Конденсатор с 4 выводами как подключить: Конденсатор с 4 выводами как подключить

Подключение трехфазного двигателя к однофазной сети

Процедура подключения однофазного асинхронного электромотора к электросети предельно просто. Перед домашним мастером стоит выбор из следующих способов подсоединения:

  • Подключение по схеме с 4 выводами. Каждая из катушек электромотора имеет 2 контакта. У рабочей обмотки показатель сопротивления самый низкий, как правило он составляет 10-17 ом. У пусковой обмотки сопротивление большее значение, как правило 20-30 Ом.
  • Схема с 3 выводами. Обмотки катушек соединяются последовательно, то есть, как и в вышеописанном варианте, обмоток по-прежнему 2, но один из токопроводов каждой из них соединен с кабелем другой.
Теория

Для начала вращения вала должны быть соблюдены следующие условия:

Полюса катушек должны быть смещены между собой на 90 градусов. Это оптимальное расположение для старта вращения нагруженного вала. Однако после старта и увеличения частоты вращения такое взаимное положение катушек оказывает отрицательное влияние на технических параметрах электродвигателя.
Полюса взаимно смещены как во времени, так и в пространстве. Каждый из циклов переменного тока, которое протекает в одной из обмоток, отстает от цикла переменного напряжения, который одновременно протекает в другой.

Знакомый с электротехникой домашний мастер найдет в этих условиях противоречие. Как это реализовать технически, если электромотор подключен к однофазной сети?

Если подходить с технической стороны электромеханики, возникшее противоречие легко устранимо, а кажущаяся несовместимость требований обусловлена лишь словоизлиянием. На самом деле, говорилось о 2 фазах, которые были получены от одного источника электрического тока.

Старт вращения всегда было «ахиллесовой пятой» однофазных асинхронных электродвигателей. Теория нам говорит, что равные по модулю и противоположно направленные магнитные потоки, возникающие на полюсах с различным зарядом, должны взаимно уравновешиваться. Поэтому, не взирая на возбужденное состояние катушек, старта вращения не произойдет.

Однако практика противоречит теоретическим выкладкам. Каждому электромонтеру хорошо известна ситуация, когда при подаче напряжения на рабочую обмотку, электродвигатель начинал работу без какого-либо постороннего вмешательства.

Для чего необходим рабочий конденсатор

При работе электромотора без нагрузки, не имеет значения, включена ли какая-либо емкость в электрическую цепь рабочей обмотки. Однако при появлении нагрузки на валу ситуация изменяется. Включение рабочего конденсатора позволяет уменьшить влияние принудительной задержки смещения магнитного поля, что дает возможность повысить КПД электромотора.

При самостоятельном подключении электромотора к электросети, как правило, на его КПД мало обращают внимания из-за различных показателей максимально фиксированной нагрузки, минимальных затратах на возросшее потребление электротока и относительно непродолжительной работы механизма.

Если вы внимательно прочли начало статьи, то понимаете, почему для временного изменения положения фаз тока (напряжения), единовременно протекающего в 2 обмотках электромотора используется конденсатор, а не иной фазосдвигающий узел, к примеру, катушка индуктивности.

Электродвигатели, в большинстве случаев, стартуют с той или иной нагрузкой. В таких случаях, при начале вращения форма магнитного поля, которое создается катушками искажается и приобретает форму овала. Это уменьшает пусковой момент. Для ликвидации ухудшения параметров электромотора лучше использовать конденсатор.

Для определения емкости конденсатора необходимо подставить в формулу технические параметры электромотора, в том числе и весьма специфические, к примеру, коэффициент трансформации каждой из статорных обмоток.

В среднем, емкость конденсатора равна 4 мкФ на 100 Вт электродвигателя, а емкость пускового конденсатора равна 2 – 3 емкостям рабочего. Для рабочего и пускового конденсаторов показатели номинального напряжения равны 350 – 600 В.

