Кран для радиатора отопления — как отрегулировать температуру в доме
Содержание:
- Виды систем отопления
- Регулировка при монтаже и начале отопительного сезона
- Устройства регулировки температуры в приборах отопления
Комфортная температура в помещениях в холодное время года в первую очередь зависит от нормальной работы системы отопления, хотя помимо этого могут влиять и другие факторы: достаточное утепление наружных стен, количество и тип окон, качество утепления оконных проемов, расположение помещений – угловое или посередине здания, на первом или выше расположенных этажах.Регулировать и поддерживать работу системы отопления в оптимальном режиме можно установкой на отопительных приборах специальных устройств: простых – таких, как обычный кран для радиатора отопления, и более сложных – терморегуляторов различного типа.
Особенно нуждаются в регулировке системы центрального отопления в многоквартирных домах, когда котельная не может обеспечить одинаковую нормативную температуру подаваемого теплоносителя во всех подключенных к ней объектах.
Чтобы лучше понять, как регулировать температуру батареи отопления, необходимо знать о существовании двух основных видов систем отопления – однотрубной и двухтрубной.
Виды систем отопления
В однотрубной системе теплоноситель подается по одной трубе большого диаметра, к которой последовательно подключаются приборы отопления. Вход в радиаторы осуществляется в верхней части прибора трубой меньшего диаметра, чем магистральной, а выпуск – такой же трубой в нижней части. На каждую батарею отопления устанавливается отсекающий вентиль, а также устраивается специальный замыкающий участок трубы, называемый байпасом. Если перекрыть движение теплоносителя через радиатор, циркуляция по магистрали не нарушится благодаря байпасу. Теплоноситель из-за теплоотдачи радиаторов постепенно остывает, так что самые дальние от теплогенератора (котла) приборы отопления нагреваются меньше, чем ближние, поэтому регулировка температуры радиаторов отопления здесь особенно необходима.
Однотрубная и двухтрубная системы отопления
Двухтрубная система включает две трубы, по которым движется теплоноситель – подающую и обратную. Приборы отопления подключаются к подающей трубе параллельно, причем вход в радиатор может быть и в верхней и в нижней части. Теплоноситель в двухтрубной системе подходит к каждому прибору с одинаковой температурой. В этой системе радиаторы также оснащаются отсекающими вентилями.
Регулировка при монтаже и начале отопительного сезона
Первичная регулировка батарей отопления в квартире должна быть произведена еще на стадии монтажа. В частности, для того чтобы предотвратить образование воздушных мешков, радиаторы монтируют с небольшим уклоном (разность высот 3—4 мм) в сторону стояка и подающей трубы. С другой стороны, в верхней части батареи устанавливается кран Маевского, с помощью которого воздух удаляется. Кроме того, по окончанию отопительного сезона, когда удаляют воду из системы, небольшой уклон обеспечит полный слив воды из радиаторов.
В начале отопительного сезона, если стояки уже горячие, а часть батареи не нагревается, значит в приборе образовался воздушный мешок, мешающий нормальной циркуляции теплоносителя. В этом случае производится процедура удаления воздуха с помощью плоской отвертки. Кран Маевского медленно откручивают отверткой до тех пор, пока весь воздух не выйдет и не появится вода.
Устройства регулировки температуры в приборах отопления
Шаровой кран
Шаровой кран на батарею отопления – это простейшее устройство, с помощью которого можно регулировать температуру прибора.Следует знать, что шаровой кран может иметь только два положения – «полностью открыт» и «полностью закрыт», так как в его конструкции не предусматривается промежуточных положений. Если попытаться оставить кран открытым в промежуточном положении, то велика вероятность повреждения главной детали – полированного шара твердыми частичками, находящимися в теплоносителе. В этом случае кран может выйти из строя. Таким образом, регулировка батарей отопления кранами заключается в том, что при слишком высокой температуре в помещении краны просто закрывают, прерывая циркуляцию теплоносителя через радиаторы.
Шаровой кран
Для помещений с особыми требованиями к микроклимату, где должна поддерживаться температура с точно установленными значениями и большие колебания недопустимы, регулировка с помощью кранов использоваться не может.
Вентиль конусный
Вентиль конусный для радиатора отопления – достаточно простое механическое устройство, имеющее по сравнению с шаровым краном больше возможностей для регулирования температуры в радиаторах, так как с его помощью можно гибко регулировать интенсивность потока теплоносителя, проходящего через батарею. С помощью маховика, надетого на шток, вентиль открывают или закрывают, при этом шток движется по резьбе вверх или вниз, перекрывая или увеличивая посредством клапана с прокладкой просвет во внутренней перегородке (седле) вентиля, изменяя интенсивность потока теплоносителя.
Вентиль конусный
Как и с шаровым краном, все манипуляции с вентилем производятся вручную, устройство не имеет никаких датчиков, и настройка температуры отопительного прибора может быть только приблизительной.
Терморегуляторы или термостаты
Терморегуляторы (термостатические вентили) или термостаты являются наиболее совершенными и удобными устройствами, так как позволяют регулировать температуру радиаторов в автоматическом режиме в зависимости от температуры в помещении. Конструкция терморегуляторов состоит из двух основных частей – клапана и термостатической головки, включающей термобаллон или сильфон – цилиндр с гофрированными стенками, который заполнен специальной жидкостью. При повышении температуры в помещении, жидкость расширяется, вызывая расширение сильфона и выдавливание штока из термобаллона. При этом клапан начинает перекрывать просвет седла термостата, уменьшая интенсивность циркуляции теплоносителя через батарею и, соответственно, уменьшая ее теплоотдачу. При понижении температуры в помещении процесс происходит в обратном порядке.
Терморегулятор
Терморегуляторы различного вида имеют один и тот же принцип действия и отличаются по способу управления, по рабочему веществу термоголовки (вместо жидкости там может быть газ), а также по типу системы отопления, для которой предназначаются – однотрубной или двухтрубной.
- механические с ручной регулировкой;
- электронные;
- электрические;
Термостаты с ручной регулировкой
Термостаты с ручной регулировкой оснащены головкой вентиля, на которую нанесена шкала с рисками и цифрами от 0 до 5, обозначающими режим работы устройства. Ноль на шкале означает полностью закрытое положение клапана, остальные цифры позволяют регулировать температуру в помещении в диапазоне 14–28 градусов.
Простые модели электронных терморегуляторов оборудуются дисплеем, на котором высвечиваются значения температуры, и устанавливать нужный режим можно с помощью кнопочного управления.
Электронный терморегулятор с дисплеем
Более сложные модели электронных термостатов оборудуются встроенными и выносными датчиками, выносными пультами управления, позволяющими программировать работу нескольких устройств – задавать суточную или недельную регулировку температуры.
В электрических терморегуляторах вместо сильфона используется электрический сервопривод, получающий сигнал от датчика температуры. При повышении или понижении температуры в помещении миниатюрный электродвигатель сервопривода начинает работать, воздействуя на шток клапана.
Терморегуляторы также различаются по предназначению – для однотрубных или двухтрубных систем отопления, так как эти системы имеют свои особенности, связанные со скоростью движения теплоносителя и перепадами давления. Устройства для однотрубных систем имеют маркировку RTD-G, для двухтрубных –RTD-N и отличаются по гидравлическому сопротивлению клапанов.
Видео урок по установке различных видов вентилей и терморегуляторов:
Не забудьте оценить статью:
Как регулировать тепло в батареях кранами
Содержание
- Разбираемся, как регулировать температуру батареи отопления
- Для чего нужно производить регулировку
- Виды отопительных систем и принцип регулировки радиаторов
- Типы регулировочных кранов
- Обычный терморегулятор прямого действия
- Терморегулятор с электронным датчиком
- Пошаговая инструкция регулировки температуры
- Заключение
- Как можно регулировать температуру батареи отопления?
- Основные виды регуляторов
- Регуляторы с запорным механизмом
- Вентили с ручным управлением
- Терморегуляторы с автоматическими настройками
- Радиаторные термостаты
- Особенности использования регуляторов
- Рекомендации по монтажу устройств
- Как регулировать батарею отопления?
- Как регулировать батареи при помощи задвижки
Разбираемся, как регулировать температуру батареи отопления
Схема системы с регуляторами
Каждый отопительный сезон преподносит свои сюрпризы с трудностями обогрева помещений, как для жителей многоэтажных домов, так и частных коттеджей. От того, как отрегулирована температура батарей отопления. зависит качество равномерного обогрева всех помещений дома.
Для чего нужно производить регулировку
Настройка оптимальной температуры батарей отопления позволяет создать внутри помещения максимально комфортные условия пребывания. Кроме этого, регулировка позволяет:
- Убрать эффект завоздушивания в батареях, дать возможность теплоносителю свободно передвигаться по трубопроводу системы отопления, эффективно отдавая свое тепло внутреннему пространству помещения.
- Снизить до 25% затраты на теплопотребление.
- Не держать постоянно открытыми окна, при чрезмерном перегреве воздуха в помещении.
Настройкой отопления и регулировкой батарей, желательно заниматься перед началом отопительного сезона. Это нужно для того, чтобы потом не испытывать дискомфорта в квартире и не настраивать температуру нагрева батарей в авральном режиме. До настройки и регулировки радиаторов изначально летом нужно произвести теплоизоляцию всех окон. Кроме этого, нужно учесть особенности месторасположения квартиры:
- В середине или в угловой части дома.
- Нижний или верхний этаж.
Проанализировав ситуацию, желательно воспользоваться энергосберегающими технологиями для максимального сохранения тепла внутри квартиры:
- Утеплить стены, углы, полы.
- Провести гидро и теплоизоляцию швов между бетонными стыками панельного дома.
Без этих работ, регулировать температуру радиаторов будет бесполезно, так как львиная доля тепла будет обогревать улицу.
Виды отопительных систем и принцип регулировки радиаторов
Ручка с клапаном
Чтобы правильно провести регулировку температуры радиаторов, нужно знать общее устройство системы отопления и разводку труб теплоносителя.
- В случае индивидуального отопления, регулировка проходит легче, когда:
- Система запитана от мощного котла.
- Каждая батарея обустроена трехходовым краном.
- Смонтирована принудительная прокачка теплоносителя.
На этапе монтажных работ индивидуального отопления необходимо учесть минимальное количество изгибов в системе. Это нужно для того, чтобы уменьшить потери тепла и не снизить давление теплоносителя, подаваемого на радиаторы.
Для равномерного прогрева и рационального использования тепла, на каждой батарее монтируется вентиль. С ним можно уменьшить подачу воды или отключить ее от общей системы отопления в неиспользуемом помещении.
- В системе центрального отопления многоэтажных домов, обустроенных подачей теплоносителя по трубопроводу сверху вниз вертикально, отрегулировать радиаторы невозможно. При таком раскладе верхние этажи открывают окна из-за жары, а в помещениях нижних этажей холодно, так как там батареи еле теплые.
- Более совершенная однотрубная сеть. Здесь теплоноситель подается на каждую батарею с последующим возвращением его на центральный стояк. Поэтому заметной разницы температур в квартирах верхних и нижних этажей этих домов нет. При этом подающая труба каждого радиатора обустраивается регулирующим клапаном.
- Двухтрубная система, где монтируются два стояка, обеспечивает подачу теплоносителя на радиатор отопления и обратно. Для увеличения или уменьшения потока теплоносителя каждая батарея обустраивается отдельным клапаном с терморегулятором ручного или автоматического управления.
Типы регулировочных кранов
Существующие современные технологии теплоснабжения позволяют устанавливать на каждый радиатор специальный кран, контролирующий качество тепла. Этот регулировочный кран представляет собой теплообменник запорной арматуры, который подсоединяется с помощью труб к батарее отопления.
По принципу своей работы эти краны бывают:
- Шаровыми, которые служат в первую очередь 100% защитой от аварийных ситуаций. Эти запорные устройства, представляют собой конструкцию, которая способна поворачиваться на 90 градусов, и может пропускать воду или препятствовать прохождению теплоносителя.
Шаровый кран нельзя оставлять в полуоткрытом состоянии, так как в этом случае может повредиться уплотнительное кольцо и образоваться течь.
- Стандартными, где нет никакой шкалы температур. Их представляют традиционные бюджетные вентили. Они не дают абсолютной точности регулировки. Частично перекрывая доступ теплоносителя в радиатор, они изменяют температуру в квартире на неопределенное значение.
- С термической головкой, которые позволяют регулировать и контролировать параметры системы отопления. Такие терморегуляторы бывают автоматическими и механическими.
Обычный терморегулятор прямого действия
Терморегулятор прямого действия представляет собой простое устройство для контроля температуры в радиаторе отопления, который устанавливается возле него. По своей конструкции – это герметичный цилиндр, в который вставлен сифон со специальной жидкостью или газом, четко реагирующим на изменения температуры теплоносителя.
При ее повышении жидкость или газ расширяются. Это приводит к повышению давления на шток в клапане терморегулятора. Он, в свою очередь, перемещаясь, перекрывает поток теплоносителя. При охлаждении радиатора, происходит обратный процесс.
Терморегулятор с электронным датчиком
Это устройство по принципу работы не отличается от предыдущего варианта, единственная разница – в настройках. Если в обычном терморегуляторе они выполняются вручную, то электронный датчик в этом не нуждается.
Здесь заранее устанавливается температура, а датчик следит за ее поддержанием в заданных пределах. Контрольные параметры температуры воздуха электронный термостатический датчик регулирует в пределах от 6 до 26 градусов.
Пошаговая инструкция регулировки температуры
Чтобы обеспечить комфортные условия пребывания в помещении нужно выполнить некоторые основные действия.
- Изначально на каждой батарее необходимо стравить воздух до того, пока из крана струйкой не потечет вода.
- Затем необходимо отрегулировать давление в батареях.
- Для этого в первой батарее от котла нужно открыть вентиль на два оборота, на второй – на три, и далее по такой же схеме, увеличивая на каждом радиаторе количество оборотов открываемого вентиля. Таким образом, давление теплоносителя равномерно распределится по всем радиаторам. Это обеспечит ему нормальное прохождение по трубам и лучший прогрев батарей.
- В принудительной системе отопления прокачку теплоносителя, контроль рационального потребления тепла помогут осуществить регулировочные вентили.
- В проточной системе хорошо регулируют температуру, встроенные в каждую батарею терморегуляторы.
- В двухтрубной системе отопления можно контролировать не только температуру теплоносителя, но и его количество в батареях с помощью как ручной, так и автоматической систем управления.
Заключение
Сегодня для поддержания комфортной температуры в квартире, каждый радиатор системы отопления должен обустраиваться системой регулировки.
Современные терморегуляторы помогают не только поддерживать тепловой баланс внутри помещения, но и сэкономить энергозатраты на нагрев теплоносителя.
Как можно регулировать температуру батареи отопления?
В частных домах и квартирах, довольно часто возникает такое явление, как разница в уровне прогрева радиаторов, подключенных к системе отопления. Поэтому жильцы вынуждены мириться с некомфортными условиями для жизни, ведь температура в ванной комнате, может значительно отличаться от аналогичного показателя в спальне или в гостиной. Особенно характерна такая проблема для собственников, использующих автономное отопление в домах и квартирах.
Избежать распространенных проблем с системой обогрева домовладельцам поможет грамотная установка такого прибора, как регулятор для батареи отопления, который спроектирован для контроля температуры радиатора. Современные регуляторы температуры для батарей отопления представлены широким ассортиментом моделей и могут использоваться собственниками жилья для оптимизации системы отопления, снижения затрат на энергоносители и поддержания оптимального температурного режима в каждой комнате дома.
Основные виды регуляторов
Для повышения эффективности работы радиатора может использоваться регулятор температуры на батарею отопления, работающий по различным принципам. В настоящий момент насчитывается четыре основные группы регуляторов, объединяющих устройства со схожим принципом действия.
Регуляторы с запорным механизмом
Решая вопрос о том, как отрегулировать батареи отопления, собственники жилья довольно часто обращают внимание на перекрывные краны. Они отличаются доступной стоимостью, приемлемым сроком службы при условии правильной эксплуатации и при этом имеют элементарную конструкцию. Запорный регулятор батареи отопления устанавливают на радиатор и используют для контроля количества поступающего внутрь контура теплоносителя.
Простая конструкция устройства позволяет с легкостью осуществлять управление подачей теплоносителя из системы отопления.
Существует всего два рабочих положения запорных кранов. Первое положение предусматривает свободное поступление теплоносителя из системы, а второе положение полностью перекрывает поступление воды, вследствие чего циркуляция прекращается, радиатор остывает и перестает участвовать в процессе обогрева дома.
Некоторые домовладельцы, используя ручной регулятор температуры отопления на мкд, пробуют оставлять рычаг перекрывного крана в промежуточном состоянии для того, чтобы принудительно уменьшить циркуляцию теплоносителя, однако эксперты против проведения подобных экспериментов. Неправильная эксплуатация запорного крана быстро приведет к тому, что устройство выйдет из строя, а сама система отопления будет нуждаться в сложном и трудоемком ремонте.
С использованием запорных кранов регулировка батарей отопления в квартире может осуществляться на довольно примитивном уровне, поскольку требует непрерывного мониторинга со стороны владельцев и предусматривает ручное управление положениями рычага. Поэтому в настоящий момент запорные краны используются довольно редко, а собственники жилья обращают внимание на более совершенные модели регуляторов.
Вентили с ручным управлением
Плавная регулировка отопления в многоквартирном доме возможна с применением ручных вентилей, усовершенствованная конструкция которых предполагает тонкость в настройках. В отличие от запорных кранов, имеющих два положения – «Открыто»/«Закрыто», вентиль имеет возможность гибкого регулирования количества теплоносителя, поступающего в контур. Осуществляется это путем изменения внутреннего диаметра сечения в проходном канале клапана.
Ручные вентили, с помощью которых осуществляется регулировка отопления батарей, доступны в широком диапазоне моделей, отличающихся внешним видом, материалом изготовления и дизайном. Однако большинство имеют схожие конструктивные решения. Так, базовый вентиль представляет собой клапан с двумя патрубками и запорной головкой. Эти компоненты объединены рукояткой, на которой для удобства пользователей выгравирована шкала, указывающая изменения диаметра проходного отверстия.
Поворачивая рукоятку, пользователь может изменять количество теплоносителя и уровень прогрева конкретного радиатора. Хотя вентиль стоит дороже, нежели запорный регулятор на батарею отопления, в долгосрочной перспективе его приобретение более выгодно, поскольку позволяет собственникам жилья сэкономить деньги на оплате счетов за отопление. Преимущества данного типа устройств кроется в простой конструкции и элементарном использовании, а недочет заключается в необходимости ручных корректировок и периодического наблюдения за работой регулятора.
Терморегуляторы с автоматическими настройками
К третьей группе устройств относится автоматический регулировочный клапан отопления, используемый в современных системах обогрева. Данное устройство обладает рядом весомых преимуществ и значительно упрощает пользователям их обязанности, связанные с контролем температурного режима в доме, ведь регулятор автоматически задает режим работы отопительных приборов в зависимости от внешних условий.
Чтобы регулировка системы отопления многоквартирного дома с помощью автоматического устройства была возможной, в систему обогрева дома должен быть интегрирован выносной датчик температуры. Именно он будет посылать сигналы регулятору, который в автоматическом режиме произведет изменение внутреннего диаметра проходного сечения. По такому принципу действует термостатический терморегулирующий вентиль для отопления, однако в продаже имеются и более совершенные модели.
Среди них, электронный терморегулятор для батареи отопления цена которого немного выше аналогового устройства. Он оснащен встроенным датчиком температуры, микропроцессором для задачи настроек, электромеханическим реле и панелью управления. Принцип действия, по которому происходит регулировка системы отопления с помощью автоматического терморегулятора, состоит в том, что по сигналу схемы управления происходит перемещение запорной головки с помощью сердечника.
Преимуществами автоматических устройств считается то, что с их помощью можно довольно точно и удобно настраивать работу радиаторов и поэтому вопрос о том, как регулировать температуру батареи отопления для собственников жилья становится решенным.
Радиаторные термостаты
Желающим узнать, как регулировать батареи отопления с помощью радиаторных термостатов стоит сфокусировать внимание на особенностях данных приборов. Если рассмотренные выше устройства работали по принципу изменения количества теплоносителя, подаваемого в радиатор, то радиаторный регулятор температуры батареи отопления с термостатом изменяет не объем воды, а ее температуру.
Чтобы интегрировать данное устройство в контур системы отопления, потребуется наличие определенных материалов и навыков. В частности, владельцам жилья будут необходимы дополнительные куски труб и соединительная фурнитура. После того, как радиаторный термостат установлен, нужно знать о том, как отрегулировать батареи отопления в квартире с его использованием.
Для этого стоит изучить принцип действия устройства. Его конструкция довольно проста и представлена клапаном с тремя патрубками и чувствительным элементом, расположенным внутри. Внутренний термочувствительный элемент соединен с запорной головкой, а наружный корпус устройства оснащен рукоятью для возможности осуществления настроек.
Термочувствительный элемент, реагируя на действие воды в системе, может изменять свой объем, регулируя тем самым положение штока запорной головки. При этом в случае необходимости остужения воды в радиаторе, открывается канал обратной подачи, а когда теплоноситель должен быть подогрет, напротив, канал подачи воды из обратной линии перекрывается.
Особенности использования регуляторов
Некоторые эксперты рекомендуют оборудовать все батареи в доме запорными кранами. Такой шаг позволит собственникам жилья проводить ремонт системы отопления с минимальными затратами сил и времени, к тому же, при протечке определенного радиатора в системе не будет нужды в сливе теплоносителя со всего контура. Однако по желанию домовладельцев регулятор температуры радиатора батарей отопления может быть установлен в определенных комнатах.
Чаще всего, устройства устанавливают во внутренних комнатах, в которых нужен постоянный контроль над уровнем температуры.
Рекомендации по монтажу устройств
Как правило, терморегулятор на батарею отопления монтируется на входном отверстии радиатора в соответствии со схемой отопления, разработанной ранее, однако некоторые домовладельцы устанавливают устройства на выходе, стремясь снизить влияние оттока остывшей жидкости на работу регулятора.
Сам процесс монтажа довольно прост и не требует особых практических навыков. Работа по установке регуляторов мало чем отличается от процесса монтажа любой соединительной фурнитуры, используемой в системе отопления, поэтому при наличии базового оборудования и элементарных навыков обращения с ними, монтаж регуляторов можно провести довольно быстро.
Таким образом, используя в системе отопления доступные и функциональные регуляторы, можно добиться значительных результатов в вопросах экономии энергоресурсов и добиться плавного распределения тепла от отопительных приборов в доме или квартире.
Регулирование батареи отопления зависит от системы отопления, установленной в квартире. Если вы не можете это сделать самостоятельно, лучше всего пригласить специалистов, которые сделают все на высшем уровне.
Как регулировать батарею отопления?
Когда процесс установки радиатора отопления завершен и система индивидуального отопления рассчитана максимально правильно, регуляторы нужны не будут, поскольку во всех комнатах температура станет поддерживаться на одном уровне. В многоэтажках и больших старых постройках после капитальных ремонтов регуляторы бывают полезными, но их выбор зависит от многих факторов, рассмотренных ниже.
Если вы задаетесь вопросом, как регулировать батарею отопления, то должны знать, что делается это по таким причинам:
- экономия газа при отоплении. Чтобы уменьшить счет за газ, должен использоваться общедомовой счетчик тепла. В частности в квартире при использовании индивидуальной системы отопления, поддерживающей оптимальную температуру, регуляторы можно не применять. Исключение составляет старое оборудование. Тогда сэкономить удастся много;
- возможность сохранять в помещениях ту температуру, которая вам необходима. К примеру, в одной комнате вы хотите +23оС, а в другой – 15,6оС. Тогда на термоголовке нужно выставить значения или прикрыть вентиль, и получить такой теплый воздух, как вам нужен. При этом не имеет значения, какая система отопления в квартире – центральная или индивидуальная. Регуляторы с этим всем не связаны, они функционируют сами по себе.
Как отрегулировать батарею? Общие рекомендации
Возможно, вы не знаете, как отрегулировать батарею отопления в квартире. Тогда вам помогут советы, приведенные ниже. Чтобы сделать это правильно, только закрывать/открывать регулировочный кран на радиаторе недостаточно. В зависимости от количества радиаторов, присоединенных к системе, нужно открыть их определенное количество на некоторое число оборотов. К примеру, установлено четыре батареи, которые подсоединенные к центральной системе отопления. Чтобы распределить давление по ней, первая батарея открывается на несколько оборотов, следующая – на три, еще одна – на четыре и так далее. Теперь вы знаете, как регулировать батарею отопления в ручную. И, как становится понятно, сделать это легко, а ваши комнаты в квартире нагреются очень быстро до нужной вам температуры.
Ответ на вопрос, как осуществлять регулировку батарей, приобретает иной смысл, если имеется опция принудительной прокачки жидкости. Тогда на всех батареях у вас есть возможность поставить трехходовые краны. Тогда регулировать температуру в радиаторах будет не сложно. Так, чтобы значительно упростить настройку, каждая батарея должна быть оснащена специальными вентилями, позволяющими контролировать поступление тепла и рациональный расход мощностей оборудования отопления. Если в помещении жарко или оно стоит закрытым и не используется, вентиль позволяет сократить или закрыть поступление горячей воды в батарею.
Как регулировать батареи при помощи задвижки
В многоквартирных зданиях на выходе/входе из элеваторного узла отопительной системы чаще всего устанавливаются задвижки. Эти устройства в собственном корпусе имеют 2 кольца из стали, защищенной от коррозии. Они опоясывают проход для теплоносителя. Еще несколько таких колец стоят на поверхности задвижки, в частности в ее подвижной части, что очень удобно.
Дальше вы прочитаете, как регулировать температуру батареи отопления. Если заслонка расположена снизу и опускается, то она препятствует движению жидкости, а если перемещена вверх, то выходит за циркулирующий поток. Чтобы ее закрыть, пользователь должен вращать штурвал, приводящий в движение шток с винтовой нарезкой. Для горячей жидкости и отопительной системы лучше всего использовать графитовую задвижку. Ей нет альтернативы в том случае, если диаметр труб свыше 50мм.
Как отрегулировать батарею отопления в частном доме воздушниками
Типичный кран центральной отопительной системы – изделие Маевского. Это простая конструкция, изготовленная из латунного штока. Когда имеет закрытое положение, перекрывает отверстие в седле. Также нужна резьба для установки изделия в радиаторную пробку.
Как регулировать тепло в батареях, используя воздушник, описано выше. Теперь пора узнать об особенностях изделия Маевского:
- надежность, ремонт необходим достаточно редко;
- небольшая проходимость – этот вариант не подходит для многоквартирных зданий, где устанавливаются расширительные баки с верхним розливом;
- перед тем, как регулировать температуру в батарее, можно полностью выкрутить шток, хотя это требуется делать достаточно редко. Поставить его на место, преодолевая сопротивление горячей воды, еще никому не удалось;
- приобретая изделие Маевского, выбирайте продукт под отвертку, но не под ключ, который зачастую найти достаточно сложно.
Альтернатива такому крану – радиаторная рассверленная пробка или переходник, в который вкручен пробковый вентиль. В некоторых случаях используется водоразборный кран, ставящийся в перевернутом виде, то есть носом вверх. Инструкция, рассказывающая, как это сделать, поможет вам выполнить данную процедуру правильно.
Автоматическая регулировка удобна тем, что выставив температуру в комнате квартиры всего лишь раз, повернув ручку регулятора в необходимое положение, вам не нужно будет что-то менять или крутить в последствие. Температура регулируется в автоматическом режиме постоянно. Недостаток этого метода – высокая стоимость устройств. И чем выше их функциональные возможности, тем больше цена.
Если вам все еще не совсем понятно, как отрегулировать температуру батареи отопления в квартире, тогда лучше не заниматься этим делом самостоятельно, а пригласить профессионалов и доверить данную задачу им. Звоните в нашу компанию и заказывайте услугу! Можете не сомневаться, что наши сотрудники подойдут к вашему делу максимально внимательно и ответственно. Кроме того, вы можете рассчитывать на бесплатную консультацию, во время которой получите ответы на все вопросы и узнаете, как отрегулировать батареи отопления. Звоните!
Источники: http://gidotopleniya.ru/radiatory-otopleniya/kak-regulirovat-temperaturu-batarei-otoplenija-8891, http://spetsotoplenie.ru/otoplenie-mnogokvartirnyh-domov/batarei-otopleniya/kak-mozhno-regulirovat-temperaturu-batarei-otopleniya.html, http://www.omega-comfort.ru/sovety_klientam/kak-regulirovat-batarei.php
Как вам статья?
Важность контроля температуры промышленных аккумуляторов
Литий-ионные аккумуляторы находят применение во многих отраслях промышленности, где требуются мобильные источники питания.
Технология литий-ионных аккумуляторов зарекомендовала себя как не требующая особого ухода, универсальная и мощная альтернатива традиционным промышленным источникам энергии, таким как свинцово-кислотные аккумуляторы или двигатели внутреннего сгорания.
При использовании литий-ионных аккумуляторов важно помнить о температуре, как внутренней, так и внешней. Аккумуляторы могут эффективно работать при определенных рабочих температурах, поэтому очень важно понимать, как аккумулятор может работать в жарких или холодных условиях.
Несмотря на то, что литий-ионные аккумуляторы могут работать в гораздо более широком диапазоне температур по сравнению со свинцово-кислотными аккумуляторами, экстремально высокие или низкие температуры могут повлиять на работу литий-ионных аккумуляторов.
Важно понимать, как точно измерять и контролировать температуру батареи, чтобы избежать неблагоприятных последствий.
Самый простой способ измерить и контролировать внутреннюю температуру батареи — это использовать систему управления батареями (BMS), которая напрямую измеряет температуру с помощью внутренних датчиков, а затем соответствующим образом охлаждает или нагревает батарею.
Что происходит с литий-ионными батареями при низких температурах?
Как правило, литий-ионные аккумуляторы можно разряжать при температуре до -4 °F, но их плотность энергии и емкость могут снижаться при экстремально низких температурах.
При очень низких температурах ионы движутся через электролиты медленнее, что приводит к снижению емкости.
Кроме того, низкие температуры вызывают снижение скорости передачи заряда, что может затруднить зарядку аккумулятора. Самая низкая температура зарядки литий-ионного аккумулятора – 32°F.
Если аккумулятор заряжается при отрицательных температурах, это может вызвать постоянное накопление твердого электролита на границе раздела фаз (SEI) на аноде, вызывая необратимое повреждение аккумулятора.
Литий-ионные аккумуляторы в индустрии холодильных камер
Производители литий-ионных аккумуляторов смогли обойти ограничения низких температур благодаря специальной конструкции аккумуляторов, рассчитанных на низкие температуры. Батарея может быть оснащена нагревателями, которые могут поддерживать оптимальную температуру батареи в течение всей смены. Это делает литий-ионный аккумулятор одним из лучших вариантов для холодильных складов и других применений с низкими температурами.
К счастью, некоторые производители литий-ионных аккумуляторов предлагают варианты обогревателей аккумуляторных батарей для вилочных погрузчиков, специально разработанные для более низких температур, так что вы можете воспользоваться всеми преимуществами литиевой технологии, не беспокоясь о деградации.
Управляется системой управления батареями, которая измеряет внутреннюю температуру батареи и соответствующим образом регулирует ее. Интегрируя нагреватель в аккумуляторную батарею, литий-ионные батареи могут оставаться при контролируемой температуре без ухудшения характеристик батареи. Таким образом, батареи могут храниться в морозильной камере во время использования в течение всей смены.
По мере того, как литий-ионные батареи становятся все более доступными, а технология продолжает развиваться, они смогли добиться успеха в холодильных складах. Литий-ионные аккумуляторы изменили работу многих менеджеров холодовой цепи благодаря возможности зарядки по возможности и мониторингу производительности BMS.
Что происходит с литий-ионными батареями при высоких температурах?
Как правило, литий-ионные аккумуляторы можно заряжать при температуре окружающей среды до 113°F и разряжать при температуре до 140°F.
Когда речь идет о предотвращении воздействия высоких температур, следует соблюдать осторожность: даже если внешняя среда может быть достаточно прохладной, батарея все равно может нагреваться внутри при высоком токе.
Воздействие чрезвычайно высоких температур может вызвать окисление катодного электролита, что приведет к потере емкости аккумулятора. Высокие температуры могут:
- Увеличить внутреннее сопротивление батареи, что приведет к потере мощности
- Ускорение процесса старения батареи, что приводит к более быстрому износу
При неправильном обращении или неправильном изготовлении батарей высокие температуры могут даже привести к тепловому выходу из строя, что является одной из основных угроз безопасности, связанных с литий-ионными батареями.
Выберите правильный химический состав литий-ионного аккумулятора, чтобы избежать перегрева
Литий-железо-фосфатный аккумулятор — лучший выбор для промышленного применения, поскольку он может работать в широком диапазоне температур. Мало того, что он может выдерживать повышенные температуры, его температура теплового разгона намного выше, чем у других типов литий-ионных химических соединений, таких как химические соединения лития, никеля, марганца, оксида кобальта (NMC).
Хорошо спроектированный аккумулятор имеет защиту от перегрева, запрограммированную как базовую функцию безопасности его BMS.
Не все литий-ионные аккумуляторы одинаковы. Литий-железо-фосфатные батареи имеют тепловой разгон до 518°F, что является одним из самых высоких показателей, что позволяет батарее иметь высокий запас прочности и стабильности даже при воздействии экстремальных температур.
Технология литий-ионных аккумуляторов зарекомендовала себя как универсальная альтернатива свинцово-кислотным источникам питания и источникам питания внутреннего сгорания. Благодаря широкому диапазону рабочих температур литий-ионные аккумуляторы являются одним из лучших вариантов для погрузочно-разгрузочного оборудования на складах-холодильниках.
LTC1733: регулирование температуры максимально увеличивает скорость зарядки литий-ионного аккумулятора без риска перегрева
к Тревор Барсело Скачать PDF
Введение
Линейные зарядные устройства обычно меньше, проще и дешевле, чем решения на основе коммутаторов, но у них есть один существенный недостаток: чрезмерное рассеивание мощности. Когда входное напряжение высокое, а напряжение батареи низкое (разряженная батарея), линейное зарядное устройство может выделять достаточно тепла, чтобы повредить себя или другие компоненты. Как правило, такие условия носят временный характер, так как напряжение батареи повышается при ее заряде, но это наихудшие ситуации, которые необходимо учитывать при определении максимально допустимых значений зарядного тока и температуры ИС. Чтобы решить эту проблему, LTC1733 использует внутреннюю тепловую обратную связь для регулирования зарядного тока и ограничения температуры кристалла. Эта функция позволяет сократить время зарядки, поскольку разработчик может запрограммировать высокий зарядный ток (для минимизации времени зарядки) без риска повреждения LTC1733 или любых других компонентов. Кроме того, отпадает необходимость в избыточном тепловом расчете. Для дальнейшего улучшения теплопередачи микросхема LTC1733 помещена в 10-контактный корпус MSOP с улучшенными тепловыми характеристиками. Для простоты LTC1733 представляет собой законченное зарядное устройство для литий-ионных аккумуляторов, требующее всего трех внешних компонентов, как показано на рис. 1.9.0003
Рис. 1. Автономное зарядное устройство для литий-ионных аккумуляторов.
Внутренний силовой полевой МОП-транзистор позволяет запрограммировать ток заряда до 1,5 А с точностью 7%, чтобы обеспечить быструю и полную зарядку. Внутренний МОП-транзистор также устраняет необходимость во внешнем токоизмерительном резисторе или блокировочном диоде. Окончательное плавающее напряжение выбирается на 4,1 В или 4,2 В с точностью до 1%, чтобы предотвратить опасный перезаряд или снижение емкости батареи из-за недостаточного заряда.
В соответствии с рекомендациями производителей аккумуляторов, LTC1733 включает в себя программируемый таймер завершения зарядки и термисторный вход для зарядки с учетом температуры. Выходные данные состояния включают обнаружение заряда C/10, чтобы указать на состояние, близкое к концу заряда, обнаружение наличия настенного адаптера, чтобы определить, может ли зарядка продолжаться или нет, мониторинг зарядного тока для измерения уровня газа и обнаружение неисправностей для выявления неисправных элементов. Система кондиционирования при низком уровне заряда батареи (капельная зарядка) безопасно заряжает переразряженный элемент, а автоматическая перезарядка гарантирует, что батарея всегда будет полностью заряжена. Для экономии заряда батареи ток разряда батареи LTC1733 падает до уровня менее 5 мкА при отсутствии сетевого адаптера или при выключенном компоненте.
Зарядка аккумулятора
Для зарядки одноэлементной литий-ионной батареи пользователь должен подать входное напряжение (как правило, сетевой адаптер) не менее 4,5 В на контакт V CC . На выводе ACPR впоследствии будет установлен низкий уровень, чтобы указать, что условие входного напряжения выполнено. Кроме того, резистор 1% должен быть подключен от PROG к GND, чтобы запрограммировать номинальный зарядный ток на 1500 В/об PROG . Затем на выводе CHRG появится низкий уровень, указывая на то, что цикл зарядки начался. Конденсатор, подключенный между контактом TIMER и GND, запрограммирует время прекращения заряда до 3 часов на 100 нФ.
Если напряжение на контакте BAT ниже 2,48 В в начале цикла зарядки, то ток заряда будет составлять одну десятую от запрограммированного значения, чтобы безопасно поднять напряжение элемента до уровня, достаточного для обеспечения полного тока зарядки. Если элемент поврежден, а напряжение не превышает 2,48 В в течение четверти запрограммированного времени завершения, цикл зарядки будет прекращен, а выход состояния FAULT зафиксируется на низком уровне, указывая на неисправность элемента. Все три из этих выходных контактов состояния, ACPR, CHRG и FAULT, имеют достаточную токовую мощность, чтобы зажечь светодиод.
Как только напряжение батареи поднимется выше 2,48 В (что обычно происходит вскоре после начала цикла зарядки), LTC1733 подаст на батарею постоянный ток, как запрограммировано в R PROG . LTC1733 будет оставаться в режиме постоянного тока до тех пор, пока напряжение на выводе BAT не приблизится к выбранному конечному плавающему напряжению (4,1 В для SEL = 0 В и 4,2 В для SEL = V CC ). В этот момент деталь переходит в режим постоянного напряжения.
В режиме постоянного напряжения LTC1733 начинает уменьшать зарядный ток, чтобы поддерживать постоянное напряжение на выводе BAT, а не постоянный ток на выводе BAT. Когда ток падает до 10% от полного запрограммированного зарядного тока, внутренний компаратор блокирует сильное понижение напряжения на выводе CHRG и подключает источник слабого тока (около 25 мкА) к земле, чтобы указать на близкий конец заряда. зарядка (C/10) состояние.
В отличие от зарядных устройств, которые отключаются, когда ток достигает C/10, LTC1733 продолжает заряжать батарею после точки C/10, пока не истекло время отключения, чтобы гарантировать, что батарея полностью заряжена. Прекращение зарядки при C/10 может оставить аккумулятор заряженным только до 90-95% емкости, в то время как зарядка выше C/10 и прекращение по времени может зарядить аккумулятор до 100% емкости. После завершения вывод CHRG переходит в состояние высокого импеданса.
Перезарядка аккумулятора
LTC1733 может заряжать батарею, если напряжение батареи превысит 3,95 В (SEL = 0 В) или 4,05 В (SEL = V CC ) во время начального цикла зарядки. После превышения этих пороговых значений начинается новый цикл зарядки, если напряжение батареи падает ниже 3,9 В (SEL = 0 В) или 4,0 В (SEL = V CC ) либо из-за нагрузки на батарею, либо из-за тока саморазряда батареи. батарея. Схема перезарядки интегрирует напряжение на контакте BAT в течение нескольких миллисекунд, чтобы предотвратить перезапуск цикла зарядки переходными процессами. Эта функция гарантирует, что аккумулятор остается заряженным, даже если он остается подключенным к зарядному устройству в течение очень длительного периода времени.
Тепловое регулирование
Еще одной важной особенностью LTC1733 является внутренний контур терморегуляции. Если при работе с высокой мощностью и/или в условиях высокой температуры окружающей среды температура перехода LTC1733 приближается к 105°C, зарядный ток автоматически уменьшается для поддержания температуры перехода примерно на уровне 105°C (температура платы обычно остается ниже 85°C). ). Это называется режимом постоянной температуры. Эта функция позволяет пользователю программировать зарядный ток на основе типичных рабочих условий и устраняет необходимость в сложной тепловой конструкции, необходимой во многих линейных зарядных устройствах. Наихудшие условия автоматически учитываются LTC1733. Помимо защиты LTC1733, эта функция устраняет «горячие точки» на плате, тем самым защищая окружающие компоненты. Функции отключения при перегреве других зарядных устройств просто отключают зарядное устройство при очень высоких температурах (как правило, свыше 130°C). Этот тип выключения на основе температуры перехода позволяет зарядному устройству батареи и окружающей плате сильно нагреваться, поэтому, несмотря на то, что существует «защита» отключения, приложение должно быть тщательно разработано, чтобы избежать достижения температуры отключения при перегреве во всех сценариях. LTC1733 упрощает тепловой расчет за счет автоматического баланса зарядного тока, рассеиваемой мощности и рабочей температуры.
Для дальнейшего улучшения тепловых характеристик микросхемы LTC1733 она помещена в 10-контактный корпус MSOP с улучшенными тепловыми характеристиками. Прикладная плата, изображенная на рис. 2, занимает всего 76 мм 2 места на плате и может рассеивать более 2 Вт мощности при комнатной температуре. Это соответствует максимальному току заряда около 1,5 А при входном напряжении 5 В. Это предполагает, что литий-ионный аккумулятор большую часть времени проводит при напряжении 3,7 В во время зарядки. На самом деле это консервативное предположение, поскольку типичная литий-ионная батарея поднимается выше 3,8 В в течение первых нескольких минут зарядки. Мощные тепловые характеристики LTC1733 и 7% точность запрограммированного зарядного тока позволяют очень быстро и точно заряжать одноэлементные литий-ионные аккумуляторы.
Рис. 2. Полнофункциональное зарядное устройство Li-Ion с одним аккумулятором.
PROG Текущий монитор
При измерении расхода газа вывод PROG предоставляет очень точную информацию о токе, вытекающем из вывода BAT. Связь задается:
В режиме постоянного тока напряжение на выводе PROG всегда равно 1,5 В, что указывает на то, что запрограммированный зарядный ток вытекает из вывода BAT. В режиме постоянной температуры или постоянного напряжения ток на выводе BAT уменьшается и может быть определен путем измерения напряжения на выводе PROG и применения приведенной выше формулы. Вывод PROG вместе с тремя выходами состояния с открытым стоком (ACPR, CHRG и FAULT) постоянно информирует пользователя о том, что делает LTC1733.
Термистор NTC
В дополнение к программируемому таймеру и квалификации низкого заряда батареи, LTC1733 добавляет зарядку с температурной квалификацией в список рекомендуемых производителем функций безопасности. Температура батареи измеряется путем размещения термистора с отрицательным температурным коэффициентом (NTC) рядом с аккумуляторной батареей. Используя схему, показанную на рис. 3, LTC1733 может временно приостанавливать работу внутреннего таймера и прекращать зарядку, когда температура батареи падает ниже 0°C или поднимается выше 50°C. Для выполнения этой функции R HOT должно быть выбрано как значение выбранного термистора NTC при 50°C. Это гарантирует, что точка срабатывания внутреннего компаратора 1/2 В CC соответствует температуре NTC 50°C. Кроме того, выбранный термистор NTC должен иметь значение при 0°C, которое как можно ближе к семикратному значению при 50°C. Соотношение холодного и горячего NTC 7:1 гарантирует, что точка срабатывания внутреннего компаратора 7/8V CC соответствует температуре NTC 0°C. Горячий и холодный компараторы имеют гистерезис приблизительно 2°C для предотвращения колебаний относительно точки срабатывания. Кроме того, функцию NTC можно отключить без каких-либо внешних компонентов, просто заземлив контакт NTC.
Рис. 3. Схема оценки температуры.
Заключение
LTC1733 — это полнофункциональное автономное зарядное устройство для литий-ионных аккумуляторов. В своей простейшей форме LTC1733 требует только трех внешних компонентов и может безопасно и точно заряжать аккумуляторы большой емкости очень быстро с током заряда до 1,5 А. Можно добавить термистор NTC и несколько светодиодов, чтобы воспользоваться преимуществами функций безопасности и состояния.
Автор
Тревор Барсело
Тревор Барсело имеет более чем 15-летний опыт работы в Linear Technology в качестве инженера-проектировщика аналоговых интегральных схем, менеджера по дизайну и менеджера линейки продуктов.