Как проверить светодиодную лампу: Как проверить светодиодную лампочку (мультиметром) в домашних условиях

Содержание

Как проверить светодиодную лампочку (мультиметром) в домашних условиях

Поскольку колба LED-лампочки не прозрачная, визуально не получится определить, какие из чипов перегорели. Это касается и остальных элементов. Чтобы проверить светодиодную лампу, используют мультиметр – прибор для измерения сопротивления и тока. Также он понадобится при проверке кабеля на обрыв.

Чтобы выявить неисправность, следует научиться пользоваться мультиметром, узнать принцип его работы, ознакомиться с режимами и правилами подготовки к использованию. Существуют аналоговые и цифровые мультиметры. Специалисты советуют покупать второй вариант из-за более точных показателей при диагностике.

Подготовка мультиметра для проверки

Перед проверкой нужно внимательно осмотреть мультиметр на отсутствие повреждений. Крышка батарейного отсека должна закрываться плотно. Далее стоит проверить щупы и идущие к ним провода. Если необходимо сделать изоляцию, для этого подойдёт изолента или термоусадочная трубка. На щупах не должно быть сколов, в противном случае их стоит обмотать так же.

Перед работой режим нужно переключить на сопротивление 200 Ом. Черный кабель подключается к гнезду «Com», а красный к измеряемым величинам. На экране должна появиться единица. Если показание другое, мультиметр сломан или работает некорректно. Далее щупы скрещиваются между собой, после чего вместо единицы должен появиться 0.

Рис.1 – мультиметр.

Эти показания говорят что тестер работает правильно. Если изображение на дисплее бледное или цифры мигают, скорее всего, батарейки садятся. Для проверки светодиодной лампы необходимо выбрать на тумблере режим «поиск обрыва». Он обозначен пиктограммой чипа.

Этапы проверки LED-лампы 220 В

Чтобы проверить светодиоды в лампе на 220 В тестером, необходимо выполнить следующее:

  • проверить тумблер и установить режим проверки чипов;
  • подключить провода к проверяемому диоду;
  • проверить полярность.

Если всё сделано правильно, показатели на экране изменятся. Ещё один способ диагностики — проверить транзисторы. На участке pnp катод подключается к отверстию «C», а анод к «E».

Прозвонка отдельных светодиодов

Для прозвонки отдельных светодиодов мультиметр следует перевести в режим проверки транзисторов Hfe. После диод вставляется в разъем, как на фото.

Рис.2 – прозвонка чипов через режим Hfe.

Данные контакты являются минусовыми и плюсовыми электродами, заставляющими диод светиться. Важно не перепутать полярность, так как светодиод не загорится. На всякий случай можно поменять местами выводы чипа, чтобы убедиться в его неисправности.

Перед прозвонкой определите, где у диода анод и катод. Мультиметры могут иметь разные характеристики и конструкцию, а гнезда для проверки иногда отличаются. Но каждый имеет все необходимые слоты.

Читайте также

Как определить катод и анод у светодиода

 

Проверка LED-прожектора

Определите тип светодиода. Если он имеет вид желтого квадрата, проверить его с помощью мультиметра не получится, так как напряжение такого источника иногда превышает 30 Вольт. В данном случае для проверки используется рабочий драйвер с соответствующим напряжением и током.

Рис.3 – прожектор с одним мощным светодиодом.

Если в прожектор установлена плата с большим количеством SMD-чипов, его можно проверить мультиметром.

Рис.4 – прожектор с платой и светодиодами SMD.

Внутри корпуса находится драйвер, прокладки для защиты от влаги и плата с диодами. После разборки действовать нужно также, как и в случае с проверкой LED-лампы.

Проверка светодиодного моста

Засветить мост целиком мультиметром не получится. Иногда можно получить легкое свечение в Hfe. В режиме проверки диодов проверяется каждый из чипов отдельно.

Рис. 5 – токоведущие части ленты.

Если проверяются токоведущие части, тестер следует перевести в режим прозвонки и пройтись по каждому выводу питания на всех концах проверяемой зоны. Таким образом можно отыскать поврежденную часть моста. На фото синей и красной полосой выделены зоны, которые должны прозваниваться от начала ленты и до конца.

Как проверить, не выпаивая диод

Светодиоды, установленные на плату, проверяются с помощью щупа. Но стандартные инструменты могут и не пролезть в разъем для транзистора. Здесь понадобится тонкий проводник. Это могут быть:

  • швейные иглы;
  • часть кабеля или жилки из многожильного провода;
  • канцелярские разогнутые скрепки.

Проводник придется припаять к фольгированному щупу или подсоединить без штекера, получив переходник. Если используется фольгированная пластинка с припаянными кусочками проволоки, необходимо вставить её в соответствующий слот мультиметра и воспользоваться самодельными щупами.

Почему светодиодные лампы выходят из строя

Светодиодом называется полупроводниковое устройство, внешне напоминающее стандартный диод. Они отличаются малым пределом обратного напряжения. Электрический разряд или некорректная настройка схемы могут спровоцировать перегорание чипов. Малоточные яркие диоды, которые служат индикаторами источников питания, чаще всего перегорают из-за нестабильности напряжения в сети.

Советуем посмотреть видео: Как проверить светодиод в светодиодной лампе с помощью мультиметра.

Самые распространенные причины перегорания диодных ламп – это:

  • неправильная сила тока. В характеристиках, прописанных на упаковке, указывается максимальный срок службы. Но это параметр при оптимальном токе около 20 мА. Китайские лампочки редко отличаются качеством, так как производители устанавливают в них дешевые чипы, часто использующиеся для подсветки дисплеев гаджетов. Эти элементы рассчитаны на 5 мА и перегорают быстро;
  • низкое качество диодов. С целью экономии производители нередко устанавливают в лампу чипы, изготовленные по устаревшим технологиям, а именно с прозрачным р-контактом. Этот вариант самый экономичный и применяемый для подсветки экранов смартфонов. При нагревании срок службы таких светодиодов значительно сокращается. Поэтому их нельзя использовать в светильниках;
  • тепловыделение. Иногда лампочка перегорает из-за перегрева. Это может быть спровоцировано плохим сочетанием корпуса со светодиодами. Например, если чип разработан на основе новейших технологий, работать в корпусе чипов прошлых поколений он будет с трудом и быстро перегорит. В большинстве случаев это связано с размером посадочного гнезда.
  • некачественная сборка. Из-за жесткой конкуренции производители пытаются выводить на рынок как можно больше устройств. Поэтому контроль сборки снижается, что становится причиной деградации диодов.
  • неправильное использование. Перегрев лампочки может произойти не только из-за нарушения технологии сборки. Иногда целесообразнее приобретать лампы российских производителей, так как они адаптированы под работу местных сетей и лучше переносят перепады напряжения.

Рис. 6 – низкокачественная диодная лампа.

Светодиодные ленты устанавливать нужно только на алюминиевый профиль. Если лампа постоянно перегорает независимо от производителя, необходима проверка проводки.

Заключение

Мультиметр – один из лучших вариантов проверки работоспособности светодиодной лампы. Единственное, что требуется от мастера, это научится использовать его и настраивать. Неправильная настройка тестера может привести к некорректным результатам.

Как проверить светодиод мультиметром — все возможные способы

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же  прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта.  Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Если у вас нет мультиметра, то обязательно обзаведитесь им, многофункциональный, надежный и по хорошей цене лучше всего купить на Алиэкспресс. Для проверки светодиодов, его будет больше, чем достаточно. В нашей редакции мы пользуемся именно таким, правда у нас есть еще один, по дороже, он работает быстрее и функционал у него расширенный, и комплектация богатая. Купить мультиметр с Алиэкспресс для продвинутых.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Как выбрать качественную светодиодную Led лампу

Опубликовано 08.03.2016

Светодиодные лампы, которые сейчас повсеместно заменяют традиционные лампы накаливания, стоят недешево. Причем разница между качественной и не качественной лампой в цене может быть совсем небольшой.
Как же не ошибиться при выборе и купить такую лампочку, которая не будет вредить глазам и прослужит достаточно длительный срок?

Есть несколько правил при выборе и при проверке, соблюдая которые, можно взять то, что нужно.

Давайте их все рассмотрим по порядку.


При выборе лампы в магазине необходимо обратить внимание, прежде всего на упаковку.
Сравнивая данные, которые указаны на коробке, можно сделать предварительные выводы о честности производителя и, частично — о качестве LED лампы.
Исходим из того, что выпускающий серьезную продукцию капиталист, не будет вводить в заблуждение покупателя и укажет точные параметры своего изделия.

На что смотреть в первую очередь?
Обратите внимание на мощность лампы в ваттах и на мощность, равной ей лампы накаливания по версии производителя. А потом делаем небольшую проверку, используя таблицу соответствия мощностей и светового потока.

Цифры в таблице не следует воспринимать буквально, но порядок соотношения они дают.

Накаливания, ВтСветодиодная, ВтПоток света, Лм
253250
405400
608650
100141300
150222100

И табличка из второго источника, чтобы можно было сравнить и выбрать что-то среднее. Хотя, они похожи.

Световой поток светодиодных ламп
Мощность, Вт357101220
Световой поток, Лм180 — 360420 — 540620 — 680840 — 920950 — 11701700 — 2200

То есть, например, если вам продали 8-ми ваттную лампу, на которой написано, что ее эквивалент 80 ватт обычной лампы накаливания, а световой поток указан 680Лм, то понятно даже первокласснику церковно-приходской школы, что вас немного обманывают.

На самом деле мощность такой лампы можно сравнить с 60-ваттной обычной лампочкой. И не более.
Но это еще не говорит 100% о том, что данный товар некачественный. Может это, всего лишь маркетинговый ход, которым иногда не пренебрегают даже именитые бренды.

Второе, на что необходимо обратить внимание – наличие гарантии. На светодиодные лампы должна идти гарантия от двух лет и выше. Годовая гарантия дает основание заподозрить, что такая светодиодная лампа может проработать недолго, и выйдет из строя задолго до своих 25-30 тысяч часов работы.

В домашних условиях дополнительно можно проверить вашу покупку еще двумя способами.

Но прежде немного теории…
Переменный ток, который питает все наши электроприборы в домашней сети, имеет частоту 50 Гц. Это значит, что все наши лампы накаливания включаются и выключаются с этой периодичностью, то есть мерцают. Но, в силу инертности спирали накаливания, она не успевает полностью остыть, и эти мерцания практически незаметны.

Светодиод же, включается мгновенно и так же мгновенно выключается. И, хотя мы не замечаем эти включения-выключения, но такие мерцания оказывают негативное влияния на наши глаза.

Чтобы этого не было, и чтобы светодиод служил дольше, в ЛЭД лампах устанавливаются специальные электрические схемы.
Такая внутренняя схема светодиодной лампы, которая управляет светящимися элементами, называется заграничным словом ДРАЙВЕР.

Реализован этот драйвер в разных светодиодных лампах по-разному — используются разные элементы, их количество и схемы подключения.
Производитель, который захотел сэкономить и удешевить свое изделие, ставит простой драйвер, который не обеспечивает всех требований к такому виду ламп.
У такой лампы, к тому же, скорей всего не будет соответствовать заявленная мощность той, что есть на упаковке. То есть, вы просто банально переплатите…

Но, если бы только это…

Чем это плохо для нас, потребителей? А вот это мы сейчас и посмотрим.
Возьмите простой карманный радиоприемник, найдите к нему батарейки, включите на среднюю громкость и поднесите к работающей лампе, которую хотите проверить.
Чем больше помеха, создаваемая начинкой лампы, тем хуже эта самая начинка. В этом случае, конечно, хорошо бы иметь эталонную лампу проверенного производителя, чтобы было с чем сравнивать.
Так как создавать помеху будет практически любая лампа, то этот тест нельзя считать совсем уж точным.