Вы можете столкнуться с ситуацией, когда на информационной табличке, расположенной на корпусе электромотора, нанесен недостаточный объем информации. Вместе с тем, некоторые производители указывают в табличке и параметры требуемого для работы электродвигателя конденсатора.

Подсоединение однофазного асинхронного электромотора к электросети

Особенность подключения заключается в соблюдении двух условий: после подсоединения электромотора к электрическому источнику питания, напряжение на рабочие обмотки должно подаваться непрерывно, а подача напряжения на пусковую катушку должно осуществляться лишь в течение короткого периода (до 10 секунд) и через фазосдвигающий конденсатор.

Для того, чтобы этого добиться, не нужно сооружать сложную электроцепь. Вам достаточно двух переключателей, у одного из которых если 2 фиксированных положения тумблера (для рабочего переключателя) и один переключатель без фиксированного положения тумблера (для запуска электромотора).

Однако можно избежать включения в электроцепь нескольких переключателей, если воспользоваться специально предназначенными коммутирующими устройствами.

В конструкции таких механизмах, к примеру, ПНВС-10, нет чего-то «хитрого», за исключением одной особенности. При активации клавиши «Пуск» происходит замыкание всех трех пар контактов. После возвращения кнопки в исходное положение, средняя пара контактов размыкается, а две крайних – остаются замкнутыми. Активация клавиши «Стоп» размыкает все контакты.

Теперь осталось подключить пусковую катушку к крайним контактам электросети, а также к средней и боковой клемме клавиши.

Простота и элегантность подключения однофазного асинхронного электромотора свидетельствует о его продуманности и надежности.

Подключения трехфазного двигателя к однофазной сети

Для подключения трехфазного двигателя к однофазной сети нам понадобится фазосдвигающий конденсатор. На схеме будем обозначать его Ср – рабочая емкость.

Для нормального запуска двигателя нужен конденсатор с одной емкостью, а при выходе двигателя на рабочие обороты другая емкость. Такой дополнительный конденсатор будем называть пусковым, на схеме обозначается как Сп. Также следует знать, что пусковая емкость как правило в 1,5 раза больше рабочей. При работе двигателя на холостом ходу через конденсатор протекает ток на 20-40% больше номинального, по этому рабочая емкость должна быть меньше пусковой.

Схема включения трехфазного двигателя с реверсом

Ниже представлена схема включения трехфазного двигателя в сеть 220В с реверсом. При нажатии на переключатель В1 направление вращения будет меняться

Расчет рабочей емкости для запуска двигателя

При схеме включения двигателя «Звезда»

Ср=2800 I/U

При схеме включения двигателя «Треугольник»

Ср=4800 I/U

Также для данной схему включения существует упрощенная формула

C = 70*Pдв

где Pдв — номинальная мощность электродвигателя в кВт. То есть на каждые 100 Вт мощности двигателя нужен гасящий конденсатор примерно на 7 мкФ.

При расчетах получаем значение емкости в микрофарадах.

Если ток потребления двигателем нам не известен, то нужно воспользоваться данными с таблички расположенной на двигателе. Там должна быть указана его мощность в ватах, его КПД, коэффициент мощности и рабочее напряжение. Далее предлагаю воспользоваться формулой.

I=P/(1.73Uη cos⁡φ )

Где — коэффициент мощности

Выбор элементов

Конденсаторы нужны обязательно бумажные типа МБГО, МБГП или полипропиленовые  типа СВВ. Их рабочее напряжение должно быть в 1,5-2 раза больше сетевого напряжения.

Если не удается найти конденсатор нужной нам емкости можно составить конденсатор из нескольких. Для этого нам потребуются конденсаторы емкость которых в сумме составляет нужное нам значение.

Напомню что при параллельном включении конденсатора их емкость складывается.

А при последовательном их  емкость рассчитывается по формуле.

Если конденсатора всего два то Собщ=(С1*С2)/(С1+С2)
Если конденсаторов более двух то 1/Собщ=1/С1+1/С2+....+1/Сn
Эксплуатация асинхронного двигателя в сети 220В.

При остановке двигателя или сильного замедления в результате перегрузки следует подключить пусковой конденсатор до набора оборотов.

Также следует учитывать, что мощность трехфазного двигателя при подключении в сеть с одной фазой может падать до 50%.

Разводка питания и развязка по питанию для печатных плат

Услуги

» Услуги » Разработка печатных плат » Разводка питания и развязка по питанию для печатных плат

Хорошие способы развязки позволяют сократить количество развязывающих конденсаторов.
Главным является правильный выбор конденсаторов и грамотная разводка.

1. ТОКИ ПЕРЕКЛЮЧЕНИЯ ЛОГИЧЕСКИХ КОМПОНЕНТОВ

Не секрет, что при смене логических состояний у большинства цифровых устройств возникает большой бросок тока, который следует сразу за фронтом тактового сигнала (рис. 1).

Например, схеме, работающей на частоте 100 МГц и потребляющей в среднем около 4 А, реально может потребоваться 20 А тока в течение первых нескольких наносекунд тактовой последовательности. (Причина возникновения больших токов при смене логических состояний рассмотрена в статье Б. Картера «Техника разводки печатных плат»)
Очевидно, что питание этой схемы от 20-амперного источника увеличит размеры и стоимость изделия. Менее очевидно, что паразитные последовательные индуктивности соединительных проводов, проводников печатной платы и выводов компонентов могут сделать невозможным быструю ответную реакцию мощного источника питания на мгновенные изменения тока. С другой стороны, недостаточная нагрузочная способность источника будет приводить к возникновению нестабильных падений напряжений на шинах питания и земли. Это явление обычно проявляется как высокочастотный шум.

2. ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ В КАЧЕСТВЕ ЭЛЕМЕНТОВ РАЗВЯЗКИ ПИТАНИЯ
 
Применение развязывающих конденсаторов позволяет распределить рабочий ток между потребителями, используя низкоимпедансные (т.е. низкоиндуктивные для токов ВЧ) пути прохождения тока. Практически это означает, что развязывающие конденсаторы непосредственно обслуживают цифровые компоненты, в то время как источник питания занимается их перезарядом. Ключом к созданию работоспособной и удачной схемы развязки является правильный выбор применяемых конденсаторов и правильная разводка цепей их подключения.

Использование конденсаторов в качестве элементов развязки требует понимания основ их работы. На рисунке 2а показан идеальный конденсатор — емкость для накопления и хранения заряда и для освобождения от него. На рисунке 3 приведена частотная зависимость импеданса идеального конденсатора — монотонное уменьшение значения при увеличении частоты. Поскольку основной шум цифровых систем является высокочастотным шумом (>50 МГц), уменьшение импеданса на высоких частотах хорошо соответствует задаче развязки цепей питания.

К сожалению, поведение реального конденсатора не такое простое; его модель показана на рисунке 2б. Физическое устройство реального конденсатора включает в себя эквивалентное последовательное сопротивление (ESR) и эквивалентную последовательную индуктивность (ESL). К тому же, реальный конденсатор обладает сопротивлением утечки. Сумма этих паразитных эффектов приводит к изменению характера частотной зависимости импеданса (рис. 3).

Низшая точка импедансной зависимости известна как частота собственного резонанса. Разработчики часто пытаются подобрать конденсаторы с собственной резонансной частотой, находящейся близко от рабочей частоты системы. Однако, параметры реальных конденсаторов делают этот подбор нецелесообразным при тактовой частоте, превышающей 100 МГц. Важное правило, которое следует помнить: развязывающие конденсаторы допустимо использовать на частотах более низких, чем частота их собственного резонанса, до тех пор, пока их импеданс на этих частотах остается достаточно низким.

Падение напряжения на эквивалентном последовательном сопротивлении конденсатора пропорционально протекающему через него току. Поскольку важным является поддержание питающего напряжения стабильным, желательным является использование в цепях развязки конденсаторов с малым ESR (т.е. с меньшим, чем 200 мОм). Эквивалентная последовательная индуктивность определяет скорость реагирования конденсатора на изменения тока — конденсаторы с более низким значением ESL будут реагировать более быстро на изменения протекающего тока, что очень важно для цепей высокочастотной развязки.

Несмотря на то, что, как параметр ESR более широко описан и изучен, ESL, наверное, более важен. Все конденсаторы для поверхностного монтажа, приведенные в таблице 1, обладают достаточно низкими значениями ESL. 

Эквивалентное сопротивление и индуктивность конденсаторов
Типоразмер ESL min (нГн) ESL max (нГн)
0402 0,54 1,90
0603 0,54 1,95
0805 0,70 1,94
1206 1,37 2,26
1210 0,61 1,55
1812 0,91 2,25
с радиальными выводами 6,0 15,0
с осевыми выводами 12,0 20,0

Конденсаторы с материалом типа I в качестве диэлектрика не ухудшают свои характеристики от времени и воздействия температуры, но малое значение диэлектрической постоянной делает их использование в качестве компонентов развязки неэффективным. Конденсаторы с материалом II типа (т.е. X7R) являются более хорошим выбором из-за хорошей долговременной стабильности (10% потерь в течение 10 лет), температурных характеристик и высокого значения диэлектрической постоянной. Материал типа III обладает наивысшим значением диэлектрической постоянной и плохими температурными показателями (от 50 до 75% потерь при работе на предельных температурах) и плохой долговременной стабильностью (20% потерь в течение 10 лет). Среди популярных диэлектриков многослойная керамика и синтетика обладают небольшими эквивалентными последовательными индуктивностью и сопротивлением. Керамические конденсаторы более легко доставаемы. Танталовые конденсаторы часто используются как общие элементы развязки по низкой частоте, однако они не подходят для локальной развязки.

В таблице 1 показаны типичные значения ESL для различных типов корпусов конденсаторов. Типоразмер является определяющим элементом эквивалентной последовательной индуктивности — обычно конденсатор меньшего размера обладает меньшим значением ESL при таком же значении емкости.

Конденсаторы с большими значениями ESL не годятся для использования в качестве элементов развязки.

В общем случае, правильной стратегией является поиск конденсатора с наибольшей емкостью при наименьших габаритных размерах (это верно лишь с точки зрения ESL, но не всегда правильно с точки зрения другого важнейшего параметра конденсаторов — диэлектрической абсорбции — прим. переводчика). Однако при таком выборе необходимо быть внимательным. Высота корпуса конденсатора в достаточно значительной мере оказывает влияние на ESL. Для перекрывающихся диапазонов ESL в таблице 1 возможен выбор корпуса с меньшим посадочным местом на печатной плате. Однако значение ESL может оказаться большим. Поэтому при выборе типа конденсатора необходимо руководствоваться параметрами производителя для определения лучшего компромиссного варианта.
 
3. ИНДУКТИВНОСТЬ ПРОВОДНИКА

 
При разводке компонентов и цепей основным препятствием хорошей развязки является индуктивность. С весьма грубыми приближениями можно считать, что индуктивность трассы с волновым сопротивлением 50 Ом на материале FR-4 будет составлять около 9 пГн на каждые 0,025 мм длины. Индуктивность одиночного переходного отверстия примерно равняется 500 пГн и зависит от геометрической конфигурации.

Индуктивность пропорциональна длине, поэтому важно минимизировать длину проводника между выводами компонента и развязывающего конденсатора. Индуктивность обратно пропорциональна ширине трассы, поэтому широкие проводники более предпочтительны, чем узкие.
Помните, что путь тока всегда представляет собой петлю, и эта петля должна быть минимизирована. Уменьшение расстояния между выводом питания компонента и выводом конденсатора может и не уменьшить общую индуктивность. Как правильно расположить конденсатор? Ближе к выводу питания компонента? Или ближе к выводу земли? Или посередине между этими выводами? Некоторые источники рекомендуют располагать конденсатор вблизи от вывода, наиболее удаленного от полигона питания или земли.

4. ВАРИАНТЫ РАЗВОДКИ КОНДЕНСАТОРОВ РАЗВЯЗКИ
 
Хорошая разводка чрезвычайно важна для эффективной работы цепей развязки. Как видно из таблицы 1, конденсаторы со значением эффективной последовательной индуктивности менее 1 нГн вполне доступны. Добавление всего лишь 2 нГн утроит значение ESL конденсатора. Рисунок 4 демонстрирует изменение частоты собственного резонанса и увеличение интегрального реактивного сопротивления при добавлении индуктивности проводника в 2 нГн к собственной индуктивности (0,8 нГн) конденсатора емкостью 4,7 нФ.

На рисунке 5 показано несколько методов размещения и подключения конденсатора развязки. Для упрощения на схемах показаны лишь выводы конденсатора и вывод питания активного компонента. Соединению между выводом конденсатора и общим выводом питания компонента также должно быть уделено значительное внимание.

На рисунке 5A показана наиболее часто встречающаяся конфигурация разводки. Вывод питания компонента подключен коротким проводником к шине питания во внутреннем слое через переходное отверстие. Конденсатор развязки, расположенный на другой стороне платы, подключен к этому же переходному отверстию. Несмотря на то, что такой подход часто обусловливается простотой разводки, он позволяет эффективно работать цепям развязки и экономит пространство разводки. Два одиночных отверстия добавят в цепь развязки около 1 нГн паразитной индуктивности.

Если конденсатор расположен на расстоянии 50 мил (1,27 мм) от вывода компонента, то добавляемая индуктивность в лучшем случае составит около 0,9 нГн. При более удаленном размещении конденсатора от активного компонента проводники будут более длинными, а паразитная индуктивность будет иметь большее значение.
 
Вариант B представляет собой значительное улучшение варианта A с размещением конденсатора развязки и активного компонента на одной стороне печатной платы. Конденсатор подключен после паразитной индуктивности переходного отверстия. При достаточно коротких проводниках схема развязки вносит дополнительно менее 1 нГн паразитной индуктивности.

Вариант D представляет собой развитие варианта A — для уменьшения собственной индуктивности и увеличения распределенной емкости проводники сделаны шире, что также улучшает характеристики цепи развязки.

Вариант E — модификация варианта B с более широкими проводниками и более хорошими характеристиками.

На первый взгляд кажется, что вариант C совершенно не подходит для разводки цепей развязки, поскольку нет проводников, напрямую подключающих активный компонент к конденсатору развязки; фактически они оба подключены через отверстия к полигонам питания и земли, которые расположены во внутренних слоях. При четырех отверстиях к цепям развязки добавится минимум 2 нГн паразитной индуктивности. Однако очень широкие проводники питания и земли практически не будут добавлять индуктивности при не очень большой длине. Такой вариант разводки пригоден, когда конденсатор развязки не может быть размещен достаточно близко к активному компоненту.

Вариант F — улучшение варианта C добавлением дополнительных параллельных отверстий. Такое добавление приводит к уменьшению паразитной индуктивности переходных отверстий в два раза, позволяет улучшить качественные характеристики схемы и должно использоваться всякий раз, когда позволяет место.

5. ПРИМЕНЕНИЕ СОСТАВНЫХ КОНДЕНСАТОРОВ
 
Поскольку емкости при параллельном соединении суммируются, а результирующая индуктивность уменьшается, то параллельное соединение двух небольших конденсаторов с одинаковыми значениями емкости может привести к качественному выигрышу, по сравнению с применением одного большого конденсатора. Конечным результатом будет такая же емкость развязки и меньшая паразитная эквивалентная последовательная индуктивность.

На практике обычно избегают использования конденсаторов с разными значениями емкостей для создания локальной развязки. Составные конденсаторы с разными емкостями обладают частотной зависимостью импеданса, складывающейся из частотных зависимостей импедансов отдельных конденсаторов. Пример показан на рисунке 6.

Конденсатор емкостью 47 нФ используется для развязки низких частот, а конденсатор емкостью 150 пФ — для высоких. На первый взгляд, можно предположить, что параллельное соединение этих конденсаторов позволит улучшить импедансную характеристику.

К сожалению, это не так. Такое соединение может породить существенные проблемы на частотах, находящихся между собственными резонансными частотами конденсаторов. На рисунке 7 видно, что комбинация двух конденсаторов создает антирезонансный пик (а, следовательно, повышенное сопротивление) на суммарной частотной характеристике.

Источник данной проблемы легко определяется при рассмотрении эквивалентной схемы, показанной на рисунке 8. Результатом соединения паразитных компонентов конденсаторов является классический резонансный контур.

Тем не менее, составные конденсаторы, используемые в качестве элементов развязки, достаточно широко используются в прецизионных схемах. В этом случае к выбору конденсаторов необходимо подходить с большой тщательностью, моделируя схемы, включающие все паразитные компоненты.
 

Joe Thompson
Decoupling Strategies for PCBs
PCD&M, October 2003

Благодарим сайт elart.narod.ru за предоставленный перевод

Подробнее

Выполнение профессиональной разводки печатных плат в Москве и Санкт-Петербурге.

    Помогите понять проводку конденсатора

    Задавать вопрос

    спросил

    Изменено 2 месяца назад

    Просмотрено 676 раз

    \$\начало группы\$

    Я просто хотел перепроверить свое понимание диаграммы, так как, на мой взгляд, «визуальные подсказки», связанные с тем, как нарисована крышка, кажутся противоречащими фактическим инструкциям диаграммы.

    Если бы у этого конденсатора было только 2 разъема, было бы правильно соединить нейтральный (черный) вывод с нейтральным (черным) проводом?

    С логической точки зрения я бы получил одно соединение, соединяющее нейтральный черный, нейтральную клемму и конденсатор с 1 ножкой конденсатора, а конденсатор/серый провод с другой ножкой?

    Еще один, более простой способ задать этот вопрос: должны ли все черные провода быть соединены вместе на одной клемме, а серые — на другой?

    Предполагая, что аэратор представляет собой стандартный однофазный двигатель переменного тока, если соединение защищено предохранителем (и на нем есть УЗО), и если проводка проложена неправильно, то при включении двигателя просто сработает предохранитель или повредить двигатель или конденсатор?

    На изображении конденсатора ниже 2 контакта слева соединены вместе, а 2 справа. (Мне кажется, что это 90 градусов как показано на схеме)

    • конденсатор
    • проводка
    \$\конечная группа\$

    1

    \$\начало группы\$

    Похоже, это то, что у вас есть. Пока у вас есть конденсатор последовательно хотя бы с одной обмоткой двигателя, вы ничего не повредите. Если вы посмотрите на верхние клеммы конденсатора, то увидите, что они образуют небольшую клеммную колодку с каждой стороны. Это часто используется как способ устранения необходимости в дополнительных разъемах. В вашем случае похоже, что это делается на нейтральной стороне. Будьте осторожны при работе с сетевым питанием. Безопасность — ваш друг.

    смоделируйте эту схему — схема создана с помощью CircuitLab

    \$\конечная группа\$

    1

    Зарегистрируйтесь или войдите в систему

    Зарегистрируйтесь с помощью Google

    Зарегистрироваться через Facebook

    Зарегистрируйтесь, используя адрес электронной почты и пароль

    Опубликовать как гость

    Электронная почта

    Требуется, но никогда не отображается

    Опубликовать как гость

    Электронная почта

    Требуется, но не отображается

    Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.

    Схема подключения конденсатора насоса для бассейна

    — подробное руководство

    , Charles Clark Оставить комментарий

    Конденсатор насоса бассейна, похожий на автомобильный аккумулятор, используется для запуска насоса бассейна. В насосе для бассейна можно найти два конденсатора. Насос запускается одним из них, который расположен сзади. Пусковой конденсатор так называется.

    Другой конденсатор, известный как рабочий конденсатор, расположен сверху. Срок службы пусковых конденсаторов ограничен примерно 5000 пусков насоса. С другой стороны, рабочие конденсаторы служат дольше, чем пусковые.

    Схема подключения конденсатора насоса бассейна

    Расположение конденсатора насоса бассейна показано на этой схеме. Мы уже обсуждали два типа конденсаторов в насосе для бассейна: пусковой конденсатор и рабочий конденсатор.

    Конденсатор позволяет насосу бассейна достичь рабочей скорости перед переключением на новый источник питания. И из двух конденсаторов рабочий конденсатор имеет более длительный срок службы, чем пусковой.

    Как подключить конденсатор насоса для бассейна

    Конденсатор обычно имеет две клеммы. И к этим двум клеммам подключаются два провода. Какой провод будет входить в какую клемму, которая не фиксируется. Потому что полярность в конденсаторе не имеет большого значения.

    Конденсатор может иметь до четырех выводов. Но в таком сценарии пара терминалов такая же, и другая пара такая же. При подключении мы можем использовать любую из клемм из двух клемм пары.

    Конденсатор насоса для бассейна обычно имеет размер 20 микрофарад. Это может быть всего 40 мкФ. При замене конденсатора насоса для бассейна самое главное помнить, что новый конденсатор должен быть того же размера, что и старый.

    Прежде чем подключить конденсатор насоса для бассейна, мы должны убедиться, что в конденсаторе нет заряда. В противном случае безопасность пользователя может быть поставлена ​​под угрозу.

    Какой провод куда идет на конденсаторе

    Общий вывод на стороне нагрузки контактора агрегата к проводному выводу на «общем» проводе реле пускового конденсатора, обычно это черный провод. Эта клемма контактора соединена с проводами, подключенными к общей клемме двигателя, которая на электрической схеме обозначена буквой «C» или «COM».

    Провод «Рабочий» от реле пускового конденсатора к клемме «HERM» на рабочем конденсаторе. Это соединение рабочего конденсатора связано с проводом, прикрепленным к пусковой клемме двигателя, которая на электрической схеме обозначена буквой «S».

    Как проверить, исправен ли конденсатор насоса для бассейна

    Сначала осмотрите компоненты насоса для бассейна. Перед началом диагностики отключите все электричество и обесточьте все выключатели. Начните с осмотра крыльчатки и вала двигателя, чтобы убедиться, что они свободно вращаются. Это исключит коррозию между ротором и статором, а также что-то тяжелое, застрявшее в крыльчатке.

    Далее оцените внешний вид конденсатора. Вы можете предположить, что он неисправен, если он вздут, сломан или иным образом поврежден. Проверьте конденсатор на наличие ослабленных, скрученных или оборванных проводов, ржавых клемм или обгоревших маркировок.

    Причины выхода из строя конденсатора насоса для бассейна

    • Если конденсатор заменить неправильным, произойдет отказ. Например, чтобы заменить неисправный конденсатор на 20 мкФ, мы должны использовать конденсатор на 20 мкФ. Отказ произойдет, если мы используем конденсатор на 40 мкФ.
    • Когда двигатель работает с небольшой нагрузкой или нагревается, это может привести к чрезмерному напряжению на конденсаторе, что может привести к отказу. Из-за ограничений, таких как утечка воздуха, может возникнуть небольшая нагрузка или перегрев.
    • Конденсатор неисправен с самого начала, либо из-за некачественной партии, либо из-за неправильного обращения перед установкой.

    Можно ли запустить насос без конденсатора

    Без конденсатора двигатель будет работать идеально.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *