Как проверить варикап мультиметром: Как проверить варикап? — Diodnik

Содержание

методы проверки резисторов и стабилитронов на работоспособность при помощи тестера

В наше время без измерительных приборов (тестеров) практически невозможно обойтись. Даже для простого ремонта в доме или квартире при работе с проводкой необходим тестер. А также довольно часто возникает необходимость проверить диод и другие радиокомпоненты. Измерительные приборы делятся на аналоговые и цифровые. В аналоговых тестерах на панели прибора присутствует стрелка и шкала с обозначениями, а в цифровом измерения отображаются на цифровом табло.

Достоинства и недостатки тестеров

Тестерами являются электроизмерительные приборы, необходимые для выявления неисправностей радиоэлемента или участка цепи. У каждого вида тестеров есть слабые и сильные стороны. Что касается цифровых тестеров, то достоинствами этого вида являются:

  • Цифровое табло, на котором четко можно наблюдать тип измерения и полярность.
  • Присутствие звуковой функции прозвонки цепи, что, несомненно, увеличивает его функциональность.
  • Точность измерений также находится на довольно высоком уровне.
  • Измерение емкости конденсаторов.

К недостаткам тестера можно отнести высокую цену прибора. Если брать во внимание аналоговый тип тестера, то это довольно простой и надежный механический прибор. Достоинством этого тестера является низкая цена, но начинающему радиолюбителю желательно приобрести цифровой тестер, так как в аналоговом необходимо уметь ориентироваться по шкале измерений.

Способы проверки диодов

Диод является полупроводниковым элементом. Это элемент может проводить электрический ток только в одном направлении. У диода имеются два вывода: катод и анод. Ток может беспрепятственно проходить от анода к катоду, то есть от плюса к минусу, в обратном направлении ток уже не сможет пройти, так как переход будет закрыт. Если же диод пропускает в обе стороны, то такой элемент считается неисправным. У диода существуют

два типа переходов P-N и N-P. Проверка диода мультиметром осуществляется следующим образом:

  • Для диодов с P-N переходом необходимо приложить плюсовой щуп тестера к аноду, а минусовой к катоду, переход откроется и ток свободно потечет через полупроводник и прибор издаст характерный писк. Если полярность поменять, то переход закроется и на табло прибора ничего не отобразится.
  • Если же диод с N-P переходом, то здесь к аноду необходимо приложить минусовой щуп, а к катоду плюсовой, переход откроется и ток пойдёт через полупроводник и прибор издаст писк, при смене полярности диод будет закрыт, а если при проверке диод пропускает в обе стороны, а на табло прибора отображается единица, то этот элемент является неисправным.

Такой же метод проверки можно применить еще к одному виду полупроводниковых приборов — варикапу. Единственное различие между диодом и варикапом: непостоянная емкость P-N перехода у варикапа. Такой тип в основном встречается в приемниках и телевизорах. Но есть один нюанс при проверке элемента — это

замер емкости полупроводника.

Для этого необходимо переключатель поставить в режим измерения емкости. Вставить варикап в специальное гнездо в мультиметре и на экране отобразиться емкость. Как правило, емкость у этого элемента не постоянная и зависит напрямую от подаваемого напряжения, но зачастую емкость бывает от 1 до 100 пикофарад.

Светодиоды применяются широко в различной радиоаппаратуре: в мониторах, сканерах, принтерах, телевизорах. В основном большинство людей знает как проверить светодиод на работоспособность, но у начинающих радиолюбителей может возникнуть трудность при проверке элемента. Проверка светодиода является аналогичной обычному диоду, при подключении плюсового щупа прибора к аноду, а минусового к катоду полупроводниковый прибор будет светиться, что будет свидетельствовать о его исправности.

Также широко применяются так называемые диодные мосты. Такие сборки диодов ставят в различных устройствах, где необходимо преобразовать переменное напряжение в постоянное. Он может состоять из четырех диодов и из шести. Алгоритм проверки диодного моста ничем не отличается от обычных диодов. Для проверки необходимо поставить переключатель на мультиметре в режим прозвонки диодов и проверить каждый диод по отдельности.

Зачастую в датчиках освещения и датчиках открытия дверей используются фотодиоды. Это еще одна разновидность полупроводниковых приборов, которая нашла широкое применение в бытовой электронике. Те, кто занимаются ремонтом сканеров, фотоаппаратов и другой техники часто сталкиваются с фотодиодами.

Для проверки элемента необходимо включить прибор в режим омметра

, подсоединить щуп с положительным зарядом прибора к аноду, а минусовой к катоду и поднести к светодиоду настольную лампу, мощность которой составляет 100 Вт. На экране прибора отобразится величина сопротивления. Затем необходимо поменять щупы местами и замерить величину сопротивления при затемнении элемента и при освещении.

Если при освещении фотодиода сопротивление равно 20−30 кОм, при затемнении элемента увеличивается до 200−300 кОм, при смене полярности и освещенном элементе сопротивление примерно равно 1000−1500 Ом, а при затемненном элементе прибор показывает 1500−1600 Ом, то элемент является исправным.

Существует еще один тип диодов, который называется диод шоттки. Этот вид нашел широкое применение в импульсных блоках питания и стабилизаторах благодаря свойству очень быстро закрывать и открывать переход. В качестве примера можно взять диод модели ss14. Проверить диод шоттки мультиметром можно по аналогии с обычным диодом. Как правило, эти диоды встречается сдвоенными в общем корпусе и имеют общий катод.

Необходимо измерить каждый диод по отдельности. Для этого на катод нужно подать отрицательный заряд и прикоснуться минусовым щупом прибора, а плюсовой щуп необходимо поставить на анод, в таком случае ток потечет через полупроводник беспрепятственно, при смене полярности переход будет закрыт.

Можно также проверить диод на утечку, для этого нужно поставить переключатель на сопротивление <20кОМ> и померить обратное сопротивление, если элемент рабочий, то прибор покажет сопротивление бесконечно большое. А если тестер покажет маленькое сопротивление около 3−4 кОм, то, возможно, элемент имеет утечку, и в таком случае, по возможности, диод нужно заменить.

Аналогичную операцию нужно провести, если диод с переходом типа N-P, только на катод подать положительный заряд, а на анод отрицательный.

Стабилитрон и стабилизатор напряжения

При ремонте различной радиоаппаратуры приходится сталкиваться с еще одной разновидностью полупроводниковых приборов — стабилитроном. Его предназначением является сохранение выходного напряжения. Начинающим радиолюбителям не всегда понятно, как проверить стабилитрон мультиметром. Для этого необходимо выставить переключатель в режим прозвонки диода и прикоснуться к аноду щупом с положительным зарядом, а к катоду отрицательным. При такой схеме ток пройдет через элемент, а если сменить полярность, то переход закроется.

Существует способ проверки стабилитронов, который гарантированно даст понять: рабочий элемент или нет. При этом виде проверки используется блок питания с возможностью регулировки напряжения.

Перед проверкой необходимо подсоединить к аноду резистор, который имеет величину сопротивления, подходящую для стабилитрона, и только после этого подключить блок питания.

После, необходимо измерять напряжение на выходе стабилитрона и одновременно поднимать напряжение на блоке питания. Как только уровень напряжения стабилизации достигнет пиковой точки, то напряжение на выходе стабилитрона уже не будет повышаться, а останется на определенной отметке. Если полупроводник рассчитан на 15 вольт и при повышении напряжение на выходе является больше этого значения, то элемент является неисправным.

Микросхема стабилизации

Помимо стабилитронов и супрессора, существует огромное количество электронных элементов, которые способны стабилизировать напряжение на выходе. Например: интегральный стабилизатор utc7805, который рассчитан на ток 1,5 А и входное напряжение до 40 в. На выходе можно получить стабильные 5 вольт. Проверка идентична стабилитрону.

Необходимо на вход стабилизатора подать напряжение больше 5 вольт и постепенно его увеличивать, если напряжение на входе превышает 5 вольт, то на выходе должно быть стабилизированное напряжение 5 вольт. Если на выходе стабилизатора больше пяти вольт, то элемент считается неисправным.

Прозвонка резисторов мультиметром

Резисторы также широко применяются в различной электронике. Этот компонент с переменным или постоянным сопротивлением. Чтобы проверить резистор мультиметром, в первую очередь необходимо сделать визуальный осмотр на возможные дефекты корпуса. Если их не обнаружено, то нужно узнать номинал резистора. На резисторе присутствуют кольца разного цвета. Для того чтобы определить номинал, необходимо воспользоваться специальной таблицей или калькулятором цветовой маркировки.

После определения номинала детали необходимо поставить переключатель на приборе в положение измерение сопротивления и измерить величину, если величина на приборе совпадает с номиналом резистора, то резистор исправен и в случае отклонения довольно велики, то элемент неисправен и требует замены. Следует помнить, что если резистор находится на печатной плате, то для проверки необходимо выпаивать резистор и только после этого произвести замеры.

Существуют подстроечные резисторы, с помощью которых можно изменять величину сопротивления. Для того чтобы прозвонить переменный резистор, необходимо замерить переменное сопротивление, а при помощи вращения регулятора проверить, изменяется ли сопротивление или же стоит на месте.

Для проверки необходимо:

  • Выставить переключатель мультиметр в режим измерения сопротивления.
  • Замер необходимо произвести между крайними выходами элемента, если прибор показал ноль, значит, резистор неисправен и произошло прогорание контактов, а если бесконечности, значит, произошёл обрыв.

В том случае если результаты замеров соответствуют номиналу, то переходят к проверке среднего вывода. Следующим этапом будет перевод ручки регулировки в любое из крайних положений. Один из щупов прибора прислоняют к среднему выводу, а другой к любому из крайних. На показаниях прибора будет отображаться сопротивление близкое к нулю или номиналу детали, все зависит от стороны подключения. Такой элемент является исправным и не требует замены. А если показания прибора показывают бесконечность, то резистор вышел из строя.

Следующим шагом будет измерение износа бегунка. Не убирая щупы с выводов, медленно повернуть ручку регулировки в любую сторону. Показания сопротивления должны меняться плавно без резких скачков. Если сопротивление прыгает и меняется очень резко, то произошел износ бегунка и элемент считается неисправным.

Таким образом, использование мультиметра значительно облегчит выявление неисправности и поможет быстро и качественно осуществить ремонт.

как прозвонить, проверка не выпаивая из схемы

Любая электроаппаратура рано или поздно выходит из строя. Зачастую причиной поломки может быть перегоревший полупроводник — совсем небольшой элемент  из схемы. А одна из самых распространенных деталей — банальный полупроводниковый диод.

В сущности, он встречается практически во всех схемах.  Как проверить диод мультиметром — мы и расскажем.

Что такое диод и как он работает

В этой радиодетали два разных полупроводника:

К ним подсоединяют два выхода электродов:

Эти проводники обладают разной проводимостью. При работе получается зона p-n перехода, когда по одну сторону накапливаются положительно заряженные ионы, а с другой — электроны.

Итак, принцип работы:

  1. Когда по элементу проходит ток, он начинает воздействовать на катод, накаливая его. Электрод начинает испускать электроны.
  2. Между электродами образуется электрическое поле.
  3. Так как анод с положительным потенциалом — он притягивает электроны к себе. Происходит появление эмиссионного тока.
  4. Теперь все те электроны, которые добрались до анода, образуют катодный ток.
  5. Весь компонент пропускает электрический ток.
  6. Если же на аноде появляется отрицательный заряд, диод остается в запертом положении и размыкает электрическую цепь.

 

Иными словами, этот полупроводник способен пропускать электрический ток исключительно в одном направлении.

Знание того как работает этот элемент поможет проверить исправность диода.

Современные конструкции встречаются в разных корпусах:

  • металлическом;
  • стеклянном;
  • пластиковом.

Основные типы и разновидности

Мы все знаем и понимаем, что прогресс в радиоэлектронике  начался с появлением диода. Некоторые пользователи должны еще помнить вакуумные диодные лампы.

Теперь им на смену пришли полупроводниковые детали. Они экономичны, но основное преимущество — миниатюризация электронных девайсов.

Рассмотрим, какого типа бывают диоды.

Выпрямительные

Этот тип электронных элементов можно часто встретить в блоке питания для разных устройств. Так называемые «диодные мостики,» которые применяются для смены переменного тока в постоянный.

Изменяя степень насыщения этих радиоэлементов различным внутренним содержимым, можно получит полупроводник с различными свойствами с учетом необходимых параметров.

Стабилитроны

Следующий радиодеталь из семейства диодов — стабилитрон. У него высокая проводимость достигается при определенном уровне напряжения.

Как только необходимый уровень напряжения возникает в стабилитроне — он открывается и по нему проходит ток. Если уровень тока падает — стабилитрон закрывается, и поток электронов отсекается.

Основное применение — устройства для стабилизации сетевого напряжения.

Туннельные

Опять с применением разного типа присадок получается достаточно узкий p-n переход, который может пропускать подаваемый ток в разных направлениях. Это его отличительное свойство.

Такие детали могут применяться как:

  1. В высокоскоростных переключателях.
  2. В радиоэлектронных переключателях в сфере повышенных частот 31–101 ГГЦ.
  3. В устройствах, отвечающих за прием и усиление электромагнитных колебаний.

Изображение туннельника в схемах:

Варикапы

Следующая разновидность — это варикапы. Их основное отличие — переменная ёмкость. Барьерная ёмкость конкретно таких радиодеталей находится в зависимости от обратного напряжения.

Применяются в приборах, управляющие частотой генераторов.

Обозначение на схемах:

Светодиоды

Нам светодиоды знакомы как СИД или LED.

Эти диоды, при подаче на электроды прямого напряжения, излучают холодный свет в разных спектрах. Сегодня LED-освещение активно вытесняет традиционные источники света.

Фотодиод

Проводимость таких радиодеталей напрямую зависит от попадающего на них светового потока.

Протекающий ток пропорционален уровню освещения.

На этом его свойстве основаны различного типа датчики и устройства, применяемые как производственных помещениях, так и для бытовых нужд.

Если в ходе эксплуатации с применением диодов различного типа возникают такие неисправности как:

  • превышен максимально допустимый уровень тока;
  • деталь низкого качества или с заводским браком;
  • повысился уровень обратного напряжения.

То деталь нуждается в диагностике.

Для этой цели есть специальный прибор — мультиметр.

Мультиметр

Неисправность диодов мультиметром найти проще и легче определить причину поломки вашего прибора.

Также он поможет замерить:

  • силу тока;
  • перепады в напряжении;
  • ёмкость конденсаторов;
  • найти обрыв цепи и так далее.

Современные мультиметры в состоянии работать с различными видами токов:

  • переменный;
  • постоянный.

Самые популярные на современном рынке — цифровые устройства.

Но еще встречаются в продаже и приборы аналогового типа.

И те и другие часто применяются в домашних условиях.

Но цифровые точнее (с погрешностью измерений в 0.5 %) и ими проще выполняется прозвонка.

Аналоговые мультиметры обладают более высокой надежностью и низкой стоимостью. Но менее точны — погрешность 1.5–2 %.

Как проводится проверка

Проверка диодов на исправность заключается в том, чтобы проверить их одностороннюю способность проводить электрический ток.

Если это условие выполнимо, то элемент считается работоспособным.

С помощью мультиметра можно прозвонить диод и проверить на плате, как обычный диод, так и Шотки.

Как это сделать:

Проверяем, что у прибора есть режим прозвонки радиодетали такого типа.

Если такой возможности нет, действуем по следующей схеме:

  1. Переводим указатель в режим измерения постоянного напряжения. Если элемент исправен, прибор покажет наличие напряжения на диоде. Исправные элементы, в зависимости от их номинала, будут показывать значения от 0.3 до 1.0 вольт.
  2. Если перевести указатель на измерение сопротивления (в диапазоне до 2 кОм), то при подключении к выводам этой радиодетали, красный провод зажимаем к аноду, а черный к катоду, должно появится на экране значение в с сотнях Ом.

Проверка стабилитрона

Для того чтобы проверить стабилитрон рекомендуется воспользоваться следующей схемой:

После сборки схемы, переводим мультиметр в режим измерения постоянного напряжения 200 В, включаем регулируемый блок питания и постепенно начинаем увеличивать напряжение, пока на блоке питания амперметр не укажет на протекающий ток. После этого подключаем мультиметр и измеряем напряжение стабилизации.

Проверка диодного моста

Собственно говоря, диодный мост можно проверить точно так же как и стандартный диод. Главное знать, как правильно выполняется проверка диода мультиметром.

Диодный мост проверяется по определенной схеме.

Пронумеруем для себя выводы выпрямителя 1, 2, 3, 4. То есть нам надо будет проверить четыре элемента.

И начинаем перезванивать в следующей последовательности:

  • 1-й: выводы 1–2;
  • 2-й: выводы 2–3;
  • 3-й: выводы 1–4;
  • 4-й: выводы 4–3;

А отсчёт показаний проводится таким же способом, как мы проверяем обычный диод.

Здесь вы можете более подробно узнать о том, как проверить диодный мост мультиметром.

Проверяем микроволновку

Как бы мы не старались четко выполнять условия эксплуатации, СВЧ — печь иногда ломается, а наиболее частые причины это:

  • перегорел высоковольтный предохранитель;
  • вышел из строя высоковольтный конденсатор;
  • сгорел высоковольтный диод.

Конечно, можно отнести микроволновку в мастерскую, но при желании ремонт возможен и своими руками.

Одной из причин выхода из строя микроволновки является поломка диода,

рассчитанного на рабочее напряжение до 12000 вольт.

Он установлен в печке рядом с конденсатором:

Диод подключается выводом из анода к одному из контактов кондёра.

А другой конец прикручен на массу.

Важно! Перед началом проверки диодов, необходимо обязательно разрядить высоковольтный конденсатор в микроволновке.

Емкость его небольшая в 1 мкф, но он рассчитан на напряжение до 2100 вольт. Как раз такое напряжение развивает трансформатор в микроволновой печи. И даже после выключения в нем остается достаточно приличный заряд опасный для жизни.

Одни мастера говорят, что достаточно какое-то время подождать после отключения аппарата от сети.

Но лучше перестраховаться.

Поэтому необходимо отверткой замкнуть контакты конденсатора между собой. А затем каждый вывод поочередно замкнуть на массу.

Только после того как мы проделаем эту процедуру несколько раз, можно приступать к проверяемым манипуляциям.

Но нужна предварительная подготовка.

Дело в том, что этот диод невозможно проверить просто так, без подготовки, обычным тестером.

Если подвести к его выводам щупы тестера, то на мультиметре будет показано что этот элемент якобы нерабочий.

Для того чтобы его прозвонить, на один из его выводов необходимо подать напряжение. Тогда он открывается и начинает работать как обычный диод.

Итак, начинаем проверять диод микроволновки.

  1. Переводим тестер в режим измерения  постоянного напряжения в положение 20 вольт.
  2. Нужен будет дополнительный источник питания. Подойдет обычная батарейка «Крона». Напряжение на ней обычно составляет 9.5 вольт.

  3. Теперь можно измерить.
  4. Берем наш диод и подключаем его к тестеру через батарейку.
  5. На экране мультиметра появится значение напряжения в 5.9 вольт.
  6. Если поменять полярность и снова проверить напряжение и снова провести замеры, то на экране мы увидим значение «ноль».

О том, что деталь неисправна, можно судить по результатам замеров. Когда при измерении в прямом и обратном направлении будет отсутствие показателей в обоих направлениях, можно определенно сказать, что проверяемая деталь неисправна и подлежит замене. А проверка на приборе позволила определить его состояние на работоспособность.

После замены этой запчасти на новую, ваша СВЧ печь будет работать как новая!

Эти диоды могут отличаться по номиналу и по форме.

Вот таким образом выполняется проверка диода из микроволновки.

Небольшие советы

Есть нехитрые правила, которые просты и понятны даже непрофессиональным мастерам:

  1. Определяем тип полупроводника.
  2. Лучше если у вас дома окажется цифровой тестер. На нем проще анализировать результаты измерений. И новейшая модель тестеров измеряет несколько параметров.
  3. Щупы подносим правильно к соответствующим электродам.
  4. Вывод об исправности диода делается по результатам двух замеров — в прямом и обратном направлении.
  5. Полупроводник можно прозванивать, не выпаивая его из платы.
  6. Выполняйте правильно все подключения и верно анализируйте результаты измерений.

Заключение

Теперь вы знаете, почему СВЧ — печь не работает и как определить несправный полупроводник. Эта статья может помочь в поиске несправной детали и решить проблему с ремонтом с минимальными затратами. Конечно, можно обратиться в сервисный центр, но иногда решить проблему при наличии необходимых навыках вполне по силам самостоятельно.

Видео по теме

Каким образом используются диоды разного типа. Обозначение разных типов диодов на схеме

Диод это — полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное. Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении. Работает как система ниппель или золотник в камере автомобиля или велосипеда. Воздух, нагнетаемый насосом через золотник или ниппель поступает в камеру автомобиля и не выходит обратно за счет запирания его золотником. На рисунке изображен диод так как его обозначают на электрических схемах.

В соответствии с рисунком, треугольник (анод) показывает в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт», соответственно со стороны вертикальной полосы (катода) диод будет «заперт».

Это свойство диода используется для преобразования переменного тока в постоянный для этого из диодов собирается диодный мост .

Диодный мост

Как работает диодный мост. На следующем рисунке изображена принципиальная схема диодного моста. Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.


Если ты читал мою статью “Что такое переменный ток” ты должен помнить, что переменный ток меняет свое направление с определенной частотой. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с частотой сети (в России эта частота составляет 50 Герц), значит (+) и (-) меняются местами 50 раз в секунду. Допустим в первом цикле на клемме “А” будет положительный потенциал (+) на клемме “Б”отрицательный (-) . Плюс от клеммы “А” может пройти только в одном направлении по красной стрелке, через диод “Д1” на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д3” на минус клеммы “Б”. В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы “Б” через диод “Д2” пройдет на выходную клемму со знаком (+) и далее через резистор (R1) через диод “Д4” на минус клеммы “А”. Таким образом получаем на входе выпрямителя постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах которые питаются от электрической сети 220Вольт. Кроме диодных мостов собранных из отдельных диодов применяют электронные компоненты в которых для удобства монтажа выпрямительные диоды заключены в один компактный корпус. Такое устройство называют “диодная сборка” .


Диоды бывают не только выпрямительные. Есть диоды проводимость которых зависит от освещенности их называют “фотодиоды” обозначаются они так —

Выглядеть могут так —


Светодиоды, тебе хорошо известны, они встречаются и в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схеме они обозначаются так —

Выглядят светодиоды так —

Как проверить диод

Проверить диод можно обычным мультиметром — как пользоваться мультиметром в этой статье , для проверки переключаем тестер в режим прозвонки . Подключаем щупы прибора к электродам диода, черный щуп к катоду



(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т.е. цифры на приборе будут иметь значение большое значение.

Переключаем щупы прибора наоборот —


Сопротивление будет очень большим практически бесконечным. Если у тебя все получится так как я написал, диод исправен, если в обоих случаях сопротивление очень большое значит “диод в обрыве” неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое значит диод пробит и пропускает напряжение в обоих направлениях.

Как проверить диодный мост

Если диодный мост собран из отдельных диодов, каждый диод проверяют отдельно, как было описано выше. Выпаивать каждый диод из схемы не обязательно, но лучше отключить плюсовой или минусовой вывод выпрямителя от схемы.

Если нужно проверить диодную сборку, где диоды находятся в одно корпусе и добраться до них невозможно, поступаем следующим образом,

Подключаем один щуп мультимерта к плюсу диодной сборки, а вторым поочередно касаемся к выводам сборки куда подается переменный ток. В одном направлении прибор должен показать малое сопротивление при смене щупов в обратном направлении очень большое сопротивление. После чего также проверяем выпрямитель относительно минусового выхода. Если при измерении показания в обоих направления будут малыми или большими диодная сборка неисправна. Этот способ проверки применяют, когда проводится ремонт электроники .

Высокочастотные диоды, импульсные, туннельные, варикапы все эти диоды широко применяются в бытовой и специальной аппаратуре. Для того, чтобы понять и разобраться, как правильно применять и где какие использовать диоды, необходимо совершенствовать свои знания изучать специальную литературу и конечно не стесняться задавать вопросы.

Полупроводниковые приборы применялись в радиотехнике еще до изобретения электронных ламп. Изобретатель радио А. С. Попов использовал для обнаружения электромагнитных волн вначале когерер (стеклянную трубку с металличеокими опилками), а затем контакт стальной иглы с угольным электродом.

Это был первый полупроводниковый диод — детектор. Позже были созданы детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.).

Такой детектор состоял из кристалла полупроводника, впаянного в чашечку-держатель, и стальной или вольфрамовой пружинки с заостренным концом (рис. 1). Положение острия на кристалле находили опытным путем, добиваясь наибольшей громкости передачи-радиостанции.

Рис. 1. Полупроводниковый диод — детектор.

В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил замечательное явление: кристаллический детектор, оказывается, может генерировать и усиливать электрические колебания.

Это было настоящей сенсацией, но недостаточность научных познаний, отсутствие нужного экспериментального оборудования не позволили в то время глубоко исследовать суть процессов, происходящих в полупроводнике, и создать полупроводниковые приборы, способные конкурировать с электронной лампой.

Полупроводниковый диод

Полупроводниковые диоды обозначают символом, сохранившимся в общих чертах со времен первых радиоприемников (рис. 2,6).

Рис. 2. Обозначение и структура полупроводникового диода.

Вершина треугольника в этом символе указывает направление наибольшей проводимости (треугольник символизирует анод диода, а короткая черточка, перпендикулярная линиям-выводам,— его катод).

Этим же символом обозначают полупроводниковые выпрямители, состоящие, например, из нескольких последовательно, параллельно или смешанно соединенных диодов (выпрямительные столбы и т. п.).

Диодные мосты

Для питания радиоаппаратуры часто используют мостовые выпрямители. Начертание тажой схемы соединения диодов (квадрат, стороны которого образованы символами диодов) давно уже стало общепринятым, поэтому для обозначения таких выпрямителей стали иополикшать упрощенный символ — квадрат с символом одного диода внутри (рис. 3).

Рис. 3. Обозначение диодного моста.

В зависимости от значения выпрямленного напряжения каждое плечо моста может состоять из одного, двух и более диодов. Полярность выпрямленного напряжения на схемах не указивают так как ее однозначно определяет аимвол диода внутри квадрата.

Мосты конструктивно объединенные в одном корпусе, изображают отдельно показивая принадлежность к одному изделию в позиционном обозначены. Рядом с позиционным обозначением диодов, как и всех других полупроводниковых приборов, как правило, указывают их тип.

На основе символа диода построены условные обозначения полупроводниковых диодов с особыми свойствами. Для получения нужного символа используют специальные знаки, изВбражаемые либо на самом базовом символе, либо в непосредственной близости от него, а чтобы акцентировать внимание на некоторых из них, базовый символ помещают в круг — условное обозначение корпуса полупроводникового прибора.

Туннельные диоды

Знаком, напоминающим прямую скобку, обозначают катод туннельных диодов, (рис. 4,а). Их изготовляют из полупроводниковых материалов с очень большим содержанием примеси, в результате чего полупроводник превращается в полуметалл. Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах. Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах.

Рис. 4. Тунельный диод и его обозначение.

Разновидность туннельных диодов — обращенные диоды, у которых при малом напряжении на р-п переходе проводимость в обратном направлении больше, чем в прямом.

Используют такие диоды в обратном включении. В условном обозначении обращенного диода черточку-катод изображают с двумя штрихами, касающимися ее своей»серединой (рис. 4,6).

Стабилитроны

Прочное место в источниках питания, особенно низковольтных, завоевали полупроводниковые стабилитроны, работающие также на обратной ветви вольт-амперной характеристики.

Это плоскостные кремниевые диоды, изготовленные по особой технологии. При включении их в обратном направлении и определенном напряжении -на переходе последний «пробивается», и в дальнейшем, несмотря на увеличение тока через- переход напряжение на нем остался почти неизменным.

Рис. 5. Стабилитрон и его обозначение на схемах.

Благодари этому свойству стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений в стабилизаторах на транзисторах.

Для получения малых образцовых напряжений стабилитроны включают в прямом направлении, при этом напряжение стабилизации одного стабилитрона равно 0,7… 0,8 В. Такие же результаты получаются при включении в прямом направлении обычных кремниевых диодов.

Для стабилизации низких напряжений разработаны и широко применяются специальные полупроводниковые диоды — стабисторы. Отличие их от стабилитронов в том, что они работают на прямой ветви вольт-амперной характеристики, т. е. при включении в прямом (проводящем) направлении.

Чтобы показать на схеме стабилитрон, черточку-катод базового символа дополняют коротким штрихом, направленным в сторону символа анода (рис. 5,а). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения условного обозначения стабилитрона на схеме.

Это в полной мере относится и к символу двух-анодного (двустороннего) стабилитрона (рис. 5,6), который можно включать в электрическую цепь в любом направлении (по сути, это два встречно включенных одинаковых стабилитрона).

Варикапы

Электронно-дырочный переход, к которому приложено обратное напряжение, обладает свойствами конденсатора. При этом роль диэлектрика играет сам р-п переход, в котором свободных носителей зарядов мало, а роль обкладок — прилежащие слои полупроводника с электрическими зарядами разного -знака — электронами и дырками. Изменяя напряжение, приложенное к р-п переходу, можно изменять его толщину, а следовательно, и емкость между слоями полупроводника.

Рис. 6. Варикапы и их обозначение на принципиальных схемах.

Это явление использовано в специальных полупроводниковых приборах — варикапах [от английских слов vari (able) — переменный и cap (acitor) — конденсатор]. Варикапы широко применяют для настройки колебательных контуров, в устройствах автоматической подстройки частоты, а также в качестве частотных модуляторов в различных генераторах.

Условное графическое обозначение варикапа (см. рис. 6,а), наглядно отражает их суть: дне параллельные черточки воспринимаются как символ конденсаторе. Кик и конденсаторы переменной емкости, варикапы часто изготовляют и виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 6,6 показано обозначение матрицы из двух варикапов, а на рис. 6,в — из трех.

Тиристоры

На основе базового символа диода построены и условные обозначения тиристоров (от греческого thyra — дверь и английского (resi)stor — резистор). Это диоды, представляющие собой чередующиеся слои кремния с электропроводностью типов р и п. Таких слоев в тиристоре четыре, т. е. он имеет три р-п перехода (структура р-п-р-п).

Тиристоры нашли широкое применение в различных регуляторах переменного напряжения, в релаксационных генераторах, коммутирующих устройствах и т. д.

Рис. 7. Тиристор и его обозначение на принципиальных схемах.

Тиристоры с выводами только от крайних слоев структуры называют динисторимн и обозначают символом диода, перечеркнутым отрезком линии, паралельной черточке-катоду (рис 7,а). Такой же прием использован и при построении обозначения симметричного динистора (рис. 7, б), проводящего ток (после включения) в обоих направлениях.

Тиристоры с дополнительным (третьим) выводом (от одного из внутрених слоен структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (рис. 7,в), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (рис. 7,г).

Условное обозначение симметричного (двунаправленного) трииистора получают из символа симметричного динистора добавлением третьего вывода (рис. 7,(5).

Фотодиоды

Основной частью фотодиода является переход, работающий при обратном смещении. В его корпусе имеется окошко, через которое освещается кристалл полупроводника. В отсутствие света ток через р-п переход очень мал — не превышает обратного тока обычного диода.

Рис. 8. Фотодиоды и их изображение на схемах.

При освещении кристалла обратное сопротивление перехода резко падает, ток через него растет. Чтобы показать такой полупроводниковый диод на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева сверху, независимо от положения символа) изображают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 8,а).

Подобным образом нетрудно построить и условнбе обозначение любого другого полупроводникового прибора, изменяющего свои свойства под действием оптического излучения. В качестве примера на рис. 8,6 показано обозначение фотодинистора.

Светодиоды и светодиодные индикаторы

Полупроводниковые диоды, излучающие свет при прохождении тока через р-n переход, называют светодио-дами. Включают такие диоды в прямом направлении. Условное графическое обозначение светодиода похоже на символ фотодиода и отличается от него тем, что стрелки, обозначающие оптическое излучение, помещены справа от кружка и направлены в противоположную сторону (рис. 9).

Рис. 9. Светодиоды и их изображение на схемах.

Для отображения цифр, букв и других знаков в низковольтной аппаратуре часто применяют светодиодные знаковые индикаторы, представляющие собой наборы светоизлучающих кристаллов, расположенных определенным образом и залитых прозрачной пластмассой.

Условных обозначений для подобных изделий стандарты ЕСКД не предусматривают, но на практике часто используют символы, подобные показанному на рис. 10 (символ семисегментного индикатора для отображения цифр и запятой).

Рис. 10. Обозначение светодиодных сегментных индикаторов.

Как видно, такое графическое обозначение наглядно отражает реальное расположение светоизлучающих «элементов (сегментов) в индикаторе, хотя и не лишено недостатка: оно не несет информации о полярности включения выводов индикатора в электрическую цепь (индикаторы выпускают как с общим для всех сегментов выводом анода, так и с общим выводом катода).

Однако особых затруднений это обычно не вызывает, поскольку подключение общего вывода индикатора (как, впрочем, и микросхем) оговаривают на схеме.

Оптроны

Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, когда необходима их гальваническая развязка. На схемах оптроны изображают, как показано на рис. 11.

Оптическую связь излучателя света (светодиода) с фотоприемником показывают двумя параллельными стрелками, перпендикулярными линиям-выводам оптрона. Фотоприемником в оптроне могут быть не только фотодиод (рис. 11,а), но и фоторезистор (рис. 11,6), фотодинистор (рис. 11,в) и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется.

Рис. 11. Обозначение оптопар (оптронов).

При необходимости составные части оптрона допускается изображать раздельно, но в этом случае знак оптической связи следует заменить знаками оптического излучения и фотоэффекта, а принадлежность частей к оптрону показать в позиционном обозначении (рис. 11,г).

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Диод (Diode -eng. ) – электронный прибор, имеющий 2 электрода , основным функциональным свойством которого является низкое сопротивление при передаче тока в одну сторону и высокое при передаче в обратную .

То есть при передаче тока в одну сторону он проходит без проблем , а при передаче в другую , сопротивление многократно увеличивается , не давая току пройти без сильных потерь в мощности. При этом диод довольно сильно нагревается .

Диоды бывают электровакуумные , газоразрядные и самые распространённые – полупроводниковые . Свойства диодов, чаще всего в связках между собой, используются для преобразования переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

Конструкция диодов .

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния или германия ), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа , то есть принимающей электроны (содержащей искусственно созданный недостаток электронов дырочная »)), другая обладает электропроводимостью n-типа , то есть отдающей электроны (содержащей избыток электронов электронной »)).

Слой между ними называется p-n переходом . Здесь буквы p и n — первые в латинских словах negative — «отрицательный », и positive — «положительный ». Сторона p-типа , у полупроводникового прибора является анодом (положительным электродом), а область n-типа катодом (отрицательным электродом) диода.

Электровакуумные (ламповые) диоды, представляют собой лампу с двумя электродами внутри, один из которых имеет нить накаливания , таким образом подогревая себя и создавая вокруг себя магнитное поле .


При разогреве , электроны отделяются от одного электрода (катода ) и начинают движение к другому электроду (аноду ), благодаря электрическому магнитному полю . Если направить ток в обратную сторону (изменить полярность), то электроны практически не будут двигаться к катоду из-за отсутствия нити накаливания в аноде . Такие диоды, чаще всего применяются в выпрямителях и стабилизаторах , где присутствует высоковольтная составляющая.

Диоды на основе германия , более чувствительны на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.

Типы диодов:
  • · Смесительный диод — создан для приумножения двух высокочастотных сигналов.
  • · pin диод — содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор .
  • · Лавинный диод — применяется для защиты цепей от перенапряжения . Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод — применяется для генерации колебаний в СВЧ -технике. Основан на лавинном умножении носителей заряда.
  • · Магнитодиод . Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода .
  • · Диоды Ганна . Используются для преобразования и генерации частоты в СВЧ диапазоне.
  • · Диод Шоттки . Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры .

Применяются в лазеростроении , по принципу работы схожи с диодами, но излучают в когерентном диапазоне .

  • · Фотодиоды . Запертый фотодиод открывается под действием светового излучения . Применяются в датчиках света , движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей ) . При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток .
  • · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения .
  • · Туннельные диоды , использующие квантовомеханические эффекты . Применяются как усилители , преобразователи , генераторы и пр.
  • · (диоды Генри Раунда, LED ). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света .

Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом , инфракрасном и других требуемых диапазонах (в основном, и космической сфере).

  • · Варикапы (диод Джона Джеумма ) Благодаря тому, что закрытый p-n-переход обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения . Применяются в качестве конденсаторов с переменной ёмкостью .

Значит, обе полуволны переменного напряжения, проходя через диодный мост, будут иметь на нагрузке одну и ту же полярность постоянного напряжения.
Су ществует также и схема применения всего 2-х диодов для выпрямления переменного тока с использованием трансформатора с отводом от средней точки. В ней правильная работа диодов осуществляется за счет того, что применяемый трансформатор имеет две одинаковые вторичные обмотки с, соответственно, равными напряжениями. Один полупериод работает одна обмотка, а другой — другая. Этот вариант вы сможете найти и разобрать сами. Но на практике, однако, применяется гораздо чаще именно рассмотренная выше схема.
Если вы не собираетесь применять диоды в высокочастотных цепях, а это отдельные серии диодов, то необходимо знать два основных параметра выпрямительных диодов:
1)Максимальный ток в прямом направлении , Iпр. Это тот самый ток, который и будет проходить через нагрузку при открытом состоянии диода. В большинстве применяемых диодов эта величина составляет от 0,1 до 10А. Бывают и более мощные. Однако надо учитывать, что в любом случае, когда через диод протекает прямой ток Iпр, то на нем «оседает» небольшое напряжение. Величина его зависит от величины протекающего тока, но в общем случае это примерно около 1В. Называется эта величина прямым падением напряжения и обычно обозначается как Uпр или Uпад. Для каждого диода она приводится в справочнике.
2)Максимально обратное напряжение , Uобр. Это наибольшее напряжение, в обратном направлении, при котором диод все еще сохраняет свои вентильные свойства. В общем, это всего-навсего, переменное напряжение, которое мы можем подключить к его выводам. И при выборе диодов для того же мостового выпрямителя именно на эту величину и требуется ориентироваться. При превышении значения этого напряжения происходит необратимый пробой диода как и при превышении прямого тока Iпр. Эта величина также имеется в справочниках по диодам.
Стоит отметить еще одну разновидность, если можно так сказать, диодов — это стабилитроны. Немного информации о них дальше.
Другая группа диодов — это стабилитроны. Их назначение — это не выпрямление тока, а стабилизация напряжения. В них тоже имеется p-n переход. В отличие от диода стабилитрон подключается в обратном направлении. Его вольт-амперная характеристика и условное обозначение показаны на рис.5. Из рис.5 видно, что при некотором значении напряжения на выводах стабилитрона меньшего, чем Umin, ток практически равен нулю. При напряжении Umin стабилитрон открывается, и через него начинает протекать ток. Участок напряжения от Umin до Umax, т.е. между точками 1 и 2 на графике, является рабочим участком опорного диода (стабилитрона). Минимальное и максимальное значения могут отличаться разве что на десятые доли вольта. Этим значениям соответствуют минимальный и максимальный токи стабилизации. Основные параметры стабилитрона — это:
1)Напряжение стабилизации Uст . Производятся стабилитроны с напряжением стабилизации чаще всего от 6 до 12В, но имеются и от 2 до 6В, а также и более редкоиспользуемые свыше 12 и до 300В;
2)Минимальный ток стабилизации Iст.мин . Это наименьший ток, протекающий через стабилитрон, в результате чего на нем появляется его паспортное стабилизированное напряжение. Обычно это 4…5мА;
3)Максимальный ток стабилизации . Это наибольший ток через стабилитрон, который во время работы нельзя превышать, потому что наступает недопустимое нагревание стабилитрона. В маломощных моделях это чаще всего 20…40мА.
Чем круче участок 1 — 2 вольт-амперной характеристики стабилитрона, тем лучше он стабилизирует напряжение.
Конкретное применение стабилизаторов напряжения с расчетами приведено в разделах «Расчет параметрического стабилизатора » и «Непрерывный компенсационный стабилизатор напряжения «.
Существуют и другие разновидности диодов. Это импульсные диоды, СВЧ-диоды, стабисторы, варикапы, туннельные диоды, излучающие диоды, фотодиоды. Но примем за факт то, что они все-таки используются не в простых электроустройствах, а в чистейшей воды радиоэлектронных, поэтому заострять свое на них внимание мы не будем. Тем более, что изучив основные свойства рассмотренных диодов, информацию о вышеназванных можно без труда посмотреть в технической литературе.
А в заключение, немного информации о маркировке полупроводниковых диодов. Осиановимся на российских.
Первый символ — буква (для приборов общего применения) или цифра (для приборов специального назначения), указывающая исходный полупроводниковый материал, из которого изготовлен диод: Г (или 1) — германий; К (или 2) — кремний; А (или 3) — GaAS. Второй символ — буква, обозначающая подкласс диода: Д — выпрямительные, высокочастотные (универсальные) и импульсные; В — варикапы; С — стабилитроны; Л — светодиоды. Третий символ — цифра, указывающая назначение диода (у стабилитронов — мощность рассеяния): например, 3 — переключательный, 4 — универсальный и т.д. Четвертый и пятый символы — 2-х значное число, указывающее порядковый номер разработки (у стабилитронов — номинальное напряжение стабилизации). Шестой символ — буква, обозначающая параметрическую группу прибора (у стабилитронов — последовательность разработки).
Несколько примеров маркировки:
ГД412А — германиевый (Г) диод (Д), универсальный (4), номер разработки 12, группа А; КС196В — кремниевый (К) стабилитрон (С), мощность рассеяния не более 0,3Вт (1), номинальное напряжение стабилизации 9,6В, третья разработка (В).
Для полупроводниковых диодов с малыми размерами корпуса используется цветная маркировка в виде меток, наносимых на корпус прибора.

Назначение диода, анод диода, катод диода,

Как проверить диод мультиметром

m.katod-anod.ru

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром — Практическая электроника

В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.

Плоскостной и точечный диод

Какие бывают типы диодов?

А) На фото изображен рассмотренный нами выше диод.

Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.

Двуханодный стабилитрон — изображение на схеме

В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Е) Варикап, применяется как конденсатор переменной ёмкости.

Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок.

З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только.

Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

Светодиоды существуют в разных корпусах, в том числе и SMD.

Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

Форум по радиодеталям

Знак осторожно высокое напряжение гост

  • Как измерить угол между током и напряжением в трехфазной видео

  • Как называется соединение если на всех элементах одинаковое напряжение

  • Как проверить работоспособность транзистора мультиметром

    Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

    Типы, классификация транзисторов

    Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

    Устройство транзисторов

    1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор – два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
    2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

    Схема проверки транзистора

    При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

    1. B – база (англ. Base).
    2. С – коллектор (англ. Collector).
    3. E – эмиттер (англ. Emitter).

    Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

    Проверка элементов омметром

    Опубликовал Александр Дудкин

    8 августа, 2008

    Почти каждый радиолюбитель располагает в качестве измерительного прибора авометром — цифрового или стрелочного типа, в состав которого входит омметр. Однако не все начинающие радиолюбители знают, что омметром можно проверять почти все радиоэлементы: резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы.

    Проверка резисторов

    Проверка постоянных резисторов производится омметром путем измерения их сопротивления и сравнения с номинальным значением, которое указано на самом резисторе и на принципиальной схеме аппарата. При измерении сопротивления резистора полярность подключения к нему омметра не имеет значения. Необходимо помнить, что действительное сопротивление резистора может отличаться по сравнению с номинальным на величину допуска.

    При проверке переменных резисторов измеряется сопротивление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения, а также необходимо измерять сопротивление между каждым из крайних выводов и средним выводом. Эти сопротивления при вращении оси из одного крайнего положения в другое должны плавно, без скачков изменяться от нуля до номинального значения. При проверке переменного резистора, впаянного в схему, два из его трех выводов необходимо выпаивать

    Проверка конденсаторов

    В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико.

    Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра (плюсовой вывод омметра должен присоединяться к плюсовому выводу конденсатора), в противном случае результат измерения будет неверным.

    К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы КЭ, КЭГ, ЭГЦ, ЭМ, ЭМИ, К50, ЭТ, ЭТО, К51, К52 и оксидно-полупроводниковые конденсаторы К53. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, а конденсаторов ЭТ, ЭТО, К51, К.52 и К53— не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере зарядки стрелка движется в сторону увеличения сопротивлений.

    Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 • мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки.

    Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время. Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси,

    Проверка катушек индуктивности

    При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в паспортных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконечно большое сопротивление. Если катушка имеет отвод, нужно проверить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем — ко второму крайнему выводу и отводу.

    Проверка низкочастотных дросселей и трансформаторов. Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоянному току, которые можно использовать при проверке трансформаторов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивление значительно меньше номинального, это может указывать на наличие короткозамкнутых витков.

    Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит замыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформатора выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима “крокодил”. Ко второму выводу этой обмотки прикасаются слегка влажным пальцем левой руки.

    Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивление обмотки. Когда стрелка остановится, отводят правую руку с щупом от второго вывода обмотки. В момент разрыва цепи при исправном трансформаторе чувствуется легкий удар электрическим током за счет ЭДС самоиндукции, возникающей при разрыве цепи.

    В связи с тем, что энергия разряда мизерна, никакой опасности такая проверка не представляет. При наличии короткозамкнутых витков в проверяемой обмотке или в других обмотках трансформатора ЭДС самоиндукции резко падает и электрического удара не ощущается. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.

    Проверка диодов

    Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их прямой и обратный токи при одинаковом приложенном напряжении различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вывода омметра к аноду, а минусового вывода — к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики.

    Указать заранее значения прямого и обратного сопротивлений или их соотношение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных авометров и на разных пределах измерения различно. Тем не менее у исправного диода обратное сопротивление должно быть больше прямого. Отношение обратного сопротивления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается незначительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на которое диод рассчитан.

    Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду приложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение. Любой омметр обеспечивает приложение такого напряжения. Однако если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.

    Проверка тиристоров

    Неуправляемые тиристоры (динисторы) могут быть проверены таким же образом, как диоды, если напряжение отпирания динистора меньше напряжения на клеммах омметра. Если же оно больше, диннстор при подключении омметра не отпирается и омметр в обоих направлениях показывает очень большое сопротивление. Тем не менее, если диннстор пробит, омметр это регистрирует нулевыми показаниями прямого и обратного сопротивлений.

    Для проверки управляемых тиристоров (тринисторов) плюсовой вывод омметра подключается к аноду тринистора, а минусовой вывод — к катоду. Омметр при этом должен показывать очень большое сопротивление, почти равное бесконечному. Затем замыкают выводы анода и управляющего электрода тринистора, что должно приводить к резкому уменьшению сопротивления, так как тринистор отпирается. Если после этого отключить управляющий электрод от анода, не разрывая цепи, соединяющей анод тринистора с омметром, для многих типов тринисторов омметр будет продолжать показывать низкое сопротивление открытого тринистора.

    Это происходит в тех случаях, когда анодный ток тринистора оказывается больше так называемого тока удержания. Тринистор остается открытым обязательно, если анодный ток больше гарантированного тока удержания. Это требование является достаточным, но не необходимым. Отдельные экземпляры тринисторов одного и того же типа могут иметь значения тока удержания значительно меньше гарантированного. В этом случае тринистор при отключении управляющего электрода от анода остается открытым. Но если при этом тринистор запирается и омметр показывает большое сопротивление, нельзя считать, что тринистор неисправен.

    Проверка транзисторов

    Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому. Для p-n-р транзисторов эти эквивалентные диоды соединены катодами, а для n-p-n транзисторов — анодами. Таким образом, проверка транзистора омметром сводится к проверке обоих р-n переходов транзистора: коллектор — база и эмиттер — база. Для проверки прямого сопротивления переходов p-n-р транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра — поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра.

    При проверке n-р-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление — при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить.

    Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных.

    После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты).

    Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-n проводимости, если — минусовым, значит, p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора.

    Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-р-n транзисторе или с минусовым выводом омметра при р-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами, (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора. Полевые транзисторы проверять не рекомендуется.

    Проверка микросхем

    При помощи омметра можно производить проверку тех микросхем, которые представляют собой набор диодов или биполярных транзисторов. Таковы, например, диодные сборки и матрицы КДС111, КД906 и микросхемы К159НТ, К198НТ и другие.

    Проверка диода, транзистора производится по уже описанной методике. Если неизвестно назначение выводов сборки или микросхемы, оно также может быть определено, хотя из-за наличия нескольких транзисторов в одном корпусе приходится проводить более громоздкие измерения. При этом нужно установить систему подключения омметра к выводам, чтобы выполнить все возможные комбинации.

    Поделиться в соц. сетях

    Нравится

    (Посещений: 1 108, из них сегодня: 1)

    Ремонт, Электроникадиоды, катушки, конденсаторы, микросхемы, мультиметр, проверка, резисторы, ремонт, тестер, тиристоры, транзисторы

    Понравилась публикация? Почему нет? Оставь коммент ниже или подпишись на feed и получай список новых статей автоматически через feeder.

    Проверка биполярного транзистора мультиметром в штатном режиме

    Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h – касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие – просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

    Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

    h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

    Зачем нужно проверять транзистор

    Транзистором в современной трактовке называется полупроводниковый радиоэлемент, главная задача которого — изменять параметры тока и управлять им. Все без исключения транзисторы имеют три ножки (они еще называются выводами), каждый из которых называется по-своему: база, эмиттер и коллектор. Физические их размеры удивляют своим многообразием: начиная от тех малюток, которые используются в микросхемах с размером всего в несколько нанометром, и заканчивая мощнейшими для применения в энергетических устройствах размерами, в диаметре достигающие нескольких сантиметров.

    Сама конструкция представляет собой корпус, внутри которого находятся полупроводниковые прослойки. Для их изготовления применяются такие материалы, как кремний, германий и другие. Ученые в результате исследований на тему введения новых материалов для этой роли, пришли к выводу, что вполне могут использоваться полимеры, не все, а лишь некоторые их виды.

    Транзисторы по технологии из производства подразделяют на два вида:

    • Биполярные – они в свою очередь тоже подразделяются на: npn транзистор и pnp. Работают они абсолютно одинаково, единственное, что отличает их -это лишь полярность напряжений, которые подаются на n-p-n и p-n-p переходы. Часто этот вид транзисторов называют обычными, поскольку их используют намного чаще.

    • Полевые – созданы как противоположность биполярных. У них большое входное сопротивление, они дешевле и технологичнее первых. Из-за большого входного сопротивления они почти что не потребляют ток управления. Они могут быть с каналом n-типа и p-типа.

    Практически каждый из нас сталкивался с тем, когда из-за поломки какой-нибудь детали перестает работать всё устройство. Для этого надо провести проверку, исключить целые детали, выявить сломанную и заменить ее.

    Любая электрическая схема, несомненно, требует правильной и тщательной сборки, и все элементы, входящие в эту схему, должны быть исправны – только тогда все будет работать. Транзисторы невероятно распространены в радиотехнической сфере, поэтому нужно обязательно знать и уметь проверить его и определить стоит его использовать дальше или выбросить и установить новый. Для того, чтобы проводить проверку нужно знать его модель и тип. В зависимости от этого выбирается способ проверки, так как он не один и работоспособность транзистора осуществляется разными методами и зависит от его типа.

    Как показывает практика, транзисторы — это те детали, которые сгорают чаще всех. Самые частые причины можем перечислить:

    • Повреждены выводы транзистора
    • Потеря мощности
    • Пробои перехода
    • Пробои на участке эмиттера или коллектора
    • Обрыв одного из переходов

    Провести их проверку совсем не сложно. Первым делом нужно хорошо осмотреть транзистор, сделать его визуальную оценку, при этом не отделяя его от схемы. Он должен выглядеть так, каким он был при установке. Если на нем появились темные пятна, либо полностью поменялся цвет, каким-то образом изменилась его форма – все это прямой показатель того, что транзистор не работает, он сломан и нуждается в замене.

    Повреждение может произойти по нескольким причинам: это может быть из-за перегрева при производстве паяльных работ, из-за неправильной эксплуатации устройства.

    Проверка транзисторов мультиметром: нештатный режим

    Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

    • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
    • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

    Подготовка к проверке транзистора

    Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

    • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
    • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

    Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

    Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

    Как проверить транзистор мультиметром

    Универсальный прибор, которому по плечу проверка любого транзистора, вне зависимости от его разновидности – это мультиметр. При этом он тоже может быть любым — как современным с жидкокристаллическим дисплеем, так и аналоговым.

    При выборе аналогового прибора нужно выбирать его нижний предел, но для этого сначала нужно вспомнить каким образом проверяются обычные диоды. При получении результатов замеров в случае использования именно аналогового вида они отслеживаются по стрелке, на приборе имеются показатели силы тока, сопротивления и напряжения. Некоторые мультиметры оснащены не очень удобной шкалой, что по большому счету ни на что не влияет, кроме как на то, что новички могут быть недовольны пользованием, так как такие измерения доставляют небольшие сложности при считывании результатов. Эти приборы достаточно распространены, они более доступны из-за их невысокой стоимости, однако их главный недостаток – это большая погрешность при замерах. Конечно, в них имеется возможность подобраться к более точным результатам, используя специальный резистор, однако, все равно, для мастера получение более точных результатов должно стоять на первом месте.

    Цифровые мультиметры обладают высокой точностью и результаты их работы выводятся на дисплей, они просты в применении, не нужно вглядываться в шкалу и высчитывать доли показаний.

    Обязательно перед началом измерений, как уже упоминалось ранее, нужно выяснить марку и тип проверяемого транзистора. Это делается с использованием справочных материалов, каких сейчас огромное множество в свободном доступе. Метод прозвонки тоже может помочь это определить.

    Для того, чтобы приступить необходима распиновка, то есть определение местоположения всех трех выводов, поскольку у разных транзисторов они на разных местах.

    Всегда начинают с определения нахождения базы, это делается путем перебора, измерительный прибор переходит в режим для прозвонки. Плюсовой щуп подцепляется к левому выводу, а второй присоединяем сначала к центральному, а затем к правому. Допустим, что тестер выдает единицу при первом положении, а во втором положении щупов появляются какие-нибудь показания, например, 500 мВ. Это ни о чем не говорит, поэтому делать какие-то выводы очень рано. После этого крепим положительный щуп к на середину, и оставшийся присоединяем сначала к левому, а затем и к правому выводам. Теперь тестер показывает единицу при первом соединении, а во втором — выдает значение, к примеру, 495 мВ. Полученные данные также не позволяют дать получить ответ. Поэтому переходим к следующему этапу: плюсовой щуп цепляем к правому выводу, а оставшийся второй как в предыдущих случаях, крепим к выводам, которые свободны: сначала к тому, что посередине, затем к левому. Если прибор в первом сочетании отражает единицу, во второй сочетании тоже единицу, то вывод из этого следует всего один: база транзистора расположена справа.

    Треть дела сделана, поэтому сейчас нам нужно определить какие оставшиеся выводы где находятся. Переключаем наше измерительное устройство на измерение сопротивления 200кОм. Используем не только оставшиеся выводы, база нам тоже пригодится. Прикрепляем минусовой щуп на нее, а плюсовой присоединяем поочередно к тем выводам, наименование которых нам пока неизвестно. При этом смотрим на индикатор. Получаем два значения, например, на одном — 119 кОм, а на втором – 114,2 кОм. Заучив главное правило: где меньше сопротивление, там коллекторный вывод, мы легко получаем искомые данные,

    Чтобы проверить работоспособность полевого транзистора нужно подсоединить красный щуп на его базу, а оставшийся подсоединить к коллектору и зафиксировать замер. После этого, черным щупом подсоединяемся к эмиттеру и опять снимаем замеры. Если переходы транзистора не пробиты, по падение напряжения на переходе «коллектор-эмиттер» должно быть в пределах от 300 до 750 мВ.

    Затем приступаем к обратному измерению коллекторного и эмиттерного перехода. В процессе замеров на дисплее появится единица, что будет означать, что в данном режиме измерения, который мы выбрали, нет падения напряжения.

    Данный алгоритм вполне подойдет для элементов, которые находятся на плате. Бывают такие случае, когда можно обеспечить полноценную проверку и не отсоединять его. Но нужно учитывать, что существуют дополнительные факторы, которые могут отражаться на значениях, выдаваемых измерительными приборами. Чтобы это вовремя пресечь нужно следить за показаниями эмиттерного и коллекторного перехода, эти значения не должны быть очень маленькими. Если вдруг это случилось, и вы видите низкие данные, то лучше отсоединить транзистор и переделать замеры.

    Переходим к тому, как при помощи все того же мультиметра определить нерабочее состояние транзистора. Здесь все очень просто. Если на дисплее нет падения напряжения или же прибор показывает бесконечность при замере сопротивления прямого и обратного переходов, т.е. при прозвонке прибор выдает единицу – это свидетельствует о неисправности. Второй вариант заключается в том, что выявляется слишком большое падение напряжения на полупроводнике или величина сопротивления прямого и обратного перехода близка к нулю. Это доказательство того, что само строение внутри элемента нарушено и работать он уже не будет.

    Для проверки транзисторов подойдет такой прибор как авометр. Он очень похож на мультиметр, но отличается тем, что в нем отсутствует режим прозвонки полупроводников. При использовании авометра нужно помнить, что полярность при установке режима омметра обратная, если сравнивать ее с режимом замера постоянного напряжения. Чтобы запомнить этот момент нужно при измерении красный щуп включать в гнездо «-».

    Разбить биполярный транзистор на диоды

    Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

    Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

    Проверка диода

    Проверка условных диодов, замещающих транзистор

    Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

    Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

    Как проверить биполярный транзистор, не выпаивая из схемы

    Отсоединение транзистора от устройства, не только транзистора, но и любой другой детали — очень тонкое и почти ювелирное дело. Если это сделать неаккуратно, допустить хоть малейшую ошибку, то возможно прибор уже не удастся реанимировать, и он поедет на помойку. Чтобы выполнить проверку непосредственно на схеме можно действовать таким путем. Сначала, конечно же, транзистор должен быть визуально осмотрен, смысла в проверке не будет, если он выглядит плохо, имеет какие-либо повреждения.