Но вот следующая проверка не требует от нас ни эталонов, ни каких то особых навыков.
Ее можно сделать при помощи вашего мобильного телефона, а точнее, коммуникатора или смартфона. Как кому больше нравиться называть.
Включаем камеру своего гаджета в режим фотосъемки и направляем на включенную светодиодную лампу, постепенно приближая зрачок камеры к «объекту».
В определенный момент, если лампа не качественная или дешевая, вы увидите на экране частое мерцание картинки.

Человеческий глаз, в силу своей инертности, как было сказано выше, не замечает этого мерцания, но оно будет вредно для зрения, если достаточно долго находится при таком освещении.
Поэтому такую лампочку лучше вернуть обратно продавцу или переставить в помещение, в котором вы не находитесь долгое время. И, конечно же, не стоит читать при таком свете.

Собственно, последнюю проверку можно сделать и магазине, чтобы потом не бегать, и не возвращать обратно.

 

загрузка…

 

А также…


Как проверить светодиодную лампочку? Рекомендации, которые позволят отсеить мусор и приобрести высокоресурсный осветительный прибор.

Сегодня большую популярность стали завоёвывать светодиодные ламы. Они обладают таким же цоколем, как и обыкновенные лампы накаливания. Суть заключается в том, что они потребляют значительно меньше энергии, а также служат существенно дольше.

Светодиодные лампочки купить по лучшей цене в Украине не составит труда. Ведь сегодня существует большое количество специализированных онлайн-магазинов. Цены и ассортимент Вас приятно удивят.

На что следует обращать внимание при выборе светодиодной лампы?

Благодаря тому, что лампа обладает обыкновенным цоколем, проверить её не составит труда. Всё, что для этого требуется – вкрутить её в патрон. Ниже представлены другие тесты, которые позволят выявить некачественный продукт:

  • цоколь должен быть плотно закреплён;
  • лампа не должна мерцать;
  • при работе в течение пяти минут лампа не должна разогреваться.

Проверить закреплённость цоколя можно достаточно просто. Необходимо лишь попытаться расшатать его двумя пальцами. Если это удаётся, лучше отказаться от покупки подобного осветительного прибора.

Сегодня практически все обладают смартфонами с камерой. Проверка на мерцание заключается в следующем – необходимо включить лампу в сеть и снять её на видео. Нет необходимости снимать долго. Нескольких минут будет более, чем достаточно.

Если при просмотре видео Вы замечаете мерцание лампы – от покупки лучше отказаться. Светодиоды не должны мерцать, если они полностью технически исправны.

Качественные осветительные приборы можно найти на http://light-electro.com/catalog/svetodiodnye/.

Играет ли роль страна производитель?

Настоятельно рекомендуется приобретать исключительно продукцию европейский производителей. Ведь китайские светодиодные лампы в лучшем случае являются клонами европейских.

Однако дешевизна достигается за счёт ухудшения качества – это единственный способ. По этой причине, цена может являться относительным критерием качества. Однако полностью полагаться на неё не имеет смысла.

Как правило, на самой коробке должен указываться ресурс светодиодной лампы. В большинстве случаев он составляет 30 000 — 35 000 часов. Стоит отметить, что это средняя величина.

Ресурс может достигать и 50 000 часов. Однако если на упаковке указана цифра в 5 000 или в 10 000 часов, нет смысла покупать подобную лампу. Вряд ли она прослужит дольше одного месяца.

В видео подробно расскажут о том, какие подводные камни могут ожидать в выборе осветительного прибора на светодиодах:


По материалам: http://light-electro.com/catalog/svetodiodnye/

По материалам: http://light-electro.com/catalog/svetodiodnye/%20

Ремонт светодиодных LED ламп, электрические схемы

Светодиодные лампы, благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Устройство светодиодной лампы

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов, все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.

Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя. К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.

Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Филаментным лампам и их ремонту посвящена отдельная статья «Устройство и ремонт филаментных ламп».

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.

Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.

После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.

Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.

С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.

Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности не было, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.

После сборки светодиодная лампа стабильно излучала свет, несмотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера

светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.

Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновение зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.

Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.

Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.

В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.

Напряжение 220 В с цоколя лампы через резистор — предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.

На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.

На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.

Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.

В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии не было светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстросохнущим суперклеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность — 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы


LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.

Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено не было. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.

Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в одной из вышеописанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.

Такое поведение драйвера объясняет закон Ома, в соответствии с которым U=I×R. Если I (ток) остается неизменным, а R (сопротивление) уменьшается, то U (напряжение) тоже пропорционально уменьшится.

Ремонт светодиодной лампы MR-16 с простым драйвером

Из обозначения на этикетке следовало, что данная светодиодная лампа модели MR-16-2835-F27, источником света лампы являются светодиоды LED-W-SMD2835 в количестве 27 штук, излучающие световой поток 350 люмен. Лампа предназначена для питания от сети напряжением 220-240 В переменного тока, излучает натуральный белый свет цветовой температуры 4100 градусов Кельвина, потребляемая мощность 3,5 Вт, тип цоколя GU5,3 (два штырька на расстоянии 5,3 мм), угол светового потока составляет 120° (узконаправленного света).

Внешний осмотр показал, что светодиодная лампа сделана добротно, корпус выполнен из алюминия, цоколь съемный и привинчен к корпусу двумя винтами, защитное стекло натуральное и приклеено к корпусу в трех точках клеем.

Как разобрать LED лампу MR-16

Для определения причины выхода из строя лампы ее необходимо разобрать. Вопреки ожиданиям, лампочки разбирались без особых трудностей.

Корпус лампочки для лучшего отвода тепла был весь ребристый, и между ребрами была возможность надавить отверткой с узким лезвием на защищающее светодиоды стекло изнутри.

Прилагая значительное усилие в разных точках между ребрами корпуса по кругу, было найдено податливое место, и таким образом стекло удалось сорвать с места. Печатная плата со светодиодами тоже оказалась приклеенной и легко отделилась с помощью поддетой, как рычагом, за ее край отвертки.

Ремонт LED лампочки MR-16

Первой я вскрыл LED лампочку, в которой выгорел всего один светодиод, но до такой степени, что даже прогорела насквозь печатная плата, сделанная из стеклотекстолита.

Эту LED лампочку сразу решил использовать в качестве донора запчастей для ремонта остальных девяти, так как у многих из них были видны сгоревшие светодиоды. Это свидетельствовало о том, что драйверы у лампочек в порядке и причина выхода их из строя, скорее всего, кроется в неисправности светодиодов.

Электрическая схема светодиодной лампы MR-16

Для облегчения ремонта полезно под рукой иметь электрическую схему LED лампочки. Поэтому первое, что я сделал после полного разбора лампочки, нарисовал ее схему.

Работает схема следующим образом. Переменное напряжение питающей сети 220 В подается через токоограничивающий конденсатор С1 на диодный мост VD1-VD4. С диодного моста выпрямленное постоянное напряжение подается на последовательно включенные светодиоды HL1-HL27. Количество последовательно включенных светодиодов в эту схему может достигать 80 штук. Электролитический конденсатор С2 служит для сглаживания пульсаций выпрямленного напряжения, тем самым исключается мерцание света с частотой 100 Гц. Чем его емкость больше, тем лучше.

R1 служит для разрядки конденсатора С1 для исключения удара током человека, в случае прикосновения к штырям цоколя при замене светодиодной лампы. R2 защищает конденсатор С2 от пробоя в случае обрыва в цепи светодиодов. R1 и R2 непосредственного участия в работе схемы не принимают.

На фотографии внешний вид драйвера с двух сторон. Красный это С1, цилиндр черного цвета это С2. Диодный мост применен в виде микросборки, черный прямоугольный корпус с четырьмя выводами.

Классическая схема драйвера светодиодных ламп мощностью до 5 Вт

В схеме светодиодной лампы MR-16 нет элементов защиты, нужен хотя бы один резистор в цепи подключения к сети номиналом 100-200 Ом. Не будет лишним и еще один такой же резистор, включенный последовательно со светодиодами, для их защиты от бросков тока.

На фотографии выше изображена классическая схема драйвера для LED лампы с двумя защитными резисторами от бросков тока. R2 защищает диодный мост, а R3 – конденсатор С2 и светодиоды. Такой драйвер хорошо подходит для светодиодных ламп мощностью до 5 Вт. Драйвер способен запитать лампочку, в которой установлено до 80 LED SMD2835. Если понадобится использовать драйвер для светодиодов, рассчитанных на меньший или больший ток, то конденсатор С1 нужно будет уменьшить или увеличить соответственно. Для исключения мерцания света С2 тоже нужно будет увеличить. Чем емкость С2 будет больше, тем лучше.

Эту схему можно еще сделать проще, удалив все резисторы, а конденсатор С1 заменить сопротивлением, номинал и мощность которого можно рассчитать с помощью онлайн калькулятора.

Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером, включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодный мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку, сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии «LL-CORN» (лампа-кукуруза)


E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от вышеописанной лампы, поэтому и технология ремонта другая.

Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от вышеописанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.

Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.

Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 — 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы «LL-CORN» (лампа-кукуруза)


E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.

Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.

Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.

После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.

В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросов и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.

В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.

Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.

После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.

Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу слева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на «LLB» LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверхярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы «LLB» LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.

Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.

Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.

Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти.

Прошли годы и появились новые источники света в виде малогабаритных светодиодных матриц с интегрированным драйвером мощностью от трех ватт, собранные на алюминиевой печатной плате. Установил вместо светодиодов такую матрицу, в результате лампа получила вторую жизнь.

Ремонт светодиодной лампы серии «LL» GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.

После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.

Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.

Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становится жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.

После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов


по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора. По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.


Дмитрий 05.02.2017

Здравствуйте, Александр Николаевич.
Может подскажите решение проблемы. Суть в следующем.
Имеется светодиодная лампа типа «кукуруза». Состоит из 11 полосок по 13 светодиодов каждая + «пятак» с торца тоже на 13.
Примерно через полгода работы появилась следующая проблема. Через 4-5 минут после включения гаснут несколько полосок (5-6). Некоторые сразу, некоторые начинаю мигать, после этого гаснут. Могут через некоторое время опять включиться. Такое впечатление, что от перегрева теряется контакт, так как минут через 10 после выключения все полоски снова светятся.

Александр

Здравствуйте, Дмитрий!
Подобная картина может наблюдаться из-за плохой пайки выводов светодиодов в печатной плате или приварки проволочек, идущих от кристалла светодиода к его выводу. Устраняется только поиском плохой пайки или заменой неисправного светодиода.
Приходилось сталкиваться с подобной неисправностью. Если отказ из-за качества пайки выводов светодиодов, то достаточно пропаять их повторно. Но если отказал светодиод и через время лампа опять стала мигать, значит вышел из строя следующий. В таком случае диоды будут отказывать регулярно, пока не заменишь все.
При ремонте, чтобы быстрее проявлялся отказ, светодиоды можно закутать тканью.
Причина поломки лампочки – некачественные светодиоды и проще ее заменить новой, чем многократно возиться с ремонтом.

Сергей 08.02.2018

Здравствуйте.
На диодной лампочке был пробит светодиод, впаял новый, вставил лампочку. Короткая вспышка и она погасла, пробило еще один светодиод. Впаял новый, ситуация повторилась. Токоограничивающий конденсатор неисправен?

Александр

Здравствуйте, Сергей.
Если в схеме драйвера в качестве стабилизатора тока служит конденсатор, то судя по выгоранию светодиодов, конденсатор пробит и ток идет максимально возможный. Светодиод работает как предохранитель и выгорает тот, у которого минимальное падение напряжения.

Yodgorbek 17.02.2019

Добрый день Александр!
Вы предлагаете закорачивать контакты сгоревших диодов и пишите, что это ни на что не влияет.
Но почему вы не учитываете, что диоды соединены последовательно, то есть напряжение подается исходя из количества диодов. Сокращая количество диодов, на каждый диод увеличивается напряжение, соответственно и нагрузка. Тем самым вы сокращаете жизнь оставшихся диодов. Как раз вы это описали с лампой, которую вы ремонтировали каждую неделю…

Александр

Здравствуйте.
Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки, в заданных пределах, на выходе драйвера ток будет всегда постоянным, а напряжение изменятся. Поэтому падение напряжения на каждом из светодиодов будет оставаться прежним.
Поэтому при уменьшении количества последовательно соединённых светодиодов ток через них и приложенное напряжение к каждому светодиоду не изменятся.
Например, если в цепочке последовательно соединённых 50 светодиодов, на каждом из которых падение напряжения составляло 3 В, и общее напряжение составлял 150 В, закоротить 5 штук, то выходное напряжение драйвера снизится до 135 В.
Это подтверждает и закон Ома, в соответствии с которым U=IR. Если I остается неизменным, а R цепи уменьшается, то напряжение тоже пропорционально уменьшиться.

Алексей 27.11.2020

Добрый день!
В статье Вы пишите, что драйвер стабилизирует ток. И поэтому можно замыкать выводы сгоревших светодиодов. Но у драйверов как правило указывают и другую характеристику — выходное напряжение, его минимум и максимум.
Если прямое падение напряжения опустится ниже минимума драйвера, как изменится его поведение?

Александр

Здравствуйте, Алексей!
Обычно электронный драйвер в светодиодные светильники устанавливается исходя из того, чтобы он работал в середине диапазона выходного напряжения, который обычно имеет не менее 10% запас. Поэтому если будут замкнуты выводы менее 10% светодиодов от общего количества, например, 5 из 50 установленных, то драйвер будет обеспечивать штатный режим работы оставшихся светодиодов. Если будет закорочено больше светодиодов и нагрузка на драйвер не будет соответствовать расчетной, то он уйдет в режим защиты и светодиоды светить не будут.

Это не касается драйверов, в которых ток ограничивается с помощью конденсаторов, на схеме это С1. Такой драйвер будет работать даже если останется всего один светодиод из сотни. Правда и яркость свечения светильника станет в сто раз меньше.

Евгений 13.12.2020

Огромное спасибо за статью, очень профессионально и полезно.
Если возможно подскажите, в чём неисправность. Лампы Jazzway 11W — 2шт (стабилизатор PT4515C) и EAC A60 15W (стабилизатор MT7606D, напаян на стороне светодиодов), одинаковый дефект, светят в пол накала все светодиоды.
К сожалению, на пенсии и под руками только тестер. Как проверить?

Александр

Здравствуйте, Евгений!
Микросхемы PT4515C, MT7606D и SM2082 являются стабилизаторами тока и включаются по одинаковой схеме. Достаточно надежные и из строя практически не выходят. Поэтому надо искать неисправный светодиод. Зачастую достаточно просто внимательно осмотреть кристалл на наличие изменения светоизлучающей поверхности (часто становится вместо матовой прозрачной с желтым оттенком) или темной точки. Если обнаружили, то этот светодиод точно неисправен.
Проверить можно, если закоротить его выводы подгоревшего светодиода, лампа должна засветить в полную силу. Если не засветила, то возможно есть еще подгоревшие светодиоды.
Но как я писал выше, в лампочках большой мощности с малой площадью охлаждения светодиоды работают в тяжелых температурных условиях и быстро выходят из строя. Поэтому после ремонта лампочка долго не проработает.

Единственное что может помочь это увеличение на 10% номинала резистора R2, ток через светодиоды тогда уменьшится. Рабочая температура светодиодов тоже и тогда они возможно некоторое время еще послужат. Правда после модернизации яркость лампочки незначительно уменьшится.
А вот если номинал резистора увеличить до начала эксплуатации лампы, то служить она будет дольше точно.

Евгений

Александр Николаевич!
Большое спасибо. Последовательно замыкая светодиоды обнаружил в каждой лампе неисправный. Смущало то, что при работе в «пол-накала» во всех диодах светилось по 2-е полоски и друг от друга они не отличались.

Александр 05.04.2021

Добрый вечер!
Думаю, по вопросу об эффективности замыкания неисправных светодиодов нужно одно уточнение.
В простейших драйверах, где нет специализированной микросхемы и ток ограничивается с помощью конденсатора, нельзя сильно уменьшать количество светодиодов, замыкая неисправные. Конденсатор здесь является плохим стабилизатором тока, он просто гасит на себе избыточное напряжение, которое приблизительно равно разности между входным напряжением и суммой напряжений, падающих на светодиодах. Если замыкать светодиоды, то падение напряжения на конденсаторе возрастает, тогда возрастает ток через конденсатор и через всю цепь с оставшимися светодиодами. Если светодиодов в цепи много и замкнут только один-два из них, то ток возрастет незначительно, и лампа будет работать долго. Если же замкнуть много светодиодов, то ток через оставшиеся светодиоды сильно возрастает, и они быстро выйдут из строя.

Александр

Здравствуйте, Александр!
Все вы изложили правильно. Но в настоящее время схемы драйверов, в которых ток ограничивается с помощью конденсаторов практически не встречаются, так как стоимость специально разработанных для этих целей микросхем, таких как PT4515C, MT7606D, CYT1000, 90035, SM2082 и им подобных, ниже.
Пробовал удалять до 30% последовательно включенных светодиодов в лампах со схемами драйверов на этих микросхемах. Увеличения тока не наблюдалось. Единственное что наблюдалось это незначительное увеличение количества выделяемого тепла микросхемами.

Анатолий 03.08.2021

Здравствуйте, Александр!
Сегодня взорвался конденсатор С2 на 2,2мкф-250в в драйвере светодиодной лампы. Фирма — Старт, Е27, 10W 40, 70 мА, 800 лм. Разобрал её: один светодиод с чёрной точкой, у электролитического конденсатора вылетел корпус. С этой ёмкости напряжение пошло сразу на пластину где расположены 14 светодиодов.

Не могу понять: почему напряжение превысило 25 вольт? Каждый диод на 8,2В×14=115В должно быть на всех светодиодах, которые включены последовательно. Драйвер на микросхеме U2: KP1050DP AJ1CR7.1
Почему на конденсаторе стало больше 250 В?
Что-то не совпадает мощность: 220×0,07=15,4 ватт, а заявлено 10 Вт…
Почему дебет с кредитом не совпадает?

Александр

Здравствуйте, Анатолий!
Напряжение в сети бытовой электропроводки указывают эффективное, то есть эквивалентное напряжению постоянного тока. Поэтому 220 В, это не максимальное напряжение (размах синусоиды), которое больше эффективного в 1,41 (корень из 2). То есть Uмах=1,41Uэф=220×1,41=310 В. В дополнение в сети напряжение может по ГОСТу достигать величины 242 В. Если умножить на 1,41, получим 341 В.
Таким образом для надежной работы нужно устанавливать конденсатор на напряжение не менее 350 В. Но некоторые производители из экономических и габаритных соображений устанавливают конденсаторы на 250 В. Конденсаторы всегда имею запас по напряжению, поэтому и работают, но временной ресурс их резко сокращается. Поэтому вздутие электролитических конденсаторов, это 50% отказов всех электротехнических изделий.
А светодиод вышел из строя из-за перегрева, они работают в очень тяжелых температурных условиях и поэтому часто перегорают. Возможно большой нагрев и конденсатору помог взорваться.
С мощностью происходит путаница. Некоторые производители указывают мощность, рассеиваемую светодиодами, а некоторые, потребляемую всей лампой. На драйвере тоже теряется часть потребляемой лампой мощности. В дополнение зачастую производители указывают в рекламных целях мощность, превышающую реальную. Поэтому данные и противоречивы.

Сергей 17.08.2021

Здравствуйте!
Подскажите в чем может быть причина. Светодиодная лампа зажигается через 10-20 сек после подачи напряжения, особенно этот дефект проявляется пока лампа холодная. При кратковременном прогреве платы (феном), все включается без задержек. Менял электролитические конденсаторы, пропаял все (!) соединения, но так и не победил эту проблему. Возможно дефект в самой микросхеме драйвера, учитывая при какой температуре она работает.

И еще вопрос подскажите назначения элементов C3,R3.
Спасибо.

Александр

Здравствуйте, Сергей.
Исходя из описанного Вами поведения светодиодной лампы, вероятнее всего неисправен один из светодиодов. Проверить светодиоды можно путем последовательного замыкания выводов каждого из них при холодном состоянии лампы. Если при замыкании выводов очередного светодиода все остальные засветятся, значит этот светодиод неисправен. Если все светодиоды исправны, значит дело в микросхеме.
C3,R3 служит для погашения высокочастотных импульсов – сглаживания пульсаций, чтобы коэффициент пульсаций был меньше

Как проверить светодиоды в фонаре

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта. Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта. Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Светодиоды (СД) широко применяются в электротехнике. Используются в промышленном и бытовом освещении, а также в качестве индикаторов и подсветки. Они значительно надежней других источников света, но также могут становиться неработоспособными.

У вас может возникнуть вопрос – как проверить светодиодную лампочку? Существует ряд методов, позволяющих проверить рабочее состояние СД. Остановимся на них более подробно.

Проверка мультиметром


Каждый светодиод обладает своими техническими характеристиками. К ним относится мощность, значение светового потока, величина тока и напряжения. В инструкции изготовителя обязательно указано напряжение, которое зависит от материала и цвета. Например, значение данного параметра у красных СД равняется 1,5–2 В, у зеленых – 1,9–4 В, белых – приблизительно 3–3,5 В. Эти значения возможно проверить при помощи прибора мультиметра.

Чтобы испытать работоспособность светодиода мультиметром, необходимо сделать следующее:

  • Переключить тумблер прибора в режим проверки диода;
  • Подсоединить контактную часть мультиметра к светодиоду;
  • Проверяйте полярность СД. Контактная часть красного цвета присоединяется к аноду, а черная – к катоду. Если подключение правильное – LED засветится. Если неправильное – значения показаний прибора не изменятся.

Чтобы зафиксировать свечение СД, необходимо уменьшить освещение до минимума. Если такая возможность отсутствует, придерживайтесь значения показаний мультиметра. Оно составит показание, отличное от 1.

Проверить светодиод мультиметром можно еще проще. Для этого необходимо прозванивать СД. В приборе имеется опция проверки транзисторов. Для секции PNP катод вставьте в отверстие С, а анод в Е. Наглядное изображение приведено на рисунке ниже.

Как проверить подручными материалами?

Также можно испытать исправность СД, применив led-tester, в способе работы которого используется принцип подачи питания на светодиод батарейки крона или нескольких пальчиковых, имеющих параллельное соединение.

Ненужное зарядное устройство может послужить вам для проверки неисправности LED. Для создания такого тестера для проверки светодиодов вам придется отсечь штекер подсоединения к телефону и зачистить контакт. Используя красный провод в качестве плюса, подключите его к аноду, а черный (минус) подсоедините к катоду. В случае достаточного напряжения светодиод загорится.

Для испытания более мощных диодов вам может послужить обычный фонарик, точнее, его зарядное устройство. С его помощью можно проверить исправность светодиодных ламп или светодиодную ленту.

Проверка исправности СД в фонаре

Для этого нужно разукомплектовать фонарь, отсоединив плату со светодиодами. Используем tester, снабженный щупами, которые подсоединены к разъему PNP. Необходимость в выпаивании LED с платы отсутствует, поскольку для проверки светодиодных ламп достаточно прикоснуться щупом непосредственно к микросхеме. Единственное, что нужно учитывать – полярность.

Неисправный СД можно вычислить с помощью замера сопротивления в схеме. Если прозвонка дала нулевое значение этого параметра в параллельном подключении LED, можно сделать вывод, что как минимум один из СД поврежден. Затем можно использовать любой из приведенных нами способов по проверке.

Как самостоятельно сконструировать щуп?

Когда возникла необходимость срочно проверить светодиод тестером, а укомплектованного прибора нет под рукой, можно изготовить его самостоятельно. Для этого необходимо несколько игл и луженый провод диаметром 0,2 мм. Его можно изъять из многожильного кабеля. Плотно обматываем вокруг иглы провод и запаиваем. Рекомендуем воспользоваться никелированной иглой. В этом случае паять будет проще.

Инфракрасные СД

Наверняка у каждого человека в квартире имеется как минимум один пульт дистанционного управления. Рано или поздно приходит день, когда пульт перестает выполнять свои функции (передача сигнала в фотоприемник). После проверки батареек наиболее вероятной причиной повреждения может стать неисправный светодиод.

Протестировать инфракрасный LED можно следующим образом. Поверните дистанционный пульт СД в сторону фотоаппарата. Для этого подойдет любой гаджет с фотокамерой. Инфракрасное излучение невозможно увидеть, но при использовании этих устройств ситуация в корне поменяется. В случае работоспособности светодиода на экране появится кратковременное свечение фиолетового оттенка.

Еще один тестер светодиодов, главным элементом которого является инфракрасный фотодиод – осциллограф. При попадании инфракрасного излучения на поверхность фотоэлемента на его выходе создается напряжение. Для проверки СД его необходимо подсоединить к открытому входу осциллографа. Затем следует направлять его излучение на чувствительную зону фотодиода.

Работоспособный LED покажет импульсы на мониторе осциллографа.

Как проверить светодиодную лампу, ленту и другие приборы для освещения на исправность LED-элементов. Несмотря на более высокий срок эксплуатации по сравнению с лампами накаливания, осветительные светодиоды быстрее выходят из строя, чем индикаторные.

Светодиоды — полупроводниковые приборы, создающие оптическое излучение при прохождении электрического тока в прямом направлении. Делятся на две разновидности — индикаторные и осветительные. Первые характеризуются меньшей мощностью, поэтому используются в подсветке электронных устройств, выполняя функцию индикаторов. Вторые применяются в осветительных приборах, включая лампы, ленты, фонари и прожектора.

Проверка светодиодных ламп

Важны четыре основные характеристики светодиодов (СД) — рабочий ток, прямое падение напряжения, мощность и световой поток. Рабочий ток индивидуален для каждого изделия и указывается на корпусе. С падением напряжения все гораздо проще — его значение зависит от цвета и материала, из которого изготовлено устройство.

Обычно зависимость напряжения от цвета СД следующая:

  • красные — 1,5-2 В;
  • оранжевые и желтые — 1,8-2,2 В;
  • зеленые — 1,9-4 В;
  • синие и белые — 3-3,5 В;
  • белые, синие и зеленые — 3-3,6 В.

Важно! Все параметры измеряются мультиметром. И для этого не нужно быть квалифицированным электриком!

Другой способ проверить светодиод (LED) — подключить его к источнику питания, состоящему из батареек. Из подручных средств, используемых при определении неисправностей, выделим зарядные устройства для мобильных телефонов (или более мощные – для фонарей).

Проверка мультиметром

При использовании мультиметра выполните следующие действия:

  1. Поверните тумблер, установив его на режим проверки LED-диодов.
  2. Подключите провода мультиметра к светодиоду.
  3. Убедитесь, что соблюдаете полярность СД: красные питаются от анода, черные — от катода.

При правильном подключении прибор засветится, в противном случае показания на мультиметре не изменятся.

Определяйте неисправности при минимальном освещении, чтобы повысить вероятность фиксирования свечения СД. При его отсутствии ориентируйтесь на показатели мультиметра — на работающем элементе значение должно быть отличным от показаний по умолчанию.

Есть более простой метод — прозванивание LED-диодов. Мультиметр используется для проверки транзисторов. В секции PNP катод подключите к отверстию C, а анод — к E.

Проверка подручными материалами

Для обнаружения неисправностей светодиодов используют LED-тестер, изготавливаемый из подручных средств, — нескольких пальчиковых батареек, соединенных параллельно, или мощной «Кроны».

Также тестер собирается из ненужной зарядки для телефона или другого электрического прибора. Отрежьте разъем на конце шнура, зачистите провода. Красный (плюс) присоедините к аноду, а черный (минус) — к катоду. Если будет достаточно напряжения, то СД загорится.

Зарядные устройства от фонариков пригодятся в том случае, если неисправны лампочка или лента с более мощными светодиодами.

Проверка светодиодов без выпаивания

Для подключения щупов мультиметра соедините их при помощи пайки с небольшим металлическим предметом — канцелярской скрепкой. Между ними установите текстолитовую пластину, заизолировав ее клейкой лентой. Эта простая конструкция — безопасный проводник для фиксации щупов. Подключитесь к светодиоду, не выпаивая его из схемы.

Проверка исправности светодиодов в фонаре

Перед определением неисправностей удалите из фонарика батарейку, разберите его и выньте текстолитовую плату, к которой прикреплен нужный СД. Воспользуйтесь тестером, подключив к нему щупы через PNP-разъем. Выпаивать диод необязательно — замеры производятся на плате. Устройство засветится только при прямом включении!

При параллельном подключении светодиодов замерьте сопротивление всей схемы. Если оно будет близко к нулю, то один из полупроводников работает некорректно. Чтобы определить, какой именно, воспользуйтесь методом, указанным выше, изучая каждый СД отдельно.

Проверка LED-прожектора

Осмотрите светодиоды визуально. Если видите большой квадрат желтого цвета, то не пытайтесь проверить работоспособность тестером, — напряжение такого элемента свыше 20 В.

Если в прожекторе используется несколько мелких SMD, то есть смысл применить мультиметр. Разберите устройство и отыщите драйвер подсветки, влагозащитную прокладку и плату с установленными LED-диодами. Процедура аналогична проверке светодиодной лампы (читайте выше).

Проверка инфракрасного диода

Инфракрасные диоды используются во многих электронных приборах, особенно популярны в пультах дистанционного управления. Их основная функция — передача сигнала на фотоприемник телевизора, музыкального центра или светодиодной лампы. Если батарейки исправны, то вышел из строя СД.

Разглядеть свечение инфракрасного светодиода без подручных средств нереально, но его проверка проста. Наведите фотоаппарат (или фотокамеру любого девайса) на СД, расположенный в пульте ДУ. Если полупроводник работает, то вы увидите непродолжительное свечение с фиолетовым оттенком.

В качестве тестера такого СД используют и осциллограф. Если на его фотоэлемент попадает ИК-излучение, то создается напряжение.

Проверка светодиодной ленты

Светодиодная лента — источник света из нескольких LED-элементов. СД группируются по три штуки на участок. Тогда ленту можно разделить на отрезки любой длины без ухудшения эксплуатационных характеристик.

Чтобы убедиться в ее работоспособности, подайте электрический ток на контакты. Исправная будет светиться вся. Если горит лишь часть, проблемы в токопроводящем кабеле. Его необходимо проверить мультиметром.

Если не будет светиться целый участок из трех светодиодов, проблема в этих элементах. Осмотрите каждый из них и измерьте сопротивление резистора всей группы.

Рассмотренные методы проверки LED-диодов в осветительных приборах просты — вооружитесь мультиметром или проводами с парой пальчиковых батареек. В случае обнаружения неисправного элемента замените его или отнесите в мастерскую.

Многие задаются вопросом как проверить светодиод? или как проверить светодиод мультиметром? Давайте разбираться.

Как проверить светодиод?

Используйте круглую батарею, чтобы проверить светодиод, не сжигая его. Аккумуляторная батарея — это самый безопасный вариант, потому что они не дадут достаточный ток для повреждения светодиода. Тестирование с помощью любого другого типа батарей может привести к выгоранию светодиода. Покупайте эти батареи в аптеках, универмагах, магазинах или в Интернете.

  • Используйте либо аккумуляторы с ячейками CR2032, либо CR2025.
  • Приобретите соответствующий держатель батареи с ячейками. Купите тот, который сделан для хранения типа круглой батареи (например, CR2025), с которой вы будете тестировать. Вы можете найти их в Интернете или в некоторых магазинах оборудования или электроники. Убедитесь, что держатель имеет красный и черный провода для проверки светодиодных индикаторов. Держатели аккумуляторов для монетных батарей обычно используются для добавления энергии аккумулятора в небольшие проекты, такие как светодиодные украшения или одежда.

  • Некоторые держатели батарей с выводами поставляются с небольшим разъемом на конце, держа кончики двух выводов.
  • Если ваш держатель батареи имеет соединительный разъем, проверьте свой светодиод, вставив анод и катод в маленькие отверстия, которые выстраиваются в линию с красными и черными проводами.
  • Если ваш индикатор не загорается, попробуйте проверить другие светодиодные индикаторы сразу после него. Если они загорятся, вы можете быть уверены, что первый светодиод не работает.

Как проверить светодиод мультиметром?

Тестирование светодиодных устройств ламп или просто светодиодов гораздо проще с цифровым мультиметром, который даст вам четкое представление о том, насколько сильны каждый из светодиодов. Яркость светодиода при его тестировании также укажет на его качество. Если у вас нет мультиметра для использования, простой держатель батареи для круглых батарей с выводами даст вам знать, работают ли ваши светодиоды.

Как проверить светодиод мультиметром?

Символ диода визуально представляет собой как его клеммы, так и катод и анод

  • Убедитесь, что катод и анод не касаются друг друга во время этого теста, что может препятствовать прохождению тока через светодиодный индикатор и затруднять результаты.
  • Черные и красные контакты также не должны касаться друг друга во время теста.
  • Выполнение соединений должно привести к тому, что светодиод засветится.

Мы надеемся, что в данной статье вы нашли все ответы на вопросы

Как проверить светодиод и Как проверить светодиод мультиметром?

Как проверить лампу мультиметром — Multimetri.ru

Узнать, работает ли лампа, можно несколькими способами. Разберём научный — как определить работоспособность осветительного прибора с использованием мультиметра.

Как проверить лампу мультиметром – смотрим видео


Готовим мультиметр к работе

Вынимаем прибор из чехла или футляра. Первым делом проводим визуальный осмотр. Корпус должен быть целым, крышка батарейного отсека установлена без перекосов. Визуально оцениваем целостность проводов и щупов. Отсутствие изоляции, которая может от времени просто осыпаться, восстанавливаем изолентой. Поможет и термоусадочная трубка, если она есть. Щупы тоже стоит осмотреть, замотать сколы по необходимости. Селектор мультиметра ставив в режим измерения омов, на отметку в 200 Ом. Чёрный кабель со щупом включаем в гнездо Com. Красный — в гнездо с символами измеряемых величин, названных в честь Алессандро Вольта, Андре-Мари Ампера и Георга Ома — V, A и Омега.

На индикаторе должна быть единица. Если это не так — прибор нуждается в ремонте. Замыкаем накоротко щупы. На дисплее должна выйти цифра ноль. Если всё так и происходит — прибор исправен. Если цифры меняются, отображаются тускло, попробуйте поменять элемент питания прибора на заведомо свежий и рабочий. Не помогло — мультиметр надо ремонтировать. Для проверки лампочки ставим селектор мультиметра на символ поиска обрыва. На корпусе в этом месте схематично изображён диод.

Читайте также

Как проверить электродвигатель. Готовим мультиметр

»

к содержанию ↑

Проверяем лампу накаливания

Лампы накаливания на 220 В работают в сетях переменного тока, поэтому полярность при их прозвонке не важна.

Проверяем в режиме прозвонки

Один из щупов замыкаем на центральный контакт. Второй — на корпус цоколя сбоку, где у цоколя резьба. Если лампа рабочая, прозвучит звуковой сигнал, а дисплей отобразит сопротивление. Как правило, нижний предел составляет около 3 Ом, верхний — порядка 200 Ом.

Читайте также

Как проверить свечи зажигания мультиметром. Почему свеча не работает?

»

к содержанию ↑

Проверяем в режиме измерения сопротивления

Прозвонка в режиме замера сопротивления поможет не только диагностировать работоспособность лампочки, но и приблизительно определить потребляемый ток, что выведет на потребление. Это может быть полезно, когда о мощности лампы можно только догадываться по причине утраты маркировки.

Следует помнить, что неплотный контакт щупов с цоколем повышает сопротивление. Поэтому, при сомнениях, мощность лампы скорее ниже, а не выше. Для измерения сопротивления лампы переводим селектор мультиметра в сектор измерения сопротивления. Ставим на 200 Ом. Приведённая ниже таблица справедлива для ламп с номинальным напряжением 220 В и цоколями E27 или E14.

Читайте также

Как проверить фазу мультиметром. Для чего искать фазу

»

Сопротивление, Ом15090-10060-6545-4035-3025-28
Мощность, Вт25406075100150

 

 

 

Если при измерении единица на дисплее прибора не меняется на другое число — лампа неисправна, внутри обрыв.

к содержанию ↑

Проверка светодиодной лампы мультиметром

К сожалению, светодиодную лампу невозможно проверить мультиметром. Полупроводниковый прибор с достаточно сложной схемой можно в домашних условиях можно проверить на работоспособность только закрутив в исправный патрон и подав напряжение.

Проверка энергосберегающей лампы мультиметром

Читайте также

Как проверить батарейку мультиметром

»

КЛЛ — компактная люминесцентная лампа, которую в России называют энергосберегающей, также не поддаётся проверке мультиметром. Её колба включена в сеть через сложную схему, которую нельзя прозвонить с внешних контактов. Проверяем работу лампы закручиванием её в заранее исправный патрон.

загрузок — LED professional — LED Lighting Technology, Application Magazine

Приносим извинения за неудобства, но страница, к которой вы пытались получить доступ, находится не по этому адресу. Вы можете использовать приведенные ниже ссылки, чтобы найти то, что вы ищете.

Если вы уверены, что имеете правильный веб-адрес, но столкнулись с ошибкой, пожалуйста, связаться с Администрацией сайта.

Спасибо.

Возможно, вы искали…

Spansion делает рынок светодиодного освещения ярче с помощью интеллектуальной одночиповой микросхемы светодиодного драйвера
Spansion Inc., мировой лидер в области решений для встраиваемых систем, объявила о выпуске новой серии интеллектуальных интегральных схем (ИС) светодиодных драйверов. …
ISA объявляет о выдвижении и подаче заявки на три различных награды
International SSL Alliance (ISA) — это некоммерческая международная организация, представляющая сообщество SSL во всем мире, которая стремится способствовать и стимулировать…
Тепловые модели для светодиодов Osram уже доступны
Помимо данных о луче и электрических данных, теперь в Интернете доступны тепловые модели для светодиодов OSRAM — новая информация касается в первую очередь…
Тепловые модели для светодиодов Osram уже доступны
Помимо данных о луче и электрических данных, теперь в Интернете доступны тепловые модели для светодиодов OSRAM — новая информация касается в первую очередь…
Тепловые модели для светодиодов Osram уже доступны
Помимо данных о луче и электрических данных, теперь в Интернете доступны тепловые модели для светодиодов OSRAM — новая информация касается в первую очередь…
RECOM Power объявляет о выпуске своей первой веб-серии с описанием твердотельной системы освещения
RECOM Power объявляет о выпуске своих первых веб-трансляций в текущей веб-серии, которая будет посвящена приложениям для практического проектирования с использованием продуктов RECOM.
Бесплатные онлайн-инструменты от OSRAM Opto Semiconductors для создания решений для светодиодного освещения
OSRAM Opto Semiconductors предоставляет новые мощные инструменты, файлы для загрузки и техническую информацию для поставщиков решений и инженеров на своем веб-сайте LEDlight.
Новая линейка даунлайтов ACDC обеспечивает значительную экономию энергии
ACDC предлагает два новых дополнения к отмеченной наградами линейке светодиодных потолочных светильников, которые снова демонстрируют лучшие в отрасли характеристики и дизайн…
Гониофотометрические измерения в соответствии с последними международными стандартами
Компактная система гониофотометра LGS 1000 от Instrument Systems гарантирует точное определение пространственных характеристик излучения твердого тела…
Code Mercenaries предлагает новый подход к настройке шин IEC62386 с помощью BusMaster
IEC62386 — это хорошо зарекомендовавший себя вариант управления освещением в приложениях SmartHome и SmartBuilding. Стоимость компонентов IEC62386 в последнее время снизилась…

Тестирование светодиодов — анализ эффективности и качества электроэнергии

Руперт Шварц и Дарен Безуиденхаут, AE Power & E-Mobility
Dewesoft Austria

Введение

Светодиодное освещение становится все более популярным. Высокоэффективные светодиоды потребляют примерно на 75% меньше энергии, чем лампы накаливания, и увеличенный срок службы по сравнению с лампами накаливания является основной причиной этой тенденции.

Используя анализатор мощности Dewesoft, мы исследуем фактическое влияние светодиодных ламп на эффективность и качество электроэнергии в соответствии с международным стандартом IEC 61000 по электромагнитной совместимости (EMC).

Поскольку светодиодные светильники быстро заменяют лампы накаливания и энергосберегающие лампы из-за их высокой эффективности и увеличенного срока службы, с помощью технологии сбора данных Dewesoft мы углубляемся в эту технологию, чтобы проверить ее, поскольку мы тестируем несколько светодиодных продуктов. .

Видео 1: Измерение и анализ светодиодного освещения с помощью программного обеспечения для сбора данных Dewesoft

Вопросы, которые мы задали себе: соответствует ли эффективность стандартной электрической системе заявленной? А также какие эффекты Power Quality проявляются в светодиодных осветительных устройствах и какое влияние они оказывают на энергосистемы с европейским номинальным напряжением 230 В без использования какого-либо дополнительного кондиционирования питания?

Измерение разбито на два сегмента для освещения ниже 25 Вт:

  • В первом сегменте оцениваются третья и пятая гармоники и связанные формы сигналов, чтобы определить, соответствует ли светодиодная лампа требованиям, установленным стандартом для светодиодов, путем сравнения отклонения от идеальных синусоидальных волн.
  • Во втором сегменте отдельные токи гармоник сравниваются с пределами оборудования класса C в стандарте IEC 61000-3-2.

Приложение для задач и измерений

Светодиодные лампы

более энергоэффективны, чем лампы накаливания, но у них есть и недостатки. Поскольку мы используем светодиоды, которые создают нелинейную нагрузку, они могут отрицательно повлиять на качество электроэнергии, внося шум в сеть. Это создает нежелательную нагрузку на цепь переменного тока.

Поскольку все больше и больше светодиодных систем освещения используется, качество электроэнергии в электрической сети может подвергаться отрицательному влиянию, что, в свою очередь, приводит к нежелательным значениям качества электроэнергии и низким значениям мощности в сети.

Мы опишем методы использования анализатора качества электроэнергии Dewesoft для точного и удобного мониторинга качества электроэнергии и измерения этих вредных воздействий.

Установка для измерений и испытаний

светодиодов питаются от линии постоянного тока, генерируемой импульсным источником питания.Для анализа мощности постоянного тока необходима система сбора данных с высокой пропускной способностью и высокой частотой дискретизации из-за высоких частот переключения балластных блоков или импульсных регуляторов в люминесцентном освещении и светодиодах.

Усилители Dewesoft SIRIUS HS (High Speed) идеально подходят для этого приложения и позволяют проводить полностью синхронный анализ эффективности всего потока энергии (мощность переменного тока, мощность постоянного тока, яркость).

Измерительное оборудование
Система сбора данных SIRIUSi-HS-4xHV-4xLV
Датчики и преобразователи 2x DS-CLAMP-150DC токовые клещи переменного / постоянного тока
Программное обеспечение для сбора данных Dewesoft X3
Дополнительные лицензии на программный модуль Разъем питания

Для этого измерения была выбрана система сбора данных серии SIRIUS HS, так как она сочетает в себе широкую полосу пропускания с возможностью получения сигнала без псевдонимов с возможностью измерения с частотой дискретизации до 1 мс / с .DAQ-устройства Dewesoft спроектированы как полностью модульные, что означает, что несколько устройств могут использоваться одновременно, измеряя различные параметры, при этом все каналы полностью синхронизированы друг с другом.

Система SIRIUS DAQ также оснащена фильтром сглаживания, который можно комбинировать с фильтром с бесконечной импульсной характеристикой (IIR) внутри программируемой вентильной матрицы (FPGA). Эти решения для фильтрации являются стандартными и могут быть активированы или деактивированы пользователем по мере необходимости.

Изолированный анализатор мощности высокого и низкого напряжения SIRIUS

С одной стороны, низковольтный усилитель (SIRIUS HS-LV) в сочетании с технологией 16-битного АЦП позволяет проводить измерения очень низких напряжений даже в больших диапазонах измерения (например.грамм. разрешение мкВ в диапазоне ± 10 В). Эти уровни напряжения можно установить в настройках измерения в Dewesoft X.

С другой стороны, усилитель высокого напряжения (SIRIUS HS-HV) позволяет напрямую измерять напряжения до 1600 В постоянного тока . Это гарантирует, что в этом случае сетевое напряжение может быть напрямую измерено встроенными усилителями без каких-либо дополнительных преобразователей напряжения.

DS-CLAMP-150DC — это преобразователь тока, основанный на эффекте Холла, который измеряет ток, используя магнитное поле, создаваемое вокруг проводника.Ток прямо пропорционален выходному напряжению. Он также имеет то преимущество, что измерение гальванически развязано, что делает измерение более безопасным.

Датчики и преобразователи тока Dewesoft

Эффект Холла удобно использовать для измерения как переменного, так и постоянного тока в широком диапазоне амплитуд и частот (до 100 кГц) с высокой чувствительностью и хорошей точностью 0,5% от показаний. По этой причине для измерения постоянного тока рекомендуется использовать клещи на эффекте Холла.

Используемое программное обеспечение для сбора данных DewesoftX очень интуитивно понятно и удобно для пользователя, а в сочетании с силовым модулем делает этот тип измерения точным и простым.

Модуль анализа мощности — один из самых сложных математических модулей в Dewesoft X. Он позволяет проводить измерения в сетях постоянного и переменного тока, работающих на разных частотах, с различными предварительно установленными конфигурациями проводки и даже с источниками переменной частоты.Все измерения полностью синхронны.

Предварительно установленные электрические схемы, доступные в модуле анализа мощности DewesoftX, следующие:

  • DC
  • Однофазный
  • Трехфазная звезда
  • 3-фазный треугольник
  • 3-фазный Aron
  • 3 фазы V
  • 2 фазы
  • 3 фазы 2 метра

Для этого измерения были выбраны схемы подключения постоянного и однофазного переменного тока. Из раскрывающегося списка на странице настройки схемы каналы могут быть назначены соответствующим линиям измерения.

Рисунок 1: Окна настройки постоянного и переменного тока в Dewesoft X

На следующем изображении показаны формы сигналов переменного тока (слева) и постоянного тока (справа) светодиода, а также схема подключения, которая использовалась для выполнения измерения. Возможность хранения необработанных данных также позволяет записывать переходные процессы или анализировать dU / dt, как показано на стороне постоянного тока.

Рисунок 2: Формы сигналов переменного тока (слева) и постоянного тока (справа) светодиода

Светодиод на рисунке 1. имеет КПД от постоянного к переменному току 80%.Активная мощность 5,3 Вт. Согласно энергетической маркировке этот светодиод будет иметь:

  • Класс A Эффективность
  • Энергопотребление 5,3 кВтч / 1000 часов

Светодиод кажется лучшим выбором из-за бесспорно высокой энергоэффективности. Однако остается вопрос, действительно ли светодиоды являются лучшей технологией для использования с минимальным вредным воздействием или без него?

При анализе сигнала переменного тока, который поступает из сети в левой части изображения выше, становится ясно, что форма сигнала тока больше не является синусоидальной, а это означает, что коэффициент мощности будет снижен.Также имеется большое количество искажений, которые отрицательно влияют на сетку.

Имеется большая мощность искажения, которая влияет на качество электросети, что приводит к низкому качеству электроэнергии.

Все электрические устройства должны соответствовать требованиям к гармоническим токам, определенным в стандарте IEC 61000-3-2. Пределы для освещения определены в классе C. Освещение разделено на две области номинальной электрической мощности: первая — это освещение ниже 25 Вт, а остальные — в сегменте более 25 Вт.

Измерения

Для освещения ниже 25 Вт есть три возможных процедуры для выполнения тестов. Мы обсудим два из них в этой заметке по применению.

Процедура 1 — Анализ третьей и пятой гармоник

Первая процедура анализирует гармоники тока третьего и пятого порядка гармоник, а также анализирует форму волны тока за один период.

Пределы гармонических токов
Порядок гармоник Предел
И_х4 86%
I_H5 61%

При анализе формы волны пиковое значение тока должно появиться в фазе ≤65 ° и не должно опускаться ниже 5% до достижения фазы 90 °.


Рисунок 3: форма кривой тока, показанная в стандарте IEC 61000-3-2 (стр. 20)

Если мы теперь проанализируем форму волны тестируемого светодиода, становится совершенно ясно, что он вообще не выполняет это условие. Гармонические токи для I_h4 и I_H5 превышают установленные пределы, а характеристики формы сигнала далеки от требований, установленных стандартом.


Рисунок 4: Анализ формы кривой тока тестируемого светодиода

Dewesoft может выполнить очень быстрый и эффективный анализ в соответствии с этими требованиями.В Scope View форма волны может быть немедленно проанализирована с помощью пары триггеров и функций анализа. Гармонические токи можно быстро проверить с помощью диаграммы гармонического БПФ или векторного осциллографа, который может отображать каждую отдельную гармонику как в абсолютных, так и в процентных значениях.

Процедура 2 — Анализ гармоник каждого отдельного тока

Вторая процедура заключается в анализе того, не превышают ли токи гармоник без фильтров гармоник для каждой отдельной гармоники пределы оборудования, классифицируемого по классу D, определенному в IEC 61000-3-2: 2018 (таблица 3, столбец 2 — Класс Оборудование D, стр.22):

Пределы гармонических токов
Порядок гармоник Предел
И_х4 3,4 мА / Вт
I_H5 1,9 мА / Вт
I_H7 1,0 мА / Вт
I_H9 0,5 мА / Вт
I_h21 0,35 мА / Вт
Нечетные гармоники от I_h23 до I_h49 3,85 / н мА / Вт

В этом случае токи гармоник относятся к номинальной активной мощности лампочки.

Этот анализ удобно проводить и в программе Dewesoft X. С помощью функции справочной таблицы все гармоники и их пределы могут быть показаны на одной диаграмме. Для этого светодиодного светильника почти все гармонические пределы превышены, что снижает экономическую эффективность этих систем освещения.

Рисунок 5: Диаграмма гармонических токов

Результаты

В этом приложении измерения типичный треугольник мощности:

  • полная мощность (S),
  • реальная мощность (P) и
  • реактивная мощность (Q)

из анализа мощности переменного тока не подходит.Это связано с другими параметрами, такими как искажения и реактивная мощность гармоник, которые необходимо учитывать из-за нелинейной нагрузки, вызываемой светодиодами (нелинейные нагрузки также создаются инверторами, электронными балластными модулями, блоками питания компьютеров. , и выпрямленные входы, среди прочего).

Силовой модуль Dewesoft содержит все необходимые инструменты для успешных измерений в нелинейной области. Помимо гармонической реактивной мощности (QH), возникающей из-за фазового сдвига между напряжениями и токами одинаковых частот, необходимо учитывать новый параметр: реактивная мощность искажения (DH).

Реактивная мощность искажения определяется как комбинация напряжений и токов на разных частотах, которые создают мощность искажения.

Рисунок 6: Треугольники мощности — старый (P, Q, S) слева, новый, включая искажения справа

Хотя светодиодная технология считается очень эффективной, тестируемый светодиод создает большие искажения. Это особенно заметно в высокой мощности искажений (DH) и высоком уровне гармонических искажений (THD):

  • P = 5,3Вт
  • Q = 10,4 ВАр
  • QH = -0,9 ВАр
  • DH = 10,4 ВАр
  • S = 11,7 ВА
  • THD_I = 183%

Выводы

Анализатор мощности Dewesoft может измерять как КПД , так и качество электроэнергии , а также выполнять полный анализ лампочек с помощью одного прибора.Это новый и инновационный опыт тестирования освещения.

Из 10 протестированных светодиодных лампочек, на удивление, только одна прошла тест Power Quality Test . Светодиоды для этого теста были выбраны случайным образом без каких-либо предубеждений в отношении изготовления, модальности и цены. Только после тестирования эти параметры были оценены, в связи с правилами конфиденциальности данных мы не можем раскрыть эту информацию в настоящее время.

Проверка источника напряжения

Перед проверкой качества электроэнергии, выделяемой светодиодными лампами, необходимо проверить источник напряжения и убедиться, что все параметры (гармоники) находятся в требуемых пределах, чтобы убедиться в отсутствии больших падений или провалов напряжения.Нормы IEC 61000-3-2 требуют, чтобы гармонические напряжения были ниже установленных пределов.

Заданные пределы гармонических напряжений
Порядок гармоник Предел
У_х4 0,9%
U_H5 0,4%
U_H7 0,3%
U_H9 0,2%
Четные гармоники от U_h3 до U_h20 0,2%
Все гармоники от U_h21 до U_h50 0,1%

Одним из больших преимуществ использования инструментов Dewesoft DAQ является программная опция фоновых гармоник (см. 6.2.1. Фоновые гармоники в руководстве по анализатору мощности), где можно компенсировать возможные искажения и гармоники напряжения в сети, а также проводить испытания в соответствии с IEC 61000-3-2.

Документация

Светодиодная лампа Ремонт дома своими руками

Светодиодная лампа — это современный и эффективный источник света. Светодиодные лампы безопасны — они не содержат ртути и других токсичных элементов и не причиняют вреда при поломке. Однако первое, что побуждает нас покупать эти лампочки, — это их экономичность из-за низкого потребления электроэнергии.К тому же светодиодные устройства достаточно надежны и обычно служат весь срок службы. Таким образом, преимущества этого источника света очевидны: он яркий и долго служит.

Традиционные лампы накаливания вообще не подлежат ремонту, в то время как в светодиодных лампах можно починить практически все. Вам просто нужно найти неисправность, отремонтировать и продлить срок службы лампочки. Если вы знакомы с ремонтными операциями, то сможете найти все необходимые инструменты даже дома; все, что вам нужно, это найти время для этого.

Принцип действия светодиодной лампы

основан на способности некоторых материалов излучать свет при определенных условиях. Рабочий элемент колбы, светоизлучающий диод, представляет собой полупроводниковое устройство, излучающее некогерентный свет при прохождении через него электрического тока. Светодиоды излучают свет только при использовании постоянного тока.

Как работает светодиод?

Давайте использовать популярный светодиод SMD в корпусе 5730, чтобы проиллюстрировать работу светодиода.

Вы можете найти его технические характеристики ниже:

Пиковый постоянный ток (IFPM) 260 мА
Постоянный ток (IFM) 180 мА
Обратное напряжение (VR) 5 В
Мощность рассеивания (PD) 0,63 Вт
Угол луча 120 °
Линза светодиодная прозрачный
Рабочая температура (TOPR) -40 ° С — + 85 ° С
Температура хранения (TSTG) -40 ° C — + 100 ° C
Температура пайки (TSOL) 260 ° С

Проще говоря, светодиод преобразует электрический ток в световое излучение.Этот источник света состоит из полупроводникового кристалла на непроводящей основе, корпуса с контактами и оптической системы. Для повышения стабильности светодиода пространство между кристаллом и пластиковой линзой заполнено прозрачным силиконом. Алюминиевая основа снижает перегрев. В нормальных условиях тепловыделение невелико.

Чем больше ток проходит через диод, тем ярче он светится. Однако из-за внутреннего сопротивления p-n перехода диод нагревается и при большом токе может сгореть — соединительные проводники плавятся, а полупроводник горит.Таким образом, для обеспечения необходимого значения тока в лампе должны быть блок питания — драйвер и система отвода тепла — радиатор.

А теперь посмотрим на лампочку поближе.

Основные части светодиодной лампы

  1. Диссипатор . Это уменьшает неравномерность светового потока и лишнюю легкость некоторых излучающих элементов. Также он обеспечивает освещение под определенным углом (у бытовых светильников он должен быть шире).
  2. Печатная плата со светодиодами . Плата на алюминиевой основе со светодиодами.Количество светодиодов очень важно для теплообмена; следовательно, он должен соответствовать конструкции лампы. Между печатной платой и радиатором имеется термопаста для увеличения теплопередачи.
  3. Радиатор . Качественный радиатор предназначен для отвода тепла от компонентов колбы. Он используется для предотвращения перегрева светодиодов. Ребра радиатора повышают эффективность отвода и отвода тепла.
  4. Колпачок лампы . Он вкручивается в патрон лампы и обеспечивает надежный контакт.Колпачки в основном изготавливаются из медно-цинкового сплава с никелевым покрытием. Для защиты от пробоя электрического тока у большинства светодиодных ламп цоколи имеют полимерную основу.
  5. Драйвер . Это электронная принципиальная схема, предназначенная для преобразования переменного тока в постоянный ток требуемой величины. Избыточный ток приводит к перегоранию светодиода. Качественный драйвер обеспечивает работу лампочки при скачках напряжения и работу светодиода без пульсаций. Схематических схем драйверов светодиодов существует множество.Продемонстрируем лишь пару из них: Существуют простые драйверы, в которых напряжение ограничивается резистором или конденсатором, а также более продвинутые драйверы, использующие микрочипы. Этот тип драйверов не только ограничивает напряжение, но также обеспечивает оптимальное энергопотребление и выполняет функции защиты. Драйверы с микрочипами более современные и эффективные, но более сложные в производстве и, следовательно, более дорогие.

Работа лампы и устранение неисправностей

Принцип действия лампы довольно прост: переменный ток подается от линии электропередачи к драйверу через контактные провода, где он становится постоянным и проходит через светодиоды, которые преобразуют его в свет.Отвод тепла осуществляется с помощью платы со светодиодами и радиатором.

Светодиодные лампы

сначала кажутся разными, но имеют схожий дизайн и сделаны по одним и тем же принципам. Если вы научитесь ремонтировать только одну лампочку, будет намного проще починить следующие.

В большинстве современных ламп в качестве источника света последовательно подключены светодиоды SMD. Схема находится на картинке слева.

Если один из диодов не работает, остальные не работают. Самая частая причина выхода из строя — перегорание светодиода (в большинстве случаев только одного из них).Однако иногда выходят из строя несколько светодиодов одновременно.

светодиода могут гореть по разным причинам. Среди них низкое качество компонентов, отсутствие стабилизации тока, перегрев светодиода и скачки напряжения. Некоторые производители перегружают светодиоды, чтобы заинтересовать клиентов высокой яркостью маленькой лампочки.

Тем не менее, в большинстве случаев можно исправить светодиодную лампочку. Причем ремонт может провести даже дилетант. И стоимость ниже, чем у новой лампочки.

Для выяснения причины неисправности необходимо разобрать лампочку — снять рассеиватель и потянуться внутрь. Он может быть приклеен к корпусу, поэтому для этого может потребоваться тонкая отвертка. Часто бывает, что лампочки со стеклянным рассеивателем не разбираются.

Внутри находится плата со светодиодами. У качественных лампочек на этой плате только светодиоды. Если есть какие-то другие компоненты, он будет перегреваться быстрее, и компоненты выйдут из строя.

Далее следует визуальный осмотр.Вы можете определить местонахождение сгоревшего светодиода, просто найдя черное пятно от горящих следов.

Однако в некоторых случаях светодиод может выглядеть неповрежденным. Затем вы можете проверить и найти неисправный светодиод с помощью мультиметра. Большинство современных мультиметров имеют функцию проверки диодов. Процедура проверки следующая: прикоснитесь к аноду красным зондом, а катод — черным. Загорится рабочий диод. Если вы измените полярность датчика, на измерителе будет отображаться «1», а диод не загорится. Также во время теста не загорится неисправный диод.

Замена светодиода

Теперь, когда вы обнаружили неисправный диод, его нужно заменить. Он припаян к плате. Опасность перегрева критична при работе диодов. Помните, что рекомендации по пайке включены в технические характеристики диодов. Например, для светодиода 5730 SMD, который широко используется благодаря удачному балансу размеров, мощности и светового потока, температура пайки составляет 260 ° C (не более 2 секунд).

Если конструкция лампы позволяет, снять плату с радиатора, распаять контакты драйвера и после этого приступить к замене светодиода.Плату можно закрепить с помощью держателя для печатной платы (тогда обе руки будут свободны). По возможности нагрейте его снизу с помощью термофена. Температура не должна быть высокой, порядка 100 ÷ 150 ° C, чтобы не повредить исправные диоды.

Старый светодиод удобно снимать горячим пинцетом, который одновременно нагревает оба выхода. Или сделать это самодельным простым аналогом — медным проводником, намотанным на жало паяльника.

Следует заменить старый светодиод на новый того же типа.Обычно вы можете найти светодиодную маркировку на печатной плате лампы. Соблюдайте полярность во время установки.

Есть, казалось бы, более простой способ отремонтировать светодиод — просто установить провод вместо поврежденного диода, то есть подключить контактные площадки. Выглядит это так:

Если на печатной плате много светодиодов и все они установлены последовательно, отсутствие одного из них не сильно повлияет на остальные. Однако напряжение на рабочих диодах будет выше и шансы на их возгорание выше.Такого риска нет с качественными лампочками, где драйвер устанавливает необходимый ток и снижает напряжение до безопасного для светодиодов уровня.

Прочие отказы

Если во время теста все диоды оказались исправными, следует проверить драйвер лампы и поискать другие повреждения, а также проверить проводники и контакты на обрыв цепи.

Драйвер в качественных лампах должен быть отдельной платой и располагаться в цоколе лампы. У каждого производителя уникальная схемотехника драйвера, поэтому стандартных рекомендаций по ремонту нет.Здесь стоит применить индивидуальный подход.

Проверить основные компоненты мультиметром, проверить диоды и транзисторы на предмет нехватки, сравнить номиналы резисторов, заменить потерявшие емкость конденсаторы. Если в схеме драйвера есть микросхема IC, вам следует проверить напряжение на ее выходах в соответствии с ее техническими характеристиками и решить, нормально ли она работает. При необходимости замените неисправные компоненты.

В конце проверьте, исправна ли разобранная лампочка, и затем соберите ее.Возможно, потребуется нанести термопасту, затянуть винты и закрепить рассеиватель.

В нашем магазине вы можете найти комплекты для сборки светодиодных ламп своими руками, а также отдельные компоненты: драйверы, платы со светодиодами, корпуса и т. Д. Вам просто нужно разобрать лампу, распаять старый неисправный компонент и установить новый. Это займет всего несколько секунд.

Здесь мы описали простейшие варианты ремонта светодиодных ламп, не вдаваясь в подробности. Однако очевидно, что такой вид ремонтных работ перспективен и перспективен.Стоимость замены светодиода или драйвера будет значительно ниже, чем покупка новой лампы. Также можем добавить, что при замене следует использовать только качественные комплектующие с хорошими техническими характеристиками. Это может обеспечить долгую и стабильную работу светодиодной лампы.

Toolboom Team

Все права защищены. Этот материал с веб-сайта toolboom.com не может быть опубликован, переписан или распространен полностью или частично без указания авторства и предоставленных обратных ссылок.

Как проверить светодиодное мерцание дома

Когда вы проводите время в помещении, вы наверняка сталкивались с мерцающим светом.Вспышка и выключение, как стробоскоп или диско-шар, может быть в высшей степени раздражающим, но также может быть даже опасным.

Почему возникает мерцание? В некоторой степени мерцание происходит во всех источниках света с источником питания переменного тока с частотой от 50 до 60 герц, что означает, что электрический ток движется вперед и назад от 50 до 60 раз в секунду. Мерцание возникает из-за быстрых изменений напряжения или «пульсации» тока, которая затем приводит к пульсации светового потока — мерцанию.

Мерцанию подвержены все типы фонарей, включая лампы накаливания, галогенные и даже светодиодные лампы.Но эффекты не одинаковы для всех типов света. Например, в галогенных лампах температура нити накала медленно реагирует на изменения электрического тока, поэтому вы не заметите такого сильного эффекта мерцания. Светодиоды практически мгновенно реагируют на изменение силы тока, поэтому мерцание заметно более заметно.

Помимо неприятных ощущений, мерцающий свет может вызвать некоторые серьезные заболевания, такие как головные боли, нарушение зрения или, в крайних случаях, эпилептические припадки. Даже если мерцание небольшое, например, на более высоких частотах от 100 до 150 Гц, ваш глаз может не замечать его сознательно, но мозг все равно может обнаруживать его и реагировать на него, что потенциально может иметь негативные последствия.В частности, спортсмены на стадионах и работники складов могут быть более подвержены несчастным случаям в условиях плохого освещения, которые могут вызвать стробоскопический эффект.

В домашних условиях есть несколько простых способов проверить мерцание светодиодов, чтобы предотвратить неприятное освещение и потенциальную опасность для здоровья. Во-первых, вы можете выполнить простой тест на мерцание с помощью камеры смартфона. Включите его и направьте на рассматриваемый источник света, глядя на изображение, снятое на экране. Если вы видите серию темных и светлых полос, медленно движущихся по экрану, значит, ваш свет мерцает.Если полосы не так заметны, значит, все в порядке. Камеры смартфонов могут снимать изображения с дискретной частотой, поэтому они являются надежными инструментами, которые четко фиксируют отсутствие света.

Еще один способ использовать смартфон для проверки мерцания — это загрузить приложение для проверки мерцания. VISO Flicker Tester использует камеру вашего телефона для измерения индекса мерцания света, процента мерцания и значений частоты, чтобы вы могли получить более полное представление о качестве освещения.

Чтобы полностью минимизировать мерцание, производители светодиодов могут улучшить и включить дополнительные драйверы в свои продукты.Именно это делает Soraa со своим освещением, эффективно делая их без мерцания. Чтобы узнать больше о недавно выпущенных светильниках Soraa без мерцания для дома, посетите сайт www.soraahome.com.

светодиодная тестовая лампа

светодиодная тестовая лампа

Светодиодная контрольная лампа — очень удобное устройство. Это позволяет вам проверить наличие постоянного напряжения где-либо в цепи. Он идеально подходит для поиска неисправностей в автомобилях с цепями на 12 В. Просто прикрепите зажим «крокодил» к земле тела и наденьте зонд на любую часть, которую вы хотите определить, находится под напряжением.Светодиодная тестовая лампа имеет множество применений. Я видел зонды, которые были острием иглы, чтобы вы могли пробить изоляцию проводов в испытательных целях.



Посетите книжную полку VK2TIP. Мой личные рекомендации, спасибо.

ПОСЛЕДНИЕ ИЗМЕНЕНИЯ:
Пятница, 29 июня 2018 г., 03:08:09 PDT

ВЫ ЗДЕСЬ: ГЛАВНАЯ> ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ> Светодиодная тестовая лампа

ЧТО ТАКОЕ ТЕСТОВАЯ ЛАМПА СИД?

Светодиодная контрольная лампа — очень удобное устройство.Это позволяет вам проверить наличие постоянного напряжения где-либо в цепи. Он идеально подходит для поиска неисправностей в автомобилях с цепями на 12 В. Просто прикрепите зажим «крокодил» к земле тела и наденьте зонд на любую часть, которую вы хотите определить, находится под напряжением. Светодиодная тестовая лампа имеет множество применений.

Я даже видел щупы светодиодных тестовых ламп, которые были острием иглы, чтобы можно было пробить изоляцию проводов в испытательных целях.

BTW LED означает светоизлучающий диод.

КАК СОЗДАТЬ ТЕСТОВУЮ ЛАМПУ СИД?

Самый простой способ разместить светодиодную тестовую лампу — это встроить ее в ящик для ручек, как показано на рисунке 1 ниже.

Рисунок 1 — принципиальная схема светодиодной тестовой лампы

НЕОБХОДИМЫЕ МАТЕРИАЛЫ ДЛЯ ИСПЫТАТЕЛЬНОЙ СВЕТОДИОДНОЙ ЛАМПЫ

Для сборки светодиодной испытательной лампы вам потребуются:

  • Выброшенный пенал
  • красный светодиод
  • резистор малой мощности 560 Ом
  • подходящий металлический материал зонда — предпочтительно латунь или медь.
  • зажим из кожи аллигатора
  • соединительный провод от резистора к датчику
  • прочный соединительный провод от катода светодиода к зажиму типа «крокодил»
  • клей для фиксации светодиода и датчика на месте
  • паяльник, припой.

Лично я бы сделал прочный соединительный провод, идущий к зажиму типа «крокодил» вашей светодиодной испытательной лампы, длиной около 2 футов или 600 мм, чтобы дать вам немного гибкости.

УСТАНОВКА СВЕТОДИОДНОЙ ТЕСТОВОЙ ЛАМПЫ ВМЕСТЕ

Здесь вы в значительной степени сами по себе, потому что это полностью зависит от того, что вы можете собрать или иметь под рукой.Чехлы для ручек обычные, попробую прозрачный. Проволока, безусловно, должна быть утилизирована из выброшенного потребительского оборудования. То же самое может относиться к резистору 560 Ом и светодиоду.

Если вы не знаете, как выглядит цветовой код резистора 560 Ом, перейдите на мою страницу цветового кода резистора.

Помните, что для светодиода, приобретенного в новом магазине, анод является более длинным проводом. Для спасенного самостоятельно. Если вы не знакомы с пайкой, то вот страница по теме пайки.[при обработке этой директивы произошла ошибка]

ВЫ ЗДЕСЬ: ГЛАВНАЯ> ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ> Светодиодная тестовая лампа

Авторские права Ian C. Purdie © 2000 — 2001 — 2002, все права защищены. URL — https://www.electronics-tutorials.com/test-equip/led-test-lamp.htm

Все материалы на этом сайте могут быть использованы частными лицами в своих некоммерческих целях. Единичные копии моих страниц или файлов могут бесплатно распространяться среди других частных лиц, если на соответствующей странице не указаны другие требования.Тем не менее, все материалы остаются интеллектуальной собственностью Яна С. Пурди, отдельных участников или других источников, давших разрешение на использование своих материалов на этом сайте. Все авторские права и торговые марки принадлежат мне или соответствующим владельцам. Материал не может быть переиздан без предварительного письменного разрешения, а также не может быть воспроизведен на другом сервере без моего предварительного письменного разрешения. За исключением случаев, предусмотренных на этих страницах или предоставленных разрешений, перевод на другой язык, кроме английского, и размещение страниц в другой стране строго запрещены.
Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com

Создано 7 марта 2002 г.

Обновлено 8 марта 2002 г.

Связаться ВК2ТИП

Важность испытаний на горение в светодиодных светильниках

Обеспечение качественных светодиодных осветительных приборов, ламп и осветительных приборов означает развертывание оборудования строгого контроля качества и соблюдение стандартов тестирования. В Fireflier Lighting мы внедрили процесс производства и контроля качества, который обеспечивает энергоэффективные светодиодные продукты, которые служат дольше и обеспечивают непревзойденное освещение.

Сегодня мы познакомим вас с испытательным оборудованием и приборами для светодиодного освещения, которые помогут нам предоставлять лучшие световые решения нашим клиентам по всему миру. Взгляните и получите более полное представление о нашем процессе производства и тестирования светодиодов:

Источник питания переменного тока и цифровой измеритель мощности

Оборудование для тестирования светодиодного света помогает нашей команде проводить полные рабочие испытания при различных напряжениях и обеспечивает работоспособность светодиодных продуктов. в лучшем случае даже при повышенном напряжении.Инструмент для тестирования светодиодов также помогает в проведении теста на затемнение, что важно для определения оптимальных характеристик светодиодов.

Интегрирующая сфера

Оборудование для тестирования светодиодов помогает выполнять широкий спектр тестов, включая тест электрических характеристик, тест фотометрических параметров и тест параметров цвета. Все вышеперечисленные тесты играют решающую роль в обеспечении качества светодиодного освещения, принимая во внимание прямое напряжение, обратный ток утечки, коэффициент мощности, индекс цветопередачи, поток излучения и многое другое.

Тест IES

Запуск теста фотометрических параметров и теста электрических характеристик важен для установления высоких стандартов светодиодного освещения для тестирования и сертификации. Оба теста помогают Fireflier Lighting правильно определить распределение света, световую отдачу, угол луча света, коэффициент мощности, напряжение и ток. Об этом заботятся все ведущие производители и поставщики светодиодов, будь то в США или Китае.

Стойка для испытания на старение

Светодиодные светильники High Bay, светодиодные лампы для кукурузы и осветительные приборы, поставленные без износа, подвергают клиентов риску получения неисправных светодиодных продуктов.Вот почему наша команда светодиодных инженеров предусмотрела 72 часа старения источника света; 72 часа испытания на старение ИС, конденсатора и резистора; От 48 часов до 72 часов на утечку старения; 36 часов для испытания на удар и не менее 24 часов для испытания на старение всей лампы.

Тестер Hi-pot и осветитель

В то время как иллюминометр помогает в проведении эффективных тестов интенсивности и однородности света, тестер Hi-pot используется для проведения теста сопротивления напряжению 1005 в соответствии со стандартами UL и TUV.Именно благодаря таким испытаниям ведущие светодиодные компании контролируют качество и становятся лучшим поставщиком качественных светодиодных светильников.

Приборы для измерения вибрации

Сборка является важной частью создания высококачественных светодиодных фонарей и, следовательно, жизненно важна для обеспечения скорости сборки. Это оборудование для тестирования светодиодных фонарей помогает нашим инженерам убедиться, что светодиодные светильники High Bay и осветительные приборы находятся в отличном состоянии и будут иметь долгий срок службы.

Испытание на падение

Как следует из названия, этот тест проверяет прочность светодиодных трубок и упаковки продукта.Испытания на падение имеют решающее значение, чтобы избежать повреждения светодиодных продуктов во время транспортировки и неудобств для наших клиентов в США, Канаде, на Ближнем Востоке и в Австралии.

На этот раз давайте сделаем акцент на тесте на старение (тест на сжигание), который обычно игнорируется многими производителями светодиодного освещения.

Что такое стойка для испытания на старение?

Стойка выдержки предназначена для моделирования продуктов в реальных условиях, включая использование различных факторов старения условий продукта для усиления процесса в соответствующих условиях.

Зачем нужен тест на старение?

Электронные продукты, будь то компоненты, детали или машины, нуждаются в испытании на старение. Старение и испытание — это не одно понятие, сначала старение, а затем испытание. Электронный продукт после изготовления образует законченный продукт, способный сыграть свою роль. Но пользователи могут столкнуться с множеством проблем после использования, большинство проблем возникает в первые несколько или десятки часов. Позже сформулируйте формулировку старения электронных продуктов и проведите испытания, чтобы смоделировать состояние использования или эквивалентные продукты.Этот процесс выполняется производителем продукта. Проблемные продукты останутся на заводе, продукты без проблем будут продаваться пользователям, чтобы гарантировать, что продукты, которые покупают пользователи, являются надежными или менее проблемными, что является значением теста на старение.

Как сделать тест на старение?

1 Поместите светодиодные фонари High Bay по одному на полку для устаревания, подключив их к соответствующему гнезду источника питания.

2 Откройте переключатель стенда для испытания на старение, в соответствии с различным входным напряжением, чтобы замкнуть соответствующий переключатель питания, чтобы проверить, загорелась ли каждая лампа, при этом убедитесь, что лампа в процессе старения работает на полную мощность.

3 время испытания на старение более 24 часов, лампа в процессе старения, лампа не меньше, чем проходит, проверка мощности, каждая мощность 20 секунд, выключение питания 20 секунд, в процессе старения каждые 2 часа до провести освещение. (Метод заключается в том, чтобы подобрать лампу вручную при дрожании кадра старения или соответствующем постукивании). Лампы времени старения не могут появиться мертвым светом, темным светом, миганием, оттенком цвета и другими нежелательными явлениями.

4 старение в соответствии с различными лампами в соответствии с различными процедурами для старения, старение завершено, замкните переключатель стенда для испытания на старение, чтобы температура поверхности лампы снизилась до комнатной, лампа из стойки для испытаний на старение извлечена, помещена в в указанном месте, чтобы дождаться следующего процесса.

5 в процессе старения, такие как приведенное выше описание неблагоприятных явлений, следует немедленно прекратить тестирование, дефектные продукты удалены из стеллажа для старения и сделать хорошую запись работы плохой, плохой отдел службы доставки продуктов, чтобы иметь дело.

6 стареющих сотрудников каждые 2 часа должны составлять таблицу учета старения.

7 отдел качества IPCQ каждые 2 часа осмотр стареющей рамы, проверка испытания на старение — нормальное освещение, старение ламп и фонарей для определения того же времени, проверка времени старения лампы, срока хранения, Записи о старении, зарегистрированные при проверке. В протоколе, когда аномальная скорость старения превышает 3%, IPCQ должна отреагировать на ситуацию инспектору по качеству.

8 С контролем за лампами, должны быть установлены в соответствии с установкой монтажной схемы старения, послепродажный персонал должен сотрудничать с производством старения.

Fireflier Lighting имеет более чем 24-часовой тест на старение, который они проводят перед упаковкой и отправкой своих светодиодных светильников для высоких пролетов и других светильников. Это сделано для того, чтобы покупатели получали продукцию высокого качества. Таким образом, испытание на старение является неотъемлемой частью всех производственных процессов, выполняемых Fireflier Lighting.Однако мы не можем гарантировать 100-процентную эффективность, так как всегда есть ошибка. Однако мы делаем все возможное, чтобы исправить эту ошибку в кратчайшие сроки.

Ниже приведены некоторые фотографии испытаний на старение продуктов Fireflier Lighting:

Ripple UFO LED High Bay Light 60-240W

Titan UFO LED High Bay Light 300W-480W:

Linear LED High Bay Light 80-200W:

E40 LED High Bay Bulb 50w-300W:

IP65 LED Corn Bulb 10W-80W:

IP65 LED Corn Bulb 60w-200W :

2018-05-29

Устранение неисправностей осветительной арматуры | Руководства по дому

Те времена, когда светильники были лампами накаливания или люминесцентными, остались в прошлом.Сегодня домовладелец также столкнется с LED — светодиодами — светильниками. К счастью, процедуры устранения неполадок в основном одинаковы для всех трех типов. Хорошей новостью является то, что все, что вам понадобится, это бесконтактный тестер напряжения и цифровой мультиметр. Если вам нужно купить цифровой мультиметр, купите измеритель с автоматическим выбором диапазона вместо ручного.

Проверка целостности цепи

Основной тест, используемый при поиске и устранении неисправностей любого осветительного прибора, — это проверка целостности цепи.Проверка целостности определяет, исправна или неисправна электрическая цепь, непрерывна или оборвана. Первое испытание, которое необходимо выполнить перед испытанием самого прибора, — это определить, есть ли напряжение в розетке осветительного прибора. Проверка напряжения может быть выполнена либо с помощью функции измерения переменного напряжения на цифровом мультиметре, либо с помощью бесконтактного тестера напряжения. Бесконтактный тестер напряжения рекомендуется домовладельцам, потому что он не требует, чтобы вы действительно касались щупом к токоведущим проводам, находящимся под напряжением; все, что вам нужно сделать, это поднести его к осветительной арматуре, когда выключатель света включен.

Устранение неисправностей светильников накаливания

Выключите автоматический выключатель для этой ответвленной цепи на сервисной панели. Еще раз проверьте цепь с помощью тестера напряжения, чтобы убедиться, что вы отключили правильный автоматический выключатель. Опустите светильник из розетки, а затем убедитесь, что есть хорошее соединение между проводами светильника и проводами ответвительной цепи. Эти соединения выполняются с помощью пластиковых навинчивающихся гаек для проводов и могут выскользнуть из них при неправильной установке.Отсоедините провода приспособления, если вы обнаружите, что соединения в порядке. Вы должны отсоединить провода, чтобы проверить целостность.

Когда измеритель настроен на функцию измерения сопротивления, проверьте целостность цепи между белым проводом прибора и металлической оболочкой внутри гнезда для освещения. Если есть непрерывность, на ЖК-дисплее счетчика будет отображаться «0,000». Если розетка неисправна, на ЖК-дисплее будет отображаться «O.L.» Проверьте целостность соединения между черным проводом крепления и латунной кнопкой в ​​патроне лампы. На ЖК-дисплее либо отобразится «0.000 »или« O.L. » Если розетка работает нормально, но свет по-прежнему не работает, латунный контакт розетки не контактирует с цоколем лампы и его необходимо отжать от цоколя.

Проверка люминесцентных светильников

Когда дело доходит до устранения проблем с люминесцентными лампами, ваши зрение и слух будут иметь большое значение, чтобы помочь вам найти проблему. Если напряжение присутствует, но свет не загорается, сначала проверьте, не перегорели ли концы лампочек черным цветом.Если у них почернели концы, замените лампочки, и ваша проблема, скорее всего, будет решена. Если индикатор мигает, но не загорается, проблема снова может заключаться в неисправных лампах. Обычно мерцание сочетается с почерневшими концами. Жужжащий звук и / или запах горячей смолы указывают на плохой балласт, который требует замены. Плохой контакт между контактами лампочек и латунными полосками в их патронах — не обычная проблема, но это может случиться. При неисправных розетках замените их; не пытайтесь их исправить.

Устранение неисправностей светодиодных ламп

Устранение неисправностей Светодиодные лампы аналогичны лампам накаливания, если только они не являются светодиодными тросовыми лампами. В случае тросовых фонарей, если есть напряжение и электрические соединения в порядке, единственное, что вы можете сделать, это заменить их.

Bad Circuit Neutral

Обрыв нейтрального провода где-то между распределительной коробкой освещения и нулевой шиной на сервисной панели также будет препятствовать включению света. Бесконтактный тестер напряжения все равно покажет наличие напряжения, даже если нейтраль неисправна.Чтобы определить, есть ли у вас проблема с нейтралью, вам придется использовать цифровой мультиметр. Установите функциональный переключатель измерителя в положение переменного тока, включите автоматический выключатель и прикоснитесь щупами к проводам цепи. Если нейтраль в порядке, на ЖК-дисплее прибора будет отображаться «120»; если нейтраль нарушена, будет отображаться «0,000».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*