Как проверить тестером светодиодную лампочку: Как проверить светодиод мультиметром и прозвонить светодиодную ленту

Содержание

Как проверить лампочку мультиметром – инструкция

Подготовка мультиметра к работе

Первым делом извлечём наш мультиметр из упаковки и осмотрим внимательно. На корпусе не должно присутствовать каких-либо повреждений, батарейный отсек должен закрываться плотно. Проверяем качество и целостность щупов и идущих к ним проводов. Если изоляция отсутствует, используем изоленту. Неплохо справится с задачей и термоусадочная трубка. Если на щупах имеются сколы, также их заматываем.

Переключатель режимов выставляем для работы с омами, напротив деления 200 Ом. Кабель чёрного цвета присоединяем к гнезду Com. Кабель красного цвета подключаем в гнездо, где имеются символы тех величин, которые мы собираемся измерять.

Устройство должно отобразить на своём экране цифру «1». Если её нет или отображается что-то другое, пора его ремонтировать. Скрещиваем щупы друг с другом. Единичка меняется на нолик. Если именно так всё и происходит, значит, работа идёт в штатном режиме. Если на экране идёт мельтешение цифр, они бледные, нужно попробовать поменять батарейки. Если попытка не удалась, прибор подлежит ремонту. Для начала тестирования лампы выставляем на тумблере режим поиска обрыва. Данный режим обозначается пиктограммой диода.

Простейший способ

Самый простой способ диагностики подходит как для лампочек накаливания, так и для люминесцентных и светодиодных ламп. Он предполагает вкрутить подозрительную лампочку в другой светильник и включить его. К сожалению, это не всегда возможно. Иногда резьбовая часть цоколя изготовлена с отклонением от стандартного размера и при вкручивании в патрон не замыкает оба электрических контакта. Или в доме больше нет светильников с точно таким же патроном.

Покупая лампочку в магазине электротоваров, многие обращали внимание на то, как продавец проверяет её с помощью тестера. В корпусе тестера есть несколько разъёмов, предназначенных для диагностики лампочек разного типа: накаливания, люминесцентных и галогенных. Его задача – проверить целостность проводников внутри лампы, о чём свидетельствует звуковой сигнал. Эту же самую операцию можно проделать в домашних условиях, воспользовавшись мультиметром или многофункциональной индикаторной отвёрткой.

Последовательность проверки

Так как проверить лампочку мультиметром?

  1. Перевести прибор в режим «прозвонки»;
  2. Проверить целостность цепи прибора путем краткого замыкания щупов между собой;
  3. Расположить лампочку рядом с прибором на поверхности;
  4. Взять любой из щупов прибора, и коснуться им центрального контакта лампочки;
  5. Взять другой щуп, и приложить его к боковому контакту лампочки.

Прибор издаст звуковой сигнал при исправности лампы. Но здесь те же особенности, что и в предыдущем способе: звуковой сигнал может не сработать. Тогда остается проверить лампочку измерением сопротивления.

Проверяем лампу накаливания

Для проверки лампочки ее можно ввинтить в другую люстру или фонарик. Однако это не во всех случаях можно сделать. Иногда диаметр цоколя лампочки отличается от разъема на светильнике либо в доме больше нет устройств с аналогичным патроном.

Лампы накаливания на 220 В работают в сетях переменного тока, поэтому полярность при их прозвонке не важна.

В режиме прозвонки

Чтобы узнать, работает ли лампочка, с
помощью тестера, сначала нужно установить на нем соответствующий режим. После
этого одним измерительным щупом нужно дотронуться до контакта в центре
обыкновенной или галогеновой лампы, а другим – до контакта на резьбе цоколя.

Если лампочка исправна, мультиметр запищит, а на его
экране отобразится цифра от 3 до 200 Ом.

Перед каждым тестированием нужно замыкать измерительные
щупы друг с другом, чтобы удостовериться в исправности измерительного
оборудования.

Лампочки светодиодного или люминесцентного типа
невозможно проверить этим способом, т.к. в них встроена электронная плата. В
таком случае можно лишь отдельно протестировать спираль из стекла
люминесцентного устройства. Для этой цели спираль необходимо аккуратно снять с
цоколя и проверить выводные кабели, которые подключены к электронной плате.

В режиме проверки сопротивления

Существует ещё один, более точный, метод диагностики спиральных ламп с помощью мультиметра. Им можно не только определить пригодность лампочки, но и узнать её сопротивление. Зачем это нужно? Например, заводской отпечаток на колбе лампы накаливания стёрт. Следовательно, её мощность неизвестна. Данный способ поможет решить эту проблему.

Теперь о том, как проверить лампочку мультиметром в режиме сопротивления. Для этого нужно перевести переключатель на позицию с пределом 200 Ом, а затем коснуться щупами электрических контактов лампы точно так же, как в режиме прозвонки. В этом случае звуковой сигнал отсутствует, а на ЖК-дисплее появится значение сопротивления в Омах. Если на табло осталась «1», то внутри осветительного прибора обрыв.

По измеренному сопротивлению спирали в холодном состоянии можно сделать вывод о её мощности. В нами составленной таблице приведены данные об основных типах ламп, применяемых в быту.

Во время замера следует помнить, что за счёт плохого контакта щупов с тестером полученный результат может отличаться от табличного в большую сторону на несколько Ом.

Проверка светодиодной лампы мультиметром

К сожалению, светодиодную лампу невозможно проверить мультиметром. Полупроводниковый прибор с достаточно сложной схемой можно в домашних условиях можно проверить на работоспособность только закрутив в исправный патрон и подав напряжение.

Светодиодная лампа с цоколем Е27

Проверка светодиодной лампы имеет свои особенности.

Эти лампочки имеются в большинстве современных люстр и других устройств освещения. Для проверки на исправность (или же неисправность) светодиода делаем следующее:

  1. При помощи старой банковской карты (пластиковой) избавляемся от рассеивателя, который находится между корпусом и самим светодиодом.
  2. Пластик постепенно продвигаем по линии склейки. Чтобы шов легче поддавался, его можно нагреть при помощи технического фена.
  3. Вскрываем плату.
  4. Прижимаем щупу к светодиодам и ждём, пока они не начнут тускло светиться.

Если никакого свечения не появилось, лампочку пора менять.

Мощные светодиоды

Проверяем яркий светодиод.

В гирляндах обычно используют светодиоды синего, жёлтого и белого цвета. Для их тестирования щупы не применяются, вместо этого их размещают в транзисторных гнёздах. Делается всё следующим образом:

  1. Сначала нужно определить какая у СМД распиновка.
  2. В нижней части мультиметра находим восемь гнёзд.
  3. Размещаем щупы: для анода используем гнездо Е, а для катода — гнездо С.
  4. Открываем PNP, на эмиттер Е подаётся заряд положительного значения. Если светодиод рабочий, то он загорится.
  5. Далее полярность меняем для NPN транзисторов. Устанавливаем анод в С отверстие, катод ставим в отверстие Е.

Справка. В транзисторных гнёздах очень удобно проверять светодиоды, которые оснащены длинными контактами.

Проверка дуговой ртутной лампы

Светильник с дуговой ртутной люминофорной лампой (ДРЛ) обычно можно встретить на улице или в заводском цехе. Для определения работоспособности прозванивают дроссель – устройство, ограничивающее ток, питающий ДРЛ.

Если схема была разорвана, то сопротивление будет неограниченно большим, что и покажет прибор. Если имеется потеря изоляции, ведущая к короткому замыканию, показатель повышается незначительно. В случае наличия замыкания в обмотке дросселя, сопротивление не меняется.

Если при проверке тестером дросселя проблем не было выявлено, то дуговая лампочка может не функционировать по причине неисправностей в системе подачи электроэнергии, к примеру, из-за окисления контактов. Принцип работы светильника очень простой, поэтому неисправности непосредственно в лампе ДРЛ встречаются редко.

При тестировании ДРЛ следует соблюдать значительную осторожность. При нарушении целостности стеклянной колбы, содержащей газ под высоким давлением, пары ртути могут распространяться на большие расстояния, загрязняя помещение.

Галогеновые лампочки

Для начала напомним, что галогеновую лампу относят к тепловому источнику освещения. В ней, как и в обычной лампочке, есть спираль. Под воздействием тока она нагревается и производит световое излучение. Повышенная яркость и насыщенность создается за счет наличия в колбе газовой смеси, в состав которой входят галогены (отсюда и название). Такой тип ламп широко применяют для создания точечного освещения или подсветки.

Что делать, если галогеновая лампочка перестала гореть?

  • для начала стоит проверить напряжение в цоколе осветительного прибора;
  • если с напряжением все в порядке проверке подвергают лампочку.

Последовательность проверки галогеновой лампы

Проверять будем также мультиметром. Для этого устанавливаем на приборе режим для измерения минимального сопротивления.

Внимание! Голыми руками лампочку не трогаем. В случае прикосновения кожи к колбе возникает жировой отпечаток. В последующем в этом месте лампочка будет больше нагреваться, что вызовет сокращение срока ее эксплуатации или приведет к полному выходу из строя. Поэтому работаем в перчатках.

  • кладем лампочку рядом с прибором;
  • берем щупы в руки;
  • прикладываем к выводам лампочки.

Показания зависят от типа лампочки и от того насколько она остыла после предыдущего включения. Сопротивления также будут разными для бытовой лампы на 220 вольт и для автомобильной на 12 вольт, но в любом случае величина сопротивления будет в пределах от 0.5 Ом до единиц Ом. Если же значение стремится к бесконечности, то лампа признается нерабочей.

Проверка энергосберегающей лампы мультиметром

КЛЛ — компактная люминесцентная лампа, которую в России называют энергосберегающей, также не поддаётся проверке мультиметром. Её колба включена в сеть через сложную схему, которую нельзя прозвонить с внешних контактов. Проверяем работу лампы закручиванием её в заранее исправный патрон.

Таблица: соотношение мощности и сопротивления

Вт
15025
8540
6360
4875
38100
27150

Справка. Точность измерений может иметь погрешность в два-три ома.

Аналогично можно протестировать и лампочки в автомашине на двенадцать вольт. Нужно иметь в виду, что иногда в этих лампах имеется по две спирали. Одна из них отвечает за дальний свет, а вторая — за ближний. Этот же метод применим и для ламп дневного света трубчатого типа, они имеют тоже по две спирали, установленные по краям между электродами.

Справка. Компактные люминесцентные лампы, энергосберегающие галогенные, а также лампы на светодиодах проверить таким образом не получится. В их цепи имеются дополнительные элементы, такие как микросхема, электронный блок для подключения и запуска. Поэтому для их проверки используются другие методы.

Проверка исправности LED-прожекторов

«Начинка» прожектора имеет свои особенности.

Прежде чем проверять светодиод, следует установить, к какому типу он относится. Внутри таких прожекторов обычно ставят:

  • плату с несколькими небольшими SMD, которые можно проверить методом прозвонки, аналогично обычным светодиодным лампам;
  • мощный светодиод жёлтого цвета, имеющий напряжение от десяти до тридцати вольт.

Справка.  У мощного светодиода слишком велико напряжение для мультиметра, проверяют его при помощи драйвера. Своими характеристиками драйвер должен совпадать с показателями светодиода.

Тестирование автомобильной лампочки

Автолюбителей часто интересует вопрос о том, как проверить лампу, вышедшую из строя. В чем причина неисправности? Проблема может заключаться не только в автомобильной лампочке, но и в электропроводке или патроне. Проверка мультиметром проводится так же, как и при тестировании обычных лампочек с нитью накаливания. Рекомендуется следующий порядок действий:


  • после остывания электронной системы автомобиля демонтировать неработающие лампочки;
  • установить тестер в положение проверки минимального сопротивления;
  • приложить щупы к контактам, чтобы проверить лампочки с помощью мультиметра.

Если прибор измерит сопротивление, то лампочки исправны, если же на экране будут буквенные символы или знак бесконечности – это свидетельствует об их непригодности.

Анализ работоспособности диодов и радиоламп

Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.

Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ.

Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.

Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.

Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.

Проверка индикаторной отверткой

Чтобы в домашних условиях проверить на исправность лампочку, необязательно иметь под рукой мультиметр. Гораздо быстрее это сделать с помощью многофункциональной индикаторной отвёртки. Её отличие от обычного индикатора заключается в наличии батарейки-таблетки внутри корпуса. Работоспособность такой отвертки проверяется касанием пальцев её металлических контактов с торцов. При этом индикаторный светодиод внутри неё должен светиться.

Последовательность действий по проверке лампы накаливания следующая:

  1. В одну руку берут лампочку, касаясь резьбы (боковой контакт).
  2. В другую руку берут индикаторную отвёртку и металлическим стержнем касаются центрального контакта лампы, а большим пальцем – торца отвёртки. Таким образом, цепь замыкается через отвёртку, лампу и тело человека. Весь тест занимает всего пару секунд.

Как проверить лампу мультиметром – смотрим видео

Источники

  • https://setafi.com/lampa/kak-proverit-lampochku-multimetrom/
  • https://ledjournal.info/vopros-otvet/kak-proverit-lampu.html
  • https://simplelight.info/istochniki-osveshheniya/kak-proverit-lampochku-multimetrom.html
  • https://multimetri. ru/proverit/kak-proverit-lampu-multimetrom/
  • https://svetilnik.info/lampy-i-svetilniki/kkak-mozhno-multimetrom-proverit-rabotosposobnost-lampochki.html
  • https://EvoSnab.ru/instrument/test/kak-proverit-lampochku-multimetrom

Проверка лампочки мультиметром: тестирование разных ламп

Визуально не всегда получится определить работоспособность лампочки. Ведь даже если спиралька целая, никто не даст гарантии, что внутри цепь не повредилась. Именно для таких случаев и был придуман мультиметр — прибор, который в умелых руках всегда и безошибочно выявит любую неисправность. Так давайте же разберёмся, как им пользоваться и отслеживать с его помощью неисправные осветительные приборы.

Содержание статьи

Подготовка мультиметра к работе

Первым делом извлечём наш мультиметр из упаковки и осмотрим внимательно. На корпусе не должно присутствовать каких-либо повреждений, батарейный отсек должен закрываться плотно. Проверяем качество и целостность щупов и идущих к ним проводов. Если изоляция отсутствует, используем изоленту. Неплохо справится с задачей и термоусадочная трубка. Если на щупах имеются сколы, также их заматываем.

Переключатель режимов выставляем для работы с омами, напротив деления 200 Ом. Кабель чёрного цвета присоединяем к гнезду Com. Кабель красного цвета подключаем в гнездо, где имеются символы тех величин, которые мы собираемся измерять.

Устройство должно отобразить на своём экране цифру «1». Если её нет или отображается что-то другое, пора его ремонтировать. Скрещиваем щупы друг с другом. Единичка меняется на нолик. Если именно так всё и происходит, значит, работа идёт в штатном режиме. Если на экране идёт мельтешение цифр, они бледные, нужно попробовать поменять батарейки. Если попытка не удалась, прибор подлежит ремонту. Для начала тестирования лампы выставляем на тумблере режим поиска обрыва. Данный режим обозначается пиктограммой диода.

Тестируем лампу накаливания мультиметром

Для того чтобы проверить пригодность обычной лампочки, один их щупов тестера прижимаем к центру цоколя в место расположения контакта, второй щуп прижимаем к резьбе.

Если лампочка вполне себе рабочая, то тестер издаст сигнал зуммера, одновременно с этим на экране будут показаны цифры из диапазона от трёх до двухсот.

Сопротивление спирали лампы напрямую зависит от того, какой материал использован для её изготовления, а также от длины. Чтобы быть уверенным в результатах проверки, места, где будут приложены щупы, следует предварительно зачистить напильником от окислов.

Этот способ поможет найти не только место обрыва в цепи, но и покажет, пусть и приблизительно, какую мощность потребляет устройство. Если на лампочке стёрлась надпись, указывающая на номинальное напряжение, то мультиметр поможет это выяснить. Чтобы результаты были более точными, следует установить переключатель в режим двухсот Ом.

Подключение щупов мультиметра для прозвонки лампы накаливания

Руководствуясь описанной методикой, можно проверить сопротивление лампочной спирали. Чтобы не засорять себе голову лишними математическими формулами, используйте данные в приведённой ниже таблице.

Таблица: соотношение мощности и сопротивления
Вт
15025
8540
6360
4875
38100
27150

Справка. Точность измерений может иметь погрешность в два-три ома.

Аналогично можно протестировать и лампочки в автомашине на двенадцать вольт. Нужно иметь в виду, что иногда в этих лампах имеется по две спирали. Одна из них отвечает за дальний свет, а вторая — за ближний. Этот же метод применим и для ламп дневного света трубчатого типа, они имеют тоже по две спирали, установленные по краям между электродами.

Справка. Компактные люминесцентные лампы, энергосберегающие галогенные, а также лампы на светодиодах проверить таким образом не получится. В их цепи имеются дополнительные элементы, такие как микросхема, электронный блок для подключения и запуска. Поэтому для их проверки используются другие методы.

Проверяем светодиодную лампу

Мультиметр позволяет прозвонить цветные, стандартные и сверхяркие диоды.

Светодиодная лампа с цоколем Е27

Проверка светодиодной лампы имеет свои особенности.

Эти лампочки имеются в большинстве современных люстр и других устройств освещения. Для проверки на исправность (или же неисправность) светодиода делаем следующее:

  1. При помощи старой банковской карты (пластиковой) избавляемся от рассеивателя, который находится между корпусом и самим светодиодом.
  2. Пластик постепенно продвигаем по линии склейки. Чтобы шов легче поддавался, его можно нагреть при помощи технического фена.
  3. Вскрываем плату.
  4. Прижимаем щупу к светодиодам и ждём, пока они не начнут тускло светиться.

Если никакого свечения не появилось, лампочку пора менять.

Мощные светодиоды

Проверяем яркий светодиод.

В гирляндах обычно используют светодиоды синего, жёлтого и белого цвета. Для их тестирования щупы не применяются, вместо этого их размещают в транзисторных гнёздах. Делается всё следующим образом:

  1. Сначала нужно определить какая у СМД распиновка.
  2. В нижней части мультиметра находим восемь гнёзд.
  3. Размещаем щупы: для анода используем гнездо Е, а для катода — гнездо С.
  4. Открываем PNP, на эмиттер Е подаётся заряд положительного значения. Если светодиод рабочий, то он загорится.
  5. Далее полярность меняем для NPN транзисторов. Устанавливаем анод в С отверстие, катод ставим в отверстие Е.

Справка. В транзисторных гнёздах очень удобно проверять светодиоды, которые оснащены длинными контактами.

Проверка исправности LED-прожекторов

«Начинка» прожектора имеет свои особенности.

Прежде чем проверять светодиод, следует установить, к какому типу он относится. Внутри таких прожекторов обычно ставят:

  • плату с несколькими небольшими SMD, которые можно проверить методом прозвонки, аналогично обычным светодиодным лампам;
  • мощный светодиод жёлтого цвета, имеющий напряжение от десяти до тридцати вольт.

Справка. У мощного светодиода слишком велико напряжение для мультиметра, проверяют его при помощи драйвера. Своими характеристиками драйвер должен совпадать с показателями светодиода.

Тестирование энергосберегающей лампы мультиметром

У такой лампы может перегореть:

  • спираль накаливания;
  • балластная схема.

Что конкретно произошло — понять можно, но лишь разобрав устройство. Взяв в руки лампу, можно заметить в её нижней части маленькую выемку. На фотографии она отмечена стрелочками. Осторожно, стараясь не поломать корпус лампы, в эту впадинку нужно поместить жало отвёртки либо лезвие ножа. После чего корпус слегка нужно приподнять. Главное, делать всё аккуратно, чтобы не разбить колбу.

Разобрав устройство, можно увидеть, что все провода внутри просто переплетены друг с другом, не имея никакого термического соединения. Внутри видна плата круглой формы, имеющая потемнение из-за перегрузки. На краях платы установлены штыки в форме квадратов. Это своего рода клеммы. К ним подводятся провода электропитания. Провода просто намотаны на эти клеммы.

Важно! Когда будете собирать лампу, даже не думайте их припаивать. Пусть даже и точечным способом.

Как только провода будут раскручены, каждую из спиралей нужно прозвонить мультиметром. Это позволит определить, какая из них перегорела.

Определившись с тем, что именно сломалось в лампе, мы смело можем заменить вышедшую из строя спираль на рабочую.

Подпишитесь на наши Социальные сети

Как проверить неоновую лампу тестером?

Как проверить лампочку мультиметром

Визуально не всегда получится определить работоспособность лампочки. Ведь даже если спиралька целая, никто не даст гарантии, что внутри цепь не повредилась. Именно для таких случаев и был придуман мультиметр — прибор, который в умелых руках всегда и безошибочно выявит любую неисправность. Так давайте же разберёмся, как им пользоваться и отслеживать с его помощью неисправные осветительные приборы.

Подготовка мультиметра к работе

Первым делом извлечём наш мультиметр из упаковки и осмотрим внимательно. На корпусе не должно присутствовать каких-либо повреждений, батарейный отсек должен закрываться плотно. Проверяем качество и целостность щупов и идущих к ним проводов. Если изоляция отсутствует, используем изоленту. Неплохо справится с задачей и термоусадочная трубка. Если на щупах имеются сколы, также их заматываем.

Переключатель режимов выставляем для работы с омами, напротив деления 200 Ом. Кабель чёрного цвета присоединяем к гнезду Com. Кабель красного цвета подключаем в гнездо, где имеются символы тех величин, которые мы собираемся измерять.

Устройство должно отобразить на своём экране цифру «1». Если её нет или отображается что-то другое, пора его ремонтировать. Скрещиваем щупы друг с другом. Единичка меняется на нолик. Если именно так всё и происходит, значит, работа идёт в штатном режиме. Если на экране идёт мельтешение цифр, они бледные, нужно попробовать поменять батарейки. Если попытка не удалась, прибор подлежит ремонту. Для начала тестирования лампы выставляем на тумблере режим поиска обрыва. Данный режим обозначается пиктограммой диода.

Тестируем лампу накаливания мультиметром

Для того чтобы проверить пригодность обычной лампочки, один их щупов тестера прижимаем к центру цоколя в место расположения контакта, второй щуп прижимаем к резьбе. Если лампочка вполне себе рабочая, то тестер издаст сигнал зуммера, одновременно с этим на экране будут показаны цифры из диапазона от трёх до двухсот.

Сопротивление спирали лампы напрямую зависит от того, какой материал использован для её изготовления, а также от длины. Чтобы быть уверенным в результатах проверки, места, где будут приложены щупы, следует предварительно зачистить напильником от окислов.

Этот способ поможет найти не только место обрыва в цепи, но и покажет, пусть и приблизительно, какую мощность потребляет устройство. Если на лампочке стёрлась надпись, указывающая на номинальное напряжение, то мультиметр поможет это выяснить. Чтобы результаты были более точными, следует установить переключатель в режим двухсот Ом.

Подключение щупов мультиметра для прозвонки лампы накаливания

Руководствуясь описанной методикой, можно проверить сопротивление лампочной спирали. Чтобы не засорять себе голову лишними математическими формулами, используйте данные в приведённой ниже таблице.

Таблица: соотношение мощности и сопротивления
Вт
15025
8540
6360
4875
38100
27150

Справка. Точность измерений может иметь погрешность в два-три ома.

Аналогично можно протестировать и лампочки в автомашине на двенадцать вольт. Нужно иметь в виду, что иногда в этих лампах имеется по две спирали. Одна из них отвечает за дальний свет, а вторая — за ближний. Этот же метод применим и для ламп дневного света трубчатого типа, они имеют тоже по две спирали, установленные по краям между электродами.

Справка. Компактные люминесцентные лампы, энергосберегающие галогенные, а также лампы на светодиодах проверить таким образом не получится. В их цепи имеются дополнительные элементы, такие как микросхема, электронный блок для подключения и запуска. Поэтому для их проверки используются другие методы.

Проверяем светодиодную лампу

Мультиметр позволяет прозвонить цветные, стандартные и сверхяркие диоды.

Светодиодная лампа с цоколем Е27

Эти лампочки имеются в большинстве современных люстр и других устройств освещения. Для проверки на исправность (или же неисправность) светодиода делаем следующее:

  1. При помощи старой банковской карты (пластиковой) избавляемся от рассеивателя, который находится между корпусом и самим светодиодом.
  2. Пластик постепенно продвигаем по линии склейки. Чтобы шов легче поддавался, его можно нагреть при помощи технического фена.
  3. Вскрываем плату.
  4. Прижимаем щупу к светодиодам и ждём, пока они не начнут тускло светиться.

Если никакого свечения не появилось, лампочку пора менять.

Мощные светодиоды

В гирляндах обычно используют светодиоды синего, жёлтого и белого цвета. Для их тестирования щупы не применяются, вместо этого их размещают в транзисторных гнёздах. Делается всё следующим образом:

  1. Сначала нужно определить какая у СМД распиновка.
  2. В нижней части мультиметра находим восемь гнёзд.
  3. Размещаем щупы: для анода используем гнездо Е, а для катода — гнездо С.
  4. Открываем PNP, на эмиттер Е подаётся заряд положительного значения. Если светодиод рабочий, то он загорится.
  5. Далее полярность меняем для NPN транзисторов. Устанавливаем анод в С отверстие, катод ставим в отверстие Е.

Справка. В транзисторных гнёздах очень удобно проверять светодиоды, которые оснащены длинными контактами.

Проверка исправности LED-прожекторов

Прежде чем проверять светодиод, следует установить, к какому типу он относится. Внутри таких прожекторов обычно ставят:

  • плату с несколькими небольшими SMD, которые можно проверить методом прозвонки, аналогично обычным светодиодным лампам;
  • мощный светодиод жёлтого цвета, имеющий напряжение от десяти до тридцати вольт.

Справка. У мощного светодиода слишком велико напряжение для мультиметра, проверяют его при помощи драйвера. Своими характеристиками драйвер должен совпадать с показателями светодиода.

Тестирование энергосберегающей лампы мультиметром

У такой лампы может перегореть:

  • спираль накаливания;
  • балластная схема.

Что конкретно произошло — понять можно, но лишь разобрав устройство. Взяв в руки лампу, можно заметить в её нижней части маленькую выемку. На фотографии она отмечена стрелочками. Осторожно, стараясь не поломать корпус лампы, в эту впадинку нужно поместить жало отвёртки либо лезвие ножа. После чего корпус слегка нужно приподнять. Главное, делать всё аккуратно, чтобы не разбить колбу.

Разобрав устройство, можно увидеть, что все провода внутри просто переплетены друг с другом, не имея никакого термического соединения. Внутри видна плата круглой формы, имеющая потемнение из-за перегрузки. На краях платы установлены штыки в форме квадратов. Это своего рода клеммы. К ним подводятся провода электропитания. Провода просто намотаны на эти клеммы.

Важно! Когда будете собирать лампу, даже не думайте их припаивать. Пусть даже и точечным способом.

Как только провода будут раскручены, каждую из спиралей нужно прозвонить мультиметром. Это позволит определить, какая из них перегорела.

Определившись с тем, что именно сломалось в лампе, мы смело можем заменить вышедшую из строя спираль на рабочую.

Как проверить люминесцентную лампу мультиметром

Люминесцентные лампы на разных этапах срока эксплуатации могут в разной степени снизить свою работоспособность. Освещенность становится недостаточной, лампа гудит и мерцает, оказывая неблагоприятное воздействие на организм человека. В связи с этим приходится решать задачу, как проверить люминесцентную лампу мультиметром, чтобы устранить выявленные недостатки и причины, вызвавшие их появление.

Как работают люминесцентные лампы

Люминесцентные лампы относятся к энергосберегающим, а их работу можно сравнить с различными типами газоразрядных источников света. Все элементы размещаются в стеклянной колбе, из которой предварительно откачан воздух. Взамен закачивается инертный газ с небольшим количеством ртути.

С противоположных сторон установлены спиральные электроды, выполняющие функцию нитей накаливания. Каждый из них соединяется с двумя контактными штырьками, расположенными на пластинах из диэлектрического материала. Внутренняя сторона стеклянной трубки покрыта люминофором. Конструкция всех ламп одинаковая, независимо от размеров колбы. Сами лампы вставляются в специальные светильники.


Для включения осветительного прибора применяется электромагнитная (ЭмПРА) или электронная (ЭПРА) пускорегулирующая аппаратура. Основным элементом ЭмПРА является дроссель, выполняющий функцию балластного сопротивления. Конструктивно он представляет собой катушку индуктивности, включенную последовательно в цепь с лампой дневного света.

Дроссель следит за равномерностью разряда и поддерживает его на одном уровне. В случае необходимости осуществляется корректировка тока. В момент включения происходит сдерживание пускового тока до полного разогрева спиральных нитей. За счет этого они не перегреваются и не перегорают. Далее за счет самоиндукции в дросселе возникает напряжение, от которого и загорается лампа.


Балластное сопротивление должно работать с минимальными потерями мощности, обладать небольшими размерами и весом. Важным требованием является бесшумная работа и величина температуры накаливания, не превышающая 600 С.

Еще одной деталью системы ЭмПРА, играющей важную роль, служит стартер тлеющего разряда. При включении лампы в нем появляется разряд тока, обеспечивающего накал биметаллических контактов. После их замыкания ток в цепи возрастает, и электроды начинают разогреваться.


Через определенное время контакты стартера остывают и цепь размыкается. В этот момент из дросселя на электроды подается высоковольтный импульс, что приводит к появлению между ними дугового разряда. Под его воздействием появляется ультрафиолетовое излучение, а люминофор, нанесенный на стекло, начинает светиться в видимом спектре, то есть лампа загорится.

Люминесцентные светильники нового поколения оборудуются ЭПРА – электронной пускорегулирующей аппаратурой (рис. 3). Срок службы и коэффициент полезного действия таких ламп существенно увеличился. В режиме свечения они могут работать даже с перегоревшей спиралью, в отличие от традиционных ЭмПРА. Кроме того, в современных схемах отсутствуют стартеры.


Балласты электронного типа считаются дорогими и достаточно сложными в ремонте, поэтому в большинстве случаев они полностью заменяются новыми изделиями.

Основные причины выхода из строя

Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.

Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.

Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.


Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.

Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.

Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.


Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.

Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 50 С и ниже, а также при перепадах напряжения свыше 7%. Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.

Проверка нитей накаливания (спиралей-электродов)

Одной из причин неисправности становятся электроды, выполняющие функцию нитей накаливания. Они помещаются внутрь трубки, наполненной газом, а их концы припаяны к контактным ножкам цоколя, выходящим наружу. Проверка целостности спиралей проводится с помощью мультиметра или тестера, подключаемого к выводам, расположенным на одном из концов стеклянной колбы.

Для проведения замеров на мультиметре устанавливается режим измерения сопротивления с минимальным пределом или режим прозвонки. Проверка спиралей осуществляется поочередно, на обоих концах. Если спирали находятся в исправном состоянии, загорится контрольная лампа, а зуммер будет производить звуковые сигналы. На дисплее мультиметра высветится сопротивление в пределах 5-10 Ом.


В случае отсутствия звуковых и световых сигналов и наличия сопротивления со знаком бесконечности, можно предположить обрыв одной из спиралей, при котором лампа уже не будет работать и должна быть заменена.

Тестирование дросселя

В том случае, когда предыдущая проверка не дала результата, проверяется дроссель, относящийся к наиболее устойчивым элементам лампы. Он ломается намного реже остальных деталей, однако нельзя полностью исключить его возможную неисправность.

Дроссель люминесцентной лампы по своей сути является обычной катушкой индуктивности, внутри которой находится ферромагнитный сердечник с высокой магнитной проницаемостью. Он входит в состав ЭмПРА и при включении лампы так же как и стартер участвует в разогреве катодов и создании высоковольтного импульса. За счет ЭДС самоиндукции внутри колбы создается тлеющий разряд.


После отключения стартера, дроссель за счет своего индуктивного сопротивления поддерживает ток разряда на нужном уровне, обеспечивающем стабильную ионизацию смеси газа и ртути. За счет индуктивности и сопротивления дроссель защищает электроды от перегрева и перегорания под действием переменного тока.

Основными неисправностями данного элемента может стать обрыв или перегорание обмотки, а также нарушения межвитковой изоляции. Обе поломки выявляются с помощью мультиметра, подключенного к выводам дросселя и настроенного на замер сопротивления. Если на табло высвечивается знак бесконечности, следовательно обмотка оборвана или сгорела. Предвестником перегорания чаще всего становится неприятный запах, появляющийся во время работы дросселя.


Если же сопротивление имеет малую величину, то в большинстве случаев оказывается нарушенной изоляция проводников, что в свою очередь приводит к межвитковому замыканию или замыканию обмотки с сердечником.

Проверка работоспособности стартера

Наряду с другими элементами люминесцентной лампы, проверяется исправность стартера. В любом случае корпус светильника следует вскрыть и провести визуальный осмотр внутреннего пространства. Если обнаружены почернения, то это прямо указывает на имеющуюся неисправность. Поэтому придется проверить люминесцентную лампу, в том числе и сам стартер.

Дело в том, что этот компонент наиболее часто подвержен поломкам. Его элементы испытывают постоянные механические нагрузки в условиях многократных перепадов температур. После того как корпус стартера оказывается разобран следует провести осмотр внутренней схемы. Неисправный конденсатор имеет вздутия или бывает полностью разрушен из-за скачков сетевого напряжения. При отсутствии внешних повреждений конденсатор следует проверить мультиметром.


Тестирование конденсатора выполняется на его выводах в режиме омметра, с выставлением на шкале максимального предела замеров сопротивления. При нормальном состоянии данного элемента на табло мультиметра будет показан знак бесконечности. Если же сопротивление составляет 2 Мом и ниже, то возможно недопустимое значение тока утечки в конденсаторе. В домашних условиях не всегда удается точно прозвонить и проверить состояние стартера, для этого рекомендуется воспользоваться исправным светильником. Стартер, оказавшийся неисправным, подлежит замене.

Проверить исправность стартера возможно не только тестером. Для этого стартер аккуратно извлекается из гнезда, без нарушений других элементов схемы. После этого включается питание и контакты в гнезде стартера коротко замыкаются исправным, хорошо изолированным инструментом. Если все остальные детали схемы исправны, то лампа должна загореться.

Как проверить люминесцентную лампу на исправность

Как прозвонить лампочку мультиметром в домашних условиях?

Визуальный осмотр не всегда позволяет качественно оценить состояние электрической лампы накаливания, даже при целой спирали внутренняя цепь может быть оборвана. Поэтому лучше довериться приборам, которые при правильном использовании безошибочно укажут на неисправность. Рассмотрим, как проверить лампочку накаливания мультиметром.

Бытовые лампы накаливания на 220 вольт для освещения помещений имеют два самых распространенных стандарта цоколей и патронов под них – Е14 и Е25, цифры указывают на диаметр резьбового соединения. Проще всего, на первый взгляд, лампу с целой спиралью вкрутить в патрон другого заведомо исправного осветительного прибора и убедиться в том, что она работает. Но не всегда на месте есть светильник с подходящим патроном, тем более исправным. Поэтому используются мультиметры, эти приборы малогабаритные, легкие, просты в обращении, даже дилетант сможет работать с ним в режиме прозвонки.

Установка прибора в режим прозвонки

Термин «прозвонка» подразумевает проверку электрической цепи на целостность, наличие контакта. В каждом современном мультиметре есть такой режим, классическое расположение органов управления на приборах, это пакетный переключатель в центре корпуса, под жидкокристаллическим дисплеем. Его поворотом устанавливаются нужные режимы, на корпусе по кругу указаны их буквенные и символические обозначения, которые специалисты хорошо понимают, в нашем случае это знак диода или зуммера.

Проверка исправности лампы дневного света и дросселя

Один из наиболее востребованных источников искусственного освещения – люминесцентные лампы. Они потребляют в 5-6 раз меньше энергии, нежели стандартные лампы накаливания, но при этом светят с той же яркостью. Светодиодные светильники с драйверами являются более экономичными, но в силу своей дороговизны им не удалось вытеснить с рынка лампы дневного света (ЛДС). При длительной эксплуатации люминесцентные лампы могут утратить свою работоспособность. Устранить такие неполадки можно, но для этого нужно знать, как проверить лампу дневного света, в том числе при помощи мультиметра.

Устройство и принцип работы ламп дневного света

Масса достоинств ЛДС обусловлена тем, что они представляют собой приборы газоразрядного типа, в которых ультрафиолетовое излучение формируется благодаря электрическим разрядам в испарениях ртути.

Особенность здесь одна – видимое освещение от лампы возникает только после того, как ультрафиолетовое излучение модифицируется. Такое преобразование возможно лишь при применении тех соединений, в которых содержится галофосфат кальция или иные составы с наличием люминофоров.

По принципу функционирования ЛДС можно приравнять к источникам освещения газоразрядного типа. В колбу из стекла помещают инертный газ, предварительно откачав из неё воздух, а после добавляют в газ 30 мг ртути. В оба края сосуда устанавливаются спиралевидные электроды, схожие с нитью накаливания. Они с каждой стороны припаиваются к 2 контактным ножкам, которые помещаются в пластины диэлектрического типа. Внутреннюю поверхность трубки покрывает слой люминофора.

Включается дневной светильник при помощи пускорегулирующего устройства – электромагнитного или электронного типа. Электромагнитное устройство включает в себя основной элемент – дроссель. Это сопротивление балластного типа в форме индуктивной катушки с сердечником из металла, которое последовательно соединено с люминесцентной лампой.

Дроссель необходим для поддержки равномерности разряда и корректировки тока при надобности. Когда лампочка включается, дроссель подавляет пусковой ток до того момента, пока спиралевидные нити не разогреются, а после выдаёт максимальное напряжение от самоиндукции, вследствие чего ЛДС зажигается.

Причины перегорания люминесцентных ламп

Нередко ЛДС перегорает, что придаёт ей схожести с традиционной лампой накаливания. При включении в колбе формируется дуга из электричества, вследствие чего спиралевидные электроды из вольфрама сильно нагреваются. Скачки высокой температуры влекут за собой разрушение и перегорание нитей.

Чтобы продлить эксплуатационный срок, на нить из вольфрама наносят слой активного щелочного металла. Разряд между электродами стабилизируется и снижается температура, благодаря этому нить намного дольше служит.

Учащённое включение/выключение лампы влечёт за собой разрушение защитного слоя, он просто опадает. Проходящий через оголённые нити разряд греет спираль в слабых точках, вследствие чего происходит перегорание.

Проверка цифровым тестером

С помощью цифрового тестера можно проверять целостность нитей накала. Выполнить это можно как в режиме прозвонки, так и в режиме проверки сопротивления. Необходимо выставить мультиметр в нужный режим и выполнить проверку спирали с обеих краёв трубки.

В режиме прозвонки, если спираль исправна, тестер выдаст характерный звук – зуммер.

В режиме проверки сопротивления при исправной спирали индикатор мультиметра высветит значение 5-10 Ом.

Перегорание нитей нагрева – наиболее распространённая поломка дневных ламп, которую легко обнаружить при помощи цифрового тестера.

Выявление неполадок и их устранение

ЛДС неисправна в таких случаях:

  • не включается;
  • временно мерцает перед включением;
  • долго мерцает, но не включается;
  • гудит;
  • мерцает при горении.

Целостность спиралей-электродов

Прозвонить спираль-электрод на присутствие сопротивления можно с помощью мультиметра. На приборе выставляется режим замера сопротивления, а после того щупы прикладывают к ножкам колбы с обеих сторон.

Если спираль неисправна, мультиметр продемонстрирует нулевое сопротивление – нить порвана. Целая спираль всегда показывает небольшое сопротивление – до 10 Ом. Если хотя бы одна из спиралей окажется неисправной, лампу необходимо менять. Восстановлению она не подлежит.

Неисправности в электронном балласте

Чтобы проверить исправность электронного балласта, его нужно заменить на рабочий. Если лампа зажглась, значит причина поломки заключалась в нём. Сломанный балласт можно починить самостоятельно. Вначале нужно сменить предохранитель на аналогичную модель с теми же характеристиками. Если нити светятся слабо – значит в конденсаторе между ними имеется пробой. Он также заменяется схожим, но с показателем рабочего напряжения 2 кВ. слабые модели будут быстро сгорать.

Вследствие скачков напряжения могут сгореть транзисторы. Их нужно менять. Взять новые можно из старых балластов. После замены необходимо проверить люминесцентный фонарь с помощью лампы на 40 Вт.

Как проверить дроссель люминесцентного светильника

Перед тем как проверить дроссель лампы дневного света мультиметром, необходимо ознакомиться с основными признаками его поломки:

  • гудение осветительного прибора;
  • лампа включается и через время гаснет, темнея по краям;
  • ЛДС перегревается;
  • внутри трубки появляются “змейки”;
  • светильник сильно мерцает.

Чтобы проверить дроссель на работоспособность, необходимо вытащить из светильника стартер, а потом замкнуть в его патроне контакты. Затем вынимается лампа и контакты в обеих патронах также закорачиваются. Мультиметр выставляется на замер сопротивления, после чего его щупы подсоединяются к контактам в ламповом патроне. Если имеется обрыв, прибор покажет нескончаемое сопротивление. При межвитковом замыкании прибор покажет нулевое значение.

Как проверить стартер

Если светильник стал мерцать сразу после включения, но при этом так и не загорелся – вышел из строя стартер. Выполнить его прозвонку отдельно от ЛДС не получится, так как без напряжения его контакты являются разомкнутыми.

Проверка исправности стартера возможна другим методом – последовательно подсоединив его с лампой накаливания к стандартной электросети.

Основная причина выхода из строя – биметаллическая пластина сильно изнашивается.

Как проверить ёмкость конденсатора тестером

Если конденсатор ЛДС неисправен, её показатель КПД уменьшается до 35-40%. Для осветительных приборов с мощностью не более 40 Вт вполне достаточно конденсатора с ёмкостью 4,5 мкФ. Если она меньше данной нормы, КПД будет уменьшено, если больше – освещение будет мигать.

Для осуществления замера конденсатор необходимо прозвонить мультиметром. При прикосновении щупами выходов детали прибор демонстрирует нескончаемое сопротивление. Когда этот показатель меньше, чем 2 Мом – это симптоматика значительной утечки тока.

Включение люминесцентной лампы без дросселя

Сгоревшую лампу дневного света можно вернуть в работу, если подсоединить её в схему посредством постоянного напряжения, исключая стартер и дроссельный элемент. Здесь поможет использование двухполупериодного выпрямителя с удваиванием напряжения. Если через некоторое время яркость лампы снизится, её необходимо перевернуть в светильнике, вследствие чего сменятся полюса подсоединения.

Данная схема предполагает использование радиоэлементов с показателем напряжения не больше 900 В. Именно такого значения достигает ЛДС при запуске.

Схема подключения перегоревших ламп

Из-за перегорания нитей накала люминесцентные лампы нередко приходят в негодность. Вернуть вторую жизнь такой лампе можно, используя нетрадиционную схему запуска, многократно испытанную народными умельцами.

Из таблицы можно узнать номинальные значения радиоэлементов для ЛДС с разной мощностью. Ограничительные резисторы R1 в обязательном порядке должны быть из проволоки.

Отремонтировать ЛДС в домашних условиях можно, если руководствоваться схемами и следовать определённым инструкциям. Такие знания дают возможность продлить эксплуатационный период осветительного прибора.

Проверка ламп дневного света мультиметром

В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).

Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.

В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.

Устройство

Принцип работы ламп дневного света основан на свечении люминофоров в ультрафиолетовом свете.

Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав. Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. Перегорание спиралей можно проверить тестером.

В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.

Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.

Принцип работы

Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением 220 В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы.

И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника. Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе.

Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.

Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.

Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания.

В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры (а их тоже будет два или более – по количеству ламп), тоже подключаются последовательно. В этом случае стартеры должны быть на напряжение 127 В, иначе они не сработают.

Проверка стартера

Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.

После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.

При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:

  • конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
  • лампа не должна быть сильно почерневшей;
  • далее конденсатор можно проверить с помощью универсального тестера – мультиметра.

Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.

Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.

В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.

Целостность спиралей-электродов

Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.

Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.

Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.

Проверка дросселя

Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.

Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.

Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.

Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.

Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).

В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.

Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.

инструкция для разных видов ламп

В инструкциях к современным осветительным приборам производителями указываются «волшебные» сроки эксплуатации, но на практике, даже качественные и дорогие лампочки редко работают больше 1 года. Изделия устаревших конструкций, в которых источником света является раскаленная вольфрамовая нить, прослужат еще меньше. Чтобы случайно не выбросить лампу, которая еще пригодна к дальнейшему использованию, рекомендуется проверять такие изделия. Самый простой метод — установка в другой осветительный прибор. К сожалению, такой способ не всегда является удобным, а если применяется изделия с оригинальным видом цоколя, то реализация его на практике невозможна без выполнения довольно опасных действий с использованием электрических проводов, находящихся под высоким напряжением. Хорошей альтернативой этому варианту диагностики является использованием портативных измерительных приборов. Как проверить лампочку мультиметром будет подробно рассказано в этой статье.

Какой мультиметр использовать для проверки

Для того чтобы проверить электрическую лампочку на работоспособность можно использовать практически любую модель мультиметра. Одним из самых доступных устройств, оснащенных функцией прозвона электрической цепи, является модель DT832. Таким устройством можно проверить не только лампочки. Например, с помощью мультиметра легко осуществляется ремонт автомобилей, например, можно определять положение дроссельной заслонки карбюратора или прозвонить проводку. Если у тестера звуковой сигнализатор отсутствует, то можно использовать его в режиме измерения сопротивления.

Если проверить работоспособность лампочки необходимо срочно, а в наличии нет мультиметра либо прибор оказался неисправным, то можно собрать самодельное устройство, которое может вполне справиться с этой задачей. Для этой цели можно использовать стрелочный индикатор и батарейку на 1.5 вольта. Достаточно соединить эти элементы последовательно с использованием разрыва с 2 щупами. Таким образом можно эффективно проверить обрывы некритичной к повышенному току электрической цепи.

Подготовительные работы

Каких-либо специальных навыков обращения с электроизмерительными приборами не требуется. Кроме мультиметра для успешного выполнения тестирования лампочек могут понадобиться только перчатки. Некоторые модели электрических источников света запрещается брать голыми руками, иначе оставленные на поверхности лампы жировые следы могут привести к скорому выходу изделия из строя. Также может понадобиться спирт и старая зубная щетка для очистки контактов. Если лампочка эксплуатировалась во влажной среде, то на ее металлических элементах может образоваться довольно прочная оксидная пленка, которая часто становится причиной вынесения ложного заключения о неисправности электрического источника света. С этой целью можно также использовать универсальное средство WD-40.

Перед выполнением диагностической операции следует также убедиться в том, что измерительный прибор находится в работоспособном состоянии. Для этой цели достаточно перевести устройство в режим «прозвона» и соединить плюсовой и минусовой щупы. По звуковому сигналу можно определить исправность мультиметра. При отсутствии возможности проверить мультиметр таким образом, прибор следует перевести в режим измерения сопротивления. Исправность тестера также может быть установлена соединением контактов, но, в этом случае, на индикаторе должно появиться числовое отображение сопротивления (около 1 Ома).

Безопасность выполнения диагностической операции превыше всего, поэтому, если нет уверенности в том, что фазный провод подключен к лампе через выключатель, перед ее извлечением из патрона рекомендуется отключить предохранительные автоматы в электрическом щитке.

Проверка лампы накаливания

В большинстве случаев неисправность лампы накаливания можно определить при визуальном осмотре. Если спираль внутри колбы повреждена, то дальнейшая эксплуатация электрического источника света невозможна.

Иногда повреждение проводников образуется в местах припайки контактов либо на участке между цоколем и спиралью. Такую поломку определить на глаз практически невозможно, поэтому если спираль целая, то следует воспользоваться мультиметром для того, чтобы убедиться в отсутствии обрыва цепи. Если стеклянная колба изготовлена из непрозрачного стекла либо была окрашена, то без тестера определить внутренний обрыв проводника также не получится.

Как проверить лампу мультиметром (последовательность действий):

  • Перевести мультиметр в режим «прозвона».
  • Присоединить щупы к контактам лампы накаливания (полярность не имеет значения).

Исправность электрической лампы будет определена по звуковому сигналу. Наличие прохождения электрического тока по внутренней спирали можно также определить, если замерить сопротивление лампочки. Для этой цели мультиметр следует перевести в режим измерения сопротивления, а затем также присоединить щупы к металлическим контактам источника света.

Если в результате проверки дисплей цифрового прибора покажет бесконечно большое сопротивление либо звуковой сигнал будет отсутствовать, то лампу накаливания потребуется заменить (при использовании стрелочного прибора будет отсутствовать механическое движение индикатора). Чтобы убедиться в том, что причиной неисправности лампы является обрыв цепи, следует внимательно осмотреть контакты электрического источника света. Даже при наличии незначительно окисла их необходимо смочить спиртом и почистить зубной щеткой или любым неметаллическим твердым предметом, после чего провести повторную диагностику.

С помощью мультиметра можно диагностировать обрыв электрической цепи и у автомобильной лампочки. Если необходимо проверить элемент головного освещения, то следует обратить внимания на тот факт, что в таких устройствах используется 2 нити, рассчитанные на 12 Вольт, которые необходимо прозвонить отдельно.

Каких-либо отличий в том, как проверить галогеновую лампу такого же напряжения не существует. Такой источник света отличается от обычного элемента только использованием инертного газа в колбе.

Диагностика люминесцентной лампы

О том, как проверить люминесцентную лампу мультиметром несложно догадаться, если знать принцип работы этого прибора освещения. В каждом отдельном элементе устанавливаются с двух противоположных сторон спирали-электроды, с помощью которых осуществляется запуск тлеющего разряда внутри колбы. Выход люминесцентной лампы из строя происходит в момент перегорания нитей накаливания, поэтому, как и в случае с вольфрамовой нитью, достаточно измерить сопротивление между контактами, чтобы выяснить возможность дальнейшей эксплуатации изделия.

Для того чтобы проверить мультиметром люминесцентную лампу достаточно извлечь ее из держателя и замерить сопротивление между контактами с каждой стороны. При отсутствии звукового сигнала либо наличии бесконечно большого сопротивления можно констатировать неисправность осветительного прибора.

Многих владельцев мощных ртутных источников света интересует вопрос, как проверить лампу ДРЛ тестером. Наиболее часто возникает необходимость определения исправности ДРЛ 250 на 220 Вольт. Диагностическая операция осуществляется с помощью тестера, который также следует перевести в режим проверки резисторов, затем коснуться щупами выводов осветительного прибора. При отсутствии изменений в показаниях прибора лампу потребуется заменить.

Проверка дросселя

Если лампочки окажутся исправными, то отсутствие запуска тлеющего разряда может происходить по причине выхода из строя дросселя. Эту деталь также можно проверить с помощью тестера.

Инструкция, как проверить дроссель лампы дневного света мультиметром:

  • Перевести мультиметр в режим измерения сопротивления.
  • Подсоединить один щуп к входу, второй — к выходу электронного элемента.

При отсутствии обрыва цепи дроссель лампы дневного света можно считать исправным, но только при условии, что его изоляция не повреждена. Если есть потемневшие места, то на таких участках, возможно, произошел электрический пробой, который может стать причиной неработоспособности элемента.

Проверка светодиодной лампы

Для того чтобы проверить светодиодную лампу потребуется аккуратно снять рассеиватель. Затем перевести измерительный прибор в режим измерения сопротивления до 200 Ом. В этом случае на щупах тестера будет небольшое напряжение, которое не в состоянии полностью зажечь светодиод, но слегка подсветить его вполне возможно.

При такой проверке важно соблюсти полярность. В точке вывода электричества от внутреннего блока питания, как правило, указывается «+» и «−». Полупроводники подключаются последовательно, поэтому чтобы их проверить необходимо поочередно подключить щупы к каждому элементу (со стороны «плюса» подключается красный щуп). В первую очередь следует прозвонить элементы, на поверхности которых есть темные пятна.

Не лишней будет информация о том, как проверить светодиодную лампочку, если каждый элемент «отзовется» на прикосновение щупов мультиметра небольшим свечением. В этом случае прозванивают провода от цоколя, до платы питания. Также следует проверить исправность транзистора и диодного моста.

Если в результате проверки будет выявлены неисправности внутренних элементов, то энергосберегающую лампу дешевле заменить, чем тратить время на поиск подходящих электрических деталей.

Диагностика неисправности лампы подсветки монитора
Как проверить лампу подсветки монитора правильно, зависит от того, какой тип осветительных элементов используется в экране компьютера. Для выполнения этой задачи могут применяться:

  • CCFL (флуоресцентные лампочки).
  • Светодиоды.

Флуоресцентные лампочки подсветки экрана можно проверить с помощью специального тестера. Светодиоды проверяются таким же образом, как и при диагностике полупроводниковых ламп, работающих от сети. Если подключить щупы к элементам соблюдая полярность, то они начнут немного светиться (в режиме измерения сопротивления до 200 Ом).

Основная проблема при выполнении диагностической операции — добраться до осветительных элементов. При выполнении работы следует соблюдать осторожность, ведь даже в отключенном мониторе может оставаться опасное для жизни напряжение.

Буквенные обозначения электрических лампочек

Если вы узнали, как прозвонить лампочку, но не знаете о том, к какому типу элементов питания относится изделие, то следует поискать на ее корпусе обозначение. Тип осветительного прибора, как правило, указывается несколькими символами:

  • LED — светодиодные.
  • CCFL — флуоресцентные.
  • ДРЛ — ртутная.
  • ЛДС — дневного света.
  • ЛН — накаливания.

На светильниках также может быть указана буквенная маркировка. По первому символу можно установить принадлежность прибора к определенной категории, например:

  • Н — накаливания.
  • Д — светодиодная.
  • И — кварцево-галогенная.
  • Р — газоразрядная ртутная лампа.

Вне зависимости от того на двенадцать вольт используется осветительный элемент или подключается к бытовой электрической сети, буквенное обозначение остается неизменным.

Видео по теме

Как выбрать качественную светодиодную Led лампу

Опубликовано 08.03.2016

Светодиодные лампы, которые сейчас повсеместно заменяют традиционные лампы накаливания, стоят недешево. Причем разница между качественной и не качественной лампой в цене может быть совсем небольшой.
Как же не ошибиться при выборе и купить такую лампочку, которая не будет вредить глазам и прослужит достаточно длительный срок?

Есть несколько правил при выборе и при проверке, соблюдая которые, можно взять то, что нужно.
Давайте их все рассмотрим по порядку.


При выборе лампы в магазине необходимо обратить внимание, прежде всего на упаковку.
Сравнивая данные, которые указаны на коробке, можно сделать предварительные выводы о честности производителя и, частично — о качестве LED лампы.
Исходим из того, что выпускающий серьезную продукцию капиталист, не будет вводить в заблуждение покупателя и укажет точные параметры своего изделия.

На что смотреть в первую очередь?
Обратите внимание на мощность лампы в ваттах и на мощность, равной ей лампы накаливания по версии производителя. А потом делаем небольшую проверку, используя таблицу соответствия мощностей и светового потока.

Цифры в таблице не следует воспринимать буквально, но порядок соотношения они дают.

Накаливания, ВтСветодиодная, ВтПоток света, Лм
253250
405400
608650
100141300
150222100

И табличка из второго источника, чтобы можно было сравнить и выбрать что-то среднее. Хотя, они похожи.

Световой поток светодиодных ламп
Мощность, Вт357101220
Световой поток, Лм180 — 360420 — 540620 — 680840 — 920950 — 11701700 — 2200

То есть, например, если вам продали 8-ми ваттную лампу, на которой написано, что ее эквивалент 80 ватт обычной лампы накаливания, а световой поток указан 680Лм, то понятно даже первокласснику церковно-приходской школы, что вас немного обманывают.
На самом деле мощность такой лампы можно сравнить с 60-ваттной обычной лампочкой. И не более.
Но это еще не говорит 100% о том, что данный товар некачественный. Может это, всего лишь маркетинговый ход, которым иногда не пренебрегают даже именитые бренды.

Второе, на что необходимо обратить внимание – наличие гарантии. На светодиодные лампы должна идти гарантия от двух лет и выше. Годовая гарантия дает основание заподозрить, что такая светодиодная лампа может проработать недолго, и выйдет из строя задолго до своих 25-30 тысяч часов работы.

В домашних условиях дополнительно можно проверить вашу покупку еще двумя способами.

Но прежде немного теории…
Переменный ток, который питает все наши электроприборы в домашней сети, имеет частоту 50 Гц. Это значит, что все наши лампы накаливания включаются и выключаются с этой периодичностью, то есть мерцают. Но, в силу инертности спирали накаливания, она не успевает полностью остыть, и эти мерцания практически незаметны.
Светодиод же, включается мгновенно и так же мгновенно выключается. И, хотя мы не замечаем эти включения-выключения, но такие мерцания оказывают негативное влияния на наши глаза.

Чтобы этого не было, и чтобы светодиод служил дольше, в ЛЭД лампах устанавливаются специальные электрические схемы.
Такая внутренняя схема светодиодной лампы, которая управляет светящимися элементами, называется заграничным словом ДРАЙВЕР.

Реализован этот драйвер в разных светодиодных лампах по-разному — используются разные элементы, их количество и схемы подключения.
Производитель, который захотел сэкономить и удешевить свое изделие, ставит простой драйвер, который не обеспечивает всех требований к такому виду ламп.
У такой лампы, к тому же, скорей всего не будет соответствовать заявленная мощность той, что есть на упаковке. То есть, вы просто банально переплатите…
Но, если бы только это…

Чем это плохо для нас, потребителей? А вот это мы сейчас и посмотрим.
Возьмите простой карманный радиоприемник, найдите к нему батарейки, включите на среднюю громкость и поднесите к работающей лампе, которую хотите проверить.
Чем больше помеха, создаваемая начинкой лампы, тем хуже эта самая начинка. В этом случае, конечно, хорошо бы иметь эталонную лампу проверенного производителя, чтобы было с чем сравнивать.
Так как создавать помеху будет практически любая лампа, то этот тест нельзя считать совсем уж точным.

Но вот следующая проверка не требует от нас ни эталонов, ни каких то особых навыков.
Ее можно сделать при помощи вашего мобильного телефона, а точнее, коммуникатора или смартфона. Как кому больше нравиться называть.
Включаем камеру своего гаджета в режим фотосъемки и направляем на включенную светодиодную лампу, постепенно приближая зрачок камеры к «объекту».
В определенный момент, если лампа не качественная или дешевая, вы увидите на экране частое мерцание картинки.

Человеческий глаз, в силу своей инертности, как было сказано выше, не замечает этого мерцания, но оно будет вредно для зрения, если достаточно долго находится при таком освещении.
Поэтому такую лампочку лучше вернуть обратно продавцу или переставить в помещение, в котором вы не находитесь долгое время. И, конечно же, не стоит читать при таком свете.

Собственно, последнюю проверку можно сделать и магазине, чтобы потом не бегать, и не возвращать обратно.

 

загрузка…

 

А также…


Типичные неисправности светодиодных светильников

Содержание:

Газоразрядные ИС и лампы накаливания не подлежат ремонту. Совсем иное дело — светодиодные светильники, практически все виды неисправностей которых может диагностировать и устранить квалифицированный специалист – электротехник.

Основные компоненты LED лампы

Чтобы ориентироваться в терминологии и представлять себе поле деятельности, необходимо понимать конструкцию и функцию главных узлов светодиодного светильника (или лампочки):

  1. Светодиод — излучающий диод, закрепленный на алюминиевой пластине. Может иметь собственную оптику в виде линзы.
  2. Цоколь/разъем/сокет — контактное соединение лампы. Выполняется в виде резьбового цилиндра или штырькового (пинового) контакта.
  3. Радиатор — служит для передачи тепла от излучающего диода в окружающее пространство. Для эффективной процесса контакт между радиаторной пластиной и излучающим диодом выполняется через термопасту.
  4. Драйвер (блок питания/БП) — устройство, преобразующее переменный ток сети напряжением 220 В в постоянный ток никого вольтажа. БП питает энергией источник света и автоматически регулирует параметры, компенсируя их колебания и обеспечивая стабильную работу светильника. Самые простые драйверы реализованы с помощью резистора или конденсатора. Более совершенные блоки имеют в своем составе трансформатор и управляющий чип. БП может быть как наружным, так и внутренним (располагаться в цоколе лампы).
  5. Диффузор, рассеиватель — обычно плафон или абажур, служащий для более равномерного распределения светового потока, а также изменения угла рассеивания.
Рис. 1. Компоненты светодиодной лампочки с полимерной колбой

Большинство отказов LED светотехники связано с неисправностями драйвера и/или самих диодов. В свою очередь, причиной этих неисправностей может быть недостаточный отвод тепла через радиатор.

Неисправности излучающих диодов

В большинстве современных LED лампочек используются SMD светодиоды, подключенные в цепь последовательно. Поэтому при выходе из строя одного диода цепь размыкается, и устройство перестает работать. Обычно перегорает один элемент из всей сборки. Одновременный отказ двух или трех — большая редкость.

К сожалению, большинство LED светотехники, представленной на рынке РФ, не «доживает» до конца заявленного ресурса. Мы почему-то уже привыкли к тому, что продавцы говорят про 10 лет, но гарантию дают максимум на 2 — 3 года.

К счастью, в последнее время российские производители начинают теснить дистрибьюторов китайского ширпотреба. Так «Интера Лайтинг» установила новый стандарт в отрасли, гарантируя своим клиентам 5-летний срок службы всей светотехники на базе диодов.

Рис. 2. Последовательная цепь из светодиодов

Диагностика

Причины преждевременной деструкции диодов:

  • Деталь была некондиционной.
  • Низкое качество монтажа (пайки).
  • Проблемы со стабилизацией напряжения.
  • Ошибки в проектировании схемы, радиатора, либо намеренное (маркетинговое) завышение параметров для демонстрации повышенной светоотдачи (Лм/Вт).

Но какой бы ни была причина повреждения, перегоревшую постгарантийную лампочку в ряде случаев можно вернуть к жизни. Сначала, разумеется, устройство необходимо разобрать. Диффузор аккуратно отделяется с помощью острого ножа или тонкой отвертки (речь идет о полимерных колбах, стеклянные не подлежат демонтажу в домашних условиях).

Под диффузором находится пластина/плата/матрица с излучающими диодами. Обычно поврежденную деталь можно найти без инструментальной диагностики — просто по внешнему виду. Это могут быть темные точки, пятна, другие следы горения или перегрева. Если визуально не получается определить отказавший элемент, в ход идет тестер-мультиметр. В большинстве современных мультиметров предусмотрена выделенная функция проверки диодов.

Рис. 3. Визуальная диагностика «пробитого» светодиода

Проверка светодиода мультиметром:

  1. Красный зонд подсоединяем к аноду диода, а черный — к катоду.
  2. Если элемент исправен, он начнет светиться. При перестановке зондов местами на дисплее появится цифра «1».
  3. Сгоревший диод не светится при любом положении зондов.
Рис. 4. Тестирование диода мультиметром

Замена светодиода

После обнаружения сгоревшего компонента его необходимо заменить. Мы должны распаять его и припаять новый. Следует учитывать, что перегрев может повредить полупроводник. Как правило, рекомендации по пайке приводятся в паспорте на диод. Например, для SMD 5730, часто используемого в серийных лампочках с резьбовым цоколем, температура не должна превышать 260 ° C (максимум — поддерживаться не более 2 с).

Перед заменой диода рекомендуется снять радиаторный блок и распаять контакты БП. Затем следует закрепить пластину (LED матрицу) на держателе. Это позволит высвободить руки.

Далее следует нагреть плату с помощью горячего воздуха (подойдет бытовой фен). Чтобы не перегревать исправные светодиоды, температура не должна быть слишком высокой: не более 100 — 150 ° С.

Для удаления сгоревшего диода с пластины предпочтительно использовать термический зажим, который позволяет нагревать оба контакта одновременно. За неимением последнего можно применить самодельный гаджет — отрезок медной проволоки, намотанный на жало паяльника.

Рис. 5. Синхронный нагрев двух контактов самодельным приспособлением

Тип светодиодов указывается на плате. После демонтажа детали заменяем ее на аналог. Разумеется, важно строго соблюдать полярность.

Установка моста

Если количество излучающих диодов на матрице не менее 7 -8 шт., допустимо вместо замены сгоревшей детали устанавливать перемычку (мост). Отсутствие одного диода не повлияет существенно на условия работы остальных. Однако, этот метод ремонта подходит только для тех ламп, в которых используются качественные стабилизирующие драйверы. Тогда сила тока на полупроводниках не будет превышена выше рекомендуемого предела — а значит, срок службы лампочки не сократится.

Рис. 6. Установка моста взамен перегоревшего элемента

Вроде бы все просто, но уровень рядового пользователя бесконечно далек от демонстрируемого в этих методиках работы. А как насчет нормальной гарантии? Не всегда торговая точка принимает гарантийные рекламации на светодиодные лампочки. Достаточно продавцу найти малейшее механическое повреждение на корпусе — и он уже может отказать в возмещении ущерба. В «Интера Лайтинг» принципиально производят обмен любой LED лампы собственного производства, если она вышла из строя раньше, чем через 5 лет.

Проблемы с драйверами

Если диагностика лампочки, переставшей работать, не выявляет сгоревших диодов и разрушенных контактов, проблема заключается в работе блока питания. Впрочем, если речь идет не о лампочке, а о светильнике с интегрированной LED матрицей, проверку следует начинать сразу с замера выходного напряжения на драйвере. О неисправности этого блока также свидетельствуют:

  • Мерцание (мигание с частотой 1 – 40 Гц).
  • Гудение, жужжание или шум иного рода.

В LED лампочке хорошего качества БП на компактной плате расположен в цоколе. Каждый производитель разрабатывает собственные схемы драйверов, поэтому нет подробных общих рекомендаций по ремонту.

Рис. 7. Две из сотен возможных схем драйверов

Можно лишь посоветовать придерживать таких направлений проверки и ремонта:

  1. Диагностика обратного сопротивления транзисторов.
  2. Контроль емкости конденсаторов.
  3. Если есть управляющий чип/контроллер — измерение напряжения на контактах.
  4. Замена выявленных поврежденных деталей.
Рис. 8. Замер напряжения на выходе драйвера

Разумеется, все действия необходимо согласовывать с параметрами, указанными в паспорте на проверяемое изделие.

Если вы намерены модернизировать старый LED светильник, рекомендуется заменить «ноунейм» драйвер на качественный аналог. Гарантия «Интера Лайтинг на все комплектующие, включая блоки питания, составляет 5 лет.

Нештатное срабатывание защиты

Иногда встречается такой циклический «симптом» у LED светильников самых различных конструкций:

  1. При включении лампа вспыхивает, через0,5–3,0 секунды гаснет, затем «включается».
  2. Цикл мигания продолжается от нескольких минут до часа.
  3. После достаточного прогрева лампа перестает мигать и начинает светить в штатном режиме.

В функционале драйверов могут быть предусмотрены следующие виды защиты:

  • От превышения силы тока на одном из элементов цепи.
  • От падения напряжения на входе ниже MIN.
  • От скачка напряжения на входе выше MAX.
  • На случай короткого замыкания в нагрузке.
  • От превышения MAX температуры диода.

Проверка каждой версии требует высокой квалификации и значительного времени на проведение «расследования». Кроме того, нужен набор профессионального оборудования: одним тестером не обойтись. Поэтому лучше воспользоваться уже готовыми наработками.

Рис. 9. Конденсатор на 47 µF в схеме внешнего драйвера

Статистика диагностик описанной неисправности свидетельствует: не более 10 % случаев нештатного срабатывания защиты обусловлены использованием в драйвере некондиционных комплектующих — резисторов, трансформаторов, либо низким качеством пайки. В 9 из 10 случаев виновник мигания — конденсатор заниженной емкости. Заниженный параметр может быть причиной ошибки монтажа, но чаще это просто следствие высыхания электролита. Прогрев увеличивает емкость, поэтому со временем лампа выходит на установленный режим.

Решение проблемы — замена конденсатора на аналог с большей в 2 – 3 раза емкостью.

Но это решение скорее для тех, кто профессионально занимается электротехникой. Для массового потребителя ремонт LED светильников нерентабелен. Гораздо реальнее другой способ экономить — выбирая качество монтажа и комплектации, заверенное гарантией от «Интера Лайтинг».

Неисправности, связанные с недостаточным теплоотводом

Перегрев светодиодных ИС приводит к уменьшению срока службы ламп, а также к ухудшению функциональных параметров техники. Быстрее, чем заложено проектом, происходит снижение светового потока и деградация спектра со смещением цветовой температуры в сторону синего цвета (из-за выгорания люминофора на диодах).

Рис. 10. Бесконтактный замер температуры светодиода

Еще одна типичная неисправность по причине недостаточного отвода тепла — периодическое снижение яркости, либо даже отключение светильника (срабатывает защита). После такого срабатывания необходимо проверить состояние радиаторов и условия их работы. Иногда достаточно очистить радиаторную решетку от пыли, чтобы восстановить нормальную работу устройства. В худшем случае потребитель имеет дело с:

  • Ошибкой проектирования, либо откровенным жульничеством (один из примеров псевдо-инжиниринга — пластиковая радиаторная решетка на мощном светильнике).
  • Ошибкой монтажа (пример — не выдержано минимальное расстояние от потолка).
  • Недостаточной вентиляцией и чрезмерно высокой температурой воздуха в помещении.

Некорректное подключение LED ламп

Иногда мерцание, гудение и ряд других неисправностей связаны не с самим светильником, а особенностями подводящих сетей и дополнительных устройств.

Самая простая проверка мерцающей/жужжащей светодиодной лампочки — это тестовая замена ее на ИС накаливания или люминесцентную с таким же цоколем. Если тестовая лампа горит нормально, значит:

  • Используется диммер, не предназначенный для работы с LED.
  • Ваша светодиодная лампочка не является диммируемой.

Бывает, потребители сталкиваются с «эффектом призрака»: светильник выключен, но продолжает светиться. Это может происходить по следующим причинам:

  • Нейтральный провод не заземлен или у заземления слишком высокое сопротивление.
  • Из-за электромагнитной индукции кабели, проложенные рядом друг с другом, наводят паразитную ЭДС, которой достаточно для тусклого свечения LED лампы.
Рис. 11. Тусклое свечение LED лампы после ее выключения называют «эффектом призрака» (ghost effect).

Почему светодиодная лампа мерцает

Многие обращают внимание на то, что почему то светодиодная лампа мерцает, моргает или мерцает во включенном и выключенном состоянии. Этот недостаток  проявляется из-за нестабильного питания, которое пропускает пульсаций из сети 220 вольт. Он проявляется у бюджетных  и недорогих китайских, в которых производитель сэкономил на источнике питания. Большинство производителей не указывают этот важный параметр в характеристиках светодиодной лампы.

Это заметно больше всего на близком расстоянии, а лучше силу мигания определить используя телефон с камерой. Наведя камеру телефона на лампочку с расстояния 1 метра, вы увидите полосы на экране. Мигание происходит с частотой 100 Герц, на глаз эту частоту заметит очень сложно, но это воздействует на наше подсознание, на наше состояние.

Содержание

  • 1. ГOCT на пульсации
  • 2. Сравним коэффициент пульсаций
  • 3. Как избавиться от мигания
  • 4. Подведем итоги

ГOCT на пульсации


Пример мигания  в люстре

Существуют государственные стандарты, которые требует разные уровни коэффициента пульсации освещения в зависимости от помещения. Если лампа используется для освещения подсобных помещений, коридоров, подъездов – то она не нанесет вреда. Применение источника света с высокой неравномерностью светового потока в жилых помещениях очень нежелательно, особенно в детских комнатах.

Мигание (мерцание) света вызывает быстрое утомление зрения, деятельности мозга, снижение трудостособности, особенно при работе с компьютером. Особенно не рекомендуется писать или читать под светом с пульсациями выше 20%. Но этому воздействию подвержены не все, чаще всего дети и реже взрослые. К сожалению, я сам подвержен этому и через час воздействия такого освещения начинаются головные боли, и поднимается давление. Проблему могут решить лампы для дома с хорошим питанием.
Существует два вида питания:

  1. через конденсатор, используется в бюджетных моделях, мерцает;
  2. через драйвер со стабилизацией тока, в хороших, подороже.

Просто при покупке  не забудьте спросить консультанта, какое питание установлено и какой коэффициент мерцания у них.

В особых случаях проблема может появляться  из-за диммера для светодиодных ламп, при подключении нагрузки меньшей, чем рекомендованная для диммера.

Сравним коэффициент пульсаций

Проведем измерения спецприбором «ТКА-ПКМ», который покажет силу светового потока и коэффициента мерцания. В тесте будут участвовать 7 разных моделей. Замеры будем проводить в темноте, с расстояния 1 метр. Что же означают проценты коффициента пульсаций, — это процент изменение яркости от включенного до выключенного состояния, или амплитуда колебаний яркости .

Тип и мощностьОсвещенность на расстоянии
1 метр, Люкс
Коэффициент пульсаций, %
Энергосберегающая 15 Вт1009
Светодиодная 4,5 Вт7465
Накаливания 40 Вт5420
Накаливания 60 Вт11215
Накаливания 100 Вт2389
Светодиодная 7 Вт820,3
Светодиодка 8 Вт6387

По нормам САНПИНа на рабочем месте коэффициент  не должен превышать 20%.

С большим отрывом от всех участников побеждает светодиодка на 7 Ватт, показатель которой в 50 раз лучше, чем её эквивалент накаливания на 60 Ватт.

Победитель Ледкрафт

Лучший антирезультат показала кукуруза на светодиодах SMD 5050, с пульсациями в 87%.

Испытательный стенд, на котором проводил измерения

Самый худший результат

Как избавиться от мигания

Если вы уже владеет светодиодными лампами с высоким коэффициентом пульсаций, то есть несколько способов исправить эту характеристику.

  1. Достаем прежнюю начинку и ставим драйвер.
  2. Впаиваем дополнительный конденсатор для стабилизации, самый простой и недорогой способ.
  3. Достаем начинку , которые подключены к люстре, и используем один большой драйвер для всех лампочек в ней.

Подведем итоги

Так как наше здоровье нам дороже всего, то следует гораздо серьезней относится к покупке такой простой вещи, как лампочка. Так как они долговечны, то будут светить не только вам, но и вашим детям и внукам, может и передаваться по наследству. При покупке вы не тратите, а вкладываете свои денежки в своё светлое будущее.

..

В ближайшее время по просьбе женской половины читателей моего сайта будет составлен обзор про светодиодные УФ лампа для сушки ногтей в домашних условиях. А то китайцы впаривают им товар с завышенной мощностью.

часто задаваемых вопросов — LED Keeper

Что такое светодиод?

LED — это сокращение от Light Emitting Diode, который представляет собой небольшой полупроводник, который загорается при приложении напряжения в заданном направлении. Их можно найти во многих наших электронных устройствах. Известно, что они более энергоэффективны и служат в среднем около 30 000 часов.

Прилагается ли аккумуляторная батарея к LED Keeper?

Да, в комплект входит батарея на 9 В, необходимая для питания LED Keeper.

Где находится аккумулятор?

Батарея на 9 В расположена на нижней стороне LED Keeper рядом со шнуром питания. Аккумулятор необходимо надлежащим образом подсоединить к разъему аккумулятора в аккумуляторном отсеке.

Где я могу купить сменный аккумулятор для LED Keeper?

Сменный аккумулятор можно приобрести в большинстве магазинов, где продаются аккумуляторы. Все, что вам нужно, — это одна батарея на 9 В.

Как мне узнать, работает ли мой LED Keeper?

Светодиод Keeper имеет красный индикатор в верхней части инструмента, который загорается при нажатии на спусковой крючок.Это позволит пользователю узнать, что его LED Keeper включен.

Что мне делать, если ни одна из сторон светильника не светится при контакте с LED Keeper?

Повторите трубку и попробуйте еще раз. Если по-прежнему нет освещения, отсоедините ваш LED Keeper от провода комплекта освещения и выберите другое место в неосвещенной секции, чтобы повторно зацепить его, и попробуйте снова.

Если по-прежнему не удается, в вашем осветительном приборе может быть несколько неисправностей, вызванных ржавчиной или другими проблемами. Это может мешать LED Keeper создать мини-цепь, необходимую для освещения секции.Техническая поддержка доступна по телефону 888-858-2548.

Может ли LED Keeper повредить светильник?

Нет. Хотя LED Keeper использует технологию прокалывания изоляции, чтобы подключиться к комплекту светодиодных светильников и осветить функциональные части, материал, из которого изготовлена ​​изоляция, имеет тенденцию «лечить» сам себя. Оставленный миниатюрный прокол может быть даже не виден, так как он такой крошечный.

Что произойдет, если я подключу LED Keeper не к тому проводу?

Подключение LED Keeper к неправильному проводу светильника не причинит вреда светильнику, инструменту или пользователю.LED Keeper просто не сможет осветить функциональные части или принести пользу пользователю, если будет вставлен не тот провод.

Будет ли LED Keeper работать с лампами накаливания?

Нет, LED Keeper использует другую технологию, специально разработанную для работы со светодиодами. К счастью, LightKeeper Pro может устанавливать лампы накаливания в праздничные дни и имеет необходимые технологии для этих наборов. Пожалуйста, посетите www.LightKeeperPro.com для получения дополнительной информации.

Зачем мне использовать POD?

Пользователь будет использовать POD, если у него возникнет проблема с разъемом, которую невозможно решить, если невозможно найти точную заменяющую лампу для набора или если у пользователя есть несменный (герметичная конструкция) набор светодиодных ламп.

Будут ли POD работать с лампами накаливания?

POD были разработаны только для ремонта светодиодов. Если использовать POD с лампами накаливания, они не будут светиться и останутся неисправными.

Должны ли POD светиться как настоящая лампочка?

POD не загораются. Это не значит, что они недееспособны. Они просто не были предназначены для этого. POD необходим для ремонта комплекта светодиодов для поддержания электрического баланса.Поскольку пользователь удалил светодиод из набора, на оставшиеся исправные лампочки подается большее напряжение.

Имеет ли значение, есть ли у меня сменные или незаменяемые комплекты света для работы LED Keeper?

LED Keeper будет работать как со сменными, так и с несменными наборами вместе с LED Keeper POD.

Почему тестер лампочек LED Keeper работает только в том случае, если я вставляю лампу определенным образом?

Это не означает, что тестер ламп не работает.Это прямой результат физики светодиодных светильников и их производства. Светодиод будет проводить электричество только в одном направлении и загорится при правильном питании. Следовательно, может потребоваться две попытки проверить светодиод в тестере светодиодных ламп.

Будет ли тестер ламп проверять все светодиодные лампы?

Тестер лампочек LED Keeper разработан для тестирования большинства доступных конструкций. Однако тестер ламп может не поддерживать все конструкции.

Будет ли тестер ламп проверять лампы накаливания?

№Тестер светодиодных ламп не имеет соответствующей технологической конструкции. Он будет работать только со светодиодами.

Как работает тестер предохранителей?

Пользователь просто кладет соответствующий предохранитель на тестер предохранителей. Для получения точных показаний необходимо приложить металлические концы предохранителя к металлическим контактам тестера предохранителей. Нет необходимости нажимать на курок. Если предохранитель исправен, на индикаторе LED Keeper загорится красный свет. Если предохранитель неисправен и его нельзя использовать, красный индикатор не загорится.

Что мне делать, если инструмент больше не может освещать функциональные части светового набора?

Если вы когда-то могли освещать функциональные части светильника с помощью LED Keeper, а он больше этого не делает, возможно, нужно перевернуть штифт на крючке LED Keeper. Здесь можно найти простые инструкции по переворачиванию булавки.

Можно ли использовать универсальный сменный блок POD несколько раз?

Нет, этот POD предназначен только для замены патронов ламп.

Чтобы приобрести новый значок , нажмите здесь

Тестирование светодиодных индикаторов с помощью цифрового мультиметра

Проверить светодиодные фонари просто с помощью цифрового мультиметра, который даст вам четкое представление о том, насколько сильный каждый источник света. Яркость светодиода при тестировании также будет указывать на его качество. Если у вас нет мультиметра, простой держатель батарейки типа «таблетка» с выводами сообщит вам, работают ли ваши светодиодные фонари.

Использование мультиметра

Купите цифровой мультиметр, который может снимать показания диодов.Базовые мультиметры измеряют только амперы, вольт и омы. Для проверки светодиодных фонарей вам понадобится мультиметр с диодной настройкой. Поищите в Интернете или в местном хозяйственном магазине мультиметры среднего и высокого диапазона, которые с большей вероятностью будут иметь эту функцию, чем недорогие модели.
Приличный мультиметр среднего диапазона, вероятно, будет стоить от 50 до 100 долларов США.
Сделайте выбор в пользу цифрового мультиметра, а не аналоговой модели, которая будет труднее читать и будет менее надежной.

Подсоедините красный и черный тестовые провода.Красный и черный измерительные провода должны быть подключены к выходам на передней панели мультиметра. Красный провод — положительный заряд. Черный провод является отрицательным и должен быть подключен к входу с надписью «COM».

Поверните шкалу мультиметра в положение диода. Поверните циферблат на передней панели мультиметра по часовой стрелке, чтобы переместить его из положения «выключено». Продолжайте поворачивать его, пока не дойдете до диода. Если это не указано явно, настройка диода может быть представлена ​​символом диодной цепи.
Обозначение диода визуально обозначает его выводы, катод и анод.

Подсоедините черный зонд к катоду, а красный зонд к аноду. Прикоснитесь черным щупом к катодному концу светодиода, который обычно является более коротким контактом. Затем прикоснитесь красным щупом к аноду, который должен быть более длинным штырем. Обязательно подключайте черный датчик перед красным датчиком, так как обратное может не дать вам точных показаний.
Убедитесь, что катод и анод не соприкасаются друг с другом во время этого теста, так как это может помешать прохождению тока через светодиодный индикатор и помешать вашим результатам.
Черный и красный щупы также не должны касаться друг друга во время теста.
При подключении должен загореться светодиод.

Проверьте значение на цифровом дисплее мультиметра. Когда датчики касаются катода и анода, неповрежденный светодиодный индикатор должен отображать напряжение около 1600 мВ. Если во время теста на экране не появляется никаких показаний, начните снова, чтобы убедиться, что соединения были выполнены правильно. Если вы выполнили тест правильно, это может быть признаком того, что светодиодный индикатор не работает.

Оцените яркость светодиода. Когда вы выполните правильные подключения для проверки вашего светодиода, он должен загореться. Заметив показания на цифровом экране, посмотрите на сам светодиод. Если у него нормальные показания, но он выглядит тусклым, вероятно, это некачественный светодиод. Если он ярко светит, вероятно, это высокоэффективный светодиодный светильник.

Испытания с батарейкой типа «таблетка»

Используйте батарейку типа «таблетка», чтобы проверить светодиод, не перегорая его. Батарейки типа «таблетка» — самый безопасный вариант, потому что они не вырабатывают достаточный ток, чтобы вызвать повреждение.Тестирование с любым другим типом батареи может привести к сгоранию светодиодных ламп. Купите эти батареи в аптеках, универмагах, хозяйственных магазинах или в Интернете.
Используйте батарейки типа «таблетка» CR2032 или CR2025.

Купите соответствующий держатель батарейки типа «таблетка» с выводами. Купите тот, который рассчитан на то, чтобы удерживать батарейку типа «таблетка» (например, CR2025), с которой вы будете тестировать. Вы можете найти их в Интернете или в некоторых магазинах бытовой техники или электроники. Убедитесь, что в держателе есть красный и черный провода для проверки светодиодных индикаторов.
Держатели для плоских батареек обычно используются для увеличения заряда батарей в небольших проектах, таких как светодиодные украшения или одежда.

Подключите черный провод к катоду, а красный провод к аноду. Чтобы проверить светодиод, коснитесь кончиком черного щупа катода или более короткого конца светодиода. Коснитесь кончиком красного зонда анода, который должен быть более длинным концом. Убедитесь, что два зонда не соприкасаются друг с другом во время этого теста, и что катод и анод не соприкасаются друг с другом.
У некоторых держателей батарей с выводами есть небольшой разъем на конце, удерживающий концы двух выводов.
Если в держателе батареи есть соединительный элемент, проверьте светодиод, вставив анод и катод в небольшие отверстия, которые совпадают с красным и черным проводами.

Подождите, пока загорится светодиод. Если светодиод работает и соединения проводов выполнены правильно, ваш светодиод должен загореться, когда вы его проверяете. Если этого не произошло, отсоедините и снова подключите выводы и катод / анод, чтобы повторить попытку. Если ваш светодиод не загорается, возможно, он перегорел или неисправен.
Если ваш светодиод не загорается, попробуйте проверить другие светодиодные индикаторы сразу после него.Если они загорятся, можно быть уверенным, что первый светодиод не работает.

Лучший тестер лампочек — Отличные предложения на тестеры лампочек от глобальных продавцов тестеров ламп

Отличные новости !!! Вы попали в нужное место для тестера лампочек. К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот лучший тестер ламп скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели тестер лампочек на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в тестере лампочек и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

И, если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время и проверьте купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести тестер ламп по самой выгодной цене.

Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

комплектов автоматической испытательной машины для ламп для галогенного спрятанного ксенонового светодиодного дисплея

И. Политика обмена

Пожалуйста, свяжитесь с нами по телефону или электронной почте в течение 30 дней после получения посылки, если вы хотите произвести обмен. При отправке электронного письма укажите эту информацию: номер заказа, имя, контактную информацию и причину (ы) возврата. Мы обработаем ваш запрос как можно скорее.

Если покупатель получил заказ по почте и хотел бы запросить обмен на другой стиль (-а), цвет (-а), размер (-а) или товар (-ы), покупатель должен сообщить об этом запросе обмена на allalighting. .com в течение одной недели после прибытия посылки согласно соответствующему номеру отслеживания или номеру подтверждения доставки, независимо от какой-либо ситуации.

Обмен не может быть произведен для заказов, сделанных три недели назад и более. На все пакеты обмена распространяются следующие ограничения:

I.1 Обменный сбор (для клиентов из США и других стран)

При обмене любого предмета (ов) по той же цене комиссия за обмен НЕ взимается. Однако allalighting.com НЕ покрывает стоимость доставки обменных товаров ни при каких обстоятельствах. allalighting.com не предоставляет кредит магазина или возмещение, если цена нового товара меньше, чем цена оригинального товара. Если стоимость обмениваемого предмета превышает первоначальную, взимается дополнительная плата.

I.2 Освобождение от платы за пересылку товара Exchange

Доставка предмета по обмену может быть исключена в следующих случаях: Исходный предмет (ы) имеет неправильный цвет по сравнению с цветом, указанным в заказе и в описании веб-страницы стилей.Исходный элемент (-ы) имеет / имеют неправильный размер или измерения от размера, указанного в порядке, и измерений, перечисленных в таблице размеров на веб-странице стиля. Исходный элемент (-ы) имеет / имеют неправильный стиль из стиль, указанный в заказе. Оригинальный (-ые) товар (-ы) в поврежденном или загрязненном состоянии.

Примечание: Пожалуйста, дважды проверьте размер (-а), цвет (-а) и стиль (-а) в форме заказа перед отправкой заказа.Все возвращенные товары должны соответствовать следующему условию, в противном случае они будут возвращены покупателю. за счет заказчика:

Пакет (-ы) обмена

должен включать следующую информацию: номер заказа, имя и фамилию, адрес доставки, причину возврата, копию квитанции и любую переписку по электронной почте.Товар (-ы) находится / находятся в том же состоянии, что и при отправке заказчику. Товар (-ы) должны иметь прикрепленные оригинальные бирки. Товар (-ы) должны сопровождать оригинальное пластиковое покрытие, вешалки и / или подобное аксессуары.

I.3 Отгрузка обмена

После того, как мы получим от клиента возвращенную посылку в надлежащем состоянии, обмен будет обработан и отправлен в течение 72 часов (трех рабочих дней). Мы не отправляем замененную посылку до тех пор, пока не получим оригинальную возвращенную посылку, отправленную клиентом, или номер для отслеживания, или подтверждение доставки оригинальной возвращенной посылки, отправленное клиентом.

Если обмениваемые товары представляют собой платье (а), смокинг (и), корзину (и) или подушку (и), обмененные посылки отправляются приоритетной почтой почтовой службы США или United Parcel Service Ground. Если обмениваемые товары представляют собой другие аксессуары (например, диадемы, перчатки, шиньоны и т. Д.), Обмененные посылки отправляются почтой первого класса Почтовой службы США. Приблизительный срок всего процесса обмена составляет около двух-трех недель. Если клиент хочет запросить более быстрые способы доставки, независимо от ситуации обмена, клиент несет ответственность за любые дополнительные расходы, необходимые для любого из расширенных методов доставки. .

II. Политика возврата

Пожалуйста, свяжитесь с нами по электронной почте в течение 30 дней после получения посылки, если вы хотите вернуть товар. При отправке электронного письма укажите эту информацию: номер заказа, имя, контактную информацию и причину (ы) возврата. Мы обработаем ваш запрос как можно скорее. Если клиент получил заказ по почте и хотел бы запросить возврат для возмещения, клиент должен сообщить об этом запросе возврата на allalighting.com в течение одной недели после прибытия пакета в соответствии с его соответствующий номер отслеживания или номер подтверждения доставки, независимо от ситуации.

У клиентов есть одна неделя для возврата товара после даты, когда запрос на возврат был одобрен allalighting.com. allalighting.com НЕ примет никаких возвратов, которые не были одобрены или если покупатель не вернет товар вовремя. На все возвращенные посылки распространяются следующие ограничения:

II.1 Плата за транспортировку и погрузку / разгрузку и сбор за пополнение запасов

При заказе вычитается стоимость доставки и погрузочно-разгрузочных работ. Однако плата за пополнение запасов не взимается только в том случае, если возвращенные товары находятся в «новом» состоянии.Чтобы обеспечить полный возврат средств, покупатель должен вернуть товар (-ы) в новом и неиспользованном состоянии (с биркой и упаковкой), в оригинальной коробке (-ях) и с копией счета-фактуры. Мы оставляем за собой право взимать до 50% от первоначальной цены товара в качестве платы за пополнение запасов за любой ущерб и испорченный товар (-ы).

II.2 Освобождение от комиссии за пополнение запасов ТОЛЬКО когда:

Исходный товар (-ы) имеет неправильный размер или размеры, отличные от размера, указанного в заказе, и измерений, указанных в таблице размеров на веб-странице стилей.Оригинальный товар (-ы) имеет неправильный стиль по сравнению с заказанным стилем. Оригинальный (-ые) товар (-ы) поврежден или испачкан производителем.

11 Тесты на месте для проверки светодиодного освещения

Неквалифицированная светодиодная осветительная продукция может вызвать проблемы с безопасностью. Ознакомьтесь с этими 11 тестами на месте для проверки светодиодного освещения, чтобы избежать проблем с безопасностью и производительностью.

Представьте, что покупатель только что купил светодиодный светильник в вашем магазине. Они довольны дизайном и функциями, указанными на упаковке продукта.И им просто не терпится установить его у себя дома.

Но после установки света покупатель получает сильный удар электрическим током. И вскоре следует судебный процесс, ставящий под угрозу репутацию вашего бренда и будущий успех.

Этот пример может показаться экстремальным, но это почти случилось с GE Lighting. В 2018 году GE отозвала 46000 светодиодных трубчатых ламп после того, как обнаружила, что продукт представляет опасность поражения электрическим током и поражения электрическим током. К счастью, они смогли отозвать продукт до того, как он привел к каким-либо травмам или судебным искам.

Осмотр освещения перед отгрузкой с тщательным тестированием освещения на месте может помочь вам избежать проблем с безопасностью, а также проблем с функциональностью и производительностью ваших продуктов. Тестирование освещения также может помочь вам обеспечить соответствие стандартам безопасности светодиодного освещения и международным нормам (, относящийся к : Образец отчета о проверке — Светодиодное освещение ).

Вот 11 тестов, которые следует включить в контрольный список для проверки светодиодного освещения, чтобы обеспечить оптимальную безопасность и производительность продукта.

1. Протрите этикетку с характеристиками освещения

Паспортная табличка — это печатный знак на электронных продуктах, который обычно включает такую ​​информацию, как номера моделей, сведения о напряжении, предупреждения о безопасности и символы соответствия нормативным требованиям.

Перед проверкой проверьте требования к маркировке вашего целевого рынка, поскольку в ЕС, США и Австралии существуют разные требования к маркировке освещения. Каждый рынок имеет свои собственные требования к размеру, адгезии и содержанию этикетки ( связано с : Импорт светильников в ЕС? Как обеспечить соответствие маркировки освещения ).

Специалисты по контролю качества

обычно предлагают провести «тест на истирание» рейтинговых этикеток на месте, чтобы убедиться, что маркировка нанесена на продукт в достаточной степени. Паспортная табличка должна быть четко напечатана и прочно приклеена к продукту без выцветания слов или символов.

Инспектор должен дважды потереть рукой паспортную табличку:

  • Сначала используйте кусок белой ткани, пропитанный водой на 15 секунд
  • Секунда с использованием куска белой ткани, пропитанной спиртом на 15 секунд

Паспортная табличка не должна отслаиваться, и вся маркировка должна оставаться читаемой, чтобы продукт прошел этот тест.

2. Испытание на усталость светодиодного освещения

Переключатели или кнопки на светодиодном осветительном устройстве будут использоваться тысячи раз в течение среднего срока службы продукта. А неисправный переключатель, скорее всего, заставит вашего клиента потребовать возмещения. Или, что еще хуже, они могут просто незаметно отказаться от вашего продукта и после этого купить его у одного из ваших конкурентов.

Тест на усталость может помочь вам оценить долговечность функциональных частей при длительном использовании. Во время испытания на усталость инспектор проверяет все регулируемые или функциональные части изделия.Для светодиодных фонарей это может включать нажатие кнопок или переключателей несколько раз.

Сначала инспектор будет использовать деталь по назначению не менее 20 раз подряд, а иногда и до 50 раз в зависимости от ограничений по времени. Затем они проверит, нет ли неисправности регулируемых частей.

Специалисты по инспекции обычно предлагают выполнить эту проверку для выборки AQL S-1 (см .: Руководство импортера по управлению качеством продукции с помощью AQL [электронная книга] ). Тестирование большего размера выборки может увеличить время, необходимое для проверки.

3. Проверка сборки светодиодной продукции

Не все продукты готовы к использованию. Светодиодные лампы почти всегда упаковываются отдельно, например, от патрона лампы или монтажного кронштейна.

Проверка сборки на месте может помочь вам убедиться, что клиенты могут легко собрать, установить и использовать ваш продукт.

Инспектор соберет продукт в соответствии с инструкциями по сборке, используя обычные инструменты или инструменты, поставляемые с продуктом при покупке. Цель этого теста — имитировать реальный процесс, с которым ваш клиент столкнется с при сборке и установке вашего продукта.

Рекомендуемый размер образца для этого теста составляет не менее двух единиц, в зависимости от требуемых этапов сборки. Вы можете рассмотреть возможность проведения этого теста на выборке большего размера, если сборка не требует более одного или двух небольших шагов.

4. Проверка крутящего момента для компонентов освещения

Испытание крутящим моментом обычно применяется для изделий с вращающимися частями, такими как винты, крепежные детали или болты. Для ламп накаливания винтовой цоколь лампы часто необходимо вкручивать, например, в патрон лампы.

Тест крутящего момента измеряет вращающее усилие, необходимое для поворота, открытия или закрытия этих деталей, и помогает выявить любые потенциальные проблемы с их качеством. Например, деталь может растянуться и ослабнуть, если крутящий момент будет слишком большим. Или деталь может легко ослабнуть, если крутящий момент будет слишком низким.

Для этого теста требуется специализированное оборудование, известное как тестер крутящего момента . Вашему поставщику, как правило, необходимо предоставить инспектору тестер крутящего момента. Это оборудование слишком велико для большинства инспекторов, чтобы они могли сами доставить его на место проверки.

Крутящий момент измеряется в единицах измерения, известных как «ньютон-метр», обычно сокращенно «Н · м». Существуют разные стандарты крутящего момента, применяемого к патрону лампы, в зависимости от типа патрона и предполагаемого рынка сбыта.

Некоторые общие стандарты включают:

Приведенные выше европейские классификации относятся к монтажным кронштейнам для патронов Эдисона с винтами Эдисона или байонетным цоколям.

Крутящий момент следует прилагать в правильном направлении для ослабления заблокированных винтов и аналогичных соединителей — обычно против часовой стрелки.Инспектор должен протестировать образец S-1 размером или больше и подтвердить, что:

  • Патрон лампы остается на месте. В течение одной минуты движение предметов не должно происходить.
  • Нет остаточной деформации корпуса.

5. Тест Hi-pot на соответствие стандартам безопасности светодиодного освещения

Тест с высоким потенциалом, или тест с высоким потенциалом, — это один из самых важных тестов безопасности для электротехнической продукции. Это настолько важно, чтобы большинство импортеров проводили высокопроизводительный тест на всей выборке размером , взятой для проверки.

Также известный как испытание на устойчивость к электрическому напряжению, испытание с высоким потенциалом измеряет электрический ток, протекающий через изоляцию продукта. Тест с высоким потенциалом может помочь вам измерить утечку тока и обнаружить электрический или диэлектрический пробой.

Тестер нагружает изоляцию продукта при более высоких уровнях напряжения, чем те, с которыми он обычно работает при нормальном использовании. Изделие должно быть безопасным для использования при нормальных уровнях напряжения, если оно способно выдерживать относительно высокое напряжение в течение короткого периода времени.

Существует два основных стандарта безопасности светодиодного освещения для высокопроизводительных испытаний, включая UL 1598 и EN 60598 :

.

Как и тестер крутящего момента, вашему поставщику, как правило, необходимо предоставить на место высокопроизводительный тестер / тестер диэлектрической прочности для использования инспектором. Напряжение должно быть в пределах:

  • Первичная проводка и доступные нетоковедущие металлические части, которые могут находиться под напряжением; и
  • Первичная проводка и доступные неизолированные токоведущие части во вторичной цепи изолирующего трансформатора, рассчитанного на максимальное напряжение холостого хода 30 В (среднеквадратичное) или 42.4 В пик

Затем инспектор должен проверить отсутствие утечки тока или пробоев диэлектрика.

6. Функциональная проверка освещения

Помимо проблем с безопасностью, функциональные проблемы со светотехникой также могут иметь большое влияние на успех вашего осветительного бизнеса.

Функциональный тест поможет вам проверить, правильно ли работает ваше светодиодное освещение в соответствии с руководством пользователя. Это еще один из наиболее необходимых тестов освещения , который требует применения ко всей выборке для проверки.

Обычно для этого теста не требуется никакого специального оборудования. Инспектор проверит все предполагаемые функции продукта, например:

  • Включение и выключение света
  • Проверка надлежащего освещения
  • Подтверждение правильного затемнения света, если необходимо

Инспектор должен сообщать обо всех обнаруженных функциональных проблемах, а также о любых отклонениях от вашего руководства по эксплуатации и технических характеристик.

7. Долговечные испытания

Во время функционального теста инспектор проверяет каждую отдельную функцию продукта в течение короткого периода времени.Но осветительный прибор можно использовать в течение всего дня и должен выдерживать длительное использование. Импортеры освещения несут ответственность за то, чтобы их продукты не перегревались или внезапно не взрывались при нормальном использовании в течение всего срока службы.

Испытание на долговечность или эксплуатационное испытание позволяет оценить безопасность и функциональные характеристики ваших осветительных приборов с течением времени. Инспектор должен оставить фонарь непрерывно включенным на максимальном значении в течение четырех часов . Инспектор в течение этого времени периодически внимательно следит за работой продукта, чтобы проверить его на наличие неисправностей.

После этого необходимо повторить тест высокой емкости и тест полной функциональности на тестируемых устройствах, чтобы убедиться, что продукт по-прежнему безопасен и работает. Рекомендуемый размер выборки для этого теста — S-1.

8. Внутренняя проверка по форме данных компонента

Некоторые проблемы с качеством продукта не заметно заметны, если просто проверить внешний вид продукта.

Проверка внутренних компонентов и конструкции особенно важна для электротехнической продукции, такой как освещение.В противном случае поставщик мог бы использовать неутвержденные низкокачественные компоненты в вашем продукте, чтобы снизить свои производственные затраты (, относящиеся к : , почему «Выцветание качества убивает ваши продукты и что с этим делать ).

Вы или ваш поставщик должны предоставить инспектору сертифицированную форму данных о компонентах (CDF) для проверки. CDF — это таблица критических компонентов и утвержденных вами производителей этих компонентов. Инспектор может сравнить компоненты вашего фактического продукта с CDF и сообщить о любых несоответствиях.

Инспектор разбирает продукт и сравнивает отметки соответствия, указанные в CDF, с фактическими отметками, обнаруженными на компонентах продукта.

Ниже приведены некоторые из основных моментов, на которые инспектор должен обратить внимание во время внутренней проверки осветительной продукции:

  • Убедитесь, что внешние винты не зачищены перед разборкой образца
  • Проверить внутренние винты на предмет зачистки
  • Проверьте, нет ли металлических следов внутри
  • Проверить на наличие трещин, сколов или сломанных стоек, ребер или ободьев винтов
  • Проверьте качество пайки.Не должно быть холодных паяных соединений или другой плохой пайки
  • Проверить прочность соединения внутренних проводов
  • Проверьте, не обгорел ли внутренний провод, не сломан ли провод или оголился ли провод

Рекомендуемый размер выборки для этого теста составляет не менее двух единиц. Этот тест также следует проводить после функциональных тестов и тестов высокого давления, чтобы убедиться, что устройство безопасно разбирать.

9. Испытание на падение

Испытание на падение обычно проводится только для переносных электрических светильников , таких как небольшие переносные лампы, фонарики и настольные лампы.Этот тест гарантирует безопасность вашего клиента, даже если ваш продукт упадет на пол.

Для светильников , устанавливаемых на полке, в соответствии со стандартом UL 153 требуется испытание на падение . Это также обязательно для светильников, предназначенных для использования в опасных условиях в соответствии со стандартом UL 844.

Инспектор роняет смонтированный на полке блок с высоты 3 фута (91,4 см) на покрытый папиросной бумагой лист мягкой древесины номинальной толщины 1/2 дюйма (12,7 мм) без сучков, поддерживаемый бетонным полом.

Инспектор должен подтвердить во время и после теста, что нет:

  • Выбросы пламени или расплавленного металла
  • Горение продукта или испытательной поверхности
  • Воздействие на детали, представляющие опасность поражения электрическим током

Затем инспектор также должен выполнить тест с высоким напряжением на тестируемом устройстве, чтобы убедиться в отсутствии пробоя диэлектрика после испытания на падение.

10. Испытание источника освещения / интегрирующей сферы

Импортеры светодиодного освещения обычно продают светильники как отвечающие определенным стандартам яркости, цвета или эффективности.Но как вы можете подтвердить, что производственные единицы действительно соответствуют этим стандартам?

Тест интегрирующей сферы позволяет измерить источник освещения с использованием общих показателей.

Для этого теста требуется интегрирующая сферическая система со спектрорадиометром для коррекции спектрального рассогласования и компьютерное программное обеспечение. У большинства производителей освещения уже должно быть оборудование и соответствующее программное обеспечение, поскольку они необходимы для производства светодиодного освещения.

Инспектор помещает светодиодную лампу внутрь интегрирующей сферы и затем наблюдает за результатами через компьютерное программное обеспечение.Рекомендуемый размер выборки для этого теста составляет не менее трех единиц.

Затем инспектор записывает эти показатели в отчет по сравнению с вашей спецификацией:

  • Индекс цветопередачи (CRI) : Количественная мера способности источника света точно отображать цвета различных объектов по сравнению с естественным источником света, рейтинг от 0 до 100. Более высокий индекс цветопередачи указывает на то, что более точная цветопередача.
  • Цветовая температура : Измеряется в градусах Кельвина (K) по шкале от 1000 до 10000.«Теплая» цветовая температура обычно составляет 3000 К или меньше, а «холодная» цветовая температура составляет 4000 К или более.
  • Люмен (мощность освещения): мера общего количества видимого света, излучаемого источником света. Чем выше показатель светового потока, тем ярче лампа кажется человеческому глазу.
  • Потребляемая мощность : Скорость производства или потребления энергии, измеряемая в ваттах. Мощность светодиодных ламп обычно составляет от 4 до 18 Вт — до 90 процентов ниже, чем у ламп накаливания.
  • Коэффициент мощности : Отношение реальной мощности (ватт), используемой нагрузкой, к полной мощности (напряжение x потребляемый ток) в цепи: Коэффициент мощности = ватт / (вольт x ампер) . Energy Star требует, чтобы светодиодные лампы мощностью 5 Вт или более имели минимальный коэффициент мощности 0,7.

11. Испытание на электромагнитную совместимость (ЭМС)

Тестирование освещения на электромагнитную совместимость (ЭМС) помогает убедиться, что светодиодный светильник не излучает чрезмерных электромагнитных помех во время использования.Высокие электромагнитные помехи могут нарушить или повредить другую электронику.

Излучаемое и кондуктивное излучение вашего осветительного прибора не должно влиять на другие изделия в той же среде, равно как и их излучение.

Светотехническая продукция в ЕС регулируется Директивой по электромагнитной совместимости 2014/30 / EU. Стандарты безопасности светодиодного освещения EN55015 и CISPR 15 содержат особые требования по электромагнитной совместимости для осветительной продукции. FCC Part 15 и FCC Part 18 устанавливают стандарты ЭМС для U.S. светотехническая продукция. Требования к измерениям ЭМС в этих стандартах во многом схожи.

Рекомендуемый размер выборки для этого теста составляет от пяти до восьми единиц. Это испытание следует проводить в изолированном помещении или, в идеале, в специализированной камере для испытания освещения на ЭМС.

Инспектор должен проверить:

  • Электромагнитные кондуктивные помехи от 9 кГц до 30 МГц (127 В и 220 В)
  • Излучение электромагнитных помех от 9 кГц до 30 МГц (127 В и 220 В)
  • Помехи, излучаемые электромагнитным излучением от 30 МГц до 300 МГц (127 В и 220 В)

Заключение

Каждая проверка светодиодного освещения должна включать всестороннюю и тщательную проверку освещения.Тестирование освещения помогает вам гарантировать соответствие стандартам безопасности светодиодного освещения и вашим собственным стандартам производительности (, относящееся к : Как удобная онлайн-платформа упростила контроль качества освещения для Seynave [пример из практики]).

Обязательно укажите все требования к проверке в контрольном списке контроля качества как для ваших поставщиков, так и для группы контроля качества. В подробном контрольном списке проверки светодиодного освещения всегда должны быть указаны процедуры тестирования, размеры выборки, необходимое оборудование и то, кто должен предоставлять это оборудование.В противном случае неправильно выполненные испытания могут повлиять на результаты проверки и дать вам неточную оценку качества освещения.

При правильном выполнении проверка освещения является одной из лучших гарантий от проблем с безопасностью освещения и качеством работы.


Загрузите наш образец отчета об инспекции освещения ниже, чтобы узнать, как тестирование освещения может помочь вам управлять качеством продукции.

Тестирование светодиодов — анализ эффективности и качества электроэнергии

Руперт Шварц и Дарен Безуиденхаут, AE Power & E-Mobility
Dewesoft Austria

Введение

Светодиодное освещение становится все более популярным.Высокоэффективные светодиоды потребляют примерно на 75% меньше энергии, чем лампы накаливания, и увеличенный срок службы по сравнению с лампами накаливания является основной причиной этой тенденции.

Используя анализатор мощности Dewesoft, мы исследуем фактическое влияние светодиодных ламп на эффективность и качество электроэнергии в соответствии с международным стандартом IEC 61000 по электромагнитной совместимости (EMC).

Поскольку светодиодные светильники быстро заменяют лампы накаливания и энергосберегающие лампы из-за их высокой эффективности и увеличенного срока службы, с помощью технологии сбора данных Dewesoft мы углубляемся в эту технологию, чтобы проверить ее, поскольку мы тестируем несколько светодиодных продуктов. .

Видео 1: Измерение и анализ светодиодного освещения с помощью программного обеспечения для сбора данных Dewesoft

Вопросы, которые мы задали себе: соответствует ли эффективность стандартной электрической системе заявленной? А также какие эффекты Power Quality проявляются в светодиодных осветительных устройствах и какое влияние они оказывают на энергосистемы с европейским номинальным напряжением 230 В без использования какого-либо дополнительного кондиционирования питания?

Измерение разбито на два сегмента для освещения ниже 25 Вт:

  • В первом сегменте третья и пятая гармоники и связанные формы сигналов оцениваются, чтобы определить, соответствует ли светодиодная лампа требованиям, установленным стандартом для светодиодов, путем сравнения отклонения от идеальной синусоидальной волны.
  • Во втором сегменте отдельные гармонические токи сравниваются с пределами оборудования класса C в стандарте IEC 61000-3-2.

Приложение для задач и измерений

Светодиодные лампы

более энергоэффективны, чем лампы накаливания, но у них есть и недостатки. Поскольку мы используем светодиоды, которые создают нелинейную нагрузку, они могут отрицательно повлиять на качество электроэнергии, внося шум в сеть. Это создает нежелательную нагрузку на цепь переменного тока.

Поскольку все больше и больше светодиодных систем освещения используется, качество электроэнергии в электрической сети может подвергаться отрицательному влиянию, что, в свою очередь, приводит к нежелательным значениям качества электроэнергии и низким значениям мощности в сети.

Мы опишем методы использования анализатора качества электроэнергии Dewesoft для точного и удобного мониторинга качества электроэнергии и измерения этих вредных воздействий.

Измерительная и испытательная установка

светодиодов питаются от линии постоянного тока, генерируемой импульсным источником питания.Для анализа мощности постоянного тока необходима система сбора данных с высокой пропускной способностью и высокой частотой дискретизации из-за высоких частот переключения балластных блоков или импульсных регуляторов в люминесцентном освещении и светодиодах.

Усилители Dewesoft SIRIUS HS (High Speed) идеально подходят для этого приложения и позволяют проводить полностью синхронный анализ эффективности всего потока энергии (мощность переменного тока, мощность постоянного тока, яркость).

Измерительное оборудование
Система сбора данных СИРИУСи-HS-4xHV-4xLV
Датчики и преобразователи 2x DS-CLAMP-150DC токовые клещи переменного / постоянного тока
Программное обеспечение для сбора данных Dewesoft X3
Дополнительные лицензии на программный модуль Подключаемый модуль питания

Для этого измерения была выбрана система сбора данных серии SIRIUS HS, поскольку она сочетает в себе широкую полосу пропускания с возможностью получения сигнала без псевдонимов с возможностью измерения с частотой дискретизации до 1 мс / с .DAQ-устройства Dewesoft спроектированы как полностью модульные, что означает, что несколько устройств могут использоваться одновременно, измеряя различные параметры, при этом все каналы полностью синхронизированы друг с другом.

Система SIRIUS DAQ также оснащена фильтром сглаживания, который можно комбинировать с фильтром с бесконечной импульсной характеристикой (IIR) внутри программируемой вентильной матрицы (FPGA). Эти решения для фильтрации являются стандартными и могут быть активированы или деактивированы пользователем по мере необходимости.

Изолированный анализатор мощности высокого и низкого напряжения SIRIUS

С одной стороны, низковольтный усилитель (SIRIUS HS-LV) в сочетании с технологией 16-битного АЦП позволяет проводить измерения очень низких напряжений даже в больших диапазонах измерения (например.грамм. разрешение мкВ в диапазоне ± 10 В). Эти уровни напряжения можно установить в настройках измерения в Dewesoft X.

С другой стороны, усилитель высокого напряжения (SIRIUS HS-HV) позволяет напрямую измерять напряжения до 1600 В постоянного тока . Это гарантирует, что в этом случае сетевое напряжение может быть напрямую измерено встроенными усилителями без каких-либо дополнительных преобразователей напряжения.

DS-CLAMP-150DC — это преобразователь тока, основанный на эффекте Холла, который измеряет ток, используя магнитное поле, создаваемое вокруг проводника.Ток прямо пропорционален выходному напряжению. Это также имеет то преимущество, что измерение гальванически развязано, что делает измерение более безопасным.

Датчики и преобразователи тока Dewesoft

Эффект Холла удобно использовать для измерения как переменного, так и постоянного тока в широком диапазоне амплитуд и частот (до 100 кГц) с высокой чувствительностью и хорошей точностью 0,5% от показаний. По этой причине для измерения постоянного тока рекомендуется использовать клещи на эффекте Холла.

Используемое программное обеспечение для сбора данных DewesoftX очень интуитивно понятно и удобно для пользователя, а в сочетании с силовым модулем делает этот тип измерения точным и простым.

Модуль анализа мощности — один из самых сложных математических модулей в Dewesoft X. Он позволяет проводить измерения в сетях постоянного и переменного тока, работающих на разных частотах, с различными предварительно установленными конфигурациями проводки и даже с источниками переменной частоты.Все измерения полностью синхронны.

Предварительно установленные электрические схемы, доступные в модуле анализа мощности DewesoftX, следующие:

  • постоянного тока
  • Однофазный
  • 3-фазная звезда
  • 3-фазный треугольник
  • 3 фазы Aron
  • 3 фазы V
  • 2 фазы
  • 3 фазы 2 метра

Для этого измерения были выбраны схемы подключения постоянного и однофазного переменного тока. Из раскрывающегося списка на странице настройки схемы каналы могут быть назначены соответствующим линиям измерения.

Рисунок 1: Окна настройки постоянного и переменного тока в Dewesoft X

На следующем изображении показаны формы сигналов переменного тока (слева) и постоянного тока (справа) светодиода, а также схема подключения, которая использовалась для выполнения измерения. Возможность хранения необработанных данных также позволяет записывать переходные процессы или анализировать dU / dt, как показано на стороне постоянного тока.

Рисунок 2: Формы сигналов переменного тока (слева) и постоянного тока (справа) светодиода

Светодиод на рисунке 1. имеет КПД от постоянного к переменному току 80%.Активная мощность 5,3 Вт. Согласно энергетической маркировке этот светодиод будет иметь:

  • Класс A Эффективность
  • Энергопотребление 5,3 кВтч / 1000 часов

Светодиод кажется лучшим выбором из-за бесспорно высокой энергоэффективности. Однако остается вопрос, действительно ли светодиоды являются лучшей технологией для использования с минимальным вредным воздействием или без него?

При анализе сигнала переменного тока, поступающего из сети в левой части изображения выше, становится ясно, что форма сигнала тока больше не является синусоидальной, а это означает, что коэффициент мощности будет снижен.Также имеется большое количество искажений, которые отрицательно влияют на сетку.

Имеется большая мощность искажения, которая влияет на качество электросети, что приводит к низкому качеству электроэнергии.

Все электрические устройства должны соответствовать требованиям к гармоническим токам, определенным в стандарте IEC 61000-3-2. Пределы для освещения определены в классе C. Освещение разделено на две области номинальной электрической мощности: первая — это освещение ниже 25 Вт, а остальные — в сегменте более 25 Вт.

Измерения

Для освещения ниже 25 Вт есть три возможных процедуры выполнения тестов. Мы обсудим два из них в этой заметке по применению.

Процедура 1 — Анализ третьей и пятой гармоник тока

Первая процедура анализирует гармоники тока третьего и пятого порядка гармоник, а также анализирует форму волны тока за один период.

Пределы гармонических токов
Порядок гармоник Предел
И_х4 86%
I_H5 61%

При анализе формы волны пиковое значение тока должно появиться в фазе ≤65 ° и не должно опускаться ниже 5% до достижения фазы 90 °.


Рисунок 3: осциллограмма тока, показанная в стандарте IEC 61000-3-2 (стр.20)

Если мы теперь проанализируем форму волны тестируемого светодиода, станет совершенно ясно, что он вообще не выполняет это условие. Гармонические токи для I_h4 и I_H5 превышают установленные пределы, а характеристики формы сигнала далеки от требований, установленных стандартом.


Рисунок 4: Анализ формы кривой тока тестируемого светодиода

Dewesoft может выполнить очень быстрый и эффективный анализ в соответствии с этими требованиями.В Scope View форма волны может быть немедленно проанализирована с помощью пары триггеров и функций анализа. Гармонические токи можно быстро проверить с помощью диаграммы гармонического БПФ или векторного осциллографа, который может отображать каждую отдельную гармонику как в абсолютных, так и в процентных значениях.

Процедура 2 — Гармонический анализ каждого отдельного тока

Вторая процедура заключается в анализе того, не превышают ли токи гармоник без фильтров гармоник для каждой отдельной гармоники пределы оборудования, классифицируемого по классу D, указанному в IEC 61000-3-2: 2018 (таблица 3, столбец 2 — Класс Оборудование D, стр.22):

Пределы гармонических токов
Порядок гармоник Предел
И_х4 3,4 мА / Вт
I_H5 1,9 мА / Вт
I_H7 1,0 мА / Вт
I_H9 0,5 мА / Вт
I_h21 0,35 мА / Вт
Нечетные гармоники от I_h23 до I_h49 3,85 / н мА / Вт

В этом случае токи гармоник относятся к номинальной активной мощности лампочки.

Этот анализ удобно проводить и в программе Dewesoft X. С помощью функции справочной таблицы все гармоники и их пределы могут быть показаны на одной диаграмме. Для этого светодиодного светильника почти все гармонические пределы превышены, что снижает экономическую эффективность этих систем освещения.

Рисунок 5: Диаграмма гармонических токов

Результаты

В этом приложении измерения типичный треугольник мощности:

  • полная мощность (S),
  • активной мощности (P) и
  • реактивная мощность (Q)

анализа мощности переменного тока не подходит.Это связано с другими параметрами, такими как искажения и реактивная мощность гармоник, которые необходимо учитывать из-за нелинейной нагрузки, вызываемой светодиодами (нелинейные нагрузки также создаются инверторами, электронными балластными модулями, блоками питания компьютеров. , и выпрямленные входы, среди прочего).

Силовой модуль Dewesoft содержит все необходимые инструменты для успешных измерений в нелинейной области. Помимо гармонической реактивной мощности (QH), возникающей из-за фазового сдвига между напряжениями и токами одинаковых частот, необходимо учитывать новый параметр: реактивная мощность искажения (DH).

Реактивная мощность искажения определяется как комбинация напряжений и токов на разных частотах, которые создают мощность искажения.

Рисунок 6: Треугольники мощности — старый (P, Q, S) слева, новый, включая искажения справа

Хотя светодиодная технология считается очень эффективной, тестируемый светодиод создает большие искажения. Это особенно заметно в высокой мощности искажений (DH) и высоком уровне гармонических искажений (THD):

  • P = 5,3 Вт
  • Q = 10,4 ВАр
  • QH = -0,9 ВАр
  • DH = 10,4 ВАр
  • S = 11,7 ВА
  • THD_I = 183%

Выводы

Анализатор мощности Dewesoft может измерять как КПД , так и качество электроэнергии , а также выполнять полный анализ лампочек с помощью одного прибора.Это новый и инновационный опыт тестирования освещения.

Из 10 протестированных светодиодных лампочек, на удивление, только одна прошла тест Power Quality Test . Светодиоды для этого теста были выбраны случайным образом без каких-либо предубеждений в отношении изготовления, модальности и цены. Только после тестирования эти параметры были оценены, в связи с правилами конфиденциальности данных мы не можем раскрыть эту информацию в настоящее время.

Проверка источника напряжения

Перед проверкой качества электроэнергии, выделяемой светодиодными лампами, необходимо проверить источник напряжения и убедиться, что все параметры (гармоники) находятся в требуемых пределах, чтобы убедиться в отсутствии больших падений или провалов напряжения.Нормы IEC 61000-3-2 требуют, чтобы гармонические напряжения были ниже установленных пределов.

Указанные пределы для гармонических напряжений
Порядок гармоник Предел
У_х4 0,9%
U_H5 0,4%
U_H7 0,3%
U_H9 0,2%
Четные гармоники от U_h3 до U_h20 0,2%
Все гармоники от U_h21 до U_h50 0,1%

Одним из больших преимуществ использования инструментов Dewesoft DAQ является программная опция фоновых гармоник (см. 6.2.1. Фоновые гармоники в руководстве по анализатору мощности), где можно компенсировать возможные искажения и гармоники напряжения в сети, а также проводить испытания в соответствии с IEC 61000-3-2.

Документация

Тестирование светодиодных рождественских огней

Имеющиеся у нас сосульки — это светодиоды, что приятно, потому что они потребляют невероятно мало энергии и должны работать долгое время, но имеют недостаток, заключающийся в том, что их немного сложнее диагностировать, когда они плохо себя ведут.

Как только я выздоровел от различных болезней, я вытащил 10 нитей, которые у нас есть, чтобы накинуть их на дом (начиная с прошлых выходных).Одна из ниток не загоралась, поэтому мне пришлось сыграть в забавную игру по отслеживанию проблемы.

Итак, я начал с очевидной проверки, чтобы убедиться, что никаких «лампочек» (я скажу «лампочка», потому что это передает мой смысл, даже если настоящих лампочек нет). И я проверил другой конец жилы и получил надежное соединение на 120 В, поэтому я знал, что проводка все еще в порядке.

[Изменить: отдельные лампочки могут выйти из строя, как обычно, и иметь шунт, который позволит остальной части пряди оставаться зажженной.Эти лампочки легко найти и заменить (это единственная не горящая лампочка). Проблема, которую я исследую в этом посте, — это лампочка, в которой сломаны провода, поэтому мощность вообще не доходит до шунта.]

Но как только вам придется выйти за рамки этих шагов, некоторые из распространенных методов устранения неполадок не будут работать со светодиодами. Я начал со своего мультиметра, который содержит индуктивный детектор переменного напряжения («без касания»). Поскольку неисправная лампочка разрывает цепь, традиционно вы можете использовать детектор напряжения, чтобы найти место разрыва цепи.

К сожалению, по какой-то причине мой мультиметр регистрировал напряжение повсюду вдоль нити и вдоль каждой «сосульки». Так что это не помогло мне, я не совсем уверен, почему. Таким образом, вы можете воспользоваться очевидным подходом — просто заменить лампочки на замену, но проблема в том, что у вас может быть несколько неисправных ламп. В этом случае вы не узнаете, заменяете ли вы лампу на хорошую или на плохую.

Вместо этого вам нужно иметь возможность тестировать каждую лампочку индивидуально, чтобы знать, хороша она или нет.Обычный подход — это простой тестер непрерывности (проверьте, существует ли цепь от одного вывода лампы к другому). Но проверка целостности не сработает, потому что нет простой схемы для проверки. Если вы на самом деле не активируете светодиод (с достаточным напряжением), у вас не будет цепи. При проверке целостности используется только очень низкое напряжение, поэтому он сообщит об обрыве цепи (неисправная лампа). Итак, несмотря на то, что у меня был мультиметр и я знал, как им пользоваться, поиск неисправной лампочки не принес мне никакой пользы.

Вместо этого вам понадобится тестер светодиодов.Вы можете сделать простой тестер светодиодов, используя следующее: аккумулятор на 9 В, резистор и резинку.


Без резистора единственное, что вы узнаете, это то, что светодиод использовал для работы, потому что вы перегорите светодиод из-за слишком высокого напряжения (что я делал дважды, прежде чем наконец выкопал один). Резистор, который я использовал, оказался на 10 000 Ом, но 1000 Ом тоже подойдет.

Просто используйте резинку, чтобы прикрепить резистор к отрицательной клемме аккумулятора (отрицательную клемму легче обернуть резинкой, иначе это действительно не имеет значения).Затем согните конец резистора рядом с положительной клеммой аккумулятора, чтобы можно было легко прикоснуться проводами лампы к резистору и положительной клемме.

Если вы коснетесь проводов светодиода назад, ничего не произойдет (светодиоды работают только в одном направлении). Светодиод не повредит, но и не загорится. Из-за этого ваша лампочка должна иметь такой ключ, чтобы она могла вставляться в патрон только в одном направлении. Обратите внимание на этот набор, чтобы вы могли надежно проверить правильность ориентации и сэкономить время.

Итак, с помощью своего импровизированного тестера я начал вытаскивать лампочки и проверять их (лезвие обеденного ножа отлично подходило для того, чтобы вытащить лампочки из их основания).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*