    Можно воспользоваться методом, который называется «прозвонка транзистора». Это методе заключается в проведении некоторого алгоритма отлаженных действий. Переводим прибор в режим измерения сопротивления.

    Поскольку транзисторы трехвыводные, то будем считать, что это сродни двум диодам. Для прозвонки использоваться будет шесть вариантов – каждые два контакта будут проверяться в двух направлениях.

    • Комбинация номер один — «база – эмиттер» — ток должен проводиться лишь в одну сторону, а само соединение должно быть похоже на диод.
    • Вторая комбинация «база – коллектор» — ток проводится также лишь в одну сторону.
    • Третье сочетание «эмиттер – коллектор» — ток не должен проводиться ни в одну из сторон.

    Этот алгоритм действий был приведен на основе рассмотрения npn транзистора. В случае проведения такого же набора действий на pnp транзисторе картина принципиально отличаться не будет — она будет подобна, но с перевернутыми диодами. Чтобы это сделать щуп черного цвета соединяем с базой, а другим осторожно последовательно нужно дотронуться сначала эмиттера, а затем коллектора. При этом нужно отслеживать данные, которые будет показывать экран: если транзистор пригоден к использованию, то тестер покажет значение прямого сопротивления с приблизительным значением от 400 до 900 Ом.

    Как провести проверку обратного сопротивления? Итак, красный щуп необходимо приложить к базовому выводу, второй щуп последовательно выполняет касания к оставшимся выводам. Смотри на прибор, он выдаст нам на двух переходах большой показатель сопротивления, в виде отражения единицы на экране, то есть оба перехода в работоспособном режиме, впрочем, как и транзистор, который мы тестируем.

    Эта методика как раз рассказывает, как же выполнить проверку транзистора, оставляя его на схеме и не вырезая его со схемы. Все получится по той причине, что переходы мультиметра не зашунтированы резисторами. Если случится и прибор начнет отображать очень малые величины прямого сопротивления и обратного переходов сочетания «эмиттер-коллектор», то тогда нужно этот вопрос пересмотреть, и скорее всего необходимо будет произвести отсоединение транзистора.

    Прежде чем мультиметром проверить транзистор типа npn, нужно щуп красного цвета соединить с базой, каким образом определив прямое сопротивление. Исправность устройства определяется таким же методом, как и транзистор pnp. Признаком неисправности может служить обрыв одного из переходов, где выявлена очень большая величина прямого или обратного сопротивления. Транзистор можно отправить в мусорное ведро, если на экране появляется нулевое значение.

    Нужно запомнить, что этот способ ни в коем случае нельзя применять для полевого транзистора, он не подойдет, а применим лишь для биполярного. Поэтому прежде чем ринуться к транзистору и мультиметру, нужно обязательно проверить к какому типу транзисторов относится тот, который вы собрались проверить. После этого надо проверить сопротивление между коллектором и эмиттером. Делается это для исключения замыканий, ни в коем случае они не должны появиться.

    Второй способ подразумевает использование омметра: будет замеряться только сопротивление, поскольку данный прибор не обладает никакими другими способностями, между выводами эмиттера и коллектора, соединив при этом выводы базовый и коллекторный, а затем базовый и эмиттерный. Первым делом, подключаем измерительный прибор последовательно сначала к первой паре выводов, потом ко второй паре выводов, потом к третьей. Нужно учесть, что полярность должна быть перенастроена. Поскольку переходы транзистора и есть полупроводниковые диоды, то тестирование проводится в точности также. Подключение омметра производят к соответствующим выводам транзистора.

    Если транзистор может работать, то прямые сопротивления переходов равны примерно от 30 до 50 Ом, а обратные сопротивления от 0,5 до 2 Мом. Если показатели, полученные при проведении замеров, будут очень сильно разниться с указанными значениями, то этот транзистор неисправен. Проверка ВЧ транзисторов напряжение батареи измерительного прибора не должно быть больше полутора Вольт.

    Резюме о проверке транзистора мультиметром

    Некоторые радиолюбители скажут, что это никак не сделать, если у мультиметра нет функции измерения коэффициента усиления.

    Но здесь надо обратить внимание на 3 момента:

    • надо различать измерение усилительных свойств и простую проверку работоспособности;
    • для проверки исправности достаточно знаний из школьного курса физики — как работает pn переход;
    • если прочитав первые два пункта, вы, обрадовавшись, что не все так плохо и решите купить цифровой мультиметр, достаточно самого дешевого, безбрендового, где даже нет функции проверки диодов, а достаточно режима измерения сопротивления.

    Методика

    Проверку надо производить, предварительно выпаяв радиодеталь из печатной платы паяльником, иначе ток, который должен идти через транзистор будет «путешествовать» произвольным образом по печатным дорожкам платы, не позволяя установить истину, а если транзистор новый, то тогда вообще без вопросов — паять ничего не надо.

    Если выводы жесткие, что обычно встречается в мощных силовых транзисторах, импульсных, или низкочастотных, то достаточно положить деталь на стол, чтобы прикоснуться измерительными щупами.

    1. Включаем мультиметр, вставляем в разъемы щупы.
    2. Переключаем в режим теста диодов (если он есть) или измерения сопротивления (если его нет) и вспоминаем, что транзисторы схематически и электрически состоят из двух полупроводниковых диодов, один из выводов каждого соединен с другим. Это и есть база, которую нужно для начала найти.
    3. Далее, начинаем касаться кончиками наконечников контактов. Поставьте красный щуп на центральный контакт, а черным прикасайтесь к крайним контактам. Если мультиметр показывает падение напряжения на крайних контактах, значит, у вас NPN биполярный транзистор. Для проверки PNP транзисторов нужно касаться красным щупом крайних выводов, а на центральном выводе оставить черный щуп.
    4. Если падение напряжения у NPN транзистора приблизительно одинаково и собственно вообще присутствует, значит транзистор исправен. При прикосновении красного щупа к крайним выводам транзистора падение будет наблюдаться на центральном — PNP транзистор исправен.
    5. Если у мультиметра нет функции тестирования диодов, необходимо переключаться в режим измерения сопротивления, которой обладают все мультитестеры. Этот метод универсальный. В любом случае, если деталь исправна, от базы к коллектору или эмиттеру будет проходить ток, а вот в обратном направлении не будет. Если же ток будет проходить в обоих направлениях — транзистор неисправен.

    Поделиться в соцсетях

    Что такое диод, его основные разновидности, как проверить диод

    Диод – простейший полупроводниковый или вакуумный прибор, имеющий два контакта. Главное свойство этого элемента – так называемая односторонняя проводимость.

    Это означает, что в зависимости от полярности, полупроводник имеет кардинально разную проводимость. Меняя направление тока, можно открывать или закрывать диод. Свойство широко применяется в самых разных областях схемопостроения.

    Принцип действия следующий:
    Радиоэлемент состоит из токового перехода с интегрированными рабочими контактами – анодом и катодом.
    Прикладывая к электродам прямое напряжение (анод – положительный, катод – отрицательный), мы открываем переход, сопротивление диода становится ничтожно малым, и через него протекает электрический ток, именуемый прямым.

    Если поменять местами полярность: то есть на анод подать отрицательный потенциал, а на катод – положительный, сопротивление перехода возрастает настолько, что принято считать его стремящимся к бесконечности. Электрический ток (обратный) фактически равен нулю.

    Основные разновидности диодов – не полупроводниковые и полупроводниковые

    Первый вид широко использовался в эпоху радиоламп, до начала масштабного применения полупроводников. В колбе, являющейся корпусом радиодетали, мог быть специальный газ или вакуум. Надежность и мощность газонаполненных (вакуумных) диодов не вызывает нареканий, однако крупные габариты и необходимость прогрева для выхода на рабочие характеристики, ограничивает применение.

    Для работы требовалось предварительно разогреть один из электродов – катод. После чего внутри лампы возникала электронная эмиссия, и между рабочими электродами протекал ток (в одном направлении).

    Это интересно! Несмотря на архаичность вакуумных ламп, ценители хорошей музыки предпочитают усилители, собранные на этих элементах. Считается, что звук будет естественнее и чище, чем в полупроводниковых системах.

    Усилитель собран из вакуумных диодов

    Полупроводниковые диоды. Рабочим элементом является полупроводниковый материал с интегрированными контактами-электродами.

    Поскольку кристалл может работать в любых условиях (ток протекает непосредственно в его теле), необходимости помещения в вакуум или особую газовую среду нет. Требуется лишь механическая защита, ибо все полупроводниковые материалы хрупкие.

    Такие детали компактны, для их изготовления требуется меньше материала, да и себестоимость ниже. Поэтому до 95% современной элементной базы – это именно полупроводниковые диоды.

    Что такое диод, и для чего он нужен?

    Прежде всего, рассмотрим классификацию радиоэлементов. Поскольку вакуумные и газонаполненные диоды являются скорее экзотикой, рассматривать будем лишь полупроводниковые приборы.

    Классификация по назначению:

    Выпрямительные.
    Самый распространенный тип элемента. Применяется для получения постоянного тока из переменного. Для этого применяются специальные выпрямительные схемы – мосты.

    Выпрямительные сборки настолько популярны, что они выпускаются сразу в готовом виде, диоды имеют общий корпус и четыре контакта с маркировкой.

    Детекторные.
    Используется способность детали детектировать сигнал. Применяется в основном в радиоприемниках. Многие радиолюбители знакомы с термином «детекторный приемник». Его работа построена на детекторном диоде.

    Импульсные.
    Исходя из названия, применяются в импульсных схемах.

    Смесительные.
    Используются в системах преобразования высокочастотных токов в сигналы промежуточной частоты.

    Ограничительные.
    На них строятся схемы защиты аппаратуры от скачков напряжения.

    Умножительные. Их сфера применения – умножители напряжения.

    Генераторные. Используются в генераторах частоты.

    Настроечные и параметрические.
    Используются в схемах с управляемыми характеристиками, для настройки и поддержания параметров.

    В зависимости от назначения, диоды бывают:

    • Низкочастотными;
    • Высокочастотными;
    • Для работы со сверхвысокими частотами (СВЧ).

    Классификация конструктивного исполнения:

    Диод Шоттки.

    В качестве полупроводника используется металл, вместо классического p-n перехода. За счет этого, диод имеет мизерное падение напряжения при прямом токе. Широкое применение такой конструкции ограничено существенным недостатком – при значительном обратном токе диод быстро выходит из строя. Эта особенности учитывается при его проверке.

    Как проверить диод Шоттки? Контроль мультиметром в режиме «проверка диода» может показать положительный результат, даже при пробитом полупроводнике. Необходимо замерять сопротивление между рабочими электродами в прямом и обратном подключении в режиме «прозвонка».

    Тестер в одном случае показывает низкое сопротивление, а в другом – бесконечно большое. Такой диод исправен.

    При подозрении на «пробой» проведите измерение в диапазоне «20 кОм». Сопротивление обратному току должно быть бесконечно большим. При значении 1-2 кОм – диод неисправен.

    Посмотрите видео на тему: «Как проверить диод Шоттки мультиметром».

    Стабилитрон.
    Способность давать стабильные токи в режиме пробоя – особенность диода, которая применяется в стабилизаторах напряжения. В данном случае конструктивный недостаток применяется как основная характеристика. Как проверить диод-стабилитрон мультиметром? Также, как обычный диод. Напряжение тестера не способно организовать пробой с обратным током.

    Стабистор.
    Назначение такое же, как у стабилитрона, но зависимость напряжения от силы тока тут меньше. Поэтому стабисторы применяются для меньших напряжений.

    Диод Ганна.
    Эти детали вообще не имеют p-n перехода в полупроводниковом кристалле. Его работа основана на собственных эффектах монокристалла, в отличие от перехода в классическом диоде. Применяется в диапазонах СВЧ. Внимание! Проверка диода мультиметром невозможна. Для этого применяются стенды СВЧ.

    Варикап.
    Некая смесь диода с конденсатором. Емкость зависит от обратного напряжения p-n перехода. Применяются в радиосвязи, на них строятся колебательные контуры.

    Фотодиод.

    При попадании световой энергии на чувствительный элемент – в p-n переходе возникает разность потенциалов. Замкнув цепь, мы получаем электрический ток. Принцип фотодиодов применен в солнечных элементах электростанций. Широкое распространение эти элементы получили в датчиках освещенности и движения.

    Как проверить фото-диод тестером? Подключиться к электродам в режиме измерения постоянного напряжения и направить не кристалл мощный свет. На шкале появится значение напряжения.

    Светодиод.

    На этом элементе остановимся подробнее. Элемент работает так же, как обычный полупроводниковый диод. Пропускает ток лишь в одном направлении. Однако его кристалл начинает излучать свет при определенной силе тока. Для усиления яркости, место p-n перехода покрывают люминофором. В результате сила света может достигать десятков люменов на одном кристалле.

    Подбирая различные материалы, можно получить любой спектр – от инфракрасного до видимого (разных цветов), и ультрафиолетового.

    Как проверить светодиод мультиметром?

    Проверка проводимости не отличается от обычного диода. Ток протекает только в одном направлении. А вот светиться диод начинает лишь при превышении напряжения падения. Для однокристальных деталей это диапазон 2,5-3,6 вольта. Убедитесь в том, что ваш тестер имеет питание от 3 вольт и выше.

    Подробно о проверке диода и светодиода мультиметром рассказано в этом видео.

    About sposport

    View all posts by sposport

    Диод Шоттки. Особенности и обозначение на схеме.

    Обозначение, применение и параметры диодов Шоттки

    К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

    Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

    Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

    В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

    На принципиальных схемах диод Шоттки изображается вот так.

    Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

    Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

    Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

    Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

    У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

    К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

    Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

    Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

    Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

    К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

    К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

    В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

    Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

    Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

    Применение диодов Шоттки в источниках питания.

    Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

    Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

    В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

    То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

    Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

    Проверка диодов Шоттки мультиметром.

    Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

    Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

    Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

    Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

    Также Вам будет интересно узнать:

     

    Как проверить диод на работоспособность мультиметром. Как проверить различные типы диодов тестером – полная инструкция

    Светодиоды как альтернатива лампам накаливания и «экономкам» прочно занимают место в светильниках разных мастей и качества. Их применяют в и для . Для подсветки и в переносных фонариках. Срок службы светодиода превосходит любые другие источники света в несколько раз, но и они перегорают. Рассмотрим, как продиагностировать обычный светодиод с помощью мультиметра.

    Что такое светодиод

    Глядя на его действие можно сказать, что это обычная лампочка, но это не так. Устройство любого диода предусматривает одну особенность – он пропускает электричество только в одном направлении и работает только с постоянным током. Т.е. для работы светодиода нужен блок питания с постоянным напряжением. Величина напряжения обычно написана на корпусе самого светодиода и составляет от 3 до 12 вольт в зависимости от модели. Отличие светодиода от обычного диода только в том, что при прохождении через него тока он светится. Еще одно отличие заключается в том, что анод (+ плюсовой)и катод (- минусовой) на светодиоде неотличимы визуально.

    Как проверять

    Обозначение режима проверки диодов на мультиметре

    Мультиметр должен иметь специальную функцию «проверка диодов». Эта опция может быть обозначена специальным знаком на корпусе. В этом режиме цифровой мультиметр пропускает через него напряжение и светодиод может быть немного подсвеченным, если совпал плюс на выходе измерительного прибора с анодом на диоде.

    Шаг первый. При соблюдении полярности на табло мультиметра отображается падение напряжение на прямом переходе. Необходимую цифру вы можете узнать в документации к диоду:

    Подключение светодиода правильное

    Шаг второй: При обратной полярности проверки светодиода мультиметром прибор будет показывать единицу. Это свидетельство того, что светодиод исправен.

    Обратная полярность при проверке светодиода мультиметром

    Такую схему проверки можно выполнять как на отдельных светодиодах, так и прозванивать каждый диод в схеме.

    Обязательно проверяйте светодиод и в одну и в другую сторону, чтобы узнать его исправноть. Если светодиод пропускает электричество в две стороны, т.е. на втором шаге у вас показания отличные от единицы, значит он неисправен.

    Видео, как проверить светодиод с помощью мультиметра

    Комментарии:

    Похожие записи

    Как выбирать токоизмерительные клещи и не переплатить Виды мультиметров Mastech и сфера применения

    Светодиод — достаточно нежный полупроводниковый прибор. Если ток через его станет критически большим чем номинальный, то начнется перегрев и тепловое разрушение кристалла не заставит себя долго ждать. Поэтому прежде чем проверять светодиод на исправность, приготовьтесь быть очень осторожным, чтобы случайно не испортить рабочую деталь.

    Небольшие круглые светодиоды рассчитаны на рабочее напряжение в пределах 2 — 4 вольт, а именно: красные, желтые и зеленые — до 2,2 вольт, а белые и синие — до 3,6 вольт. Рабочий номинальный ток маленького круглого светодиода обычно не превышает 10 — 20 миллиампер, имейте это ввиду.

    Способ проверки №1. Источник питания на 5 или 12 вольт и резистор

    Итак, чтобы проверить светодиод, сначала необходимо определиться, чем вы будете пользоваться для проверки. Если под рукой нет мультиметра, то первым делом можно взять взять с известным напряжением в пределах от 5 до 12 вольт, но не спешить подключать к нему светодиод.

    Следующим шагом необходимо будет взять , номинал которого ограничит ток при данном напряжении на уровне 5-10 мА. Что это значит? Это значит, что если в последовательной цепи с резистором на светодиод придется падение напряжения как надо — около 2 вольт, то на резистор придется 3 или 10 вольт (для 5 или для 12 вольтного источника питания), следовательно для тока порядка 5 мА, по закону Ома, потребуется резистор номиналом 600 Ом или 2000 Ом.

    Подберите близкий номинал из имеющихся у вас, например 560 Ом или 2,2 кОм — для источника питания на 5 или на 12 вольт соответственно. Подключите светодиод через резистор последовательно к источнику питания.

    Если вы имеете дело с круглым или с прямоугольным выводным светодиодом, то длинная его ножка, присоединенная к тому внутреннему электроду, который выглядит менее крупным — это анод, он подключается к плюсу источника питания. Короткая ножка — к минусу источника питания, с ее стороны круглая линза светодиода возле основания имеет плоский срез.

    Присоедините резистор к длинной плюсовой ножке светодиода, и всю цепь подключите к источнику питания — на короткую ножку минус, на резистор — плюс. Если ножки обрезаны и не ясно, какая из них была длинная, то минус подключается к тому электроду, который внутри линзы видится более крупным. Итак, если светодиод исправен, то он засветится.

    Способ проверки №2. Мультиметр с функцией измерения hFE

    Есть и второй, совсем простой способ проверки светодиода с ножками, если у вас в хозяйстве есть .

    В этом случае достаточно воткнуть светодиод в отверстия «С» и «Е» гнезда проверки транзисторов: в разъем для PNP — длинной ножкой в «Е», короткой — в «С», или в разъем для NPN — длинной ножкой в «С», короткой — в «E».

    Исправный светодиод засветится, поскольку прибор подаст на него напряжение порядка 1,5 вольт, чего будет достаточно для слабой, но видимой на глаз засветки светодиода, чтобы понять, что он исправен.

    Способ проверки №3. Прозвонка светодиода мультиметром как обычного диода

    Наконец, третий способ. Поскольку светодиод — это в первую очередь полупроводниковый диод, то и прозвонить его можно как обычный диод. Просто включите мультиметр в режим прозвонки диодов, и проверьте свой светодиод, прикоснувшись к его выводам щупами тестера.

    Исправный светодиод даже немного засветится, а на дисплее мультиметра вы увидите значение падения напряжения на P-N-переходе в вольтах. Конечно, мощный светодиод, рассчитанный на относительно большое напряжение так не проверить, придется пользоваться первым способом, но маломощные и даже , можно легко проверять таким нехитрым способом даже с условиях, когда они намертво смонтированы на печатной плате.

    Андрей Повный

    С развитием электроники в современном мире, в различной аппаратуре применяется такой узел как диодный мост. В случае не нормальных режимов работы и коротких замыканий, он первый кто принимает удар на себя. Научиться проверять диодный мост самостоятельно – это полезный навык, который пригодиться всем тем, кто хоть как-то занимается самостоятельным ремонтом поломанного оборудования.

    Давайте вспомним немного теории. Работа диодного моста, основана на свойстве полупроводникового диода пропускать ток только в одном направлении. Схема моста состоит из четырех диодов и может выполняться как в открытом виде, так и в виде монолитного корпуса. Подробней обо всем этом вы можете прочесть в материале про диодный мост .

    Неисправности диодного моста:

    1. Пробой диода – это когда диод становиться обычным проводником, а мультиметр показывает сопротивление этого проводника, обычно происходит в следствии высокого обратного напряжения или тока, диод не может выдержать величины и пробивается, ток проводиться в обоих направлениях.
    2. Обрыв диода – название говорит само за себя, это когда диод вообще не проводит электрический ток, в любом включении он будет иметь очень высокое сопротивление, а мультиметр будет показывать единицу, свидетельствуя о обрыве. Это менее распространенная неисправность.

    Проверка обычного диодного моста

    Как было написано выше, диодный мост состоит из четырех отдельных полупроводниковых диодов. Чтобы проверить его исправность, нам нужно прозвонить каждый из них в двух направлениях. Включаем мультиметр в режим прозвонки (он отмечен значком диода или звука) и выбираем первый диод, с которого мы начнем проверку.

    Находим у него анод (плюсовой вывод) и катод (минусовой вывод). Обычно они обозначены на корпусе диода с помощью цветового обозначения, либо соответствующими иконками. Для начала проверяем диод в прямом включении, для этого красный щуп (плюсовой) подключаем к аноду, а черный (минусовой) к катоду.

    На дисплее мультиметра должны появиться цифры — значение падения напряжения, указывается оно в милливольтах. Это то минимальное напряжение, которое нужно для открытия диода.

    Теперь давайте проверим его в обратном включении, для этого меняем щупы местами – красный к катоду, а черный к аноду. На дисплее должна показываться единица, что указывает нам на высокое сопротивление P-N перехода — этот диод исправен.

    Если в обратном включении показываются малое сопротивление, а прибор пищит (при наличии звуковой индикации) – этот диод пробит и его нужно заменить. Таким образом прозванием оставшиеся три штуки и если найден неисправный, просто выпаиваем его и заменяем на новый.

    Проверка диодной сборки

    Вся хитрость диодной сборки в том, что мы не видим отдельно диоды. Но сложного тут ничего нет, на помощь нам приходит схема диодного моста. Для наглядности размещаем ее недалеко от себя и начинаем проверку. Проверять мы будем как в первом пункте статьи – по одному диоду. В диодной сборке каждый вывод подписан, так что найти нужный нам диод не составит труда.

    Выводы диодов в монолитном корпусе:

    • Диод 1: минус сборки – анод, один из переменных выводов – катод;
    • Диод 2: минус сборки – анод, один из переменных выводов – катод;
    • Диод 3: переменный вывод – анод, плюс сборки – катод;
    • Диод 4: переменный вывод – анод, плюс сборки – катод.

    Зная обозначение выводов, проверяем каждый диод в двух направлениях. Если какой-то из них имеет пробой или обрыв, то приодеться заменить всю диодную сборку. Изображения для наглядности:

    Проверка диодов 1 и 2 при обратном включении.

    В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

    Способы проверки

    Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта. Проверить эти значения параметров при наличии мультиметра, не составит труда.

    Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

    Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

    Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

    Проверка мультиметром

    Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

    Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

    В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

    Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

    Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

    Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

    Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

    Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

    Как проверить не выпаивая

    Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

    Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

    Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

    Как проверить светодиоды в фонарике

    Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

    Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

    Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

    Чтобы проверить диода можно использовать достаточно простой способ проверки полупроводникового диода мультиметром. Как известно полупроводниковый диод – это электронный прибор, который обладающий свойством односторонней проводимости. У диода обычно имеется два вывода. Один называется катодом (-), другой анодом (+).

    Рабочие свойства диода проявляются только при прямом включении. Это означает, что к выводу анода подсоединено положительное напряжение, а к катоду – отрицательное. При этом полупроводник отпирается и через его p-n переход начинает идти ток.

    При обратном включении, когда к аноду подсоединен (-), а к катоду (+) он заперт и не пропускает ток

    У подавляющего большинства мультиметров присутствует возможность проверки диода. Эту функцию, можно использовать и для проверки полупроводникового транзистора. Выбирается она в виде условного обозначения диода на многопозиционном переключателе мультиметра.

    При проверке исправности диода с помощью этого режима, при прямом включении на экране тестера показывается не сопротивление перехода, а пороговое напряжение диода! То есть уровень напряжения, при увеличении которого p-n переход отпирается. Это напряжение лежит в диапазоне 100 – 800 милливольт (mV). Их то и должен показать мультиметр. В обратном включении, когда к аноду подсоединен минусовой вывод мультиметра, а к катоду плюсовой на экране не должно показываться никаких значений. Это говорит о том, что переход исправен и в обратном направлении ток не течет.

    Итак, осуществим проверку диода в прямом включении. Для этого анод этого полупроводника подключить к плюсу цифрового мультиметра, а катод к минусу. На экране мультиметра показалось значение пробивного напряжения диода 1N5819.

    Теперь проверим полупроводниковый прибор в обратном направлении. На экране высветится «1». Это говорит о том, что диод не пропускает ток и его сопротивление огромно. Таким образом, мы проверили диод и он оказался рабочим.

    При проверке диода важно найти дефекты не только на пробой или обрыв. Необходимо учитывать и такой неприятный момент, как небольшая токовая утечка.

    Если мы производили проверку мультиметром в режиме прозвонки «диода», и выявили рабочий полупроводниковый компонент, но у нас имеется подобное подозрение на утечку, тогда нужно попробовать измерить обратное сопротивление диода, предварительно включив на мультиметре режим омметра. На измерительном диапазоне «20 кОм» мультиметр должен показывать обратное сопротивление диода как бесконечно большое. Но если мультиметр покажет даже небольшое сопротивление, например, 2-3 кОм, тогда такой диод лучше заменить.

    Все остальные разновидности этого полупроводника с одним электронно-дырочным переходом, но с разными функциональными задачами (варикапы, стабилитроны, варисторы и другие виды и разновидности) можно проверить этим же самым способом.

    Как проверить диод Шоттки

    Полупроводниковые приборы Шоттки применяются в основном в схема импульсных стабилизаторов благодаря своему быстродействию, а также в выпрямителях и импульсных источниках питания. Проверка диода Шоттки особо не отличается от проверки типового диода, она проводиться по изложенному алгоритму выше. Единственным отличием, нужно обязательно учитывать тот факт, что диоды Шоттки, применяемые в импульсных блоках питания в основном попадаются сдвоенными в общий корпус с общим катодом. И так, чуть ниже мы наглядно покажем на живом примере, как проверить диод Шоттки мультиметром и обнаружить его дефекты?

    В качестве подопытного пациента для проверки у нас будет выступать полупроводниковый радиокомпонент SBL3045PT. Этот радиокомпонент позаимствован из компьютерного блока питания, рассчитан на напряжение до 45 В, и ток до 30 А. (т.е. по 15 А на каждый диод).

    При проверки сдвоенных диодов нужно учитывать момент, что изготовитель прибора часто указывает ток на диодную сборку целиком, а не на каждый отдельный диод в сборке.

    Наглядная проверка диода Шоттки с общим катодом показана на рисунке ниже.


    Одним из существенных минусов у диодов Шоттки является то, что они моментально сгорают при превышении допустимого уровня напряжения. Поэтому при проверки импульсных блоков питания, в первую очередь проверьте на исправность все силовые транзисторы.

    Для многих радиолюбительских самоделок необходимы стабилизированные источники питания. Основным их элементом является стабилитрон, который способен обеспечить постоянное выходное напряжение. Проверить работоспособность и функционирование этого радио элемента можно несколькими способами.

    Наверное любой начинающий радиолюбитель знает, что полупроводниковый прибор в одну сторону пропускает ток, а в другую нет. Но почему он так странно работает, знают, а тем более понимают совсем не многие, даже некоторые инженеры, точнее те кто ими числится не знают этого. А вот как проверить диод, знают не все начинающие электронщики, надеюсь после прочтения данной статьи одним пробелом в ваших знаниях стало меньше.

    Структурно этот радиокомпонент можно изобразить кристаллом полупроводника, состоящим из двух областей. Одна с проводимостью p -типа, а другая – проводимостью n -типа.

    Типичные неисправности диода

    У диода есть две основных беды. Это пробой и обрыв p-n перехода. При пробое диод становиться обычным проводником и свободно пропускает носители заряда как в прямом направлении, так и в обратном. При этом встроенный динамик мультиметра пищит, а на дисплее показывается величина сопротивления, которая очень мала и составляет несколько ом. При обрыве диод перестает пропускать носители в любом направлении. На экране прибора высвечивается цифра «1». При такой неисправности диод представляет собой типичный изолятор. При любой из этих неисправностях диод остается только выкинуть в мусорную корзину.

    Как проверить конденсатор мультиметром

    Мы можем зарабатывать деньги, просматривая продукты по партнерским ссылкам на этом сайте. Спасибо вам всем!

    Один из наиболее часто используемых компонентов в электронных схемах конденсатор. Это первое, что вы ищете, когда ваш вентилятор стирает машина или любая другая бытовая техника перестают работать.

    Как энтузиасту DIY, важно знать, как правильно проверить конденсатор, если вам нужно устранить неполадки в определенных цепях.В этой статье, мы разберемся, как проверить конденсатор с помощью мультиметра — оба цифровой и аналоговый.

    Конденсатор

    : функции и типы

    An существенный электрический компонент, конденсатор используется в фильтре цепей, а также хранит электрический заряд. Первоначально он назывался конденсатор. Телевизоры и стиральные машины — лишь некоторые из приборы, которые используют огромное количество конденсаторов. Они имеют свойство изнашиваться со временем, и именно здесь вы примените свои знания о проверке конденсатор очень полезен.Вы можете просто заменить поврежденный конденсатор вместо покупки новенькой машины.

    Выбрано для вас: 5 лучших мультиметров для технических работ

    значение конденсаторов в цепи определили путь, где они связанный. Чем выше номинал конденсаторов, подключенных в последовательно, тем меньше номинал конденсаторов, подключенных параллельно. Конденсаторы, которые объединены с катушками индуктивности и резисторами внутри цепи обычно используются в высокоэнергетических средах и потребителях продукты (например,грамм. автомобили и вентиляторы), а также в электрических событиях сроки.

    Конденсатор имеет расширенные функции:

    • Электронные схемы — блокирует постоянный ток, позволяя протекать переменному току
    • Аналоговые фильтрующие сети — сглаживают выходной сигнал источников питания
    • Системы передачи электроэнергии — стабилизируют поток энергии и напряжения
    • Резонансные схемы — настройка радиостанций на определенные частоты

    Есть два типа конденсаторов — поляризованные и неполяризованные.

    1. Конденсаторы поляризованные

    Эти Тип конденсатора имеет уникальные отрицательные и положительные полюса. Большинство форм особенности пико-фарада и микрофарада. Они также выполнены в двух разные форматы — осевой и радиальный. Примеры поляризованных конденсаторов включают:

    Керамический (дисковый) конденсатор: Изготовлен из более чем двух сменных слоев металла и керамики. Прежние акты как электроды, а керамика действует как диэлектрик.

    Электролитический конденсатор: Обычно используется, когда требуется большая емкость.Некоторые сделаны из металла, в то время как другие могут быть твердыми или нетвердыми во влажном состоянии.

    2. Конденсаторы неполяризованные

    Неполяризованный подразделяется на два типа, а именно: электролитический неконденсатор (требуются приложения переменного тока либо в соответствии с источником питания, либо сигналом, либо последовательно) и пленочный / пластиковый пленочный конденсатор (чрезвычайно надежны, имеют меньше допусков и длительный срок службы). Конденсатор переменной емкости другой тип неполяризованных.Он может определить емкость через неподвижные и подвижные пластины. Обычно используется в радиоприемниках, транзисторы, передатчики, приемники и т. д.

    Проверка конденсатора аналоговым мультиметром

    Вы также можно использовать аналоговые мультиметры для проверки напряжения, сопротивление и ток. Хотя вам нужно будет зависеть от Ом функции для выполнения этой задачи.

    1. Отсоедините конденсатор от платы. Затем отключитесь.
    2. Положить ваш мультиметр в положении омметра (только если у него несколько Диапазоны Ом).Однако рекомендуется выбрать более высокий диапазон.
    3. Подключите щупы к выводам конденсаторов.
    4. Наблюдать чтения. Результат отображается на стрелке мультиметра. Он определяет, исправен ли конденсатор.

    Хороший конденсатор — если стрелка показывает низкое значение сопротивления, она постепенно перемещается вправо.

    Также читайте: 5 отличных рекомендаций по мультиметрам

    Конденсатор разомкнут или мертв — если стрелка показывает высокое значение и не движется, или нет сопротивления и не движется.

    Конденсатор требует замены — если стрелка показывает низкое значение сопротивления и не двигается.

    Проверка конденсатора цифровым мультиметром

    Здесь у нас есть два способа проверить конденсатор с помощью цифрового мультиметра.

    (A) Проверка конденсатора с настройкой емкости
    1. Отсоедините конденсатор от печатной платы и разрядите его.
    2. Обратите внимание на напряжение и номинал конденсатора, указанные на внешней стороне конденсатора.
    3. Установите ручку настройки емкости.
    4. Подключиться щупы мультиметра к клемме конденсатора. Подключите черный щуп к отрицательной клемме и красный щуп к положительной Терминал.
    5. Проверить показания. Конденсатор считается хорошим если показание близко к значению, отображаемому на конденсаторе. На с другой стороны, конденсатор мертв, если значение ниже конденсатора. значение.
    (B) Испытание конденсатора без установки емкости
    1. Похожий к цифровому мультиметру с настройками емкости также необходимо отключите конденсатор от его цепи и полностью разрядите.
    2. Установите ручку на значение сопротивления или Ом. Опять же, выберите более высокий диапазон.
    3. В корпус электролитических конденсаторов, подключите черные щупы к отрицательный, а красный — положительный. Однако положите их в любом случае, если это неэлектролитический.
    4. Будет напечатано значение сопротивления, поэтому примите его к сведению.
    5. Отсоедините щупы от конденсаторов. Повторите процесс несколько раз.
    6. Конденсатор говорит о том, что он работает эффективно, если все проведенные вами тесты показывают разные результаты.

    Безопасный разряд конденсаторов: почему это важно


    Никогда забыть или упустить из виду важность отключения конденсаторов от схем. Ваша безопасность имеет первостепенное значение. Это также позволяет избежать потенциальное повреждение вашего испытательного оборудования, а также устройства, которое вы тестируете. Всегда следите за тем, чтобы высокое или сильное напряжение конденсаторы перед пайкой полностью отключают, снимая измерения или даже прикосновения к схемам.

    Проверьте их: нужен автомобильный мультиметр?

    Сейчас что вы благополучно разрядили конденсатор, не сомневайтесь еще.Некоторые конденсаторы могут протекать, следовательно, они мертвы из-за кровотечения. резистор. Этот недооцененный резистор может привести к открытию дренажа. цепь через серию отсоединения, которая оставляет некоторое количество энергия.

    Be особенно опасайтесь поврежденного свинцового конденсатора, который лежит в ящике. В некоторых случаях эти блоки имеют тенденцию ломаться во время тестирования и не работают. быть выброшенным, но сохраняет заряд, чтобы шокировать или убить годы спустя. Ли вы тестируете конденсатор вашей микроволновой печи, телевизора, видео монитор или другой прибор, убедитесь, что конденсатор разряжен перед началом работы.

    Приготовьтесь к огромному успеху ваших первых испытаний конденсаторов с помощью этого простого руководства!

    Электронные схемы для любителей


    О компании этот пр.


    Если вы когда-нибудь хотели построить или заменить свой передатчик генератор переменной частоты (VFO) с напряжением управляемый генератор (ГУН), но понятия не имел, где для начала этот небольшой проект должен дать вам пара подсказок.На схеме выше показано, как просто создать переменный конденсатор с всего два варикапа, резистор 100K и потенциометр 10K.


    Варикап

    Почему я хочу использовать варикапс или VCO?


    с генератор, управляемый напряжением, вы можете точно контролировать частоту FM-генератора с помощью потенциометр вместо переменного конденсатора.Если вы используете VCO, вы также можете настроить цифровой частота осциллятора, используя то, что называется Контур фазовой автоподстройки частоты (ФАПЧ), представляющий собой цифровую схему. что предотвращает любые отклонения частоты.

    BB105 Тест варикапа

    Вольт

    Емкость

    0

    174 пФ

    0.4

    172 пФ

    0,5

    108 пФ

    0.6

    96 пФ

    0,7

    71 пФ

    0.8

    56 пФ

    0,9

    44 пФ

    Вольт

    Емкость

    1

    34 пФ

    1.1

    29 пФ

    1,2

    28 пФ

    1.3

    27 пФ

    1,4

    26 пФ

    1.5

    25 пФ

    1,6 — 1,8

    24 пФ

    1,9

    23 пФ

    2 — 2.4

    22 пФ

    2,5 — 2,6

    21 пФ

    Вольт

    Емкость

    2.7–3

    20 пФ

    3,1 — 3,4

    19 пФ

    3.5 — 3,8

    18 пФ

    3,9 — 4,6

    17 пФ

    4.7 — 5,1

    16 пФ

    5,2 — 6,3

    15 пФ

    6.4 — 6,9

    14 пФ

    7-7,6

    13 пФ

    7,7 — 8,9

    12 пФ

    9>

    11 пФ


    Это был проведен тест, чтобы показать вам, как варикап емкость можно изменять, применяя разные диапазоны напряжения.Зеленые столы (справа) показывает, что при подаче напряжения колеблется от От 1 до 9 В варикап выдает плавную емкость приращения, что вам нужно в точном Настройка FM-генератора. Красный стол на другом стрелка (слева) показывает, что диапазоны напряжения от 0 до 0,9 В не дают плавной емкости инкременты и емкость, которые нельзя использовать в FM-генераторе.

    Образец Осциллятор с управлением напряжением с:





    Accurate LC Meter

    Создайте свой собственный Accurate LC Meter (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы.Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 до 1000 нГн, 1 мкГн — 1000 мкГн, 1 мГн — 100 мГн и емкости от 0,1 пФ до 900 нФ. Схема включает автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

    PIC Вольт-амперметр

    Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребляемый ток 0-10 А или более с разрешением 10 мА.Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным проектам, в которых необходимо контролировать напряжение и ток. В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


    Измеритель / счетчик частоты 60 МГц

    Измеритель / счетчик частоты измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

    1 Гц — 2 МГц XR2206 Функциональный генератор

    1 Гц — 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы с высокой стабильностью и точностью. Формы выходных сигналов могут модулироваться как по амплитуде, так и по частоте. Выход 1 Гц — 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для настройки точной выходной частоты.


    BA1404 HI-FI стерео FM-передатчик

    Будьте в прямом эфире со своей собственной радиостанцией! BA1404 HI-FI стерео FM-передатчик передает высококачественный стереосигнал в FM-диапазоне 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, CD-плееру, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или палаточный лагерь.

    USB IO Board

    USB IO Board — это крошечная впечатляющая маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода / вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от порта USB и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


    ESR Meter / Capacitance / Inductance / Transistor Tester Kit

    ESR Meter Kit — удивительный мультиметр, который измеряет значения ESR, емкость (100 пФ — 20000 мкФ), индуктивность, сопротивление (0.1 Ом — 20 МОм), тестирует множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеритель одновременно измеряет значение ESR конденсатора, а также его емкость.

    Комплект усилителя для наушников для аудиофилов

    Комплект усилителя для наушников для аудиофилов включает в себя высококачественные компоненты аудиосистемы, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, конденсаторы FM-фильтрования Panasonic с ультранизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. Разъем для микросхем 8-DIP позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяной коробке Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи на 9 В.


    Комплект прототипа Arduino

    Прототип Arduino — впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), из которых 6 могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

    4-канальный беспроводной пульт дистанционного управления с частотой 433 МГц, 200 м

    Возможность беспроводного управления различными приборами внутри или снаружи дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.


    Варакторный диод — варикап диод »Электроника

    Варикап-диод или варакторный диод обеспечивает возможность иметь в цепи регулируемую по напряжению переменную емкость.


    Учебное пособие по варикапу / варикапу Включает:
    варикап / варикап Резкие и чрезмерно резкие варакторы Технические характеристики варактора (даташит) Схемы варакторных диодов

    Другие диоды: Типы диодов


    Варакторные или варикапные диоды используются в основном в радиочастотных или радиочастотных цепях для обеспечения переменной емкости, управляемой напряжением. Эти электронные компоненты могут использоваться различными способами, когда уровень емкости должен регулироваться напряжением.

    Варакторные диоды могут использоваться не только для аналогового управления напряжением, например, в контуре фазовой автоподстройки частоты, но также могут использоваться в сочетании с микропроцессорами, где напряжение может генерироваться в цифровом виде, а затем преобразовываться в аналоговое напряжение для управления диод с помощью цифро-аналогового преобразователя, АЦП.

    На самом деле области применения варакторных диодов практически безграничны, и они используются во множестве различных схем для множества различных схем, как для общей конструкции электронных схем, так и для проектирования ВЧ.

    Хотя используются оба названия: варактор и варикап диод, они оба имеют одинаковую форму. Название varactor означает переменный реактор или реактивное сопротивление, а varicap означает переменную емкость (переменная емкость).

    Применение варакторных диодов

    Варакторные диоды широко используются во многих ВЧ конструкциях. Они обеспечивают метод изменения емкости в цепи путем приложения управляющего напряжения. Это дает им почти уникальные возможности, и в результате варакторные диоды широко используются в ВЧ-индустрии.

    Хотя варакторные диоды или варикап-диоды могут использоваться во многих различных схемах, они находят применение в двух основных областях:

    • Генераторы, управляемые напряжением, ГУН: Генераторы, управляемые напряжением, используются во многих различных ВЧ-конструкциях. Одна из основных областей — это генератор внутри фазированной автоподстройки частоты. В свою очередь, они могут использоваться как FM-демодуляторы или в синтезаторах частот. Варакторный диод является ключевым компонентом генератора, управляемого напряжением.
    • RF фильтры: Использование варакторных диодов позволяет настраивать фильтры. Следящие фильтры могут потребоваться во входных схемах приемника, где они позволяют фильтрам отслеживать частоту входящего принятого сигнала. Опять же, это можно контролировать с помощью управляющего напряжения. Обычно это может быть обеспечено под управлением микропроцессора через цифро-аналоговый преобразователь.
    • Частотные и фазовые модуляторы: Варакторные диоды могут использоваться в частотных и фазовых модуляторах.В частотных модуляторах они могут быть размещены поперек резонансного элемента внутри генератора, а звук подается на диод. Таким образом, его емкость будет изменяться в соответствии со звуком, вызывая смещение частоты сигнала вверх и вниз в соответствии с изменениями емкости и, следовательно, в соответствии со звуком.

      Для фазовой модуляции сигнал с фиксированной частотой может быть пропущен через схему фазового сдвига и диод, встроенный в него. Опять же, звук подается на диод, и это вызывает сдвиг фазы в соответствии с вариациями звука.

    С точки зрения схем, в которых используются варакторные диоды, они включают в себя генераторы контуров фазовой автоподстройки частоты и, следовательно, многие типы синтезаторов частот в фильтрах, где управление частотой фильтра должно управляться цифровым способом. Их можно даже использовать в некоторых типах схем умножителя гармоник.

    Работа переменного конденсатора

    Ключ к пониманию того, как работает варактор или варикап-диод, — это посмотреть, что такое конденсатор и что может изменить его емкость.Как видно из схемы ниже, конденсатор состоит из двух пластин, между которыми находится изолирующий диэлектрик.

    . . . емкость и количество заряда, которое может быть сохранено, зависят от площади пластин и расстояния между ними. . . .


    Емкость конденсатора зависит от площади пластин — чем больше площадь, тем больше емкость, а также расстояние между ними — чем больше расстояние, тем меньше уровень емкости.

    Диод с обратным смещением не имеет тока, протекающего между областью P-типа и областью N-типа. Область N-типа и области P-типа могут проводить электричество и могут рассматриваться как две пластины, а область между ними — область обеднения — изолирующий диэлектрик. Это точно так же, как конденсатор выше.

    Как и в случае с любым диодом, при изменении обратного смещения изменяется и размер обедненной области. Если обратное напряжение на варакторном диоде или варикапе увеличивается, область истощения диода увеличивается, а если обратное напряжение на варакторном диоде уменьшается, область истощения сужается.Следовательно, изменяя обратное смещение на диоде, можно изменить емкость.

    Изменение емкости варакторного диода при обратном смещении

    Варакторный диод имеет нелинейную кривую емкости — емкость варакторного диода обратно пропорциональна квадратному корню из напряжения на нем. Это означает, что первоначальные изменения обратного напряжения приводят к гораздо большему изменению емкости, чем при более высоких напряжениях.

    Типовая кривая емкости напряжения для варакторного диода

    Варакторный или варикапный символ цепи

    Варакторный диод или варикап диод показан на принципиальных схемах или схемах с использованием символа, который объединяет символы диода и конденсатора.Таким образом, очевидно, что он используется как конденсатор переменной емкости, а не как выпрямитель.

    Обозначение цепи варакторного диода

    При работе с любой схемой электронной схемы необходимо следить за тем, чтобы варакторный диод оставался смещенным в обратном направлении. Это означает, что катод будет положительным по отношению к аноду, то есть катод варактора будет более положительным, чем анод. Таким образом, варактор будет действовать как конденсатор, а не диод в цепи.

    Эквивалентная схема варакторного диода

    Как и любой другой компонент, варакторный диод не является идеальным конденсатором, но включает в себя различные паразитные элементы.Это верно для варакторного диода, и поэтому полезно иметь возможность моделировать диод как эквивалентную схему. Конденсатор и паразитные элементы необходимо понимать и учитывать в конструкции электронной схемы.

    Эквивалентная схема варакторного диода

    Можно видеть, что есть несколько элементов эквивалентной схемы варакторного диода — различные элементы схемы представляют собой основные элементы, которые видны при использовании диода.

    Различные элементы следующие:

    • C J (В): Этот элемент варакторного диода представляет фактическую переменную емкость перехода, которая является основным требуемым элементом диода.
    • R S (В): Это последовательное сопротивление внутри диода, которое изменяется в зависимости от приложенного напряжения.
    • C P : Этот элемент схемы представляет паразитную емкость, в основном возникающую из-за емкости вокруг самого основного диодного перехода. Этому способствуют соединительные провода внутри упаковки.
    • L P : Эта последовательная емкость в основном возникает из-за соединительных проводов внутри корпуса варакторного диода.Несмотря на небольшие размеры, он все равно будет заметен в высокочастотных радиочастотных цепях.

    Последовательное сопротивление выводов диода незначительно, особенно если диод работает в режиме обратного смещения, а уровни емкости относительно малы, и поэтому последовательное сопротивление оказывает незначительное влияние.

    Типы варакторных диодов

    При исследовании высокоэффективных варакторных диодов для конкретных радиочастотных приложений часто можно встретить термины резкие и сверхбыстрые варакторные диоды.

    Эти термины относятся к переходу и, следовательно, к характеристикам варакторного диода — сверхбыстрые диоды, как следует из названия, с очень резким изменением легирования, которое приводит к очень резкому переходу — на самом деле, это гиперактивный переход!


    Технические характеристики варактора

    Хотя варакторный диод сформирован из PN перехода и имеет те же основные характеристики, существуют некоторые специфические характеристики и параметры, которые необходимы для определения его характеристик как переменной емкости.

    Эти характеристики включают значение емкости и поведение при изменении емкости-напряжения.

    Характеристика обратного пробоя также имеет большое значение, потому что часто требуются довольно высокие обратные напряжения, чтобы уменьшить емкость диода до нижних значений.

    Еще одним очень важным параметром является добротность или добротность диода, так как это может существенно повлиять на характеристики всей схемы. Низкие уровни добротности могут снизить избирательность фильтра или отрицательно повлиять на фазовый шум генератора, использующего варактор.

    Варакторные диоды — очень полезные компоненты, которые можно использовать по-разному, особенно в ВЧ схемах. Возможность управлять емкостью в цепи путем изменения напряжения имеет очень много применений и позволяет создавать такие элементы, как контуры фазовой автоподстройки частоты, косвенные синтезаторы частоты, различные типы частотных и фазовых модуляторов и многие другие схемы.

    Другие электронные компоненты:
    резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
    Вернуться в меню «Компоненты».. .

    Оригинальные измерения варикапа

    Введение

    Диоды переменной емкости могут быть очень полезны в различных радио- и электронных схемах. Емкость варикапа уменьшается с увеличением приложенного к нему обратного напряжения. Многие радиоприемники, телевизоры и видеомагнитофоны настраиваются с использованием варикап-диодов, и они могут быть дешевле и механически проще в использовании для домашних пивоваров, чем традиционные переменные конденсаторы с металлическими пластинами.Недостатки заключаются в том, что варикапы создают больше шума в генераторах и т. Д., А изменение емкости не связано линейно с обратным напряжением. При тщательном проектировании эти проблемы часто можно свести к минимуму.

    Хотя варикап-диод может быть полезен во многих схемах, это не тот компонент, который вы легко найдете в ящике для мусора. Часто они ничем не отличаются от обычных диодов или транзисторов на старых печатных платах. Если вы заказываете их у поставщика компонентов, вам, возможно, придется подождать несколько дней доставки, много заплатить за компонент и непропорционально еще больше за почтовые расходы, возможно, за этот единственный товар.Итак, поймите: любой диод — это варикап! Свойство переменной емкости проистекает из того факта, что по мере увеличения обратного напряжения на диоде изоляционный слой между полупроводником, легированным p-примесью, и полупроводником, легированным n-типом, утолщается. Эффект аналогичен разделению двух пластин конденсатора на большее расстояние, что снижает емкость. Единственная особенность варикап-диода заключается в том, что он специально разработан, чтобы сделать этот эффект максимально линейным и хорошим.В частности, если вам нужна большая емкость в верхней части диапазона, вам понадобится диод с довольно большой площадью перехода.

    Но я задался вопросом, как обычные диоды будут работать вместо диода варикапа. У меня оказался варикап-диод BB212, настоящий варикап-диод, предназначенный для ВЧ и средневолновых радиоприемников. Следовательно, он имеет довольно большой диапазон емкости. В то время его продавала компания Maplin Electronics. Это я использовал для сравнения в своем эксперименте. Я только что построил новый частотомер (см. Рисунок справа), и это тоже было поводом для его эффективного использования.

    Испытательная цепь

    Сначала я построил этот тестовый кварцевый генератор, используя кварцевый кристалл с частотой 14 МГц. Микросхема 4060 представляет собой двоичный делитель, который также включает в себя встроенный генератор, поэтому очень легко настроить схему быстрого тестирования, подобную этой. Переменный резистор 3K3 использовался для изменения обратного напряжения на испытуемом диоде. В этой схеме дополнительная емкость диода немного «вытягивает» частоту кварцевого генератора по сравнению с ее нормальной частотой 14 МГц.4060 производит множество выходов для различных делений частоты 14 МГц. Я решил измерить выходное значение деления на 16, то есть 875 кГц. Обратное напряжение на диоде измерялось цифровым вольтметром.

    Но прежде чем двигаться дальше, нужно связать измеренные частоту и напряжения с емкостью диода. Для этого я собрал несколько небольших керамических конденсаторов из своего мусорного ящика и распаял их из различных старых частей оборудования, украшающих это место.Некоторые из них имели емкость всего 1 пФ (пикофарад), и, подключив выбранные компоненты параллельно, я мог легко получить диапазон известных значений емкости. Измерение частоты и построение графика зависимости частоты от известной емкости приводит к красивой кривой, которую можно использовать позже для определения неизвестных емкостей диодов при различных обратных напряжениях, просто считывая частоту и обращаясь к графику.

    Результаты измерений

    График справа (большой 824 x 1060, 40K) показывает результирующую кривую зависимости емкости от измеренного сдвига частоты.Интересно, что получается такая хорошая чистая кривая, учитывая, что это были обычные дешевые керамические конденсаторы, которые, как ожидается, будут несколько отличаться от их указанных емкостей. Во всяком случае, я был удивлен.

    А теперь перейдем к настоящему эксперименту. Я выбрал для тестирования несколько различных диодов, а именно:

    BB212 Реальный варикап диод. Характеристики: 0–289 пФ для обратного напряжения 13,5–0 В.
    1N4148 Кремниевый переключающий диод с общим малым сигналом
    1N4001 Общий выпрямительный диод
    SA158 Неизвестный большой выпрямительный диод от старого оборудования
    T85 Еще один большой выпрямительный диод из барахла
    Светодиоды Набор светодиодов, включая 4 мм, 5 мм, красный, зеленый, стандартный и светодиоды высокой яркости

    Я подключил каждый диод в схему и отрегулировал обратное напряжение на нем с помощью потенциометра 3K3.В каждой точке я тщательно измерял напряжение с помощью цифрового вольтметра и частоту с помощью частотомера. Изменение выходной частоты в зависимости от обратного напряжения показано для различных диодов на графике внизу справа (щелкните здесь, чтобы увеличить изображение в формате pdf, увеличивайте по своему желанию!). Я использовал график емкости / частоты, созданный выше, чтобы обозначить емкость диода для каждого сдвига частоты, что позволило мне построить график зависимости емкости от обратного напряжения, показанный ниже слева (щелкните здесь, чтобы увеличить изображение в формате pdf, увеличьте масштаб, если хотите !).

    Доволен качеством замеров. Фактические записанные числа можно посмотреть в галерее ниже.

    В каталоге Maplin Electronics приведены примеры значений емкости варикап-диода BB212 при различных обратных напряжениях, эта кривая показана на вставке. Эти точки также нарисованы на моем основном графике в виде точки с маленьким красным кружком вокруг нее. Они не совсем точно соответствовали моим измеренным значениям для BB212, которые, естественно, будут немного отличаться от одного устройства к другому.

    Некоторые из протестированных диодов показали полезный диапазон емкостей. Малосигнальный диод 1N4148 не использовался, как и выпрямительный диод 1N4001. Красные светодиоды были лучшими. Предположительно, диоды имеют большую площадь поверхности, которая имитирует конденсатор разумного размера, когда обратное напряжение вызывает образование изоляционного промежутка (помните, что в конденсаторе емкость пропорциональна площади).

    Особенно необычными были результаты, полученные мною при использовании партии зеленых светодиодов высокой яркости.В своем первоначальном воплощении они были индикаторами на дисплее довольно старого видеомагнитофона. Емкость показала разные емкости, когда напряжение увеличивалось до того момента, когда я сканировал вниз (эффект гистерезиса). Это показано на обоих графиках. Это не ошибка! Сначала я подумал, что совершил какую-то ошибку, но я снова и снова проверял разные образцы из одной партии, и это действительно произошло. У меня нет объяснения этому эффекту.

    Фактические измерения:

    НАЖМИТЕ ЗДЕСЬ, чтобы просмотреть таблицу Excel, содержащую эти данные.

    Использование варикапа, май 1958 г. Радиоэлектроника

    Май 1958 Радиоэлектроника

    [Таблица содержания]

    Воск, ностальгирующий по истории ранней электроники. См. Статьи из Radio-Electronics , опубликовано 1930-1988 гг. Настоящим подтверждаются все авторские права.

    Мы с вами знаем их как варакторов диоды », но первоначально полупроводниковые переходы, обратное смещение которых определяет его емкость назвали варикапом.’Новое увлечение полупроводниками к 1958 году шла полным ходом. Ученые, инженеры и любители сжигали полуночное масло (в популярной фразе дня) проведение экспериментов и проектирование схем для замены электронных ламп и ручных управление с помощью транзисторов и других электрически изменяемых полупроводников. Варикап имел возможность настраивать генераторы и фильтры приемника и передатчика без необходимость в высоких напряжениях смещения ламп и больших многопластинчатых пластинах с механической регулировкой конденсаторы.В этой статье от Radio-Electronics говорится о стоимости ранних варикапов. 4,50 доллара за штуку (39,95 доллара в долларах 2019 года за BLS Inflation Calculator), поэтому они ни в коем случае не были дешевыми. Однако их стоимость была оправдана за счет уменьшения сложности схемы (конденсатор с механической регулировкой и, возможно, вакуумная трубка), повышающая надежность (отсутствие износа движущихся частей, виброустойчивость, устойчивость к факторам окружающей среды), а также престижность быть современным продуктом с электронной настройкой.

    Использование варикапа

    Руфус П. Тернер

    Емкость этого поразительного маленького полупроводника, размер 1/4-ваттного резистора зависит от приложенного к нему напряжения.

    Емкость полупроводникового перехода с обратным смещением изменяется в зависимости от обратного Емкость постоянного напряжения уменьшается с увеличением напряжения. Этот эффект был отмечен как в диодах, так и в силовых выпрямителях. В селеновых выпрямительных пластинах, например, емкость сравнительно большая, часто достигает 0.25 мкФ или более. Попытки использовать эту чувствительную к напряжению емкость помешали сравнительно низкое обратное сопротивление перехода — для работы необходимы достаточно большие токи емкость изменяется, и добротность слишком мала для большинства практических приложений. Также, как емкость, так и обратное сопротивление чрезвычайно чувствительны к температуре в обычных диодах и выпрямителях.

    Важная веха была достигнута с разработкой кремниевого переходного диода.Этот полупроводниковый прибор имеет небольшую емкость, но ее можно легко изменить. обратным уклоном. А обратное сопротивление кремниевого p-n перехода таково. высокий (часто 10000 МОм при -1 В), что почти не требуется ток делать работу. Кремниевый переход является по существу компонентом с высокой добротностью. стабильность его емкости в широком диапазоне температур. В исследовательских лабораториях в течение последних 2 лет чувствительная к напряжению емкость кремниевого p-n перехода использовался в экспериментальной настройке с управлением по напряжению, частотных модуляторах, автоматических регулировка частоты, усилители конденсаторного типа, настраиваемые фильтры и многочисленные чувствительные устройства дистанционного управления.Рабочие, которых заинтриговал более ранний диэлектрический усилитель (с использованием керамических конденсаторов, чувствительных к напряжению), только для того, чтобы их серьезный температурный дрейф, снова стимулировал их интерес кремнием соединение.

    Итак, новый полезный полупроводниковый компонент, варикап (см. Радиоэлектроника, Январь 1958 г., стр. 45) стал коммерчески доступным. Этот простой, двухполюсный, p-n переходное устройство, предназначенное для использования в качестве конденсатора переменного напряжения, открывает новые возможности. возможности для упрощения многих электронных схем.Количество заявок к старым схемам, а возможности для новых схем будут ограничены только воображение и смекалка экспериментатора. Не больше, чем у большинства резисторов на 1/4 Вт и напоминая миниатюрный кристаллический диод, Варикап выполняет работу реактивного сопротивления модуляторной трубки или переменного конденсатора, оба из которых во много раз больше его размера.

    Миниатюрный настроечный конденсатор и карликовая трубка реактивного сопротивления Варикап которые могут их заменить.

    Схема AFC, которую вы можете добавить к FM-приемнику, подходит для 2 1/8 x 2 3/8-дюймовая фенольная плита.

    Рис. 1 — Условное обозначение и эквивалентная схема Варикап.

    Рис. 2 — Как емкость варикапа зависит от напряжения смещения.

    Электрические характеристики варикапа

    Рис. 3 — Тестовая установка для демонстрации работы варикапа.

    Характеристики варикапа

    На рис. 1 показаны схематическое изображение и эквивалентная схема варикапа. Маркировка на рис. 1-a указывает полярность напряжения смещения постоянного тока. Положительный конец блока отмечен окрашенной черной полосой.

    На рис. 1-б показана эквивалентная схема. Емкость C варьируется примерно как 1 / √V, где V — напряжение обратного смещения, и практически постоянно (для любого заданного значения V) от -65 ° C до 150 ° C.И емкость, и последовательное сопротивление R с ) практически не зависят от рабочего частота. Максимальная частота, при которой эквивалентная схема остается такой, как показано на рис. 1-б — 500 мк.

    Варикапы

    доступны с шестью емкостями, как показано в таблице. Эти емкости получены при смещении постоянного тока -4 В. Допуск емкости составляет ± 20%. Варикап стоит около 4,50 долларов.

    На рис. 2 показано изменение емкости при обратном напряжении смещения постоянного тока.Этот кривая относится ко всем типам варикапов, независимо от их номинальной емкости, и показывает, что каждый из них имеет 100% номинальной емкости при напряжении смещения -4 вольта. Только несколько миллимикроампер тока, когда смещение приложено к варикапу. Таким образом, для изменения емкости этого очень высокого сопротивления мощность практически не требуется. устройство.

    Поскольку сигнал смещения может быть постоянным или колеблющимся, можно использовать различные могут использоваться сигналы.Диапазон частот простирается от постоянного до более 500 мс.

    В любом приложении полное напряжение, приложенное к варикапу (то есть напряжение смещения плюс пик напряжения сигнала при наличии переменной составляющей) не должно превышать максимальное рабочее напряжение устройства. Кроме того, поскольку варикап диод работает в обратном направлении, напряжение смещения постоянного тока не должно устанавливаться настолько низкий, что пик напряжения сигнала будет переключать работу в прямом направлении или проводящем, область, край.

    Варикап фактически использует емкость p-n перехода для выполнения своей работы. Причина существования емкости в переходе здесь не будет повторяться. Емкость перехода в полупроводниковых приборах знаком читателю; емкость коллектора, например, хорошо известен своей ролью в ограничении высокочастотной характеристики транзисторов. 1,2

    В обычном конденсаторе небольшой ток утечки протекает через диэлектрик. потому что это не идеальный изолятор.Чем выше сопротивление изоляции, тем понизьте этот ток. В слюдяном конденсаторе в хорошем состоянии диэлектрическое сопротивление может составлять 100000 МОм или более, а ток утечки при низких напряжениях постоянного тока настолько мал. что его можно полностью игнорировать. В трубчатом бумажном конденсаторе диэлектрик сопротивление может составлять всего 1000 МОм; поэтому ток утечки намного выше чем в блоке слюды. Ток утечки самый высокий в электролитическом конденсаторе; это может быть значительная часть миллиампера.Из-за тока утечки Эквивалентная схема конденсатора показывает сопротивление утечки параллельно с обкладки конденсатора.

    Сопротивление утечки в слюдяном конденсаторе настолько велико, что его шунтирующий эффект незначительно. Диэлектрик между пластинами приближается к идеальному изолятору, нет (практически) нет заметного пути утечки между пластины, и параллельное сопротивление может быть стерто из эквивалентной схемы.Точно так же в варикапе сопротивление утечки чрезвычайно велико (порядка десятков тысяч МОм), поскольку кремниевый p-n-переход с обратным смещением проходит через всего несколько тысячных микроампера. Как и в слюдяном конденсаторе, параллельный сопротивлением можно пренебречь, а переход рассматривать как емкость, так как его реактивное сопротивление на много порядков меньше шунтирующего сопротивления. Ситуация во многом то же самое, что наличие очень хорошего диэлектрика между «пластинами» перехода.Эта емкость изменяется, как объяснялось ранее, в зависимости от приложенного обратного постоянного напряжения.

    Обычный конденсатор также имеет компонент последовательного сопротивления R s . На высоких частотах величина этого сопротивления обусловлена ​​сопротивлением пластины, выводы и различные синфазные составляющие тока. Добротность конденсатора зависит от этого последовательного сопротивления. Varicap также имеет компонент R s . Он показан на рис. 1-б и указан для каждого типа в таблице.Q Варикапа (но не его емкости) аналогичным образом зависит от этой последовательной составляющей. Однако, как упоминалось ранее, этот компонент последовательного сопротивления не зависит от частота до 500 мс.

    Это хорошо, чтобы отразить, что другие полупроводниковые переходы, такие как германиевые диоды и селеновые выпрямители пропускают гораздо более высокие обратные токи (утечки). Эти утечки не только выше, чем у качественных кремниевых переходов, но и заметно увеличиваются с повышенным обратным напряжением.В этих агрегатах, поскольку сопротивление утечки составляет часто того же порядка величины или даже ниже, чем емкостное реактивное сопротивление, полезное изменение, вызванное изменением напряжения на этих устройствах, не является исключительно изменение емкости, а скорее изменение импеданса эквивалентного R-C схема. В этом отношении селеновый выпрямитель чем-то напоминает электролитический. конденсатор с его высокой утечкой. Напротив, чрезвычайно высокая утечка сопротивление кремниевого p-n перехода и его полезная емкость определяют его как качественный конденсатор.

    Эффект настройки

    Одно из первых применений, которое приходит на ум, — это использование варикапа в качестве переменной напряжения. подстроечный конденсатор в цепи L-C. На рис.3 представлена ​​авторская тестовая установка для продемонстрировать этот эффект и проверить диапазон настройки для одного набора рабочих условий.

    В этой схеме C2 представляет собой варикап типа V56, который служит подстроечным конденсатором. цепи L-C, L2-C2. Конденсатор C1 блокирует прохождение постоянного тока из катушки.Эта емкость очень велика по отношению к C2. Поставляется регулируемое смещение постоянного тока батареей через потенциометр R2. Уровень смещения отображается вольтметром постоянного тока. Разделительный резистор R1 блокирует высокочастотный поток в цепь постоянного тока, но не вносит заметного Падение постоянного напряжения из-за незначительного постоянного тока, протекающего через варикап. Вместо R1 можно использовать дроссель ВЧ. ВЧ-ВТВМ действует как высокоомный резонанс. показатель. Тестовый сигнал подается от обычного генератора радиочастотных сигналов, подключенного к линии связи. в цепь L-C через катушку L1.Катушка L2 намотана для резонанса с C2 в районе 2 мк.

    Около нулевого напряжения постоянного тока варикап имеет самую высокую емкость (номинально больше чем 100 мкФ), поэтому контур LC настроен на самую низкую частоту. При -9 вольт емкость низкая (примерно 39 мкФ) и цепь настроен на самую высокую частоту. Чтобы уложиться в рабочие характеристики Варикапа, напряжение постоянного тока не должно быть меньше 1, а также высокочастотное напряжение, обозначенное значком. vtvm, более 0.5 вольт, среднеквадратичное значение.

    Для демонстрации эффективности варикапа в качестве настройки переменной напряжения. конденсатор: (1) Установите напряжение постоянного тока на -1. (2) Настройте генератор радиочастотного сигнала на резонанс, на что указывает пиковое отклонение vtvm. Установите регулятор мощности генератора на удерживайте это отклонение на уровне 0,5 В. (3) Запишите частоту генератора как f1. (4) Установите напряжение постоянного тока на -9, отметив, что отклонение vtvm падает, указывая на расстройку. схемы. (5) Перенастройте генератор, чтобы найти новую, более высокую резонансную частоту. и запишите это как f2. Диапазон настройки, обеспечиваемый изменением напряжения смещения 8 В, равен на f2 — f1.

    В испытательной установке, показанной на рисунке 3, схема была настроена от 1400 кГц при -1 вольт. до 2250 кгц при -9 вольт, диапазон настройки 850 кгц. Может быть покрыт широкий диапазон частот с тем же изменением емкости, если индуктивность L2 сделать меньше для увеличения рабочая частота. В некоторых приложениях этого принципа будет желательно использовать варикап как подстроечный резистор с регулируемым напряжением параллельно с воздушной настройкой конденсатор.

    Многие приложения этого принципа напрашиваются сами собой.Примеры: напряжение настройка радиочастотных тестовых генераторов, гетеродинов в радио- и ТВ-приемниках (особенно в режиме дистанционного управления), автогенераторы в передатчиках и абсорбции волновомеры.

    Частотный модулятор

    Рис. 4 — Схема частотного модулятора варикапа.

    Рис. 5 — Схема варикапа AFC для вашего FM-приемника.

    В экспериментальной схеме, показанной на рис.4 варикап (C2) шунтируется (через блокирующий конденсатор C3 емкостью 0,01 мкФ) через контур резервуара (L-C4) самовозбуждающегося Генератор 50-мкл. На варикап подается напряжение звуковой частоты ( af ). последовательно с 6-вольтовым смещением постоянного тока, подаваемым аккумулятором. Этот переменный ток колеблется смещение на звуковой частоте. Соответственно колеблется емкость варикапа. о его среднем значении -6 вольт, частотно-модулирующем генератор. Центральная частота определяется настройкой воздушного конденсатора 100 мкФ (C4) и -6 вольт уровень смещения.

    Ширина развертки пропорциональна амплитуде E af и регулируется изменяя это звуковое напряжение. На рис.4 ВЧ-генератор настроен на центральная частота 50 мс, когда C-4 установлен на 50 мкФ, смещение постоянного тока до -6 вольт и E af в ноль. Размах от 0 до 4 мк получается, когда E af варьировалось от 0 до 1,5 вольт среднеквадратичного значения.

    Чтобы предотвратить превышение номинального напряжения варикапа в этом виде генератора FM, сумма постоянного, пикового напряжения AF и пикового высокочастотного напряжения не должна превышать максимальное напряжение. показано на диаграмме.Кроме того, смещение постоянного тока не должно быть настолько низким, чтобы сумма E af пик и пик E rf будут толкать варикап вперед или проводить, области, На рис. 5 эти условия выполняются, когда E dc = -6 вольт, E af не превышает среднеквадратичное значение 1,5 В, а E rf не превышает 3 вольта. В то время как последний представляет собой относительно низкое ВЧ напряжение на баке для ламповых генераторов, это разумно для высокочастотных транзисторных генераторов, с которыми варикап частотный модулятор — естественный спутник.

    Хотя контур резервуара, показанный на рис. 4, был разработан для работы при 50 мс, использовать эту частоту не обязательно. Можно использовать ту же схему FM на других центральных частотах, правильно подобрав контур L-C. Нижний Чем ниже центральная частота, тем меньше ширина развертки, полученная с заданной емкостью варикапа. качели, и наоборот, трансформатор, показанный на рис. 4, не критичен. Любой аудиоустройство, вторичное устройство которого подает максимум 1.5 вольт среднеквадратичного значения звука от Данный источник можно использовать, если он имеет удовлетворительный звуковой отклик.

    Автоматический контроль частоты

    Емкость варикапа при изменении напряжения и его температурная стабильность подходит для использования в качестве простого, высокочувствительного устройства AFC, которое работает лучше чем некоторые схемы реактивных трубок. Небольшой размер блока AFC, содержащего варикап, четыре небольших конденсатора, четыре резистора и высокочастотный дроссель, позволяющий вставить его в приемник с минимумом нарушения схемотехники устройства.Это должны быть долгожданные новости для любителей Hi-Fi, чьи FM-приемники не имеют автоматической регулировки частоты.

    На рис. 5 показана схема АЧХ, разработанная инженерами Pacific Semiconductor. который я адаптировал для смещения от 300-вольтового источника постоянного тока FM-приемника. Фотографии показать весь блок, готовый к подключению к приемнику. Любой тип варикапа может использоваться. Гетеродин приемника просто настраивается, чтобы компенсировать шунтирующая емкость, вносимая смещенным варикапом C2, который функционирует как частотно-регулируемый подстроечный резистор на баке гетеродина.

    Варикап относится к смещению постоянного тока -8 вольт, полученному от Подача 300 вольт через делитель напряжения R3, R4. Напряжение постоянного тока АЧХ получается с одной стороны дискриминатора. Для источников питания, отличных от 300 В, значения R3 и R4 не будут такими же, как у меня, но должны быть разработаны для вывода -8 вольт от конкретного напряжения питания комплекта, который вы добавляете цепь AFC к.

    Завершенный блок АСУ построен на перфорированной фенольной плите длиной 2 3/8 дюйма. и шириной 2 1/8 дюйма.Пигтейлы компонентов продеваются через отверстия. в плате и соединены между собой внизу, чтобы завершить проводку. Печатная схема может быть использовано. Четыре подключения к цепи приемника выполнены на выводах под пайку. монтируется по краю панели. Готовый агрегат следует монтировать как можно ближе по возможности к гетеродину, чтобы провод от бака к С1 был короткая.

    ((Некоторые кремниевые диоды также могут использоваться в качестве переменных конденсаторов в таких приложениях). как это.В выпуске Rectifier News за февраль-март 1958 г. International Rectifier Corp., Эль-Сегундо, Калифорния, показана схема использования их кремниевый диод 3DS1 в качестве устройства управления AFC для FM-тюнера. -Редактор)

    Другие приложения

    Другие предлагаемые варианты использования варикапа включают полностью электронное преобразование постоянного и переменного тока. прерыватели, модуляторы амплитуды, генераторы развертки выравнивания, усилители конденсаторного типа (как переменного, так и постоянного тока), триггеры переменного тока, автоматическая регулировка амплитуды в генераторах f, FM-телеметрия и устранение контроля тонкой настройки в ТВ-приемниках.

    В некоторых приложениях варикапы, как и конденсаторы, могут работать параллельно. для увеличения емкости и последовательно для повышения управляемости напряжения возможности.

    1 Уильям Шокли, Электроны и дыры в полупроводниках, D. Van Nostrand Co., 1950, стр. 100.

    2 Д. К. Браун и Ф. Хендерсон. «PN-переход на устройстве с переменным реактивным сопротивлением. for FM Production,
    Electronic Engineering, (Лондон) ноябрь, 1957, стр. 556.

    Опубликовано: 15 августа, 2019 (оригинал 11.06.2014)

    Varactor — обзор | Темы ScienceDirect

    8.4 Технологическая платформа для изготовления сложных схем RF MEMS

    После введения и описания основных характеристик сосредоточенных компонентов RF MEMS, таких как варакторы, переключатели и индукторы, а также некоторые из наиболее важных вопросов на уровне производства , далее обсуждается технологическая платформа, подходящая для их изготовления.Конкретный процесс — это технология поверхностной микрообработки, доступная в FBK, специально оптимизированная для изготовления компонентов RF MEMS с сосредоточенными параметрами и сложных сетей.

    Для частот до 40 ГГц используются кремниевые подложки с высоким удельным сопротивлением. Для более высоких частот предпочтительны пластины из кварца (плавленого кварца), поскольку они имеют меньшие потери в подложке. Кварц очень хрупкий, и с ним нужно обращаться осторожно, особенно когда для микрополосковых структур необходимы тонкие подложки (300 мкм).Чтобы уменьшить количество пластин, ломающихся во время изготовления, внутреннее напряжение снижается путем предварительной термической обработки при 1050 ° C с последующим очень медленным охлаждением.

    Подвижные и подвесные конструкции реализованы с помощью гальванического золота толщиной 1,8 мкм, в то время как более толстая (> 5 мкм) сигнальная линия и закрепляющие структуры реализованы путем добавления второго гальванического слоя золота. Линии подземного перехода образованы многослойным слоем, состоящим из сплава Al 1% Si и диффузионного барьера и закрывающего слоя Ti – TiN, чтобы избежать диффузии Al в поликремний и образования холмиков во время последующего осаждения оксида кремния (LTO).

    Линии смещения и электроды срабатывания реализованы с использованием поликремния с высоким удельным сопротивлением для уменьшения радиочастотных потерь. Поликремний допускает высокотемпературную обработку, поэтому поверх него может быть нанесен оксид кремния хорошего качества (TEOS). Электроды срабатывания можно изолировать, используя как TEOS, так и LTO, чтобы поддерживать напряжение срабатывания без пробоя, в то время как на емкостных контактах используется только более тонкий LTO, чтобы иметь более высокую емкость. В качестве альтернативы можно реализовать управляющие электроды без диэлектрика, удалив весь диэлектрик над поликремнием и построив несколько столбов, которые предотвращают соприкосновение подвижных перемычек с электродом (короткое замыкание).Таким образом можно резко снизить сдвиг напряжения втягивания, вызванный зарядкой (Solazzi et al ., 2011).

    Схема технологического процесса представлена ​​на рис. 8.9. Процесс производства начинается с кремниевых пластин с высоким удельным сопротивлением с реализации изолирующего слоя, состоящего из 1 мкм оксида кремния, выращенного методом влажного термического окисления при 975 ° C. Заряды, захваченные на границе раздела оксида кремния, могут создавать проводящий канал, который увеличивает потери на подложке из-за емкостной связи.Отжиг при 975 ° C в течение 50 мин в атмосфере азота проводят для уменьшения захваченного заряда. Очевидно, что на кварцевой пластине эти шаги не требуются.

    8.9. Схема технологического процесса изготовления FBK RF MEMS: (a) термическое окисление кремниевой подложки и осаждение поликремния и формирование рисунка, (b) осаждение TEOS и контактное отверстие, (c) осаждение металла и формирование рисунка, (d) нанесение LTO, открытие переходных отверстий и смещение осаждение металла, (e) нанесение прокладки и подложки, (f) затравочный слой и гальваническое покрытие первого «моста» золота и (g) гальваническое покрытие второго золота «CPW» и снятие подвешенных структур.На рисунке изображено изготовление переключателя емкостных контактов. Для реализации омических переключателей диэлектрик (LTO) над металлическим подземным переходом удаляется, обеспечивая контакт металл-металл.

    Чтобы реализовать электроды для электростатического срабатывания и соответствующие линии смещения сигнала постоянного тока, а также резисторы, с помощью химического осаждения из паровой фазы под низким давлением (LPCVD) при 630 ° C наносится слой полисиликоната толщиной 630 нм. Слой поликремния также используется для создания небольших ямок (обычно 4 × 4 мкм), чтобы точно определить количество и положение точек контакта между подвижной мембраной и линией подземного перехода (рис.8.9а).

    Для получения необходимого удельного сопротивления слой поликремния имплантируется ионами бора (BF 2 ) с энергией 120 кэВ. Обычно доза 6,2 × 10 14 Б / см 2 используется для получения сопротивления листа около 1600 Ом / кв. Если требуется другое удельное сопротивление, можно легко рассчитать соответствующую дозу. На первом этапе литографии будут определены структуры поликремния, полученные сухим травлением с использованием химической плазмы на основе хлора. После удаления слоя фоторезиста кислородной плазмой имплантированные ионы B диффундируют и электрически активируются путем отжига при 925 ° C в течение 1 часа в атмосфере азота для получения требуемого профиля легирования.Изолирующий слой SiO 2 толщиной 300 нм наносится методом LPCVD с использованием тетраэтилортосиликата (TEOS) при 718 ° C.

    Когда для устройств, таких как фазированные антенные решетки или микрополосковые линии, требуется проводящий слой на задней стороне, на заднюю сторону напыляется алюминиевая пленка, определяемая литографией (с использованием выравнивания передней стороны) и подвергающейся сухому травлению. Оксид кремния или нитрид кремния PECVD используется для изоляции и защиты от царапин и коррозии.

    Процесс продолжается на лицевой стороне этапом литографии и сухим травлением (с использованием химии на основе F) для определения отверстия в TEOS для контактов между поликремнием и металлом (рис.8.9b).

    Для создания подземной линии и других проводников металлический слой (Al 1% Si) наносится распылением. Диффузионный барьер (Ti / TiN) используется для предотвращения всплесков диффузии Al на границе раздела поликремния и образования холмиков наверху во время осаждения диэлектрика. Полученный мультислой состоит из 30 нм Ti, 50 нм TiN, 410 нм Al, 1% Si, 60 нм Ti и 80 нм TiN. Толщина мультиметаллического подземного перехода и поликремниевых приводных электродов должна быть одинаковой, чтобы избежать деформации приводного моста.Слой металла определен литографией и протравлен методом сухого травления (рис. 8.9в).

    Диэлектрический слой SiO 2 толщиной 100 нм нанесен методом LPCVD при 430 ° C с использованием силана. Он используется как для изоляции металла от других проводников, так и в качестве диэлектрика для емкостных контактов.

    Отверстия в LTO определяются этапом литографии и протравливаются сухим (рис. 8.9d), чтобы реализовать переходные отверстия, которые контактируют металлический подземный переход с золотой сигнальной линией, и подготовить области контактов металл-металл для омических переключателей. .Если требуются бездиэлектрические управляющие электроды, тот же этап используется для удаления как LTO, так и TEOS на поликремниевых электродах путем увеличения времени травления.

    В этом случае, чтобы избежать коротких замыканий, матрица механических стопоров распределена по электродам (рис. 8.10), разработанная путем наложения TEOS, металла, LTO и плавающего металла, чтобы получить воздушный зазор толщиной 550 нм. достаточно, чтобы гарантировать изоляцию на обычно используемых уровнях напряжения срабатывания.

    8.10.Изображение (а) и схема столбов (б), используемых в качестве стопоров, чтобы избежать коротких замыканий между электродами и подвижными мембранами в бездиэлектрических управляющих электродах.

    Слой Cr – 150 нм Au толщиной 5 нм осаждается с помощью электронно-лучевой пушки и используется как для создания электрически плавающего металлического слоя для емкостных контактных переключателей, так и для реализации нижней части контакта золото-золото для омических переключателей.

    Cr используется в качестве адгезионного слоя, потому что золото имеет очень плохую адгезию по отношению к оксиду кремния.Плавающий металл определяется ступенью литографии и подвергается влажному травлению (рис. 8.9d).

    Фоторезист был выбран в качестве жертвенного слоя (спейсера) для изготовления подвижных мембран и подвесных воздушных мостов, поскольку он легко удаляется кислородной плазмой. Недостатком является то, что достигается только частичная планаризация топографии подстилающей конструкции, а верхняя поверхность не является полностью плоской. Стандартная толщина составляет 3 мкм, но, в зависимости от требований устройства, используются разные толщины, начиная от 1.От 6 до 4,5 мкм. Фоторезист наматывается на пластины, а расходные прокладки определяются литографией (рис. 8.9e). Резист наносится на основу при температуре 200 ° C, которая намного выше, чем у обычного, чтобы скруглить края оплавлением и улучшить покрытие ступеней, а также повысить химическую и механическую стойкость фоторезиста. После этой обработки резист не растворяется в растворителях, используемых на следующих этапах, и дальнейшая литография может быть выполнена без повреждения спейсера.

    Проводящий затравочный слой, необходимый для процесса гальваники, затем испаряется по всей пластине.Этот слой состоит из 2,5 нм Cr, чтобы иметь хорошую адгезию к подложке, 25 нм Au в качестве проводящего слоя и временного верхнего слоя из 2 нм Cr для увеличения адгезии фоторезистивной маски во время гальваники. На этапе литографии с использованием положительного резиста AZ 4562 толщиной 6 мкм определяется рисунок, на котором будет выращиваться первая пленка Au, называемая «мостиком». После влажного травления верхнего слоя Cr на пленку Au толщиной 1,8 мкм наносят гальваническое покрытие с использованием химии на основе цианида (рис. 8.9f). Параметры осаждения были выбраны таким образом, чтобы получить небольшое остаточное напряжение при растяжении.После удаления фоторезиста на следующем этапе литографии определяется рисунок второго более толстого (3,5 мкм) слоя Au, называемого «CPW», который также выращивается гальваническим способом. Более тонкий «мостовой» слой используется в основном для изготовления подвесных и подвижных конструкций, в то время как сигнальные линии с низким сопротивлением, участки заземления и точки крепления подвижных структур изготавливаются путем наложения обоих слоев золота. Часто слой «CPW» наносится на выбранные участки подвижных мостов, чтобы иметь более жесткие части, которые жестко перемещаются, в то время как деформация локализуется на более тонких опорах пружин подвески.

    Затравочный слой удаляется влажным травлением, и выполняется спекание золота при 190 ° C для увеличения адгезии золота к подложке и способности контактных площадок для внешних соединений. Кроме того, этот этап приводит к более однородному и воспроизводимому (растягивающему) напряжению в золотых мембранах. Последним этапом процесса является снятие подвешенных структур путем удаления жертвенного резиста кислородной плазмой (рис. 8.9g). Температура процесса и параметры травления были оптимизированы, чтобы уменьшить структурные деформации, вызванные напряжением, и градиент напряжения по толщине пленок (Mulloni et al ., 2010) .Используя вариант процесса, можно локально удалить подложку Si для создания таких устройств, как индукторы и встречно-штыревые конденсаторы, на очень тонких подвешенных диэлектрических мембранах. Перед удалением затравочного слоя на лицевой стороне в оксиде кремния на тыльной стороне делают отверстия, а подложку выборочно удаляют либо глубоким РИЭ, либо анизотропным травлением кремния с использованием ТМАГ в держателе пластины, который защищает лицевую сторону. С помощью той же техники можно реализовать переходные отверстия через пластину, которые можно заполнить медью путем гальваники, чтобы электрически соединить переднюю и заднюю стороны пластины.

    Что такое переменный конденсатор?

    Конденсатор переменной емкости — это конденсатор, емкость которого можно регулировать в определенном диапазоне. Когда относительная эффективная площадь между металлической пластиной полюса или расстояние между пластинами изменяется, ее емкость соответственно изменяется. Обычно он используется в качестве настраивающего конденсатора в радиоприемной цепи. Его два основных типа — конденсатор с переменным диэлектриком с воздушным диэлектриком и переменный конденсатор с твердым диэлектриком. Он широко используется в настройке и усилении, частотно-селективных колебаниях и других схемах.

    Каталог

    I Переменный конденсатор Введение

    Конденсаторы, емкость которых можно регулировать в определенном диапазоне, называются переменными конденсаторами .

    Переменный конденсатор обычно состоит из двух наборов полюсных пластин, изолированных друг от друга: фиксированный набор полюсных пластин называется статором , а подвижный набор полюсных пластин называется ротором . Роторы нескольких переменных конденсаторов могут быть объединены на одном валу для образования коаксиального переменного конденсатора (обычно известного как двойной, тройной и т. Д.). Переменные конденсаторы имеют длинную ручку, которую можно регулировать, потянув за провода или циферблаты. Форма выглядит следующим образом:

    Рисунок 1. переменный конденсатор

    II Идентификация конденсатора

    Емкость конденсатора обозначается на корпусе конденсатора номером или комбинацией буквенно-цифровых кодов, а иногда и по ленте. На этикетке конденсатора указаны различные параметры конденсатора, включая значение емкости , номинальное напряжение и допуск .

    Некоторые конденсаторы не имеют единицы измерения емкости. В этих случаях их единицы устанавливаются по умолчанию на основе данных значений и определяются эмпирически. В некоторых случаях используется трехзначное обозначение. Первые две цифры — это первые две цифры значения емкости, а третья цифра — это множитель или количество Os после второй цифры. Например, 103 означает 10000 пФ.

    Некоторые типы конденсаторов используют WV или WVDC для обозначения номинального напряжения, а другие типы конденсаторов опускаются.Если не указано иное, номинальное напряжение можно определить на основе информации, предоставленной производителем. Допуски конденсаторов обычно выражаются в нескольких процентах, например ± 10%. Температурный коэффициент выражается в миллионных долях (ppm). Этот тип знака состоит из P или N и следующих цифр. Например, N750 означает отрицательный температурный коэффициент 750 ppm / ° C, а P30 означает положительный температурный коэффициент 30 ppm / ° C. Знак NPO указывает, что и положительный температурный коэффициент, и отрицательный температурный коэффициент равны 0, поэтому емкость не изменяется с температурой.Также определенные типы конденсаторов отмечены цветными лентами.

    Рисунок 2. символы схемы для конденсатора постоянной емкости и конденсатора переменной емкости

    (a) показывает графический символ, представляющий конденсатор постоянной емкости в цепи. Обычно используются оба типа. В некоторых типах конденсаторов левая кривая на рисунке обычно представляет внешнюю пластину (то есть конец рядом с внешним корпусом). Этот конец обычно обозначается цветной полосой возле провода, соединенного с пластиной.

    (b) показывает символ переменного конденсатора. Они добавляют стрелку через пластину к конденсатору постоянной емкости. Небольшие подстроечные конденсаторы обычно обозначаются символом справа. Стрелками указаны переменные пластины.

    III Классификация переменных конденсаторов

    Переменные конденсаторы можно разделить на переменные конденсаторы с воздушным диэлектриком и переменные конденсаторы с твердым диэлектриком в зависимости от используемых диэлектрических материалов.

    1. Конденсатор с переменным диэлектриком с воздушным диэлектриком

    Электрод конденсатора с переменным диэлектрическим сопротивлением состоит из двух комплектов металлических листов.Одна неподвижная из двух групп электродов — статор, а вращающаяся — ротор. Воздух используется как среда между подвижной пластиной и неподвижной пластиной.

    Когда подвижная пластина переменного конденсатора с воздушным диэлектриком вращается так, что все подвижные пластины ввинчиваются в неподвижную пластину, емкость является наибольшей; в противном случае, когда подвижная пластина полностью вывернута из неподвижной пластины, емкость будет наименьшей.

    Воздушные средние переменные конденсаторы подразделяются на воздушные одинарные переменные конденсаторы и воздушные двойные переменные конденсаторы.Конденсаторы с воздушной диэлектрической проницаемостью обычно используются в радиоприемниках, электронных приборах, генераторах высокочастотных сигналов, оборудовании связи и сопутствующем электронном оборудовании.

    Рисунок 3. (a) воздушные односвязные переменные конденсаторы (b) воздушные двойные переменные конденсаторы

    2. Переменный конденсатор с твердым диэлектриком

    Переменный конденсатор с твердым диэлектриком представляет собой лист слюды или пластик (полистирол другие материалы) пленка в качестве среды между подвижной пластиной и неподвижной пластиной (подвижная деталь и неподвижная деталь представляют собой неправильные полукруглые металлические пластины).Оболочка — прозрачный пластик. Его преимущества — небольшие размеры и легкий вес; его недостатки — большой шум и удобство ношения.

    Рисунок 4. лист слюды

    Переменные конденсаторы с твердым диэлектриком подразделяются на герметичные переменные конденсаторы с одинарным подключением, герметичные переменные конденсаторы с двойным подключением (у него есть два набора ротора, статора и диэлектрика, которые могут вращаться коаксиально и синхронно) и герметичные четыре -подключенный конденсатор переменной емкости (имеет четыре комплекта ротора, статора и диэлектрика).

    Герметичные односвязные переменные конденсаторы в основном используются в простых радиоприемниках или электронных приборах; герметичные конденсаторы переменной емкости с двойным соединением используются в транзисторных радиоприемниках и связанных электронных приборах и электронном оборудовании; герметичные конденсаторы переменной емкости с четырьмя подключениями обычно используются в многодиапазонных радиоприемниках AM / FM.

    IV Конструкция и принцип работы переменных конденсаторов

    1. Конструкция переменного конденсатора

    Независимо от типа переменного конденсатора его электроды состоят из двух наборов металлических листов, изолированных друг от друга.Ниже мы используем самый ранний конденсатор переменного тока с воздушным диэлектриком (разновидность конденсатора переменного тока), чтобы проиллюстрировать его структуру и принцип работы: Как показано на рисунке, неподвижная одна из двух групп электродов представляет собой статор. Группа, которая может вращаться, представляет собой ротор, а воздух используется в качестве среды между движущейся пластиной и неподвижной пластиной. Когда подвижная пластина переменного конденсатора с воздушным диэлектриком вращается так, что все подвижные части ввинчиваются в неподвижную пластину, емкость является наибольшей; в противном случае, когда подвижная деталь полностью вывернута из неподвижной пластины, емкость будет наименьшей.

    Рисунок 5. Конденсатор переменной емкости воздушный

    На практике подвижные пластины нескольких конденсаторов переменной емкости могут быть установлены на одном вращающемся валу, образуя коаксиальный конденсатор переменной емкости. Конденсаторы переменной емкости имеют длинную ручку, которую можно регулировать с помощью троса или шкалы. Следовательно, переменный конденсатор воздушной среды делится на воздушный односвязный переменный конденсатор и воздушный двухкомпонентный переменный конденсатор.

    2.Что делает переменный конденсатор?

    Основная роль переменного конденсатора заключается в изменении и регулировке резонансной частоты контура. Он широко используется в настройке и усилении, частотно-селективных колебаниях и других схемах.

    (1) Резонансный контур

    Рисунок 6. Резонансный контур

    Как показано на рисунке, резонансный контур LC может изменять резонансную частоту, изменяя емкость переменного конденсатора C.Резонансная частота обратно пропорциональна квадрату емкости, и формула имеет следующий вид:

    (2) Колебания выбранной частоты

    Конденсатор должен быть подключен к генератору, чтобы частота колебаний могла быть непрерывной. регулируется в определенном диапазоне. В схеме хорошего генератора высокочастотного сигнала отрегулируйте односвязный переменный конденсатор C, и частоту выходного сигнала можно изменить по мере необходимости.

    Рисунок 7. Выбранная частота колебаний

    (3) Настройка

    Часто используется в контуре настройки радио, чтобы играть роль при выборе радиостанции. Как показано на рисунке ниже, эта схема представляет собой супергетеродинную схему ступени преобразования радиочастоты. Один из конденсаторов C1a в двойном переменном конденсаторе C1 вмешивается в выходной контур антенны, а другой C1b подключается к гетеродину. Регулировка емкости двух линий C1 может изменить частоту синхронизации приема.C2 и C3 — это подстроечные конденсаторы, которые используются для калибровки частоты входного контура антенны и контура гетеродина.

    Рисунок 8. Настройка

    В подстроечные конденсаторы

    Подстроечный конденсатор — это разновидность переменного конденсатора, также называемого полупеременным конденсатором . Он играет роль микронастройки. Он часто используется для точной регулировки емкости, и больше не требуется изменять емкость во время использования.В схеме наиболее важным требованием к подстроечным конденсаторам является поддержание надежности заданной емкости.

    Существует много типов подстроечных конденсаторов. В зависимости от материала диэлектрика, его можно разделить на подстроечные конденсаторы воздух , подстроечные конденсаторы с фарфоровой обрезкой , подстроечные конденсаторы с органической пленкой и подстроечные конденсаторы слюдяные . Его часто используют в качестве компенсирующего или корректирующего конденсатора в различных схемах настройки и колебаний.Емкость можно регулировать в небольшом диапазоне, а конденсатор, который может быть установлен на определенное значение емкости после регулировки, называется подстроечным конденсатором, также называемым полуборочным конденсатором. Когда вы регулируете подстроечный конденсатор, вы должны изменить расстояние или площадь между двумя пластинами.

    Подстроечный конденсатор состоит из двух или двух наборов небольших металлических пластин с диэлектриком, зажатым между ними. На рисунке показана форма переменного конденсатора. Полупеременные конденсаторы обычно не имеют ручек и могут регулироваться только отверткой, поэтому их часто используют в местах, где частая регулировка не требуется.Полупеременные конденсаторы используются в качестве компенсирующих или корректирующих конденсаторов в различных схемах настройки и колебаний.

    Рисунок 9. По форме полупеременный конденсатор

    Подстроечные конденсаторы можно разделить на керамические подстроечные конденсаторы и подстроечные конденсаторы с органической пленкой s. Керамические подстроечные конденсаторы состоят из двух пластин из серебряного фарфора. Нижняя пластина представляет собой неподвижную пластину, а верхняя пластина — подвижная пластина.Подвижная пластина может вращаться вместе с валом. Поскольку площадь, покрытая серебром на двух пластинах, меньше полукруга, емкость можно изменить при вращении вала. Органические тонкопленочные подстроечные конденсаторы используют полиэфирную пленку в качестве среды, а однослойные или многослойные люминофорные медные листы в качестве неподвижных и подвижных пластин. Объем меньше, чем у подстроечных конденсаторов на фарфоровой основе.

    VI Как проверить конденсатор переменной емкости?

    Емкость переменного конденсатора, как правило, очень мала и не может быть измерена мультиметром, но можно судить, есть ли утечка в микросхеме или между подвижной и неподвижной пластинами, как показано на рисунке ниже.

    Рисунок 10. Испытание переменного конденсатора

    Расстояние между подвижной пластиной и неподвижной пластиной переменного конденсатора очень мало, и его легко закоротить, прикоснувшись к пластине. Прикосновение переменного конденсатора к микросхеме можно определить с помощью электрического блока мультиметра.

    Во время теста вы должны поместить два измерительных провода мультиметра на ротор и статор конденсатора и медленно вращать вал конденсатора вперед и назад.Если стрелка счетчика всегда неподвижна, это означает, что неровности нет. Если при повороте на угол стрелка указывает на ноль Ом, это означает, что пластины здесь соприкасаются. После того, как конденсатор ударяется об пластину, сначала проверьте, одинаково ли расстояние между подвижной пластиной и неподвижной пластиной. Если обнаруживается, что отдельные подвижные или неподвижные пластины перекошены или деформированы, это, как правило, вызвано воздействием внешних факторов, если они выпрямляются с помощью тонкого лезвия. Если обнаруживается, что один или два набора фиксированных пластин конденсатора все изогнуты или отклонены в одну сторону, это может быть вызвано ослаблением резиновой платы фиксированного кронштейна платы или распайкой припоя на опоре на обоих концах фиксированной пластины. .

    Электростатический шум — это серия «дребезжащих» шумов, которые появляются в динамиках радиоприемника, когда вал переменного конденсатора вращается во время настройки радиостанции. Если соединительный провод фиксированной детали припаян и короткого замыкания не обнаружено, мы говорим, что это электростатический шум, вызванный электростатическим эффектом.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *