Как проверить фотодиод: Как можно проверить ИК фотодиод на работоспособность, и где какой у него вывод, обычным мультиметром

Как проверить инфракрасный свето- и фотодиод, мощная доработка тестера ut61e

Как известно, одним из лучших, если не лучшим тестером в категории до 50 баксов является uni-t ut61e. Однако, у него есть несколько недостатков, которые можно и нужно исправлять, о чём я и расскажу в этом обзоре.

Недостатков у данного тестера три: отсутствие автоотключения, отсутствие измерения температуры и отсутствие подсветки. С температурой придётся, к сожалению, смириться. Подсветку я лично не считаю чем-то необходимым, особенно в случае использования «кроны» и «классической» реализации, когда подсветка загорается на 15-30-60с. А вот задействовать автоотключение — не только можно но и нужно, потому что забыть включенный прибор и утром обнаружить полностью севшую батарейку — чертовски неприятно.

Перейдём к диодам. Тут особо писать нечего — диоды как диоды. В пакете 50 штук совершенно стандартных ИК светодиодов диаметром 3мм в прозрачном корпусе, и 50 штук 3мм фотодиодов в черном корпусе, что должно отфильтровать видимый спектр.

На деле фонарик вполне засвечивает и открывает фотодиод даже через это чёрное стекло. Длину излучаемой волны измерить нечем, но в темноте светодиод я не разглядел, а в фотоаппарат — вполне.

На этом обзор диодов можно считать завершенным 😉

Переходим к доработке мультиметра. Доработка будет состоять из нескольких этапов: доработка ИК порта, доработка мультиметра в части автоотключения, и бонусом — установка внешнего источника опорного напряжения. Последнее, к сожалению, актуально только для приборов старых ревизий, где на плате предусмотрено место для внешнего ИОНа и обвязки.

Часть первая, ИК порт. Идея взята тут.

Во-первых — для чего переделывается порт? Для того, чтобы обеспечить И автоотключение, И передачу данных — мало ли когда оно понадобится?

Берём комплектный шнурок и разбираем его:

Берём светодиод

Загибаем ему ноги как у уже запаянного фотодиода, и запаиваем на место. Полярность на плате подписана.


Кроме светодиода запаиваем резистор на 10кОм

Всё, можно собирать. Я заклеил суперклеем.

Теперь переходим к мультиметру. Идея переделки заключается в том, чтобы не только отпаять и приподнять 111 ножку чипа, отвечающую за автоотключение, но и подключить к ней фотодиод или фототранзистор для управления от порта.

Для начала изготовим платку для фотодиода и резистора. Я просто из обрезка одностороннего стеклотекстолита вырезал и пропилил надфилем в двух местах.


Теперь замеряемся куда и как ставить нашу плату:

Как видим, расстояние между диодами должно быть 16.5мм, а высота диода над платой — 10мм. Изгибаем, запаиваем, клеим на плату на «китайские сопли» (термопистолет), или тонкий двухсторонний скотч:

Ищем точки подключения:

… и выводим провод на противоположную сторону платы через штатное отверстие. Провод нужен тоненький, чтобы пролез в отверстие и изоляция не повредилась нигде:

Поднимаем ногу микросхемы, и подпаиваем к ней провод, закрепляя тем же термоклеем. Кстати, плату с диодом и провода тоже нужно прицепить термоклеем, чтобы не развалилось всё это. Я этот момент не сфотографировал, к сожалению.

Хочется сделать так:

Но так делать НЕЛЬЗЯ — там расстояние до дисплея минимальное. Поэтому делаем так:

Обратите внимание, что анод (+) фотодиода подключается к V-, то есть включение «обратное», «стабилитронное» 😉

Всё, можно собирать и проверять. Как видим, значок передачи данных погас, а значок автоотключения загорелся:

Подключаем к компьютеру.

Нажимаем COM-connect:

Ура, всё работает.

Ну и бонусом — установка нового ИОНа LT1790ACS6-1.25 (я брал сразу три штуки, вышло не так дорого за один. возможно есть и более дешевые варианты). Тут я хочу повториться что данная доработка актуальна только для старых приборов, там на плате предусмотрены места установки данного ИОНа и обвязки. В новых ревизиях платы их установка не предусмотрена, соответственно, придётся вешать на соплях, ну и в этом случае разумно поискать что-то подешевле и без обвязки.

Типа того что установлено в an8008, например.

Зачем это нужно? У внешней опорки LT1790 температурный коэффициент 10-25ppm (в зависимости от варианта), а у встроенной в es51922 — вроде как аж 75ppm (идея взята здесь).

К сожалению, маркировка микросхемы никак не зависит от типа этой микросхемы, то есть узнать реальную точность, температурный коэффициент и температурный диапазон — нельзя. таким образом может оказаться что китаец впаривает более дешевый чип под видом более дорогого — но доказать это невозможно без применения высокоточного оборудования.

Схема подключения такова:

Вместе с установкой ИОНа весьма желательно заменить также резисторы делителя, то есть R16 и многооборотный подстроечник — таким образом, чтобы подстроечник имел минимальное сопротивление. В этом случае он будет оказывать минимальное же влияние и обеспечивать комфортную регулировку. Штатный подстроечник имеет сопротивление аж 2кОм что явно многовато. рекомендуется установка подстроечника 50-100 Ом. Купить можно например тут. Я пока поставил первый попавшийся на 500 Ом, что всяко лучше штатного, а потом посмотрю что делать дальше. Сразу хочу сказать, что настройка стала заметно плавнее, последний разряд это пара оборотов подстроечника.

Итак, переделка:

Нужно запаять резисторы R52 и R53 размера 0603 и номиналом 10кОм и конденсатор С50 емкостью 10мкФ (размер 0805, наверно можно попытаться и 1206 воткнуть), а также перенести резистор R15 на позицию R51. Ну и запаять собственно сам ИОН. После этого подключаем внешний источник образцового напряжения (см в конце обзора) и калибруем по постоянному напряжению.

Если честно, данная переделка особо ничего не даёт, это просто такая «прикольная фишка» типа «прокачай свой мультиметр» 😉

А вот внедрение свето- и фото- диодов и допиливание автоотключения — это совершенно однозначно та самая операция, которая должна проводиться сразу же после приобретения тестера.

Теперь о подсветке. Если кому-то прям не спится без подсветки в тестере — то самый простой способ это поместить внутрь модуль на TTP223, типа такого, подключить его после выключателя питания и стабилизатора и переключить в режим «кнопка с фиксацией».

8мА он должен по выходу держать, а больше как-бы и не нужно для подсветки. Ну либо по выходу модуля поставить еще и транзистор, который позволит получить любой нужный ток.

На этом всё, дорабатывайте свои ut61e и наслаждайтесь удобством!

Применение фотодатчиков

Фотодатчики – это один из типов устройств, предназначенных для позиционирования объекта. Они распространены повсеместно и используются в нашей каждодневной жизни.

Какие бывают фотодатчики

В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.

Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!

Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.

Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.

Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.

Рисунок 1. Фотопрерыватель

Фоторезистор

С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.

Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.

Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.

Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.

Рисунок 2. Фоторезистор СФ3-1

Фотодиоды

Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.

Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.

Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.

Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.

Рис. 3. Фотодиоды

Фототранзисторы

По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.

Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.

Рисунок 4. Фототранзистор

У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.

Как проверить фототранзистор

Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав. 

Спектр света

Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.

Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.

Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.

При пользовании стрелочным тестером надо помнить, что в режиме измерения сопротивлений плюсовой вывод находится на «минусе» в режиме измерения напряжений. При таких проверках освещать фотодатчики лучше лампой накаливания с близкого расстояния.

Сопряжение фотодатчика с микроконтроллером

В последнее время многие радиолюбители увлеклись конструированием роботов. Чаще всего это что-то такое на вид примитивное, вроде коробки с батарейками на колесиках, но жутко умное: все слышит, видит, препятствия объезжает. Вот видит он все как раз за счет фототранзистров или фотодиодов, а может даже и фоторезисторов.

Тут все происходит очень просто. Если это фоторезистор, достаточно подключить его, как указано на схеме, а в случае с фототранзистором или фотодиодом, чтобы не перепутать полярность предварительно «прозвонить» их, как было рассказано выше. Особенно полезно эту операцию проделать, если детали не новые, убедиться в их пригодности. Подключение разных фотодатчиков к микроконтроллеру показано на рисунке 5.

Рисунок 5. Схемы подключения фотодатчиков к микроконтроллеру

Измерение освещенности

Фотодиоды и фототранзисторы имеют малую чувствительность, высокую нелинейность и весьма узкий спектр. Основное применение этих фотоприборов – работа в ключевом режиме: включено – выключено. Поэтому создание измерителей освещенности на них достаточно проблематично, хотя раньше во всех аналоговых измерителях освещенности применялись именно эти фотодатчики.

Но к счастью нанотехнология на месте не стоит, а идет вперед семимильными шагами. Для измерения освещенности «там у них» создали специализированную микросхему TSL230R, представляющую собой программируемый преобразователь освещенность – частота.

Внешне устройство представляет собой микросхему в корпусе DIP8 из прозрачной пластмассы. Все сигналы входные и выходные по уровню совместимы с TTL — CMOS логикой, что позволяет легко сопрягать преобразователь с любым микроконтроллером.

С помощью внешних сигналов можно изменять чувствительность фотодиода и шкалу выходного сигнала соответственно 1, 10, 100 и 2, 10, и 100 раз. Зависимость частоты выходного сигнала от освещенности линейная, в пределах от долей герца до 1МГц. Настройки шкалы и чувствительности выполняются подачей логических уровней всего на 4 входа.

Микросхема может вводиться в режим микро потребления (5мкА) для чего есть отдельный вывод, хотя и в рабочем режиме не особенно прожорлива. При напряжении питания 2,7…5,5В потребляемый ток не более 2мА. Для работы микросхемы не требуется никакой внешней обвязки, разве что блокировочный конденсатор по питанию.

По сути, достаточно подключить к микросхеме частотомер и получать показания освещенности, ну, видимо, в каких-то УЕ. В случае же применения микроконтроллера ориентируясь на частоту выходного сигнала можно управлять освещенностью в помещении, или просто по принципу «включить – выключить».

TSL230R не единственный измеритель освещенности. Еще более совершенными являются датчики фирмы Maxim MAX44007-MAX44009. Габариты их меньше, чем у TSL230R, энергопотребление таково, как у других датчиков в спящем режиме. Основное назначение таких датчиков освещенности – применение в приборах с батарейным питанием.

Фотодатчики управляют освещением

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток.

Ранее ЭлектроВести писали, что ГП «Гарантированный покупатель» в первом квартале 2021 года приобрело у производителей э/э из возобновляемых источников 2,281 млн МВт*ч, что на 7%, или на 143 тыс. МВт*ч, больше в сравнении с аналогичным периодом прошлого года.

По материалам: electrik.info.

【Как сделать】 Проверка фотодиода

Проверка

Тестирование фотодиода

Панель контроля времени видео 0:00

▶️ ⏸️ 🔊 Панель управления громкостью звука 0:00 / 0:00 ↘️ 0,25↘️ 0,5↘️ 0,75➡️ 1↗️ 1,25↗️ 1,5↗️ 1,75↗️ 2 Качество: 144p240p360p480p720p1080p1440p2160p

↔️ ↕️

Кнопки обмена:

Как проверить фотодиод

Шаг 1: Сбор материалов

Чтобы проверить фотодиод, вам понадобится несколько вещей:

  • Источник питания (например, батарея)
  • Кусачки/инструменты для зачистки проводов
  • Резистор 1 кОм
  • Мультиметр (можно использовать цифровой или аналоговый)

Шаг 2.

Определите разводку контактов фотодиода

От фотодиода отходит два вывода. Один является анодом, а другой катодом. Возможно, вам придется обратиться к техническому описанию фотодиода или использовать мультиметр, чтобы определить, что есть что.

Шаг 3. Подключите фотодиод к цепи

Подключите фотодиод к резистору 1k. Подключите один конец резистора к положительному выводу источника питания (обычно это красный провод), а другой конец подключите к аноду фотодиода. Подключите катод фотодиода к отрицательному выводу источника питания (обычно черный провод).

Убедитесь, что соединения надежны и что нет ослабленных проводов или соединений.

Шаг 4. Измерьте реакцию фотодиода

Настройте мультиметр на измерение напряжения. Подсоедините положительный вывод мультиметра к катоду фотодиода, а отрицательный вывод к отрицательному выводу источника питания. Посветите на фотодиод и наблюдайте за показаниями мультиметра.

Примечание: В зависимости от типа фотодиода и используемого источника света вам может потребоваться отрегулировать настройки мультиметра или использовать усилитель для точного измерения отклика.

Шаг 5. Интерпретация результатов

Если фотодиод работает нормально, мультиметр должен показывать напряжение. Точное показание будет зависеть от характеристик фотодиода и интенсивности используемого источника света. Если показания нулевые или очень низкие, возможно, фотодиод неисправен или неправильно подключен.

Шаг 6. Отключите цепь и очистите

После завершения тестирования фотодиода отключите его от цепи и очистите рабочее место. Обязательно правильно утилизируйте все использованные батареи или другие опасные материалы.


Связанные запросы:

как проверить фотодиод мультиметром


как проверить фотодиод


как проверить фотодиод мультиметром


как проверить полярность мощность фотодиода


как проверить фотодиод


как найти фотодиоды


как проверить работоспособность фотодиода


Другие предложения:

Тестирование фотодиода

Как проверить ИК-светодиоды и фотодиоды

Самый простой способ Для тестирования ИК-светодиодов, включая ИК-излучатель и ИК-приемник

Как проверить ИК-фотодиод

Как проверить фотодиод с помощью мультиметра #technical #shorts #tvremote

Как проверить фотодиод без мультиметра | Техническое взаимодействие

Как проверить фотодиод с помощью простого метода мультиметра

Как проверить фотодиод

Простая принципиальная схема фотодиодного датчика освещенности от Electronzap

Тестирование фотодиода

Фотодиоды — (работа и почему это обратное смещение) | Полупроводники | Физика | Khan Academy

Фотодиод VS ИК-датчик

Фотодиод в сравнении с фоторезистором, также известным как светозависимый резистор LDR при изменении напряжения

Как проверить (понять) Положительную и отрицательную клемму светодиода

Как проверить светодиод ИК-передатчика всеми 4 способами

Проверка сигнала фотодетектора (ВБР)

Датчик LDR | Проект ЛДР | Проект датчика LDR | Принцип работы LDR | Светозависимый резистор |

Как проводить эксперименты с фотодиодами и тестирование фотодиодов от Techmahoday

Как тестировать диоды с помощью цифрового мультиметра

Как тестировать инфракрасный датчик, очень простой тест ИК-приемника лазерный диод?

спросил

Изменено 3 года, 3 месяца назад

Просмотрено 4к раз

\$\начало группы\$

Купил лазерный диод адл-65074тл-1, пытаюсь его прогнать и прочитать осциллографом обратную связь фотодиода монитора. Я использую лабораторный источник питания постоянного тока и мультиметр для установки значения напряжения диода на 2,2 В (Iop). После некоторых проб и ошибок я построил эту схему, я добавил резистор и конденсатор для уменьшения скачков напряжения, но источник достаточно стабилен.

смоделируйте эту схему – Схема создана с помощью CircuitLab

Я не понимаю, как считывать ток или напряжение с фотодиода монитора, который по техническому описанию должен быть на контакте 3.

Редактировать

символ вольтметра следует заменить на амперметр. В конце концов, я обнаружил, что в моем мультиметре перегорел предохранитель. Заменив его, я смог прочитать ток.

  • диоды
  • лазерный диод
  • драйвер лазера
\$\конечная группа\$

\$\начало группы\$

Фотодиод должен быть в обратном режиме , он уже подключен правильно (+12 В на катоде. Анод просто должен быть на напряжении ниже 12 В.

В обратном режиме, фотодиод выдаст ток , который пропорционален количеству света.Чтобы измерить ток, вам нужно подключить амперметр последовательно.Так что просто замените вольтметр амперметром.

То, как вы подключили вольтметр, не имеет особого смысла, так как напряжение должно измеряться параллельно с устройством, а не последовательно, как показано. (Вы можете утверждать, что измеряете Vsupply — Vdiode, но, поскольку диод находится в обратном режиме, это не имеет смысла).

\$\конечная группа\$

2

\$\начало группы\$

То, что у вас работает!
Диод смещен в обратном направлении через импеданс вольтметра для измерения тока при высоком импедансе.

Для улучшения BW или скорости используйте TIA с более низким R.

fWIW ваша схема в перевернутом виде. Используйте заземление внизу с V1- = 0V = GND

\$\конечная группа\$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*