтобы перевернуть / перевернуть магнитное поле, и наиболее распространенной практикой является переключение линий 1 и 3. Как только это будет сделано, двигатель должен быть работает в правильном направлении. Если у вас более 3-х отведений, может потребоваться немного больше.Обратите внимание на схемы подключения, прилагаемые к устройству.

    Однофазные двигатели

    Однофазные двигатели переменного тока имеют только одну форму волны напряжения, подаваемую на двигатель. Они не так эффективны, как их трехфазные аналоги, но все еще широко используются. Как и трехфазные асинхронные двигатели, направление вращающегося магнитного поля определяет направление вращения двигателя.

    Однако однофазные асинхронные двигатели переменного тока немного сложнее исправить, если они вращаются в неправильном направлении.Чтобы изменить / реверсировать это направление, вам нужно поменять полярность пусковой обмотки.

    Вы можете найти инструкции от производителя о том, как это сделать для вашего конкретного случая — если ваш двигатель не обозначен как нереверсивный. В этом случае дело не в том, что полярность пусковой обмотки нельзя изменить, а в том, что провода, к которым вам нужен доступ, находятся внутри двигателя. Если вы не разбираетесь в двигателях переменного тока, лучше доверить эту задачу профессионалам.

    Двигатели постоянного тока

    Существует три основных типа двигателей постоянного тока: с параллельной обмоткой, с последовательной обмоткой и со сложной обмоткой.Хотя их направление можно изменить довольно просто, лучше всего знать, с каким типом двигателя постоянного тока вы работаете, прежде чем приступить к работе.

    Двигатели с параллельной обмоткой

    В шунтирующем двигателе постоянного тока (или просто шунтирующем двигателе постоянного тока) обмотки возбуждения шунтируются (соединяются параллельно) с обмоткой якоря. Из-за этого якорь и обмотка возбуждения подвергаются одинаковому напряжению питания и части тока, проходящей через обмотку возбуждения, а другая часть — через обмотку якоря.Поток магнитного поля в этих двигателях практически постоянен, поэтому их называют двигателями с постоянным магнитным потоком, и они могут регулировать свою собственную скорость так, чтобы она была почти постоянной.

    Двигатели с обмоткой серии

    Двигатели постоянного тока с обмоткой серии

    , как следует из названия, имеют обмотки возбуждения и обмотки якоря, соединенные внутри последовательно, так что они оба получают одинаковый ток. В результате такой конструкции обмотки возбуждения в этих двигателях получают больший ток, чем в других типах двигателей постоянного тока.

    Что делает эти двигатели особенными, так это высокий крутящий момент, который они не могут обеспечить. Такой высокий крутящий момент делает их полезными в качестве стартеров, часто работающих в течение короткого периода времени. В отличие от двигателя постоянного тока с параллельной обмоткой, двигатель с последовательной обмоткой не может регулировать свою скорость.

    Двигатели с комбинированной обмоткой

    Двигатель постоянного тока с комбинированной обмоткой объединяет в себе конструкцию как параллельных, так и последовательных двигателей постоянного тока. Результат — хорошее регулирование скорости и высокий пусковой момент. Однако скорость регулируется не так хорошо, как у двигателя с параллельной обмоткой, а крутящий момент не такой высокий, как у двигателя с последовательной обмоткой.

    Существует два основных типа двигателей постоянного тока с составной обмоткой: с длинной шунтирующей составной обмоткой и с короткой шунтирующей составной обмоткой. Длинный шунтирующий двигатель имеет шунтирующую обмотку возбуждения, соединенную параллельно якорю и последовательной обмотке возбуждения. В этом случае регулировка скорости лучше.

    Двигатель с коротким шунтом немного отличается: обмотка возбуждения шунта подключена параллельно только через обмотку якоря. Кроме того, на катушку последовательного возбуждения поступает весь ток питания, прежде чем он будет разделен на токи возбуждения шунта и якоря.Это приводит к лучшему пусковому крутящему моменту.

    Устранение проблем вращения для двигателей постоянного тока

    Двигатели

    постоянного тока, как и двигатели переменного тока, могут быть настроены на вращение в любом направлении. Их направление можно легко контролировать, инвертируя полярность приложенного напряжения якоря, меняя местами выводы якоря. Это работает с шунтирующими, последовательными и составными двигателями постоянного тока.

    С другой стороны, вы также можете поменять местами провода возбуждения, но это рискованно: это может повлиять на стабильность вашего двигателя постоянного тока.

    Заключение

    Электродвигатель, работающий в неправильном направлении, — это еще не конец света. Для двигателей постоянного тока изменение направления просто связано с реверсированием выводов якоря. Для трехфазного двигателя переменного тока вам необходимо поменять местами любые два провода питания (обычно выбираются 1 и 3), а для однофазного двигателя вам нужно будет обратиться к инструкциям производителя или обратиться за помощью к сертифицированному специалисту. электромотор техник. Мы просто знаем о мастерской по ремонту электродвигателей, которая может помочь.

    Контактная информация: Автор, Хантер Шилдс [email protected]

    Прямое и обратное направление асинхронного двигателя и двигателя постоянного тока

    Прямое и обратное направление асинхронного двигателя и двигателя постоянного тока:

    Трехфазный асинхронный двигатель прямого и обратного хода:

    Асинхронные двигатели

    делятся на два типа: однофазные асинхронные двигатели и трехфазные асинхронные двигатели.В случае трехфазного асинхронного двигателя это самозапускающийся двигатель, и направление двигателя будет направлением вращающегося магнитного поля. Чтобы изменить направление вращения двигателя, мы должны изменить направление вращающегося магнитного поля. Это осуществляется путем изменения последовательности фаз питания двигателя.

    Прямое и обратное направление асинхронного двигателя [wp_ad_camp_1]

    Пример: у вас есть двигатель (клемма двигателя U, V, W), который подключен с чередованием фаз (фаза питания R, Y, B) R-U, Y-V, B-W в прямом направлении.Чтобы реверсировать двигатель, вы должны соединить двигатель и фазу питания в таком состоянии. R-V, Y-U, B-W.

    Прямое и обратное движение однофазного асинхронного двигателя.

    Однофазный двигатель состоит из двух обмоток, таких как основная обмотка и вспомогательная обмотка. Они не являются самозапускающимися двигателями, поскольку у них нет вращающегося магнитного поля, как у трехфазных асинхронных двигателей. Обычно для запуска однофазного двигателя используются конденсаторы. Основной источник питания будет напрямую подключен к основной обмотке, а конденсатор подключен последовательно со вспомогательной обмоткой и фазой питания.Здесь конденсатор используется для создания фазового сдвига от существующей фазы. Следовательно, двигатель получает две фазы и начинает вращаться. Здесь мы можем изменить направление двигателя, изменив подключение конденсатора. Конденсатор может быть включен последовательно с основной обмоткой вместо вспомогательной обмотки.

    Однофазный двигатель, прямое и обратное направление [wp_ad_camp_1]

    Передний и задний двигатель постоянного тока:

    Двигатели

    постоянного тока полностью отличаются от двигателей переменного тока. Имеют коммутатор, обмотку возбуждения и обмотку якоря.Питание постоянного тока будет подаваться на обмотку возбуждения и обмотку якоря. Вы можете изменить направление двигателя постоянного тока двумя способами. Их ……

    Прямое и обратное направление двигателя постоянного тока
    • Путем изменения полярности питания в обмотке возбуждения или подаче питания. Полевой терминал состоит из F1 и F2. Обычно в прямом направлении подаётся постоянный ток, например F1 — положительный и F2 — отрицательный, для изменения направления полярность должна быть F1 — отрицательная и F2 — положительная.
    • Таким же образом мы можем изменить направление двигателя постоянного тока, изменив полярность обмотки якоря.Вывод якоря состоит из А1 и А2. Обычно для прямого направления подача постоянного тока задается, например, A1 — положительный и A2 — отрицательный, для изменения направления полярность должна быть A1 — отрицательной и A2 — положительной.

    См. Также:

    Предыдущая статьяЧто такое координация релеСледующая статьяАнализ частотной характеристики развертки — Процедура испытания SFRA

    Как реверсировать двигатели переменного тока

    Вращение двигателя по существу создается за счет манипуляций с проводами и магнитными полями.Таким образом, вы часто можете реверсировать двигатели переменного тока, переключая соединения проводов. Это так же просто, как отсоединить и повторно обжать обозначенные провода. (Обратите внимание, что не все двигатели переменного тока имеют возможность реверсирования, но все двигатели переменного тока Groschopp могут).

    Общие сведения о вращении двигателя переменного тока

    Прежде чем мы обсудим, как реверсировать двигатель переменного тока, мы должны сначала понять, как вращается асинхронный двигатель. Для быстрого объяснения того, как работают двигатели переменного тока, ознакомьтесь с нашим видео с техническими советами.

    В этом примере мы будем использовать двигатель переменного тока, который имеет две медные обмотки внутри статора — главную обмотку и стартерную / вспомогательную обмотку.Каждая обмотка состоит из пучка медных проводов, по которым проходят электрические токи и создаются магнитные поля. Обмотка стартера обычно состоит из провода меньшего размера, в результате чего пучок имеет меньшую магнитную прочность, чем основная обмотка. Возникающая в результате электромагнитная активность — это то, что отвечает за выработку энергии и за удержание ротора в движении.

    Основная и вспомогательная обмотки расположены перпендикулярно друг другу, создавая как вертикальное, так и горизонтальное поле. Каждая обмотка борется за подтверждение своего собственного заряда — когда ротор выравнивается с одним магнитным полем, он затем тянется еще на 90 °, пытаясь выровняться со вторым.

    Это то, что заставляет ротор вращаться после запуска. Это как старинный образ лошади и моркови — цель всегда недостижима, поэтому процесс продолжается. Когда сила одного поля почти достигает максимума, соседнее его догоняет.

    Реверс двигателя переменного тока

    Схемы подключения двигателя переменного тока

    доступны для всех наших асинхронных двигателей, но мы объясним, как реверсировать двигатель в оставшейся части этого поста.

    Чтобы изменить направление вращения двигателя переменного тока, необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении. Поскольку каждый провод состоит из положительного и отрицательного тока в магнитных полях, перекручивание основных проводов и проводов стартера заставляет двигатель вращаться в обратном направлении.

    Это простое переключение проводов работает, потому что полярность магнитного поля меняется на противоположную, что приводит к реверсированию двигателя.

    Коммутация синего и желтого проводов

    Groschopp обычно использует стандартную 4-проводную схему с черно-желтыми и красно-синими соединениями. Чтобы вызвать обратное движение в наших двигателях, синий и желтый провода необходимо поменять местами .Это приведет к красно-желтым и черно-синим соединениям. Могут быть дополнительные черные провода, если двигатель подключен к энкодеру или другому аксессуару. Эти провода можно оставить как есть.

    Может ли однофазный двигатель вращаться в обратном направлении?

    После запуска однофазный двигатель , асинхронный двигатель , , с радостью, будет вращать в любом направлении. Чтобы перевернул , нам нужно изменить направление вращающегося магнитного поля, создаваемого основной обмоткой и обмоткой стартера.И это может быть выполнено с помощью , поменяв полярность стартерной обмотки.

    Щелкните, чтобы увидеть полный ответ.

    Таким образом, что заставит электродвигатель вращаться в обратном направлении?

    Переключение полярности входного напряжения заставит простой двигатель постоянного тока работать в обратном направлении. Переключение проводов обмотки стартера приведет к тому, что однофазный электродвигатель переменного тока будет работать в обратном направлении. Трехфазный двигатель будет вращать в обратном направлении, переключая одну ветвь входной мощности.

    Аналогично, как определить вращение электродвигателя? Если вал направлен на вас и вращается вправо, ваш двигатель является концом вала по часовой стрелке или CWSE. Если вал вращается влево, ваш двигатель находится на конце вала против часовой стрелки или CCWSE.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *