Как прозвонить тестером диод: как проверить диод мультиметром (прозвонить тестером)

Содержание

Как проверить диод мультиметром. Подробная инструкция

В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

Стенд для пайки со светодиодной подсветкой

Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

 Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.

Как проверить диод мультиметром

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение  отличается. Так у германиевых диодов оно составляет  примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.

  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Паяльная станция 2 в 1 с ЖК-дисплеем

Мощность: 800 Вт, температура: 100…480 градусов, поток возду…

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного  диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

 

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

 а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

 

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Как мультиметром проверить диод?

Ваш вопрос:

Как мультиметром проверить диод?

Ответ мастера:

Мультиметр – это универсальный прибор, предназначенный для самых разнообразных измерений: напряжения, тока, сопротивления и даже элементарных проверок проводов на обрыв. А ещё им можно измерить пригодность батарейки.

Выясните, присутствует ли функция проверки диодов в вашем мультиметре. Если есть, то подключите щупы: в одну сторону диод будет прозваниваться, а в другую – нет. Если же функция отсутствует, то переключатель мультиметра нужно установить на значение 1кОМ и сделать выбор режима измерения сопротивления. Проверьте диод. Обратите внимание на его прямое соединение, когда подключите красный вывод мультиметра к аноду диода, а черный вывод – к катоду.

Обратное подключение поможет вам сделать выводы о состоянии диода. Сопротивление на существующем пределе должно оказаться настолько высоким, чтобы вы не смогли ничего увидеть. В ситуации, когда используется пробитый диод, его сопротивление равно нулю в любую сторону. Если же он и вовсе оборван, то сопротивление будет показывать в любую сторону бесконечно большое значение.

Теперь проверяйте диод мультиметром. Сделайте это с подключением отрицательного и положительного полюсов омметра, который необходимо предварительно установить на шкалу Rх100 соответственно к отрицательному (катоду) и положительному (аноду) выводам диода. Если диоды обычные (т.е. кремниевые), то результатом измерений сопротивления будет значение от 500 до 600 Ом. В случае с германиевыми, показания должны быть в пределе от 200 и до 300 Ом. А если диоды выпрямительные, то показатель их сопротивления из-за большого размера окажется ещё ниже обычных. Используйте этот метод для быстрого определения работоспособности диода.

Для проверки диода на утечку или короткое замыкание омметр следует переключить в режим высокоомной шкалы, а выводы диода поменять местами. И, если имеет место повышенная утечка или короткое замыкание, то сопротивление будет низким. Для германиевых диодов оно может колебаться в радиусе от 100 килоОм до 1 мегаОм. Значение для кремниевых диодов достигает 1000 мегаОм. Стоит также учесть, что точки утечки выпрямительных диодов гораздо больше. А есть и такие диоды, которые отличаются более низким обратным сопротивлением, что не мешает им нормально функционировать в некоторых схемах.

Как проверить диод мультиметром — показатели, инструкция, тесты

Автор Юлия На чтение 6 мин. Просмотров 482 Опубликовано Обновлено

Сегодня при устройстве электронных осветительных систем все чаще используются светодиодные лампочки. Они экономичны, практичны и просты в эксплуатации. Однако, как и любой светоэлемент подобного типа, диоды могут выходить из строя или просто некачественно работать.

Для устранения поломки нужно определить причину и последствия. В первую очередь речь идет о том, в каком состоянии диод: в рабочем и подлежит ремонту или в нерабочем и проще будет приобрести новый. Поэтому многие пользователи подобных осветительных приборов интересуются, как проверить диод мультиметром.

Классификация

Светодиодные ленты и прочие элементы освещения, которые работают на базе подобных светоэлеметнов, относятся к группе простых полупроводниковых радиоэлементов.

На сегодняшний день выделяют такие типы диодов:

  • выпрямленный;
  • стабилитрон;
  • варикап;
  • высоковольтные диоды;
  • светодиодные источники света.

Теперь попробуем разобраться, как проверить диоды мультиметром.

Проверка выпрямленных диодов и стабилитронов

Защитный светоэлемент, равно как и выпрямленный, проверяется с помощью мультиметра. За неимением такого оборудования можно использовать омметр.

Как проверить конденсатор мультиметром

Прозванивание светодиода мультиметром заключается в последовательном выполнении следующих действий:

  1. В первую очередь для проверки диода необходимо перевести прибор в режим прозвонки. То есть его нужно «прозвонить».
  2. После этого присоединяем щупы приспособления к выводам светоизлучающего элемента.
  3. При подключении красного проводка «+» к аноду, а черного «-» к катоду, на дисплее измерительного прибора должны отобразиться показания порогового напряжения, проверяемого светоэлемента.
  4. После того, как произвести смену полярности, мультиметр должен показать постоянно низкое сопротивление. И если проверка проходит именно по таком сценарию, то можно быть уверенным в том, что проверяемый светоэлемент полностью исправен.
  5. В том случае, если при обратном подключении прибор показывает утечку, то это означает только одно – светоизлучающее изделие нуждается в ремонте или полной замене.

Данная методика может использоваться и для тестирования светоэлементов на генераторе автомобиля и любого другого транспортного средства.

Контроль стабилитрона выполняется по идентичной схеме, единственное, что стоит отметить, с помощью такого тестирования невозможно определить, выполняется ли стабилизация показателей напряжения на том или ином уровне. В этом случае целесообразно собрать простую схему, которая состоит из источника питания, тестируемого стабилитрона и токоограничителя.

ВИДЕО: Как проверить диод с помощью тестера. Немного о структуре и назначении диодов

Принцип проверки заключается в следующем:

  1. Подключаемся к блоку питания: к «+» ведем провода проверяемого стабилитрона, а к «-» — токоограничителя, который дальше соединяется с испытываемый образцом.
  2. Устанавливаем на приборе режим, который позволяет производить замер постоянного напряжения в рамках 200 В.
  3. Дальше включаем источник питания и поэтапно добавляем напряжение до тех пор, пока амперметр на аккумуляторе не покажет, что он пропускает ток.
  4. После этого нужно подключить мультиметр таким образом, чтоб он как бы отсекал стабилитрон с двух сторон.
  5. Остается только измерить показания напряжения стабилизации и сопоставить их с номинальными.

Как проверить обычный диод и светодиод?

Стандартный диодный источник света является элементом, который проводит электроток только в одном направлении. Если же развернуть это направление, то рассматриваемый источник света закроется. Только при соблюдении этих условий светоизлучатели можно считать рабочими.

Проверка индикаторной отверткой

Большая часть мультиметров на своей базе уже имеет аналогичную функцию. Перед проверкой необходимо соединить между собой щупы тестера. Благодаря этому можно удостовериться в том, что прибор полностью исправен. После этого выбираем режим «проверка» и проводим необходимую процедуру.

Если мультиметр аналоговый, то эта операция выполняется в режиме омметра. Проверка диода, светодиода мультиметром проводится достаточно просто, поэтому даже неопытный человек может справиться с этой задачей. Чтоб удостовериться в работоспособности элемента, следует организовать прямое включение: подсоединяем анод к красному щупу («+»), а катод – к черному («-»). Об этом мы говорили немного выше. Если правильно все сделать, то вскоре на дисплее или на шкале появятся значения напряжения светоэлемента. Этот показатель должен быть в рамках от 80 до 750 мВ.

При выполнении обратного включения (при перестановке электродов), тестер должен показать значение, не выше 1. Не сложно сделать выводы, что сопротивление мультиметра большое и электрический ток через него не проходит. Если ваша проверка показала именно такие результаты, то световой элемент полностью работоспособен и готов к дальнейшей эксплуатации.

Иногда во время тестирования при подключении щупов проверяемый источник света пропускает электричество и при прямом подключении, и при обратном. А иногда вообще ток не проходит ни в одном из направлений (показания при протекании тока в обе стороны не превышают 1).

Первый случай говорит о том, что диодный светоэлемент пробит, а второй – он вышел из строя или же оборван от основной цепи. Логично, что такие электроэлементы неисправны и нужно предпринимать меры по устранению неполадки.

В случае с тестированием светодиодных лент принцип идентичен, но при этом в значительной степени упрощает процедуру тот момент, что при прямом подключении такой вид светового источника будет выдавать световой поток. Естественно, что это в разы упрощает проверку работоспособности тестируемого элемента.

Тестим варикапы

В отличие от стандартных диодных светоизлучателей, варикапы p-n обладают своеобразным переходным диодным мостом с емкостью, величина которой пропорциональна показаниям обратного напряжения. Тестирование подобных светоизлучателей выполняется по такому же принципу, как и в случае с обычными источниками света диодного типа. Для реализации проверки диода как варикапа, потребуется все тот же мультиметр, который обладает всеми необходимыми функциями для реализации подобных задач.

Чтоб проверить варикап необходимо установить на приборе соответствующий режим (внизу слева переключатель нужно поставить строго посередине) и установить световой элемент в разъем для конденсаторов.

Проверка высоковольтных диодов

Высоковольтные диодные источники света проверяются несколько по-другому, нежели в случае с тестированием обычных. Это обусловлено особенностями самих светоэлементов. Проверка светодиодов с такими светотехническими характеристиками проводится по специфической схеме, которая подключена к источнику питания в 40-45V. Если в двух словах, то проверяемый образец подключается к токоограничительному элементу и мультиметру, где первый и последний соединяются последовательно, после чего от первого цепь идет на второй.

Для контроля можно на мгновение прикасаться щупами «V/Ω/f» мультиметра, а «СОМ» к эмиттеру

Теперь вы знаете, как проверить светодиод мультиметром. Надеемся, эти советы помогут вам протестировать свою осветительную систему.

ВИДЕО: Диагностика и устранение причин поломки

Как проверить диод мультиметром — подробная инструкция

Диоды относятся к популярным и широко применяемым электронным элементам, обладающим различным уровнем проводимости.

Перед тем, как проверить диод мультиметром (прозвонить диод и стабилитрон тестером), нужно узнать особенности такого тестирующего прибора и наиболее важные правила его использования.

Классификация

Диоды представляют собой электропреобразующие и полупроводниковые устройства, имеющие один электрический переход и два выхода в виде р-n-перехода.

Общепринятая в настоящее время классификация таких устройств, следующая:
  • в соответствии с назначением, диоды чаще всего бывают устройствами выпрямительного, высокочастотного и сверхвысокочастотного, импульсного, туннельного, обращенного, опорного типа, а также варикапами;
  • в соответствии с конструктивно-технологическим характеристиками диоды бывают представлены плоскостными и точечными элементами;
  • в соответствии с исходным материалом диоды могут быть германиевого, кремниевого, арсенидо-галлиевого и другого типа.

В соответствии с классификацией, самые важные параметры и характеристики диодов представлены:

  • предельно допускаемыми показателями обратного уровня напряжения постоянного типа;
  • предельно допускаемыми показателями обратного уровня напряжения импульсного типа;
  • предельно допускаемыми показателями прямого тока постоянного типа;
  • предельно допускаемыми показателями прямого тока импульсного типа;
  • номинальными показателями прямого тока постоянного типа;
  • прямым токовым напряжением постоянного типа в условиях номинальных показателей, или так называемым «падением напряжения»;
  • постоянным током обратного типа, указываемым в условиях максимально допускаемого обратного напряжения;
  • разбросом рабочих частот и ёмкостными показателями;
  • уровнем напряжения пробивного типа;
  • уровнем теплового корпусного сопротивления, в зависимости от типа установки;
  • предельно возможными показателями рассеивающей мощности.

В зависимости от уровня мощности, полупроводниковые элементы могут быть маломощными, мощными или среднего уровня мощности.

При выборе диода нужно помнить, что условное обозначение таких элементов может быть представлено не только стандартной маркировкой, но и УГО, наносимым на электрические схемы, имеющие принципиальное значение.

Проверка выпрямительного диода и стабилитрона

В плане самостоятельного диодного тестирования мультиметром, особый интерес представляет проверка:

  • обычных диодов на основе p-n-перехода;
  • диодных элементов Шоттки;
  • стабилитронов, стабилизирующих потенциал.

Обычное тестирование, в этом случае, позволяет определить только целостность p-n-перехода, и именно по этой причине в таких устройствах рабочая точка должна быть смещена.

Схема простейшего метода проверки напряжения стабилитрона

Достаточно использовать простенькую схему, включающую в себя обычный источник питания и резистор для ограничения тока. Мультиметр при нестандартной проверке применяется для замера напряжения, в условиях плавного повышения питающего потенциала.

Если в условиях повышения напряжения питания отмечается постоянная, а также равная заявленным показателям разница потенциалов, то диодное устройство принято считать рабочим, не подлежащим замене.

Сборка схемы

Стандартная схема, выполняемая посредством навесного монтажа, состоит из нескольких основных элементов, представленных:

  • блоком питания на 16-18 В;
  • резистором на 1,5-2 кОм;
  • цифровым или стрелочным вольтметром;
  • проверяемым устройством.

Как проверить диод шоттки мультиметром

Особенностью некоторых мультиметров является наличие функции «проверка диода».

В таких условиях на приборе отображаются фактические показатели прямого диодного напряжения при токовой проводимости.

Тестер, оснащенный специальной функцией, регистрирует немного заниженный уровень прямого напряжения, что обусловлено незначительной токовой величиной, которая задействована при проверке.

В магазине можно встретить самые разные светодиодные лампы для дома. Как выбрать качественный прибор, знают не все. Если интересно, читайте подробную информацию.

Инструкция по сборке светодиодного фонаря своими руками представлена здесь.

Многие выбрасывают светодиодную лампу, если она сломалась. На самом деле большинство таких приборов можно починить. Все о ремонте светодиодных ламп вы можете почитать по ссылке.

Настройка мультиметра

Тестирование полупроводникового элемента посредством цифрового мультиметра потребует переключения прибора в режим проверки диодов. Альтернативным вариантом, при отсутствии переключения в положение «проверка диода», является тестирование в режиме сопротивления, при диапазоне не более 2,0 кОм.

В таком случае выполняется прямое подключение: красный провод подводится на анод, а черный – на катод. При такой настройке мультимера, замеры показывают сопротивление, равное нескольким сотням Ом, в обратное направление фиксирует разрыв цепи.

Мультиметр UNI-T

Следует отметить, что разные типы диодных устройств могут в значительной степени отличаться показателями прямого напряжения.

Например, для германиевых устройств характерно наличие напряжения в пределах 0,3-0,7 В, а для кремниевых элементов допустимы показатели в 0,7-1,0 В.

Как показывает практика, некоторые виды приборов-тестеров при проверке диодных элементов показывают более низкие значения уровня прямого напряжения.

Менее распространенные сдвоенные диоды отличаются наличием в одном корпусе трёх выводов, общего анода или катода, но проверка таких элементов не имеет отличий от тестирования стандартного диодного устройства.

Включение блока питания

Если проверка работоспособности диодов мультиметром предполагает переключение тестера в положение на значок «диод» с подключением черного щупа на вывод «СОМ», а красного — на вывод «V ΩmA», то наличие блока питания заключается в выявлении следующих неполадок:

  • подключение блока сопровождается «дерганьем» питания вентилятора, остановкой, отсутствием выходного напряжения и блокировкой источника питания;
  • подключение блока сопровождается пульсацией напряжения на выходе и срабатыванием защиты без блокирования источника питания.

Измерение переменного тока

Достаточно часто признаком утечки на диодах Шоттки становится самопроизвольное отключение питающего блока. Также очень важно учитывать, что неправильная схемотехника на блоках питания, может спровоцировать утечку диодных выпрямителей и перегрузку первичной цепи.

Тестирование заключается в установке предела измерений на значение в 20 К, и замере обратного диодного сопротивления. При таком способе исправный диод показывает на приборе бесконечно большой уровень сопротивления.

Подключение мультиметра

Основные, наиболее распространённые диодные неисправности, могут быть представлены:
  • пробоем, сопровождаемым токовой проводимостью вне зависимости от направления, а также фактическим отсутствием сопротивления;
  • обрывом, сопровождаемым отсутствием токового проведения;
  • утечкой, сопровождаемой наличием незначительного обратного тока.

Методика настройки прибора для проверки и последовательного тестирования является очень простой.

Соединение анода и щупа мультиметра на «+», а также катода и p-n-перехода на «-» должны быть открытыми. В этом случае прибор подаёт характерный звуковой сигнал. Обратный вариант подключения с закрытым p-n-переходом индицируется единицей.

Знаете ли вы, что светодиодные лампы могут иметь разное устройство? Устройство светодиодных ламп на 220 Вольт – типы приборов и способы сборки.

Инструкция по замене люминесцентных ламп на светодиодные представлена тут.

Как показываем практика самостоятельного тестирования, токовое прохождение, независимо от показателей полярности подключения, чаще всего сопровождает короткое замыкание, а отсутствие прозвона в обе стороны наблюдается при разрыве в цепи.

Видео на тему

Как проверить smd диод — Яхт клуб Ост-Вест

На сегодняшний день электроника прочно вошла в жизнь и имеется в составе любого прибора или гаджета. Но, как не прискорбно, это было и приборы, и гаджеты ломаются и приходят в негодность. Самой часто встречающейся причиной, по которой многие приборы ломаются — это поломка одного из элемента электрической сети, к примеру диод.

Выполнить проверку поломки или неисправности этого элемента возможно самостоятельно. В статье разберем подробно как проверить диод мультиметром, а также что представляет из себя этот прибор и как им пользоваться.

Диоды бывают разные

Простой диод является элементом электрической сети и несет в себе роль полупроводника, то есть р-n переход. Он устроен так, что вполне может осуществить пропуск тока по цепи, но только в одну сторону. И осуществляется это от анода к катоду. Для этого обязательно к аноду присоединяется «плюс», а к катоду — «минус».

Обязательно стоит учесть и запомнить! Двигаться в обратном направлении ток в диоде не может. Из-за такого отличительного момента изделие возможно проверить на неисправность с помощью тестера или мультметра. Рассмотрим какие же бывают диоды и чем отличаются друг от друга.

Типы диодов:
  1. Простой диод.
  2. Стабилитрон, как понятно из названия он препятствует повышению напряжения, то есть стабилизирует его.
  3. Варикап, диод обладающий емкостью, часто встречается в УКВ приемниках.
  4. Тиристор, диод с управляющим электродом, при подачи сигнала на управляющий электрод можно управлять состоянием тиристора, то есть открывать его или закрывать. Такой элемент часто встречается в силовой электронике.
  5. Симистор, примерно тоже самое, что и тиристор только для переменного напряжения. Диагностика данного диода будет рассмотрена в другой статье.
  6. Светодиод, диод излучающий свет при прохождении через него тока.
  7. Диод Шотки, диод обладающий повышенным быстродействием и малым падением напряжения.

Также есть фотодиоды, инфракрасные диоды и др.

Несмотря на то, что диоды отличаются по назначению и переходу, их проверка выполняется аналогично. Принцип работы диодов аналогичен.

Что называется мультиметром?

Мультиметр — это прибор, который имеет ряд функций:

  • Измерение напряжения, тока;
  • Измерение сопротивления;
  • Прозвонка, в этом режиме мультиметр показывает напряжение падения в мВ.
  • Также могут буть функции измерения емкости, температуры, частоты и др.

Как проверить диод мультиметром?

После того как определились с типом диодов, их различиями и особенностями, а также с назначением этого прибора, можно рассмотреть порядок работы с ним. Проверка заключается в том, что проверяют пропускную способность тока через них. Если это правило соблюдается, то смело можно заявить, что элемент схемы работает исправно и не имеет недостатков.

Обычные диоды проверяются этим прибором без особых усилий. Чтобы выполнить диагностику этих элементов достаточно выполнить следующие действия:

Проверка работоспособности диода, светодиода, стабилитрона.
  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;

  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;

  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Признаки неисправного диода
  • Если диод неисправен, то в режиме прозвонки прибор запищит, а в режиме измерения сопротивления покажет значение близкое к 0, что говорит о том что диод коротко замкнут, то есть пробит.
  • Если при обоих измерениях прибор показывает 1, тоесть бесконечно большую величину, это означает, что диод в обрывае.

Диодный мост

Бывает, что возникает необходимость в диагностике диодного моста. Он представляет собой сборку, которая состоит из 4 полупроводников. Причем они соединены так, что переменное напряжение преобразуется в постоянное. Принцип проверки практически такой же. Важной отличительной особенностью является то, что нужно определить как подключены диоды в диодном мосту и проверить каждый диод в прямом и обратном направлении.

Заключение

Провести диагностику работоспособности полупроводников в приборе самостоятельно не сложно. Важно соблюдать порядок действий с мультиметром и четко выполнять все по инструкции. Но при этом обязательно начиная проверку нужно обратить внимание на тип элемента, иметь понятие о том, какое должно быть рабочее сопротивление и напряжение у исправного диода этой разновидности и только потом проводить диагностику и делать выводы.

Используя прибор для проверки исправности диода или любых других целей нужно придерживаться техники безопасности при пользовании им. Все щупы должны быть в исправном состоянии, изоляция проводов должна быть целостной. Если имеются какие — ни будь дефекты, то их желательно сразу устранить, чтобы не нанести себе травмы при измерении. Также важно помнить, что у каждого прибора есть своя погрешность, в дешевых моделях она очень большая. И это важно учитывать при проведении проверки. От того насколько правильно будут выполнены все действия по диагностике, будет зависеть и результат проверки, и ее точность. Поэтому нужно уделить этому должное внимание.

Сегодня без электроники никуда. Она является составной частью любого современного прибора или гаджета. При этом все приборы, как это ни печально, не могут работать вечно и периодически ломаются. Одной из довольно распространенных причин поломки целого ряди электроприборов, является выход из строя такого элемента электросети, как диод.

Провести проверку исправности этого компонента можно своими руками в домашних условиях. Эта статья расскажет вам, как проверить диод мультиметром, а также о том, что собой представляют данные элементы и каков сам измерительный прибор.

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».

Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром.
На сегодняшний день в радиоэлектронике существует несколько видов диодов:

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры).
Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.
Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием.
В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

С помощью этого прибора даже можно определить пригодность батарейки.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев.
Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Проверка диодного моста

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Анализируем результаты

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  • при подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;

Обратите внимание! Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт

  • при подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене.
Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.
При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.
Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта. Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Как пользоваться цифровым мультиметром

Проверка полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rобр сопротивлений.

Чем больше отношение Rобр /Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру или на режим «прозвонки»).

При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.

Вот вы его подключили: плюсовую клемму прибора к аноду, а минусовую к катоду и на индикаторе побежали циферки или задёргалась стрелка (в зависимости от типа прибора) – значит, вы попали «+» к «+»;«-» к «-» (рисунок №1 А) и диод, стал пропускать ток, теперь поменяйте местами клеммы, плюс к катоду, минус к аноду и получите обратную ситуацию «+» к «-»;«-» к «+»(рисунок №1 Б), индикатор прибора ничего не показывает и даже не шелохнулся => значит, диод не пропускает ток => значит диод исправен.

Рисунок №1 – Схема проверки простого полупроводникового диода

Вы должны чётко понимать принцип работы диода – он как клапан, пропускает ток только в одном направлении, а в случае его не исправности пропускает в обоих или не пропускает вообще.
Исправность высокочастотных диодов можно проверить подключением их в схему работающего простейшего детекторного радиоприемника, как показано на рисунке №2.

Рисунок №2 – Схема проверки высокочастотного диода

Нормальная работа радиоприем¬ника говорит об исправности диода, а отсутствие приема — о его пробое.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого. Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет. Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Как проверить светодиодную ленту на работоспособность

На нашем сайте есть целая статья о том, как проверить светодиодную ленту, тут рассмотрим экспресс-методы проверки.

Сразу скажу, что засветить ее целиком мультиметром не удастся, в некоторых ситуациях возможно лишь лёгкое свечение в режиме Hfe. Во-первых можно проверять каждый диод по отдельности, в режиме проверки диодов.

Во-вторых иногда происходит перегорание не диодов, а токоведущих частей. Для проверки этого нужно перевести тестер в режим прозвонки и прикоснуться к каждому выводу питания на разных концах проверяемого участка. Так вы определите целую часть ленты и поврежденную.

Красной и синей линией выделены полосы, которые должны звонится от самого начала до конца светодиодной ленты.

Как проверить светодиодную ленту батарейкой? Питание ленты – 12 Вольт. Можно использовать автомобильный аккумулятор, однако он большой и не всегда есть под рукой. Поэтому на помощь придет батарейка на 12В. Используется в дверных радиозвонках и пультах управления. Ее можно использовать как источник питания при прозвонке проблемных участков LED ленты.

Проверка диода на плате

Как проверить светодиод мультиметром не выпаивая? В принципах его проверки всё остаётся также, а способы изменяются. Удобно проверять светодиоды, не выпаивая с помощью щупов.

Стандартные щупы не влезут в разъём для транзисторов, режима Hfe. Но в него влезут швейные иглы, кусочек кабеля (витая пара) или отдельные жилки из многожильного кабеля. В общем любой тонкий проводник. Если его припаять к щупу или фольгированному текстолиту и присоединить щупы без штекеров, то получится такой переходник.

Теперь вы можете прозвонить светодиоды мультиметром на плате.

Как проверить светодиоды в фонарике? Открутите блок линз или переднее стекло на фонаре, аккуратно отпаяйте плату от батарейного блока, если длина проводников не позволяет её свободно рассмотреть и изучить.

В таком положении вы легко проверите исправность каждого светодиода на плате описанным выше методом. Подробнее о светодиодах в фонариках.

Как проверить диод — Diodnik

Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.

Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:

  • пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
  • обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
  • утечка. В этом случае диод проводит незначительный обратный ток.

Как проверить диод мультиметром?

При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.

Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B.Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.

Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.

Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.

Подключив щупы, к аноду (красный +), а к катоду (черный –), мы видим значения на дисплее – это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.

Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.

На этом процедура проверки диода закончена – диод исправен.

Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.

Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.

Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке. Более детально о том, как проверить диод Шоттки читаем в этой статье.

VK

Odnoklassniki

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых транзисторов без выпаивания их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором (рисунок №3, а) и при соединении базы с эмиттером (рисунок №3,б).

Рисунок №3 – Иллюстрация проверки транзисторов

При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч Ом.
Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра.
Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод.
Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора (на рисунке № 4 показано, как измеряют прямое и обратное сопротивления каждого из переходов транзистора).

Рисунок №4 – Проверка транзистора с помощью омметра

У исправного транзистора прямые сопротивления переходов составляют 30—50 Ом, а обратные — 0,5—2 МОм. При значительных отклонениях от этих величин транзистор можно считать неисправным.
При проверке ВЧ транзисторов напряжение батареи омметра не должно превышать 1,5 В, а для более тщательной проверки транзисторов используются спе¬циальные приборы.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/   

Как прозвонить светодиодную лампу

Любой электрик много раз «звонил» лампу накаливания, но как проверить ЛЕД-лампу тестером?

Для этого нужно снять рассеиватель, обычно он приклеен. Чтобы отделить его от корпуса вам нужен медиатор, или пластиковая карта, её нужно засунуть между корпусом и рассеивателем.

Если не удаётся этого сделать попробуйте немного погреть феном место склейки.

Как теперь проверить светодиодную лампочку мультиметром? Перед вами окажется плата со светодиодами, нужно прикоснуться щупами тестера к их выводам. Такие SMD в режиме проверки диодов загораются тусклым светом (но не всегда). Еще один способ проверки исправности  — прозвонка от батареи типа «крона».

Крона выдает напряжение 9-12В, потому проверяйте диоды кратковременными скользящими прикосновениями к их полюсам. Если LED не загорается при правильно подобранной полярности — требуется его замена.

Как проверить диод на пригодность с помощью обычного мультиметра, электронного тестера.

На мультиметре для проверки полупроводников имеется специальная функция, которая обозначается как диод. Мы на электронном тестере переводим колесо выбора измерения на этот диод и щупами прикасаемся к полупроводнику прямым включением. То есть, плюсовой щуп мы прикладываем к аноду диода (его плюсу), а минусовой щуп мы прикладываем к катоду диода (его минусу). Если диод в порядке, то на экране электронного тестера мы увидим то напряжение, которое оседает на полупроводнике при его открытом состоянии. Обычно это около 600 милливольт. Когда же мы изменим полярность подключения полупроводника к мультиметру, то прибор не должен ничего показывать. Поскольку при обратном включении полупроводников они находятся в полностью закрытом состоянии (ток через себя не проводят).

Когда же полупроводник пробит, находится в нерабочем состоянии, то мультиметр как при прямом так и при обратном включении диода может показать либо ничего, либо открытое состоянии при обеих полярностях подключения, либо ненормальное сопротивление как при прямом, так и при обратном включении. Любой полупроводник нормально будет работать только лишь при своих нормальных показаниях  полупроводимости. Порой при электрическом или тепловом пробое деталь не полностью выходит из строя, но ее номинальные параметры уже значительно ухудшаются. И даже если такая датель при измерениях в одной полярности будет показывать какую-то проводимость, а при другой отсутствие проводимости, то при работе в схеме реальные функции ее будут не те, что в нормальном состоянии.

Проверять мультиметром полупроводимость можно не только у диодов. Достаточно часто приходится проверять на этой функции тестера и транзисторы, тиристоры, симисторы. Хотя падение напряжения на них при открытом состоянии может быть чуть другим. Транзистор, это технологически как бы два совмещенных диода (один диод это транзисторный переход база-эмиттер, а второй диод это переход база-коллектор). Для простой проверки именно полупроводимости переходов транзистора и приходится использовать проверку через диоды. Хотя на самом электронном тестере имеет проверка биполярных транзисторов на коэффициент усиления.

По идее проверка полупроводимости диодов, транзисторов, и так далее, сводится к измерению сопротивления перехода. При прямом включении полупроводник должен иметь минимальное внутреннее сопротивление, а при обратном включении он должен быть подобен диэлектрику, имея бесконечно большое сопротивление. И многие должны были пробовать проверить диод через измерение по сопротивлению, выставив переключатель мультиметра в положение 200 Ом. Но, к сожалению, при таком измерении мультиметр ничего не показывает, и можно подумать что диод пробит. Хотя на самом деле он может быть вполне рабочим. В чем может быть дело?

А все очень просто, как известно, чтобы полупроводник открылся на него нужно подать прямое напряжение более 0,6 вольт. При меньшем напряжении даже полностью рабочий полупроводник не сможет открыться. При измерении мультиметром сопротивления на его щупы, от самого измерителя, подается напряжение около 0,5 вольт. И естественно для полупроводника просто не хватает напряжения для своего открытия. Измерительный прибор ничего не показывает. Когда же мы переключатель тестера переводим на измерение диодов, то на щупы уже поступает напряжение около 2,5 вольт. И этой величины вполне хватает, чтобы нормально проверить полупроводник. Так что учитывайте этот момент.

К сожалению мультиметром проверить можно только наличие нормальной проводимости полупроводника в открытом состоянии, при прямом включении, и его закрытость при обратном включении. Ну, и оценить величину его падения напряжения в открытом состоянии. Узнать номинальные и максимальные значения основных характеристик, такие как прямой ток, обратное напряжение, частоту, температуру, электронный тестер не позволит. Для этого нужно знать конкретное наименование полупроводника и по справочным данным просто посмотреть эти параметры в таблице.

Видео по этой теме:

P.S. Когда вы будете покупать себе мультиметр, обратите внимание чтобы на нем была звуковая прозвонка. Она обычно совмещена именно с проверкой полупроводников. То есть, при очень малом сопротивлении при измерении в режиме диод электронный тестер будет издавать звуковой сигнал. При больших значениях сопротивления уже звук издаваться не будет. Это очень удобно, когда можно по звуку быстро прозвонить провод на обрыв и целостность. По этому звуку можно даже определить емкость электролитических конденсаторов, если имеешь с этим дело не в первый раз. Допустим, в первом моем мультиметре эта функция была, когда я приобрел второй похожий тестер, то звуковой прозвонки там не было, и ее мне не хватало при измерениях.

Учебное пособие по диодам

: как тестировать диоды?

Диод — это электронное устройство, изготовленное из полупроводниковых материалов. Диод — одно из первых полупроводниковых устройств, и он широко используется, особенно в различных электронных схемах.

Диод — электронное устройство из полупроводниковых материалов (кремний, селен, германий и т. Д.). Он имеет однонаправленную проводимость, то есть, когда прямое напряжение подается на анод и катод диода, диод проводит. Когда на анод и катод подается обратное напряжение, диод выключается.Следовательно, включение и выключение диода эквивалентно включению и выключению переключателя.

Диод — одно из первых полупроводниковых устройств, которое широко используется, особенно в различных электронных схемах. Диоды и резисторы, конденсаторы, катушки индуктивности и другие компоненты разумно подключены для формирования цепей с различными функциями, которые могут реализовывать различные функции, такие как выпрямление переменного тока, обнаружение модулированных сигналов, ограничение, ограничение и регулирование напряжения.Будь то в общей радиосхеме или в других бытовых приборах или промышленных цепях управления, вы всегда можете найти диод.

Каталог

I Структура диода

Диод состоит из PN-перехода, а также соответствующих выводов электродов и корпусов. Используя разные процессы легирования, полупроводник P-типа и полупроводник N-типа изготавливаются на одной и той же полупроводниковой (обычно кремнии или германии) подложке путем диффузии, и на их границе раздела формируется область пространственного заряда, называемая PN-переходом.

Электрод, вытянутый из зоны P, называется анодом, а электрод, вытянутый из зоны N, называется катодом. Из-за однонаправленной проводимости PN-перехода ток при включении диода направлен от анода к катоду через внутреннюю часть трубки.

Условное обозначение диода показано на рисунке. Диод имеет два электрода. Электрод, вытянутый из области P, является положительным электродом, также называемым анодом; электрод, вытянутый из области N, является отрицательным электродом, также называемым катодом.Направление треугольной стрелки указывает направление прямого тока, а символ диода обозначается VD.

Обозначение схемы диода

II Распознавание диода

Кристаллические диоды также называются полупроводниковыми диодами, или диодами для краткости, которые представляют собой полупроводниковые устройства с PN-переходом. Существует множество типов диодов разных форм и размеров. Наиболее распространенными из них являются диоды в стеклянной оболочке, диоды в пластиковой оболочке, диоды с металлической оболочкой, мощные диоды с металлической оболочкой в ​​форме болта, миниатюрные диоды и чип-диоды.Функционально его можно разделить на детекторный диод, выпрямительный диод, переключающий диод, диод-регулятор напряжения и т. Д.

типов диодов

III Характеристики диода

1. Основные параметры кристаллического диода являются: (1) Максимальный выпрямленный ток IFMFM относится к максимальному среднему току, разрешенному для прохождения вперед через PN-переход (рисунок a). Фактический рабочий ток должен быть меньше IFM, иначе диод будет поврежден.(2) Максимальное обратное напряжение URM относится к максимальному напряжению, приложенному в обратном направлении через диод, не вызывая пробоя PN перехода (рисунок b). Во время использования следует выбирать диоды с URM, превышающим фактическое рабочее напряжение более чем в 2 раза. (3) Максимальная рабочая частота fM детектирующего или высокочастотного выпрямительного диода должна быть как минимум в два раза больше фактической рабочей частоты схемы. (4) Стабильное значение напряжения UZ стабилитрона должно соответствовать требованиям схемы.

Схема простого диода

2. Два контакта кристаллического диода имеют положительный и отрицательный полюса. В символе цепи нижняя часть треугольника положительна, а конец короткой полоски — отрицательна. На самом деле, некоторые символы печатной схемы на диоде для обозначения полярности; некоторые напечатали цветной кружок в качестве отрицательной метки на отрицательном конце диода; некоторые диоды имеют разные формы на обоих концах, плоская головка — это положительный полюс, а круглая головка — отрицательный полюс.Обратите внимание на идентификацию во время использования.

анод и катод диодов

3. Кристаллические диоды имеют характеристики однонаправленной проводимости, позволяя току течь от положительного электрода к отрицательному, но не позволяя току течь от отрицательного электрода к положительный электрод.

Характеристики однонаправленной проводимости диодов

4.Германиевые диоды и кремниевые диоды имеют разные падения напряжения на передней лампе во время прямой проводимости. На рисунке представлена ​​вольт-амперная характеристика германиевого диода. Когда приложенное прямое напряжение больше, чем падение напряжения на прямой лампе, германиевый диод включается. Прямое падение напряжения германиевого диода составляет около 0,3 В.

Вольт-амперная характеристика германиевого диода

5.На рисунке показана вольт-амперная характеристика кремниевого диода. Когда приложенное прямое напряжение больше 0,7 В, кремниевый диод включается. Кроме того, при той же температуре обратный ток утечки кремниевых диодов намного меньше, чем у германиевых диодов. Из приведенной выше кривой вольт-амперной характеристики видно, что напряжение и ток диода имеют нелинейную зависимость, поэтому кристаллический диод является нелинейным полупроводниковым устройством.

Вольт-амперная характеристика кремниевого диода

IV Как проверять диоды?

1. Кристаллический диод малой мощности

(1) Определите положительный и отрицательный электроды

1) Обратите внимание на символ на корпусе. Символ диода обычно наносится на внешнюю оболочку диода, причем один конец имеет треугольную стрелку в качестве анода, а другой конец — в качестве катода.

2) Обратите внимание на цветовую точку на корпусе. В случае точечного диода он обычно маркируется полярной цветной точкой (белой или красной). Обычно конец, отмеченный цветной точкой, является положительным электродом.Остальные диоды отмечены цветным кольцом, а конец с цветным кольцом — отрицательный.

3) На основании однократного измерения с меньшим сопротивлением конец, подключенный к черной тестовой ручке, является положительным, а конец, подключенный к красной тестовой ручке, — отрицательным.

4) Обратите внимание на корпус диода с серебряной полосой на одном конце в качестве отрицательного полюса.

(2) Определение максимального напряжения обратного пробоя. Для переменного тока из-за постоянных изменений самое высокое обратное рабочее напряжение — это пиковое переменное напряжение, которое выдерживает диод.

2. Двунаправленный триггерный диод

Поместите мультиметр в соответствующий блок постоянного напряжения, и мегаомметр обеспечит тестовое напряжение.

Во время теста встряхните мегомметр, чтобы таким же образом измерить значение VBR. Наконец, сравните VBO и VBR. Чем меньше разница между абсолютными значениями этих двух значений, тем лучше симметрия тестируемого двунаправленного триггерного диода.

3. Диод подавления переходных напряжений

Используйте мультиметр для измерения качества диода.Для однонаправленных телевизоров по методу измерения обычных диодов можно измерить положительное и отрицательное сопротивления. Как правило, прямое сопротивление составляет около 4 кОм, а обратное сопротивление бесконечно. Для двунаправленного диода подавления переходных напряжений значение сопротивления между двумя контактами, измеренное любым красным и черным измерительными проводами, должно быть бесконечным, в противном случае это означает, что трубка неисправна или повреждена.

4. Высокочастотный варисторный диод

Отличие высокочастотных варисторных диодов от обычных диодов заключается в том, что их цветовая кодировка отличается.Цветовой код обычных диодов обычно черный, а цветовой код высокочастотных варисторных диодов светлее. Правило полярности аналогично правилу обычных диодов, то есть конец с зеленым кольцом — отрицательный, а конец без зеленого кольца — положительный.

5. Варакторный диод

Переключите красный и черный измерительные провода мультиметра для измерения варакторного диода. Сопротивление между двумя выводами варакторного диода должно быть бесконечным.Если во время измерения обнаруживается, что стрелка мультиметра слегка покачивается вправо или значение сопротивления равно нулю, это означает, что проверяемый варакторный диод имеет утечку или вышел из строя.

6. Монохроматический светодиод

Подключите энергосберегающую сухую батарею 1,5 В вне мультиметра и установите мультиметр в режим R & times; 10 или R & раз; 100. Это соединение эквивалентно подаче на мультиметр последовательного напряжения 1,5 В и увеличению напряжения обнаружения до 3 В (напряжение включения светодиода составляет 2 В).При тестировании используйте мультиметр, чтобы попеременно касаться двух контактов светодиода. Если характеристики лампы хорошие, в это время она должна нормально излучать свет. В это время черная тестовая ручка подсоединяется к положительному электроду, а красная тестовая ручка — к отрицательному электроду.

7. Инфракрасный светодиод

(1) Определите положительный и отрицательный электроды инфракрасного светодиода. Инфракрасные светодиоды имеют два контакта, обычно длинный контакт является положительным, а короткий — отрицательным.Поскольку инфракрасный светодиод является прозрачным, электроды в корпусе хорошо видны. Более широкий и крупный из внутренних электродов является отрицательным электродом, а более узкий и меньший — положительным электродом.

(2) Сначала измерьте прямое и обратное сопротивление красных светодиодов. Обычно прямое сопротивление должно быть около 30 кОм, а обратное сопротивление должно быть выше 500 кОм, чтобы лампу можно было использовать в обычном режиме.

8. Инфракрасный приемный диод

Определите полярность контактов

1) Определите по внешнему виду.Внешний вид обычных инфракрасных приемных диодов черный. При идентификации штифта, обращенного к светоприемному окну, левый является положительным, а правый — отрицательным соответственно. Кроме того, на верхней части корпуса инфракрасного приемного диода имеется небольшая скошенная плоскость. Обычно штифт с одним концом этой скошенной плоскости является отрицательным электродом, а другой конец — положительным электродом.

2) Сначала используйте мультиметр, чтобы различить положительный и отрицательный электроды обычного диода для проверки, то есть поменяйте местами красный и черный тестовые провода, чтобы дважды измерить сопротивление между двумя контактами трубки.Обычно значение сопротивления должно быть одно большое и одно маленькое. В зависимости от модели с меньшим сопротивлением шаг закрепления, подключенный к красной тестовой ручке, является отрицательным, а контакт, подключенный к черной тестовой ручке, является положительным.

(2) Для проверки работы приемного инфракрасного диода. Используйте мультиметр для электрического измерения прямого и обратного сопротивления инфракрасного приемного диода. По величине прямого и обратного сопротивления можно изначально определить качество инфракрасного приемного диода.

9. Лазерный диод

В соответствии с методом проверки прямого и обратного сопротивления обычного диода можно определить порядок расположения выводов лазерного диода. Однако прямое падение напряжения лазерного диода больше, чем у обычного диода, поэтому при обнаружении прямого сопротивления стрелка мультиметра слегка отклоняется вправо.

V Функции диодов

1. Одной из основных функций кристаллических диодов является обнаружение.На рисунке показана супергетеродинная схема радиодетектирования. Выходной сигнал с амплитудно-модулированной волны от второго промежуточного усилителя подается на катод диода VD. Его отрицательный полупериод проходит через диод, а положительный полупериод отсекается, а высокочастотные составляющие фильтруются RC-фильтром. Выходной сигнал — аудиосигнал, модулированный на несущей волне. Этот процесс называется обнаружением.

Диодный детектор

2.Еще одна функция диодов — выпрямление. На рисунке изображена схема выпрямленного питания. Из-за однонаправленной проводимости диода, когда диод VD включен во время положительного полупериода переменного напряжения, он имеет выход. Когда диод VD выключен, во время отрицательного полупериода переменного напряжения на выходе нет. Пульсирующее напряжение, выпрямленное диодом VD, является постоянным напряжением после RC-фильтрации.

Диодный выпрямитель

3.Полномостовой выпрямитель обычно называют полномостовым. Это комбинированный прибор из выпрямительных диодов. Он имеет форму прямоугольника, круга, плоскую, квадратную и т. Д. И имеет различные характеристики напряжения, тока и мощности.

Полный мост

4. Текстовый символ полномостового выпрямителя — «UR». Полномостовой выпрямительный блок содержит четыре выпрямительных диода, которые подключаются по определенным правилам. Как показано на рисунке справа, он имеет две входные клеммы переменного тока (~) и выходные клеммы положительного (+) и отрицательного (-) полюса постоянного тока.

Внутри полномостового выпрямителя

5. Стек полумостового выпрямителя в основном используется для двухполупериодных выпрямительных схем мостового типа. Когда напряжение переменного тока U является положительным в течение половины цикла, ток I образует петлю через VD2 и нагрузку R и VD3, а напряжение UR на нагрузке является положительным и отрицательным. Когда U отрицателен в течение половины цикла, ток I отрицателен через VD4, R и VD1, образуя петлю. Напряжение UR на нагрузке остается положительным и отрицательным, обеспечивая двухполупериодное выпрямление.Использование полномостового выпрямительного блока может упростить структуру выпрямительной схемы.

Двухполупериодная схема выпрямителя мостового типа

6. На рисунке ниже показана вольт-амперная характеристика стабилитрона. Видно, что стабилитрон срабатывает после обратного пробоя PN перехода, и его напряжение на выводах остается в основном неизменным в определенном диапазоне. Пока обратный ток не превышает его максимальный рабочий ток IZM, стабилитрон не будет поврежден.

Вольт-амперная кривая стабилитрона

7. Стабилизирующие диоды со значением стабилизации напряжения ниже 15 В могут быть измерены с помощью блока мультиметра «R & times; 10k» (содержащего высоковольтную батарею 15 В) . При считывании левый конец шкалы составляет 15 В, а правый конец — 0. Исходную шкалу мультиметра 50 В можно использовать для считывания и подставить в следующую формулу для получения: значение регулирования напряжения (50- X) / 50 & middot; 15V, где X — число на шкале шкалы блока 50V.

Мультиметр тестовый стабилитрон

8. Функция диода стабилизации напряжения — стабилизация напряжения. На рисунке показана параллельная схема стабилизации напряжения. Напряжение на диоде стабилизации напряжения VD является выходным напряжением.

параллельная схема стабилизации напряжения

9. Трехконтактная стабилитронная лампа представляет собой стабилитрон с температурной компенсацией, а ее корпус содержит два последовательно соединенных друг с другом стабилитрона; его форма такая же, как у кристаллического триода, с 3 контактами: контакт и вывод являются отрицательными полюсами двух стабилизирующих напряжение диодов соответственно.Поскольку они симметричны, их можно менять местами по желанию. При использовании один подключен к положительному полюсу источника питания, а другой заземлен; Трехконтактные регуляторы напряжения в основном используются в схемах прецизионных регуляторов напряжения, требующих высокотемпературной стабильности.

Трехконтактный стабилитрон

Рекомендуемый артикул:

Что такое лавинные диоды?

Диоды Шоттки: принцип, функции и применение

Основные сведения о светодиодах

Как проверить полупроводниковый диод с помощью мультиметра

Выпрямительный диод может выйти из строя одним из четырех способов.Это может быть:

  • Обрыв
  • Короткое замыкание
  • Дырявый
  • Пробой при полном рабочем напряжении

Аналоговый мультиметр или цифровой мультиметр можно использовать для проверки всех первых трех условий, кроме последнего, когда происходит пробой диода. полное рабочее напряжение. Из своего опыта в области ремонта электроники я обнаружил, что проверка диода с помощью аналогового мультиметра более точна, чем с помощью цифрового мультиметра. Я мог бы объяснить вам, почему я предпочел аналоговый измеритель.Я не знаю, как вы, потому что я действительно встречал довольно много диодов, где они проверялись нормально с помощью цифрового мультиметра, но не работали при тестировании аналоговым измерителем.

Первым шагом при проверке диода является удаление одного из выводов диода. Вы не всегда можете быть уверены, что диод хорош или плох, если выполняете внутрисхемный тест, из-за обратных цепей через другие компоненты. Чтобы быть абсолютно уверенным, вам нужно будет снять или отсоединить один вывод диода от схемы, чтобы избежать обратных цепей. Если вы не уверены в проверяемой плате.Иногда при проверке на плате я обнаруживал неисправные диоды. Ваш опытный специалист подскажет, когда проверять диод на плате или вне платы. Если вы новичок в ремонте электроники, я настоятельно рекомендую вам проверить диод с вынутым из платы выводом.

Я установлю свой аналоговый измеритель на x1 Ом, чтобы проверить обратную и прямую утечку тока через диод.

При подключении черного щупа вашего измерителя к катоду и красного щупа к аноду, диод имеет обратное смещение и должен выглядеть как разомкнутое показание.Подключив красный зонд вашего измерителя к катоду, а черный зонд к аноду, диод смещается в прямом направлении, и измеритель должен показывать некоторое значение сопротивления. Если у вас два показания, скорее всего, диод закорочен или негерметично, и вам следует его заменить. Если вы не получаете показания ни прямого, ни обратного смещения, диод считается разомкнутым.

Реальная проблема при проверке диода с помощью функции тестирования диодов цифрового измерителя заключается в том, что диод открыт или имеет утечку, измеритель иногда показывает нормально (0.6). Это связано с тем, что выходное напряжение тестирования диодов цифрового измерителя (которое вы можете измерить выходным тестовым датчиком с помощью другого измерителя) составляет от 500 мВ до 2 В. Аналоговый измеритель, установленный на x1 Ом, имеет выход около 3 В (вспомните две батареи 1,5 В, которые вы установили в измеритель!). Напряжения 3 В достаточно, чтобы показать вам точное показание диода во время тестирования.

Даже если у вас хорошие показания при x1 Ом, это не означает, что диод в порядке. Теперь вам нужно установить измеритель на x10K, чтобы снова проверить диод.Выходное напряжение 10 кОм составляет около 12 В (вспомните батарею 9 В в вашем измерителе — 1,5 В + 1,5 В + 9 В = 12 В). На тестируемом диоде должно быть только одно показание. Это исключение для диода Шоттки, у которого есть два показания, но нет короткого замыкания. Если прибор показал одно показание, значит, проверяемый диод исправен. Если у него два показания, то, скорее всего, диод закорочен или негерметично. Цифровой измеритель не может проверить это, потому что выходной сигнал измерителя составляет всего от 500 мВ до 2 В.

Если диод вышел из строя при полном рабочем напряжении, нет возможности проверить диод (если у вас нет очень дорогого устройства проверки диодов, которое специально разработано для обнаружения проблем такого типа).Замена на заведомо исправный диод часто является единственным способом доказать, что прерывистый диод вызывает конкретную проблему. Иногда прерывистый диод можно найти с помощью спрея охлаждающей жидкости.

Внимание! Перед выполнением любой из следующих проверок диодов убедитесь, что питание отключено от любой цепи, в противном случае счетчик или цепь могут быть повреждены.

Заключение — Чтобы правильно проверить работу диода, вам необходимо установить аналоговый измеритель на диапазон x1 Ом и x10 кОм.

Учебный курс Фрэнка

Диоды

Диод — это полупроводниковый прибор, проводящий только в одном направлении. Этот эффект используется для исправления, когда положительная часть сигнала переменного тока может проходить, в то время как отрицательная часть блокируется.
Диод имеет два разных вывода. Положительный электрод называется анодом, а отрицательный катод. Катод всегда четко обозначен на корпусе диода в виде кольца.
Функция всех диодов одинакова.Различия заключаются в максимальном рабочем напряжении и максимальном токи.
На электронных платах и ​​схемах диоды часто имеют маркировку D.

Разные размеры означают разные рабочие напряжения и / или разные токи.
Символы
Символ обозначает одностороннюю функцию диода. Стрелка на схеме показывает направление текущий поток.

Ток может течь только в одном направлении: от анода к катоду — в направлении стрелки.
Типы
Как и все электронные устройства, диоды при работе имеют потери. Но по сравнению с резисторами падение напряжения на диод не зависит от сопротивления и силы тока. Падение напряжения на диоде фиксировано. Это всегда 0,7 В, независимо от того, какой ток течет. (Некоторые говорят, что это 0,6 В).

Падение напряжения на диоде всегда составляет 0,7 В.
Приложения
В электронике очень часто используется односторонний символ.Напряжения постоянного тока могут быть заблокированы или добавлены, а напряжения переменного тока исправлено.
Но также тот факт, что падение напряжения всегда одинаковое и стабильное, можно использовать в качестве опорного напряжения в в схемах стабилизаторов и в измерительных каскадах.

Когда ток идет только в одном направлении (от анода к катоду) и падение напряжения на диоде равно всегда 0,7 В (или 0,6 В), тогда напряжение на аноде должно быть примерно на 0,6 В выше, чем на катоде. Мы говорим диод находится в прямом смещении.


Смещен вперед.
Напряжение на аноде больше положительного, чем на катоде. Падение напряжения составляет 0,6 В.

Когда напряжение на аноде меньше, чем на катоде, диод блокируется. Через диод не течет ток. В напряжение на катоде поступает от другого источника, но не через диод. Диод имеет обратное смещение.

Обратное смещение.
Напряжение на аноде более отрицательное, чем на катоде. Через диод не может протекать ток.В напряжение на катоде поступает из другого источника.


Диод в прямом направлении. Лампочка светится. Напряжение на лампочке составляет 11,3 В, потому что падение напряжения на диоде 0,7 В.


Диод обратного направления. Нет тока. Лампочка не светится.


Лампочка светится при наличии напряжения от аккумуляторной батареи или внешнего источника питания.Когда оба приложенный ток течет от источника питания, потому что напряжение немного выше (12 В), чем от источника аккумулятор (12В — 0,7В = 11,3В).
Диод также предотвращает разрушение аккумулятора от внешнего напряжения. В этом случае диод работает в обратном направлении.


Обрезана синусоида входного сигнала переменного тока. Через диод проходит только положительная часть.
Дополнительная информация в Блоки питания


Защита от обратной полярности.
Ток протекает только при правильной полярности батареи.
Преимущество: предохранитель не срабатывает.
Недостаток: потеря напряжения 0,7 В, необходимо соблюдать максимальный ток.


Другая защита от обратной полярности.
При правильной полярности диод не влияет. Обратная полярность, ток короткого замыкания течет и перегорает предохранитель.
Преимущество: Отсутствие потери напряжения, недопустимый рабочий ток.
Недостаток: предохранитель выходит из строя, и его необходимо заменить в случае неправильной полярности.
Тестирование
Диод не имеет определенного омического сопротивления, потому что падение напряжения фиксировано и не зависит от Текущий. Результат измерения омметра больше зависит от самого омметра, чем от на диоде.Не используйте диапазон омметра вашего мультиметра. Всегда используйте специальный диодный диапазон.
Однако значение на дисплее не имеет значения. Мультиметр используется только для проверки наличия проводимости диода. или не.

Мультиметр диодного диапазона.
Плюс к аноду.
Текущие потоки. На дисплее отображается значение.


Плюс к катоду.
Теперь ток не должен течь.
На дисплее отображается обрыв цепи.
Диод в порядке.

Как всегда при работе с омметром на плате, правильный результат измерения вы получите только после отключения по крайней мере, один вывод диода от остальной части схемы.

Под напряжением диод можно проверить, измерив падение напряжения.
Напряжение на аноде должно быть на 0,7 В выше, чем на катоде.
Напряжение такое же, как на диоде?


В работе падение напряжения 0,7В. (Анод к катоду)


Таким образом, напряжение на катоде на 0,7 В ниже, чем на аноде.
Устранение неисправностей
На практике неисправные диоды всегда имеют короткое замыкание. Теоретически возможно, что сначала произойдет короткое замыкание диода, а затем он взрывается из-за гораздо более высокого тока и приобретает высокое сопротивление.Но на практике срабатывает предохранитель или резистор сгорает до того, как это произойдет.

Под напряжением диод не только создает падение напряжения 0,7 В, но также может разделять два разных напряжения. А напряжение на катоде не обязательно должно быть напряжением, исходящим от анода. Это также может исходить от другого источник напряжения. В общем, если напряжение на катоде выше, чем на аноде, напряжение идет откуда угодно иначе, а диод поддерживает отдельные напряжения. Диод в порядке.

Как всегда в электронике, нагрев — большая проблема.Диоды перегреваются и / или создают точки холодной пайки. Тщательно проверьте все точки пайки платы и в случае сомнений перепаяйте стыки.
Если диод неисправен, выберите тип большего размера, если это возможно.

Список общих диодов
Диоды различаются максимальным рабочим напряжением и максимально допустимым током.
Типы достигают от нескольких мА (1N914) до нескольких ампер (BY550).
Вот некоторые общие диоды и их характеристики:
Тип Напряжение (максимальное) Ток (максимум)
1N914 100 В 75 мА
1N4148 75 В 200 мА
1N4001 50 В 1 А
1N4002 100 В 1 А
1N4003 200 В 1 А
1N4004 400 В 1 А
1N4005 600 В 1 А
1N4006 800 В 1 А
1N4007 1000 В 1 А
1N5400 50 В 3 А
1N5401 100 В 3 А
1N5402 200 В 3 А
1N5404 400 В 3 А
1N5406 600 В 3 А
1N5407 800 В 3 А
1N5408 1000 В 3 А
BY 133 1300 В 1 А
BY 255 1300 В 3 А
BY550-400 400 В 5 А
Цены
Диоды очень дешевые, и стандартные типы не должны отсутствовать в каждой мастерской.
Вот типичные цены на диоды и выпрямители в Европе:
1N4148 0,02 €
1N4007 0,02 €
1N5408 0,06 €
Ссылки и источники
Википедия: Диод
frankshospitalworkshop: Паспорта

Fluke MultiMeter | Проектирование экологических ресурсов

Цифровой мультиметр Fluke, тип 73,
Введение

Мультиметр — это небольшое портативное устройство, которое можно использовать для измерения напряжения, сопротивления току или для проверки диодов.Технический отдел HSU имеет набор ручных цифровых мультиметров Type 73 -III Series III производства Fluke. Эти счетчики имеют защиту от перенапряжения от скачков напряжения и

соответствует стандарту безопасности Международной электротехнической комиссии IEC 61010. Счетчики имеют автоматическое удержание для сохранения показаний и звуковой сигнал проверки целостности цепи, а также могут проверять диоды. Портативный ручной мультиметр можно использовать везде, где требуются быстрые и точные показания напряжения, тока или сопротивления.У этого устройства множество конкретных применений.

Рисунок 1. Мультиметр Fluke Type 73

Счетчик можно использовать для всего следующего и многого другого.

  • Проверка выхода солнечного элемента
  • Измерение тока, потребляемого малым оборудованием переменного или постоянного тока
  • Проверка подачи питания на неработающее оборудование
  • Испытание лампы накаливания
  • Считывание сигнала напряжения с пиранометра
  • Диагностика системы зажигания вашего автомобиля, когда он не запускается после того, как вы провели день в поле в удаленном месте.

При использовании мультиметра и интерпретации полученных результатов часто бывает полезно иметь рабочее понимание закона Ома.

Операция

Функции мультиметра Fluke 73, защищенного плавкими предохранителями, включают постоянное напряжение, переменное напряжение, переменный или постоянный ток, сопротивление, проверку целостности цепи по звуку и проверку диодов. Мультиметр оснащен многопозиционным переключателем для выбора желаемой функции (см. Рисунок 2). Измеритель Fluke измеряет автоматически. На многих мультиметрах каждая функция также имеет несколько диапазонов для измерения различных величин.На глюкометре Fluke автоматически выбирается правильный диапазон для большинства измерений. Это означает, что приблизительная величина сигнала не должна быть известна или определена для получения точных показаний. Чтобы снять показания, провода необходимо переместить в соответствующий порт для желаемого измерения. Измеритель защищен плавким предохранителем, чтобы предотвратить повреждение устройства, если выбрана неправильная функция или если провода вставлены в неправильный порт для проводимого измерения.

В документации по мультиметру указана точность счетчика для функций счетчика.Эти значения представлены с максимальной погрешностью в процентах, возможной для определенных диапазонов температур. Чтобы показания были значимыми, необходимо помнить о точности счетчика.

Использование измерителя

Черный (общий) провод всегда подключается к порту с пометкой COM (см. Рисунок 1). Красный провод подключается к одному из трех других портов в зависимости от того, какая функция измерителя используется. Единицы измерения всегда указываются в верхнем правом углу экрана дисплея (см. Рисунок 1).

Рисунок 2: Выбор функции на Fluke MultiMeter.

Измерение напряжения

Для всех измерений напряжения красный провод должен быть помещен в порт напряжения, который красный на измерителе (см. Рисунок 1). Можно измерить напряжение переменного или постоянного тока. Единицы измерения напряжения — вольты (В) или милливольты (мВ). Напряжение переменного и постоянного тока — это отдельные функции измерителя, каждая со своей настройкой на шкале выбора, как показано на рисунке 2.При измерении напряжения, которое, как известно, меньше 300 мВ, измеритель должен быть установлен на настройку 300 мВ (см. Рисунок 2). Функция напряжения переменного тока считывает среднеквадратичное (среднеквадратичное) напряжение цепи переменного тока. Также можно определить полярность постоянного напряжения. Если красный провод находится на положительной стороне источника напряжения, измеритель будет показывать положительное напряжение. Однако, если красный провод находится на отрицательной стороне источника, на дисплее появится отрицательный знак, указывающий, что полярность напряжения противоположна тому, как подключены провода.

Измерение тока

Измеритель Fluke может считывать переменный или постоянный ток до 10 ампер. Для считывания переменного или постоянного тока необходимо выбрать правильную функцию на шкале выбора функций (см. Рисунок 2). Единицы измерения тока — амперы (А) или миллиамперы (мА). Для считывания тока красный провод необходимо переместить в один из двух портов для тока. Чтобы получить показание, которое, как известно, меньше 300 мА, поместите красный провод в порт, помеченный как 300 мА (см. Рисунок 1). Для считывания значений тока более 300 мА или, если ток неизвестен, вставьте красный провод в порт, обозначенный 10A (см. Рисунок 1).Для показаний постоянного тока, как и для показаний постоянного напряжения, появится отрицательный знак, если ток отрицательный. Положительный ток указывает на то, что ток течет в красный провод и из черного провода измерителя, или что электроны текут в черный провод и из красного провода, как показано на рисунке 3.

Рисунок 3: Диаграммы тока

Измеритель фактически измеряет поток электронов при измерении тока. Однако принято говорить о текущем токе как о положительно заряженных частицах, которых на самом деле не существует.

Это соглашение восходит к временам Томаса Эдисона, который произвольно выбрал положительный ток как поток положительно заряженных частиц, до открытия электрона. Теперь понятно, что электроны протекают с током, однако соглашение Эдисона прижилось. Вероятно, мы будем говорить о потоке «электронных дыр» еще много лет.

Измерение сопротивления

Сопротивление любой цепи можно измерить в омах (Вт), миллиомах (мВт) или мегаомах (МВт).Измерение сопротивления мультиметра Fluke полностью автоматическое. Красный провод должен быть помещен в тот же порт, что и для считывания напряжения, то есть красный порт, обозначенный для сопротивления (Вт) (см. Рисунок 1). Селектор функций должен быть установлен на сопротивление (см. Рисунок 2).

Проверка диодов и проверка целостности звука

Проверка состояния или полярности диода и проверка непрерывности на звуковой сигнал — это одна и та же функция на переключателе (см. Рисунок 2). Измеритель подает звуковой сигнал всякий раз, когда измерительные провода подключены к цепи с сопротивлением меньше минимального.Этот звуковой сигнал указывает на то, что цепь замкнута. При тестировании диода счетчик подключается сначала в одну, а затем в другую сторону. Если диод исправен, звуковой сигнал будет слышен при одностороннем подключении диода, но не при другом.

Обслуживание и хранение

Когда устройство не используется, селекторный переключатель следует установить в положение «Выкл.», Чтобы продлить срок службы батареи. Если устройству требуется новая батарея, следует использовать батарею стандартного размера 9 В, которая может быть щелочной, никель-кадмиевой или никель-металл-гидридной.Если устройство будет подвергаться воздействию тяжелых условий во время транспортировки, провода следует вынуть из портов, чтобы они не сплющивались, и свернуть спиралью, чтобы они не запутались.

Список литературы

http://www.fluke.com/

(PDF) Испытательный элемент для контроля качества высоковольтных SiC диодов Шоттки Контрольный элемент для контроля качества высоковольтных SiC диодов Шоттки

Содержимое данной работы может быть использовано на условиях Лицензия Creative Commons Attribution 3.0.Любое дальнейшее распространение

этой работы должно содержать указание на автора (авторов) и название работы, цитирование журнала и DOI.

Опубликовано по лицензии IOP Publishing Ltd

SPbOPEN 2020

Journal of Physics: Conference Series 1695 (2020) 012153

IOP Publishing

doi: 10.1088 / 1742-6596 / 1695/1/012153

1

1

1 Элемент проверки качества высоковольтных SiC диодов Шоттки

контроль

С.В. Седых2, С.Б. Рыбалка1, Е.А. Кульченков1, А.А. Демидов1, А.Ю. Дракин1,

Н.А. Брюхно2, И.В. Куфтов2

1Брянский государственный технический университет, ул. , 241035, Россия

2АО «ГРУППА КРЕМНЫЙ ЭЛ», г. Брянск, ул. Красноармейская 103, 241037, Россия

Аннотация.Испытательный элемент для контроля качества высоковольтных диодов Шоттки SiC типа

был сконструирован впервые в этом исследовании. Показано, что предлагаемый тестовый элемент

позволяет определять важные параметры для тестирования диода до образования контакта Шоттки, а

, таким образом, может снизить производственные затраты при производстве высоковольтных диодов Шоттки типа SiC

.

1. Введение

Диоды Шоттки на основе карбида кремния (SiC) имеют ряд преимуществ перед традиционными диодами

из-за высоких значений напряжения пробоя и в настоящее время являются ключевыми компонентами силовой электроники

[1].В наших предыдущих исследованиях установлено, что SiC диоды Шоттки производства компании

АО «ГРУППА КРЕМНЫЙ ЭЛ» (Брянск, Россия) демонстрируют хорошие характеристики по параметру dV / dt

[2]. Однако одной из проблем является определение качества выпускаемых диодов в процессе их изготовления

. Ранее был предложен испытательный элемент для контроля качества изготовления

GaAs диодов Шоттки, состоящий из диода Шоттки, сформированного на эпитаксиальной структуре одного типа

проводимости [3], но основным недостатком этого испытательного элемента является повышенная утечка. токи диода Шоттки

из-за более высокой напряженности поля на границе края металлизации контакта Шоттки

и полупроводника.Поэтому предпочтительнее предложенный в работе [4] структурный 4H-SiC диод

. Поэтому основной целью данной работы является создание тестового элемента для контроля качества

SiC диодов Шоттки на основе предложенного в работе [4] диода со структурой Шоттки.

2. Материалы и методы

Предлагаемый тестовый элемент (см. Рисунок 1) имеет следующую структуру: на подложке из карбида кремния

+

проводимость n-типа из 4H-SiC (1), an —

Формируется эпитаксиальный слой n-типа толщиной 13 мкм (2) с концентрацией примеси

5´1015 см-3.Далее для повышения пробивного напряжения

проводилась имплантация ионами бора (дозы 3´1015 см-2 и 6´1015 см-2) с энергиями 150

кэВ и 350 кэВ соответственно (глубина ≈0,67 мкм), затем были сформированы плоский рабочий спай 3 p-типа и разделительное кольцо p-

(4) путем отжига при температуре 1580 ° C. Затем в оксиде кремния

формируется слой

SiO2 (5), два контактных окна 6 протравливаются в оксидном слое SiO2.

3. Результаты и обсуждение

Одной из основных проблем в отрасли силовой микроэлектроники является контроль качества выпускаемых устройств, особенно

, для диодов Шоттки типа SiC.Например, для GaAs диодов Шоттки для контроля качества ранее был предложен испытательный элемент

[3], состоящий из диода Шоттки, сформированного на эпитаксиальной структуре

Как использовать мультиметр

На этой странице мы покажем вам, как выбрать мультиметр и способы его использования для поиска неисправностей и тестирования.

Сводка

После хорошего набора отверток мультиметр — одна из самых полезных вещей, которые вы можете добавить в свой набор инструментов. На этой странице описывается, как использовать его для ряда основных тестов.

Выбор мультиметра

Мультиметры

бывают двух видов: аналоговые (с циферблатом) и, как правило, цифровые. Лишь в нескольких случаях аналоговый мультиметр был бы лучше, а цифровой вариант в любом случае намного надежнее и, вероятно, дешевле.

Помимо мультиметра, предназначенного в основном для автоэлектрики, даже самый дешевый (менее 5 фунтов стерлингов на eBay) будет иметь большинство, если не все функции, которые вам обычно нужны.

Минимальные функции, на которые следует обратить внимание: напряжение постоянного тока (от 2 В до 200 В), напряжение переменного тока (500 В) и сопротивление (от 200 Ом до 2000 кОм).

Менее полезными, но очень распространенными являются диапазоны постоянного тока (от 2 мА до 200 мА).

Некоторые мультиметры имеют автоматический выбор диапазона, что означает, что они имеют только один диапазон постоянного напряжения и автоматически регулируются в зависимости от приложенного напряжения, а также для тока и сопротивления.

Очень полезна функция непрерывности. Это издает звуковой сигнал, когда щупы обнаруживают между собой путь с низким сопротивлением.

Также очень полезна функция проверки диодов. Функция проверки транзисторов является обычной (обозначена h FE ), но менее полезна на практике.

Большинство мультиметров поставляются с парой тестовых проводов с заостренными концами. Они хороши, например, для касания двух точек на печатной плате или части оборудования, но дополнительная пара с зажимами типа «крокодил» также очень полезна. Вы можете использовать их для закрепления на выводах компонента или любых других оголенных проводах или разъемах, оставляя руки свободными.

Перед тем, как начать

Многие мультиметры имеют положение «Выкл» на переключателе диапазонов, но другие имеют отдельный переключатель включения / выключения.Не забудьте выключить его после использования — если вы оставите его включенным в ящике для инструментов, вы вполне можете обнаружить, что батарея разряжена, когда она вам понадобится в следующий раз.

Часто переключатель диапазонов имеет отдельные настройки для диапазонов переменного и постоянного тока, но если есть отдельный переключатель переменного / постоянного тока, убедитесь, что он всегда находится в положении постоянного тока, кроме случаев, когда вы измеряете переменный ток, иначе вы получите неверные показания.

Проверьте, как ваш мультиметр отображает состояние вне диапазона. Это когда измеряемое значение слишком велико для количества цифр слева от десятичной точки на дисплее.Поместите его на любой из диапазонов сопротивления (Ом или Ом), не прикасайтесь ни к чему измерительными щупами. Может отображаться «OL» (перегрузка) или «1». (см. фото выше) или что-то еще, кроме правильного номера.

В диапазонах постоянного напряжения и тока необходимо поднести красный щуп к положительному полюсу, а черный — к отрицательному. Но если вы соедините их наоборот, вы просто получите отрицательное значение.

Измерение напряжения

Тестирование аккумулятора

Для батарейки C, AA или AAA или кнопочного элемента (но не литиевого) установите переключатель диапазона на 2 В, для литиевой батареи или батареи PP3 или, если вы не уверены, установите его на 20 В.Подсоедините щупы красного цвета к положительной клемме.

Перезаряжаемый аккумулятор должен показывать около 1,2 В или немного выше при новой зарядке и падать до 1 В при необходимости подзарядки. Другие (включая большинство кнопочных ячеек) будут показывать около 1,5 В или немного выше в новом состоянии, постепенно снижаясь по мере использования. В зависимости от требований приложения они могут работать до 1,2 или 1,0 В.

Для других батарей, таких как все литиевые батареи и батареи PP3 9 В, вам понадобится диапазон 20 В.Таким же образом установите тестовые щупы. Литиевые батареи должны показывать от 3 до 3,7 В в зависимости от типа, за исключением аккумуляторов для ноутбуков и электроинструментов, которые содержат несколько последовательно соединенных ячеек и должны показывать примерно 3,6 В раз больше, чем количество ячеек. Батарея PP3 с напряжением 9 В по окончании срока службы упадет до 6 или 7 В.

Испытательное оборудование

При использовании сетевого адаптера или зарядного устройства проверьте этикетку на устройстве, чтобы узнать, каким должен быть его выход и является ли выход переменным или постоянным током. Выберите следующий диапазон (переменного или постоянного тока), который выше номинальной выходной мощности.Дешевые нерегулируемые адаптеры могут выдавать значительно большую мощность, чем их номинальная мощность, без нагрузки.

Вы можете проверить напряжение внутри части оборудования, чтобы узнать, проходит ли питание. Никогда не используйте оборудование с питанием от сети с закрытыми крышками, если вы полностью не понимаете опасности и не можете сделать это без риска для себя или посторонних.

Для оборудования, содержащего железный сетевой трансформатор, если вы можете сделать это безопасно, вы должны иметь возможность измерить (с осторожностью!) Сетевое напряжение, входящее в первичную обмотку трансформатора при 240 В переменного тока и сниженное до гораздо более низкого напряжения переменного тока на вторичный, затем выпрямленный и сглаженный до аналогичного постоянного напряжения и, наконец, возможно, стабилизированный до стабильного напряжения, такого как 12 В или 5 В.См. Страницу «Источники питания» для получения более подробной информации.

Импульсные источники питания (содержащие небольшой ферритовый трансформатор) сложнее тестировать.

Измерение непрерывности и сопротивления

Измерение сопротивления ваших пальцев. (Возможно, вам придется смочить кончики пальцев.)

Диапазоны сопротивления (Ом или Ом) служат для измерения сопротивления. Это показатель того, насколько легко может пройти электрический ток. Если датчики ничего не касаются, вы должны выйти за пределы допустимого диапазона.

В качестве эксперимента установите мультиметр на самый высокий диапазон Ω и удерживайте два наконечника щупа в пальцах каждой руки. Если вы не получаете показания, крепче держите наконечники зонда или смочите пальцы. Вы обнаружите, что показания уменьшаются по мере того, как вы сжимаете датчики более плотно, и сопротивление через ваше тело уменьшается. (Да, через ваше тело проходит электричество, но это не более опасно, чем обращение с батареей AA.)

Соедините наконечники щупов вместе. Вы должны получить нулевое показание на любом из диапазонов сопротивления, поскольку теперь практически нет сопротивления току между датчиками.

Диапазон наименьшего сопротивления также может быть для измерителя непрерывности, издающего звуковой сигнал, когда вы касаетесь щупами вместе. Фактически, проверка непрерывности, вероятно, является наиболее полезной функцией диапазонов сопротивления, позволяющей вам проверить, может ли ток легко течь между двумя точками A и B, такими как два конца провода.

Вы можете использовать функцию проверки целостности цепи или диапазон наименьшего сопротивления для проверки предохранителя. Коснитесь щупов на двух концах и посмотрите, не раздастся ли звуковой сигнал или нулевое (или очень низкое) показание, что свидетельствует о хорошем.Перегоревший предохранитель выдает показания вне допустимого диапазона.

Вы можете проверить лампочку накаливания (галогеновую лампу или сменную лампочку для рождественской елки, но не лампочку с низким энергопотреблением) с самым низким или близким к самому низкому диапазону сопротивления. Вы должны получить показания только в десятки или сотни Ом. (Это сопротивление нити накала в холодном состоянии. При рабочей температуре сопротивление может увеличиваться в десять и более раз.)

Вы можете тестировать резисторы с диапазоном сопротивления, но, припаянные к печатной плате, путь через сам резистор может быть не единственным электрическим путем между его концами, что приведет к неверным результатам.Кроме того, существует некоторая вероятность того, что напряжение, приложенное мультиметром для измерения сопротивления, может повредить чувствительные электронные компоненты. Если вы можете одолжить другой мультиметр, подключите свои щупы, настроенные на диапазон сопротивления, к щупам другого, настроенного на низкий диапазон вольт. Если показание второго мультиметра не превышает 0,5 В с первым на любом из диапазонов сопротивления, он не может причинить никакого вреда.

Тестирование диодов и транзисторов

Источники питания обычно содержат диоды, часто в группе по 4 диода.Вы можете проверить их с помощью мультиметра на диодном тестовом диапазоне. С пробниками, подключенными к концам диода в одну сторону, вы должны получить показание вне диапазона, а в другом направлении — около 0,7 В, а для некоторых типов — всего 0,3 В. Нулевое значение в любом направлении или выход за пределы диапазона в обоих направлениях указывает на неисправный диод.

Тестирование транзистора с использованием функции диода.

Вы также можете использовать функцию проверки диодов для проверки переходного транзистора (но не полевого транзистора).У них есть 3 вывода: эмиттер, база и коллектор. Хороший транзистор будет работать как диод между базой и любым из двух других выводов. Вы можете довольно легко определить, какой вывод есть, методом проб и ошибок. Вы должны получить показание около 0,7 В между базой и коллектором и немного меньше между базой и эмиттером. Это будет с красным проводом на основании для типов NPN и черным проводом для PNP. Вы должны получить показания между эмиттером и коллектором вне диапазона, при условии, что база ничего не касается.Нулевое значение указывает на то, что транзистор определенно мертв.

Тестирование транзистора с функцией h FE .

Многие мультиметры также имеют функцию проверки транзисторов (только для переходных транзисторов), обозначенную h FE . H FE транзистора — это один из способов определения коэффициента усиления, на который он способен, но поскольку он может быть от 20 или менее до 500 или более, сам по себе он не является мерой исправности транзистора. . Если он показывает ноль или выходит за пределы допустимого диапазона, вполне возможно, что вы неправильно подключили транзистор или провода не имеют надлежащего контакта.

Мультиметры обычно имеют 4 контакта для эмиттера, базы и коллектора (помечены E, B, C) с одним дублированным, просто для удобства, поскольку некоторые транзисторы имеют выводы в порядке E, B, C и другие E, C, B • Будут либо отдельные диапазоны для NPN и PNP, либо два набора по 4 контакта. Из-за различной толщины выводов и недостаточной гибкости коротких выводов на транзисторе, отпаянном от печатной платы, не всегда легко установить хороший контакт со всеми тремя выводами.

Измерение тока

Для измерения тока сам измерительный прибор должен быть частью цепи.

Вам не нужно часто измерять ток (диапазоны ампер), но когда вы это делаете, очень важно понимать, что вы должны разорвать цепь и поместить щупы через разрыв, чтобы ток прошел через мультиметр. . Если вы подключите его напрямую к источнику питания, например к клеммам батареи, он будет иметь очень небольшое сопротивление и будет течь чрезмерный ток.Если вам повезет, внутри мультиметра просто перегорит предохранитель, который вам придется заменить, но в противном случае есть вероятность повредить мультиметр или тестируемое оборудование.

Вы можете, например, проверить, какой ток потребляет радиостанция с батарейным питанием, и таким образом оценить, как долго вы можете рассчитывать на то, что батарейки прослужат. Разрыв цепи может быть немного сложным, но один из способов сделать это — приклеить полоску алюминиевой фольги к каждой стороне листа бумаги, убедившись, что нет контакта между двумя листами фольги, а затем вставить ее между двумя листами. батарейки или между одной из них и контактом батарейного отсека.Теперь вы можете прикоснуться щупами мультиметра к двум кусочкам фольги, чтобы замкнуть цепь и позволить вам включить радио. Если, например, радиоприемник потребляет 200 мА, а батареи рассчитаны на 2000 мАч (миллиампер-часы), их хватит на 10 часов.

Как проверить электрические компоненты с помощью мультиметра

При работе с электрическими компонентами или в электрической среде поиск и устранение неисправностей и тестирование устройств для оценки их состояния жизненно важны для поддержания безопасного и эффективного рабочего места.Мультиметры — один из наиболее распространенных инструментов, используемых для проверки электрических компонентов, и он жизненно важен для любого набора инструментов. И аналоговые, и цифровые мультиметры могут дать вам самые разные показания; В этом руководстве мы рассмотрим основные инструкции по тестированию электрических компонентов с помощью цифрового мультиметра.

Здесь мы расскажем обо всем, что вам нужно знать об использовании мультиметра, а также о безопасном тестировании и поиске и устранении неисправностей с помощью стендов ESD, а также в электрической лаборатории или в окружающей среде, где размещена электроника, чувствительная к окружающей среде.

Что такое мультиметр?

Мультиметр — это инструмент, используемый для измерения нескольких функций электрического компонента с целью оценки его состояния. Мультиметры используются для устранения неисправностей электроники, определяя, где проблемы с подключением могут лежать в данной электронике, и диагностируя тип проблемы — или, по крайней мере, указывая технику, каким должен быть их следующий шаг. Среди различных функций мультиметры чаще всего используются для проверки целостности цепи, сопротивления и напряжения:

Непрерывность

Проверка целостности выполняется, чтобы определить, соединены ли два элемента электрически, позволяя электрическому току течь от одного к другому.При проверке целостности вы помещаете щупы мультиметра по обе стороны от компонента. Если результирующее значение равно «0» или около него, компонент является непрерывным. Значение «1» или «разомкнутый контур» указывает на то, что компонент не является непрерывным и не позволяет электричеству проходить через него.

Сопротивление

Испытание сопротивления выполняется, чтобы определить, сколько тока теряется во время его прохождения через электрический компонент. Различные детали и компоненты имеют разную прочность, поэтому, прежде чем тестировать деталь, вам необходимо знать, какое сопротивление должен иметь .Перед проверкой сопротивления всегда отключайте любое устройство или компонент от источника энергии. Как и при измерении целостности цепи, проверка сопротивления включает размещение щупов мультиметра по обе стороны от компонента, чтобы получить показания.

Напряжение

Испытание напряжением выполняется для оценки силы электрического тока. Как и при проверке сопротивления, проверка напряжения требует, чтобы вы заранее знали ожидаемый диапазон напряжения, чтобы правильно настроить мультиметр и узнать, указывает ли показание на проблему или нет.Процесс тестирования напряжения аналогичен другим тестам мультиметра, но отдельные мультиметры могут поставляться с конкретными инструкциями.

Использование мультиметра

Мультиметры

позволяют легко автоматически проверять состояние различных электрических компонентов, но вам необходимо научиться правильно настраивать и использовать мультиметр для получения наиболее точных показаний. Сначала определите, какой тип теста вы выполняете, и выберите соответствующую настройку. Если вы проверяете сопротивление, вам нужно будет выбрать настройку Ом, тогда как вам нужно будет выбрать либо переменный, либо постоянный ток, если вы измеряете напряжение.

При использовании мультиметра самый важный шаг, о котором следует помнить, — это выбрать напряжение или диапазон, который будет на выше , чем ожидаемое значение компонента, который вы планируете тестировать. Это обеспечит точность показаний и поможет сохранить инструменты и оборудование в безопасности. Наконец, перед разборкой всегда отключайте любое устройство, которое вы планируете тестировать или устранять неполадки, от источника питания.

Проверка электрических компонентов

Электрические устройства могут выйти из строя или выйти из строя в огромном количестве мест, поэтому иногда бывает трудно найти источник проблемы.С помощью таких инструментов, как мультиметр, вы можете тестировать отдельные компоненты устройства, помогая выявить проблему, тестировать компоненты перед использованием, выполнять плановое тестирование и ремонт и многое другое.

Аккумулятор

Перед заменой компонентов или капитальным ремонтом устройства первый шаг, который делают большинство технических специалистов, — это проверить аккумулятор устройства. Используя мультиметр для проверки напряжения аккумулятора, вы можете определить, полностью ли он заряжен, нуждается в подзарядке, перегорел, вот-вот перегорит и т. Д.Проверяя аккумулятор на его напряжение, вы можете исключить определенные электрические проблемы, отслеживать, когда батареи нуждаются в замене, и убедиться, что ваши устройства получают питание должным образом.

Кабели и провода

Кабели и провода следует тестировать перед использованием или добавлением к устройству, но их также можно протестировать после того, как они уже установлены. Кабели проверяются на непрерывность, оценивая их способность передавать электрический заряд и переносить его из одного места в другое.

Конденсаторы и индукторы

Первый шаг при проверке конденсатора или катушки индуктивности — убедиться, что устройство разряжено.Настройте мультиметр на измерение сопротивления и подключите щупы к клеммам. Если счетчик показывает «открытая линия», прибор находится в хорошем состоянии. Если изменений нет и на глюкометре нет показаний, прибор неисправен.

Диоды

Отключите диод от источника питания и убедитесь, что он разряжен. Установите мультиметр в режим «проверка диодов» и подключите щупы измерителя к выводам диодов. Протестируйте и запишите чтение. Затем переверните тестовые щупы и повторите тест, также отметив это значение.

Если первое показание показывает 0,5–0,8 В (кремний) или 0,2–0,3 В (германий), диод в хорошем состоянии. Если обратный тест показывает OL (разомкнутая линия), это означает, что диод находится в хорошем состоянии. Если показания показывают OL в обоих направлениях, диод не работает. Если измеритель показывает значение около 0,4 В в обоих направлениях, диод короткий и его необходимо заменить.

Предохранитель

Подключите щупы мультиметра к предохранителю и установите измеритель в режим «сопротивления».Если показание показывает 0, предохранитель исправен. Если показание показывает «бесконечно», это указывает на проблему и, возможно, необходимо заменить предохранитель.

Светодиоды

Сначала отключите светодиод от источника питания. Установите мультиметр в режим «проверка диодов» и подключите щупы к клемме светодиода. Если светодиод светится, он в хорошем состоянии — любой другой результат указывает на неисправность или отсутствие заряда.

Реле

Установите мультиметр на «целостность», затем подсоедините щупы измерителя к клеммам катушки реле.Если мультиметр издает звук или показывает непрерывность цепи, катушка в хорошем состоянии. Если счетчик не показывает изменений или не показывает целостность цепи, реле повреждено и требует замены.

Резисторы

Установите мультиметр на «сопротивление», затем присоедините щупы измерителя к обоим концам резистора. Если счетчик показывает точное значение сопротивления fo с допуском в процентах, резистор в хорошем состоянии. Если счетчик показывает «бесконечность», это может быть дефект или резистор сломан и его необходимо заменить.

Переключатели и кнопки

Установите переключатель или кнопку в положение ВКЛ. Установите мультиметр на «сопротивление», затем подсоедините щупы измерителя к обоим клеммам переключателя или кнопки. Этот тест должен дать показание «0». Затем нажмите кнопку или поверните переключатель, чтобы перевести его в положение «ВЫКЛ.», Затем повторите проверку. Этот тест должен дать значение «бесконечное».

Если оба теста дают показание 0 или оба теста дают бесконечное значение, переключатель или кнопка неисправны и нуждаются в замене.

Транзисторы

Используя мультиметр, вы можете проверить базу, коллектор и эмиттер транзистора. Ознакомьтесь с этим руководством, чтобы получить полное описание каждого из этих тестов.

Электродиссипативные верстаки

Статическое электричество — это электричество, которое может прыгать между объектами / поверхностями, накапливаться и вызывать статический разряд — может сильно мешать работе с электрическими компонентами. Статическое электричество может быть разрушительным и опасным как для электрических компонентов, так и для чувствительных электронных устройств, а также может приводить к искажению или формированию ложных результатов при измерениях с помощью мультиметра.Чтобы обеспечить точность результатов и защитить чувствительную электронику от внезапного статического удара, оснастите свою лабораторию, исследовательский центр или производственное предприятие рабочими столами, рассеивающими статическое электричество.

Материалы, рассеивающие статическое электричество, специально разработаны для создания безопасной контролируемой среды, в которой статическое электричество может быть заземлено и нейтрализовано, предотвращая его передачу на другие объекты, такие как чувствительная электроника. Материалы, рассеивающие статическое электричество, снижают риски, связанные со статическим электричеством, тремя простыми способами.

Во-первых, эти материалы классифицируются как «антистатические», что означает, что они уменьшают возникновение статического электричества и являются полустойкими к его накоплению. Затем материалы, рассеивающие электростатический заряд, создают путь, по которому статическая энергия может перемещаться медленно и контролируемым образом. Наконец, материалы, рассеивающие электростатический заряд, заземляют энергию, нейтрализуя ее.

В OnePointe Solutions мы предлагаем индивидуальные рабочие столы, изготовленные из высококачественного ламината ESD, который помогает создать безопасную среду тестирования.Наши рабочие места ESD не только рассеивают электростатический заряд, но и обладают широким набором функций, которые позволяют создавать полностью оптимизированные рабочие места. Оснастите свой ESD-совместимой электроникой, модульными стеллажами, регулируемыми функциями и множеством других настраиваемых функций. Сотрудничайте с командой дизайнеров OnePointe Solutions, чтобы настроить ваше предприятие в соответствии с вашими конкретными потребностями, и воспользуйтесь преимуществами нашего многолетнего опыта разработки качественной мебели для исследовательских, производственных, образовательных и опытно-конструкторских центров по всей стране.

Нужна помощь в создании лаборатории ESD?

Позвоните нам по телефону (866) 222-7494, чтобы поговорить со специалистом по дизайну сегодня!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*