Корректор коэффициента мощности своими руками
Приветствую, Самоделкины!Сейчас мы вместе с Романом, автором YouTube канала «Open Frime TV», соберем очень интересное устройство, а называется оно корректор коэффициента мощности, сокращенно ККМ.
Все началось с того, что в сети у автора стало проваливаться напряжение до 150В и это создавало ряд проблем. Но самое главное из них было то, что рабочий компьютер попросту не хотел включаться, а он, к сведению, был включен через стабилизатор напряжения.
Данную проблему надо решать, но как? Первая идея была собрать обыкновенный повышающий блок питания со стабилизацией и просто подключить его на вход компьютерного блока. В принципе, автор так и хотел сделать и даже уже начал готовить печатную плату, но потом поговорил с одним умным человеком, и он посоветовал сделать корректор коэффициента мощности. Идея хорошая, но перекопав интернет в поисках информации, к сожалению, ничего не было найдено. На всеми любимом Ютубе были только объяснения как это работает, но ни одного готового решения. А в Гугле автор нашел всего пару статей, из которых и подчерпнул нужную информацию, и теперь готов ею поделиться.
Есть 2 ситуации:
1) На выходе нету нагрузки. В таком случае в начальный момент времени конденсатор заряжается до амплитудного значения сети. А так как ему некуда девать энергию, то на выходе будет прямая линия.
2) Вторая ситуация: подключили нагрузку, а точнее наш импульсник. В таком случае в начальный момент времени кондер зарядился до амплитудного значения, а когда полуволна синусоиды пошла на спад, кондёр начал разряжаться через нагрузку, но разряжается он не до нуля, а до определенного значения. Потом идет новая полуволна и кондёр опять подзаряжается.
В итоге получается такая ситуация, что кондер подзаряжается только маленький промежуток времени. Именно в этот момент идет максимальный бросок тока, который превышает номинальный в несколько раз. Как вы уже догадались — это плохо. Какой же выход из данной ситуации? Все очень просто. Необходимо поставить повышающий преобразователь, который будет подзаряжать кондер почти на всем участке полуволны.
Этот преобразователь и есть наш корректор коэффициента мощности. Каким же образом это работает? Грубо говоря, он разбивает всю полуволну на мелкие участки, которые соответствуют частоте его работы, и на каждом участке повышает напряжение до заданной величины.
Таким образом заряд основного конденсатора происходит всю полуволну, тем самым убирая броски тока, и наш импульсник выглядит для сети, как чисто активная нагрузка.
Также есть и другая особенность корректора, это то, что он может нормально работать даже при входящем напряжение 90 В. Ему то все равно нужно повышать напряжение, будь оно с амплитудой 310 В или же в 150 В.
Отлично, мы вкратце ознакомились с принципом работы данного устройства, а теперь давайте перейдем к рассмотрению схемы.
Она взята из даташита, ничего своего автор в нее не вносил. Как видим, элементов немного, это хорошо, легче будет развести печатную плату.
Также стоит рассмотреть важные моменты схемы: первое — некоторые номиналы элементов будут отличаться для разных мощностей, это нужно учитывать; второе — это выходное напряжение. Если вы делаете ККМ для комповского блока питания, то нужно выбирать напряжение в 310В. А если рассчитываете блок с нуля, то лучше взять напряжение в районе 380В.
Величину выходного напряжения регулируют делителем напряжения на вот этих резисторах:
Из такого расчета, чтобы при номинальном выходном напряжении на делителе было 2,5В. Как уже было сказано раньше, для разных мощностей нужны разные элементы. Для мощности в 100Вт нужен транзистор 10n60, а для 300Вт уже 28n60. Но лучше взять с запасом 35n60, такой точно выдержит нужную нагрузку.
Идем дальше. Диод.
Это должен быть ultrafast на напряжение не менее 600В и ток 5 и выше ампер. Важную роль тут играет выходной конденсатор. Грубо его можно рассчитать из соображений, 1мкФ на 1Вт выходной мощности.
Остался дроссель, его намотку рассмотрим позже.
Переходим к печатной плате. Она получилась немаленькой, но это все из-за больших размеров конденсатора и дросселя.
Как видим, автор развел плату без единой перемычки и все на вводных деталях для удобства повторения. Больше про печатку сказать ничего, идем травить плату.
Вытравили плату, просверлили отверстия на сверлильном станке и теперь приступаем к запаиванию запчастей.
Единственное, для теста автор заменил транзистор 35n60 на 20n60, так как он дешевле и не так будет обидно в случае чего. В качестве радиатора применен вот такой алюминиевый профиль:
Он имеет большие размеры и сможет с легкостью охладить силовые элементы. Теперь настало время изготовить дроссель. Это самая сложная часть схемы. В его расчете нам поможет программа:
В ней вводим все необходимые данные и на выходе получаем параметры намотки. Сердечник в данном случае будет такой:
Можно было и меньший, но тогда придётся мотать больше витков. Также не забывайте поставить галочку возле выбора провода, автор забыл и поэтому дроссель мотал 2 раза.
Также у дросселя есть еще вторая обмотка. Ее делаем из соотношения 7:1. При 58 витках вторичка будет 8 витков. У автора при 74-х витках получилось 10 витков. Диаметр провода тут берем от 0,4 до 0,6 мм. Что касается фазировки, то тут все очень просто. Выводы дросселя, как они есть, устанавливаются на плату, главное не перепутать силовую и второстепенную обмотку. Также на схеме есть синфазный дроссель, его мотаем на кольце диаметром 20-25 мм и проницаемостью 2000. Количество витков 8-12, диаметр провода от 0,8 до 1,2 мм.
На этом все. Можно производить первое включение. Так как это не импульсный блок, то лампу накаливания в разрыв ставить нельзя, но автор все же поставил, только киловаттную, просто не хотелось в случае КЗ иди на улицу к щитку и включать пробки.
После включения схема заработала. В нагрузку автор повесил 2 лампочки накаливания на 100Вт включенных последовательно.
Как видим при низком входном напряжении на выходе получаем напряжение в районе 315В. Теперь нужно посмотреть, как поведет себя схема с импульсником. Для этого берем блок питания от компа и разбираем его. Нам необходимо посмотреть есть ли в нем варистор, если есть, убрать, так как он рассчитан на 275В и сработает при подаче 310В. Теперь включим этот блок напрямую в сеть и посмотрим какой будет косинус.
Хорошо, а теперь подключаем через корректор. Подаем питание на те же выводы где была переменка, чтобы не мучиться и не выпаивать диодный мост. Производим включение.
Теперь пройдемся по всем показаниям энергометра. Больше всего нас интересует косинус ф. Как видим он колеблется в районе 95. Ну что, вполне достойный результат. Теперь подкинем на блок питания нагрузку — нихромовую спираль. Мощность потребления примерно 160Вт.
Отлично, а что же происходит с косинусом? А он в это время начинает стремиться к единице, но при отключении нагрузки падает. Это связано с разрядом конденсатора. По поводу нагрева. Радиатор оказался очень большим и на протяжении получаса не нагрелся. А вот дроссель ощутимо нагрелся градусов до 65-70, поэтому вентилятор желательно устанавливать.
Ну а на этом все. Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Корректор коэффициента мощности | Преобразовательная техника
Корректор коэффициента мощности
Преобразовательная техника
Введение
В последние десятилетия количество электроники, используемой в домашних условиях, в офисах и на производстве, резко увеличилось, и в большинстве устройств применяются импульсные источники питания. Такие источники генерируют гармонические и нелинейные искажения тока, которые отрицательно влияют на проводку электросети и электроприборы, подключенные к ней. Это влияние выражается не только в разного рода помехах, сказывающихся на работе чувствительных устройств, но и в перегреве нейтральной линии. При протекании в нагрузках токов со значительными гармоническими составляющими, не совпадающими по фазе с напряжением, ток в нейтральном проводе (который при симметричной нагрузке, практически, равен нулю) может увеличится до критического значения.
Международная электротехническая комиссия (МЭК) и Европейская организация по стандартизации в электротехнике (CENELEC) приняли стандарты IEC555 и EN60555, устанавливающие ограничения на содержание гармоник во входном токе вторичных источников электропитания, электронных нагрузках люминесцентных ламп, драйверах двигателей постоянного тока и аналогичных приборах.
Один из эффективных способов решения этой задачи — применение корректоров коэффициента мощности PFC (Power Factor Correction). На практике это означает, что во входную цепь практически любого электронного устройства с импульсными преобразователями необходимо включать специальную PFC-схему, обеспечивающую снижение или полное подавление гармоник тока.
Коррекция коэффициента мощности
Типичный импульсный источник питания состоит из сетевого выпрямителя, сглаживающего конденсатора и преобразователя напряжения. Такой источник потребляет мощность только в те моменты, когда напряжение, подаваемое с выпрямителя на сглаживающий конденсатор, выше напряжения на нем (конденсаторе), что происходит в течение примерно четверти периода. В остальное время источник не потребляет мощности из сети, так как нагрузка питается от конденсатора. Это приводит к тому, что мощность отбирается нагрузкой только на пике напряжения, потребляемый ток имеет форму короткого импульса и содержит набор гармонических составляющих (см. рис. 1).
Вторичный источник питания, имеющий коррекцию коэффициента мощности, потребляет ток с малыми гармоническими искажениями, равномернее отбирает мощность от сети, имеет коэффициент амплитуды (отношение амплитудного значения тока к его среднеквадратичному значению) ниже, чем у некорректированного источника. Коррекция коэффициента мощности снижает среднеквадратическое значение потребляемого тока, что позволяет подключать к одному выводу электросети больше разных устройств, не создавая в ней перегрузок по току (см. рис. 2).
Коэффициент мощности
Коэффициент мощности (Power Factor PF) — параметр, характеризующий искажения, создаваемые нагрузкой (в нашем случае — источником вторичного электропитания) в сети переменного тока. Существует два вида искажений — гармонические и нелинейные. Гармонические искажения вызываются нагрузкой реактивного характера и представляют собой сдвиг фаз между током и напряжением. Нелинейные искажения вносятся в сеть «нелинейными» нагрузками. Эти искажения выражаются в отклонении формы волны тока или напряжения от синусоиды. В случае гармонических искажений коэффициентом мощности считается косинус разности фаз между током и напряжением или отношение активной мощности к полной мощности, потребляемой из сети. Для нелинейных искажений коэффициент мощности равен доле мощности первой гармонической составляющей тока в общей мощности, потребляемой устройством. Его можно считать показателем того, насколько равномерно устройство потребляет мощность от электросети.
В общем случае коэффициент мощности — это произведение косинуса угла разности фаз между напряжением и током на косинус угла между вектором основной гармоники и вектором полного тока. К такому определению приводят рассуждения, приводимые ниже. Действующий ток, протекающий в активной нагрузке, имеет вид:
I2эфф=I 20+I21эфф +SI2nэфф,
где I2nэфф — постоянная составляющая (в случае синусоидального напряжения равна нулю), I21эфф — основная гармоника, а под знаком суммы — младшие гармоники. При работе на реактивную нагрузку в этом выражении появляется реактивная составляющая, и оно принимает вид:
I2эфф=I 20+(I21эфф(P) +I21эфф(Q))+SI 2nэфф. Активная мощность — это среднее за период значение мощности, выделяемой на активной нагрузке.
Ее можно представить в виде произведения действующего напряжения на активную составляющую тока P=Uэфф Ч I1эфф(P). Физически это энергия, выделяющаяся в виде тепла в единицу времени на активном сопротивлении. Под реактивной мощностью понимают произведение действующего напряжения на реактивную составляющую тока: Q=Uэфф Ч I1эфф(Q). Физический смысл — это энергия, которая перекачивается два раза за период от генератора к нагрузке и два раза — от нагрузки к генератору. Полной мощностью называется произведение действующего напряжения на общий действующий ток: S=U эфф Ч Iэфф(общ). На комплексной плоскости его можно представить как сумму векторов P и Q, откуда видна зависимость I2=I1эфф(общ) cos j, где j — угол между векторами P и Q, который также характеризует разность фаз между током и напряжением в цепи.
Основываясь на вышесказанном, выводим определение для коэффициента мощности:
PF=P/S=(I1эфф cos j)/(Iэфф(общ) ).
Стоит заметить, что отношение (I1эфф)/(Iэфф(общ) ) есть косинус угла между векторами, соответствующими действующему значению общего тока и действующему значению его первой гармоники. Если обозначить этот угол q, то выражение для коэффициента мощности принимает вид: PF=cos j Ч cos q. Задача коррекции коэффициента мощности состоит в том, чтобы приблизить к нулю угол разности фаз j между напряжением и током, а также угол q гармонических искажений потребляемого тока (или, другими словами, максимально приблизить форму кривой тока к синусоиде и максимально компенсировать фазовый сдвиг).
Коэффициент мощности выражается в виде десятичной дроби, значение которой лежит в пределах от 0 до 1. Его идеальное значение — единица (для сравнения, типичный импульсный источник питания без коррекции имеет значение коэффициента мощности около 0,65), 0,95 — хорошее значение; 0,9 — удовлетворительное; 0,8 — неудовлетворительное. Применение коррекции коэффициента мощности может увеличить коэффициент мощности устройства с 0,65 до 0,95. Вполне реальны и значения в пределах 0,97…0,99. В идеальном случае, когда коэффициент мощности равен единице, устройство потребляет из сети синусоидальный ток с нулевым фазовым сдвигом относительно напряжения (что соответствует полностью активной нагрузке с линейной вольтамперной характеристикой).
Пассивная коррекция коэффициента мощности
Пассивный метод коррекции чаще всего применяется в недорогих малопотребляющих устройствах (где не предъявляется строгих требований к интенсивности младших гармоник тока). Пассивная коррекция позволяет достичь значения коэффициента мощности около 0,9. Это удобно в случае, когда источник питания уже разработан, остается только создать подходящий фильтр и включить его в схему на входе.
Пассивная коррекция коэффициента мощности состоит в фильтрации потребляемого тока при помощи полосового LC-фильтра. Этот метод имеет несколько ограничений. LC-фильтр может быть эффективен как корректор коэффициента мощности только в случае, если напряжение, частота и нагрузка изменяются в узком интервале значений . Так как фильтр должен работать в области низких частот (50/60 Гц), его компоненты имеют большие габариты, массу и малую добротность (что не всегда приемлемо). Во-первых , количество компонентов при пассивном подходе намного меньше и, следовательно — время наработки на отказ больше, и во вторых, при пассивной коррекции создается меньше электромагнитных и контактных помех, чем при активной.
Активная коррекция коэффициента мощности
Активный корректор коэффициента мощности должен удовлетворять трем условиям:
1) Форма потребляемого тока должна быть как можно ближе к синусоидальной и — «в фазе» с напряжением. Мгновенное значение тока, потребляемого от источника, должно быть пропорционально мгновенному напряжению сети.
2) Отбираемая от источника мощность должна оставаться постоянной даже в случае изменения напряжения сети. Это значит, что при снижении напряжения сети ток нагрузки должен быть увеличен, и наоборот.
3) Напряжение на выходе PFC-корректора не должно зависеть от величины нагрузки. При снижении напряжения на нагрузке должен быть увеличен ток через нее, и наоборот.
Существует несколько схем, при помощи которых можно реализовать активную коррекцию коэффициента мощности. Наиболее популярна в настоящее время «схема преобразователя с повышением» (boost converter). Эта схема удовлетворяет всем требованиям, предъявляемым к современным источникам питания. Во-первых , она позволяет работать в сетях с различными значениями питающего напряжения (от 85 до 270 В) без ограничений и каких-либо дополнительных регулировок. Во-вторых , она менее восприимчива к отклонениям электрических параметров сети (скачки напряжения или кратковременное его отключение). Еще одно достоинство этой схемы — более простая реализации защиты от перенапряжений. Упрощенная схема «преобразователя с повышением» приведена на рис. 3.
Принцип работы
Стандартный корректор коэффициента мощности представляет собой AD/DC-преобразователь с широтно-импульсной (PWM) модуляцией. Модулятор управляет мощным (обычно MOSFET) ключом, который преобразует постоянное или выпрямленное сетевое напряжение в последовательность импульсов, после выпрямления которых на выходе получают постоянное напряжение.
Временные диаграммы работы корректора показаны на рис. 4. При включенном MOSFET-ключе ток в дросселе линейно нарастает — при этом диод заперт, а конденсатор С2 разряжается на нагрузку. Затем, когда транзистор запирается, напряжение на дросселе «открывает» диод и накопленная в дросселе энергия заряжает конденсатор С2 (и одновременно питает нагрузку). В приведенной схеме (в отличие от источника без коррекции) конденсатор С1 имеет малую емкость и служит для фильтрации высокочастотных помех. Частота преобразования составляет 50…100 кГц. В простейшем случае схема работает с постоянным рабочим циклом. Существуют способы увеличения эффективности коррекции динамическим изменением рабочего цикла (согласованием цикла с огибающей напряжения от сетевого выпрямителя).
Схема «преобразователя с повышением» может работать в трех режимах: непрерывном , дискретном и так называемом «режиме критической проводимости ». В дискретном режиме в течение каждого периода ток дросселя успевает «упасть» до нуля и через некоторое время снова начинает возрастать, а в непрерывном — ток, не успев достигнуть нуля, снова начинает возрастать. Режим критической проводимости используется реже, чем два предыдущих. Он сложнее в реализации. Его смысл в том, что MOSFET открывается в тот момент, когда ток дросселя достигает нулевого значения. При работе в этом режиме упрощается регулировка выходного напряжения.
Выбор режима зависит от требуемой выходной мощности источника питания. В устройствах мощностью более 400 Вт используется непрерывный режим, а в маломощных — дискретный. Активная коррекция коэффициента мощности позволяет достичь значений 0,97…0,99 при коэффициенте нелинейных искажений THD (Total Harmonic Distortion) в пределах 0,04…0,08.
Первоисточник: http://www.elcp.ru/index.php?state=izd&i_izd=elcomp&i_num=2000_02&i_art=17
Устройство импульсных блоков питания, APFC
Некоторое время назад мне задавали вопрос по поводу корректора коэффициента мощности импульсных блоков питания, попробую кратко рассказать что это такое и зачем надо.Так уж сложилось, что в обычной жизненной ситуации вы скорее всего встретите корректор коэффициента мощности (ККМ) в блоке питания компьютера.
Нет, конечно они встречаются и в других блоках питания, даже чаще, чем в компьютерных. Но обычно это промышленные блоки питания и в быту попадаются крайне редко.
Думаю что большинство читателей моего блога и зрителей моего канала, как минимум немного ориентируются в радиоэлектронике, потому скорее всего видели компьютерный блок питания "изнутри".
Блок питания с активным корректором выглядит на первый взгляд почти также как и обычный.
Но если посмотреть внимательнее, то на "горячей" стороне можно заметить большой дроссель. Его магнитопровод может иметь разную форму, но чаще всего попадаются с кольцевыми, как и вариант на фото.
Кроме того подобные блоки питания отличаются еще и тем, что обычно в них установлен один фильтрующий конденсатор на 450-500 Вольт, а не два по 200-250. Обусловлено это тем, что часто такие блоки питания имеют широкий диапазон входного напряжения от 100-115 Вольт и переключение входного напряжения им не нужно.
Не стоит путать дроссель АККМ (активный корректор коэффициента мощности) с выходным дросселем групповой стабилизации, хотя внешне они весьма похожи. Отличие в том, что обычно дроссель корректора имеет только одну обмотку, а ДГС (дроссель групповой стабилизации), несколько.
Вообще корректор может быть не только активным, а и пассивным. В этом случае вы увидите на верхней крышке блока питания "железный" дроссель с парой проводов, внешне похожий на 50Гц трансформатор мощностью 10-20 Ватт.
Такой вариант также жизнеспособен, но заменить полноценный активный корректор он не может.
Теперь не много о том, зачем это вообще все надо. Думаю вы знаете, что ток в сети имеет форму синусоиды, действующее напряжение 220-230 Вольт (у нас), амплитудное — 310-320 Вольт. Не буду сейчас рассказывать чем отличается действующее от амплитудного, сделаю это в другой раз, но кто еще не видел, синусоида выглядит так, как показано на этом рисунке.
Дальше переменный ток выпрямляется и фильтруется конденсаторами. Чаще всего применяется такая схема, представляющая из себя диодный мост и пару (иногда один) конденсаторов.
Конечно там есть еще входной фильтр, предохранитель, но в данном случае они нас не касаются.
При нормальной напряжение на конденсаторах будет примерно 280-320 Вольт в зависимости от их емкости и мощности нагрузки, я об этом уже рассказывал в своем видео посвященному устройству блоков питания.
Но так как напряжение в сети по сути 100 раз в секунду меняется от нуля до 320 Вольт и опять до нуля, а в цепи есть диодный мост, то ток заряда конденсаторов фильтра течет не всегда, а только когда амплитудное напряжение превысит напряжение на конденсаторах.
При этом ток в цепи 220-230 Вольт будет выглядеть как показано вверху этой картинки. Получается, что блок питания потребляет энергию не постоянно, а только на пиках синусоиды. Если предположить, что БП потребляет в итоге энергию всего 20% времени, то ток в момент когда идет заряд конденсаторов, будет в 5 раз больше среднего тока потребления. Например ток 1 Ампер, мощность 220 Ватт, значит пики тока будут доходить до 5 Ампер.
Проблема эта вылезла "в полный рост" тогда, когда количество импульсных блоков питания превысило некую "критическую массу". В итоге было придумано довольно простое и эффективное решение. Кстати, в развитых странах все мощные блоки питания должны иметь корректор коэффициента мощности, но так как это недешево, то производители недорогих блоков питания на этом экономят в первую очередь.
Как я сказал, решение проблемы простое и по сути лежит на поверхности. А базой для этого решения является обычный степ-ап преобразователь напряжения. На схеме виден дроссель, транзистор, диод, ШИМ контроллер и конденсатор.
При открывании транзистора в дросселе накапливается энергия, которая при закрытии транзистора суммируется с входным напряжением и поступает в нагрузку, подзаряжая выходной конденсатор. Такая схема часто используется в повербанках для получения 5 Вольт из 3.7.
Но если скрестить обычный блок питания и эту схему, то мы получим активный корректор коэффициента мощности.
При этом важно то, что фильтрующий конденсатор после диодного моста не ставится, его роль выполняет конденсатор небольшой емкости, обычно 0.47-1.0мкФ, он нужен только для компенсации импульсного характера потребления корректора.
В итоге преобразователь пытается "высосать" из сети все что можно в диапазоне уже не 220-230 Вольт, а 40-80. Кстати, мощные блоки питания далеко не всегда могут работать в широком диапазоне, хотя и могут при этом содержать в своем составе АККМ. Просто в таких режимах корректору приходится тяжело и работу в широком диапазоне они не обеспечивают, хотя и продолжают корректно работать.
Здесь я попробовал наглядно показать разницу в работе обычного БП и БП с корректором.
Красным выделен вариант работы обычного блока питания, заштрихованная часть отображает зону, где есть потребление тока. Видно что зона довольно узкая, соответственно ток будет большим. Причем чем больше емкость конденсаторов фильтра, тем уже будет эта зона и тем ниже будет коэффициент мощности.
Синим и зеленым я показал пару вариантов работы активного корректора, один начинает работу примерно от 100 Вольт амплитудной составляющей, второй примерно от 50 Вольт. Видно что зона стала шире, соответственно ток пропорционально падает и растет коэффициент мощности.
В общем-то данная зона может начинаться почти от нуля, тогда коэффициент будет равен единице, но обычно он составляет 0.98-1, этого более чем достаточно.
Чем же чреват этот пресловутый коэффициент мощности.
Из-за пиков тока происходит кратковременная перегрузка сети, в следствие чего могут начаться проблемы в старых и изношенных сетях. Возможно отгорание нулевого провода в трехфазных сетях с совсем печальными последствиями.
А вот схема входной части компьютерного блока питания имеющего в своем составе активный корректор мощности, он выделен синим цветом.
Не удивляйтесь что на схеме нет ШИМ контроллера, который им управляет, часто он расположен на отдельной плате, а иногда интегрирован в общий ШИМ контроллер. Т.е. помимо одного-двух штатных каналов имеется еще и выход для управления транзистором корректора. Такой вариант удобен для производителя, но далеко не всегда удобен для ремонтника. В самом начале я показал фото блока питания, там как раз вышел из строя узел корректора, а так как микросхема управляет всем, то выгорела и она. Найти замену я не смог, потому Бп лежит мертвым грузом и возможно будет разобран на запчасти, тем более что они весьма неплохого качества.
Что же дает нам корректор, сначала преимущества:
1. Характер потребления почти такой же как у активной нагрузки, соответственно нет пиковых перегрузок.
2. Часто такие БП имеют расширенный диапазон входного напряжения и лучше работают в плохих электросетях.
3. Емкость фильтрующего конденсатора нужна меньше, так как паузы без тока меньше.
4. Инвертору блока питания легче работать, ведь по сути он питается стабилизированным напряжением.
Теперь недостатки.
1. Выше цена.
2. Меньше надежность
3. Могут быть сложности при работе с некоторыми моделями UPS.
Иногда идут споры, по поводу КПД таких блоков питания. Я придерживаюсь мнения, что КПД одинаков, так как хоть корректор и имеет собственное потребление, но основному инвертору работать легче, потому то на ото и выходит.
Ну и конечно же видео, в качестве дополнения. А я как всегда жду ваших вопросов как в комментариях здесь, так и под видео.
Однофазные корректоры коэффициента мощности в системах вторичного электропитания
Научно-технические
Главная Статьи, аналитика Научно-технические
«Научно-технические статьи» — подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов, научные разработки в области радиотехники и электроники, статьи по истории развития радиотехники и электроники, новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники, обзоры выставок радиоэлектронной тематики.
Как известно, преобразование электроэнергии характеризуется коэффициентом мощности (КМ), который определяет количество активной энергии, передаваемой потребителю. Понятно, что КМ должен быть близок к единице, а для этого необходимо, чтобы из сети потреблялся ток, совпадающий по форме и фазе с напряжением сети. Поскольку современные системы вторичного электропитания — это импульсные устройства, они в значительный степени искажают гармонический состав потребляемого тока. Для улучшения гармонического состава и служит корректор коэффициента мощности (ККМ), и практически любая система вторичного электропитания его содержит. ККМ может быть выполнен в виде отдельного устройства, а может совмещаться с выпрямителем. В статье выведены основные соотношения, необходимые для анализа выпрямителей с ККМ, и предложена реализация алгоритмов управления высокочастотными выпрямителями.
Высокочастотные выпрямители
Классическим решением проблемы улучшения гармонического состава потребляемого тока может служить применение входных фильтров. Однако, так как частота питающей сети достаточно мала, массогабаритные показатели фильтров будут большими. Для их снижения необходимо увеличить рабочую частоту, для чего в схему вводят силовой ключ (S), управляемый по определенному закону (рис. 1). В результате дроссель фильтра может выполнять две функции: фильтровать выходное напряжение и обеспечивать необходимую форму потребляемого тока. Когда ключ закрыт, энергия передается в нагрузку, и при этом дроссель выполняет функцию фильтра. Когда же ключ открыт, сеть работает на дроссель. Поскольку время открытого состояния достаточно мало, ток через дроссель изменяется незначительно. Если при этом обеспечить определенный закон управления ключом, то ток через дроссель можно максимально приблизить к форме сетевого напряжения. Такой выпрямитель является повышающим. Силовой ключ должен быть двунаправленным.
Рис. 1 Выпрямитель с ККМ с входным дросселем
Наиболее широкое применение нашли схемы выпрямителя в сочетании с DC/DC-преобразо-вателем, где преобразователь работает как корректор мощности. При этом наибольшее распространение получил повышающий преобразователь. Схема такого выпрямителя с обычным однонаправленным ключом приведена на рис.2. Принцип его работы аналогичен действию выпрямителя, показанного на рис. 1.
Рис. 2 Выпрямитель с DC/DC преобразователем
Вывод основных соотношений для режима непрерывного тока в дросселе
Форма тока идеального выпрямителя должна быть такой же, как у входного напряжения. Следовательно, необходимо, чтобы в любой момент времени потребляемый ток соответствовал выражению:
(1) |
где Rе — эквивалентное сопротивление выпрямителя. Мощность, которая передается нагрузке, т.е. мощность, «выделяемая» на Re, равна
где {Rе} — среднее значение.
Эта мощность регулируется путем изменения Re. Идеальный выпрямитель не должен содержать внутренних источников потерь и аккумуляторов энергии. Таким образом, мгновенная мощность определяется как
(2) |
Для идеального выпрямителя
где Uo, I0 — соответственно выходное напряжение и ток нагрузки. Если нагрузка имеет резистивный характер, то
(3) |
Любой преобразователь принято характеризовать коэффициентом передачи М, который зависит от коэффициента заполнения импульсов. Для выпрямителя с ККМ в качестве коэффициента передачи берется коэффициент передачи DC/DC-преобразователя. Таким образом, если входное напряжение составляет uвх(t)=Uвхsin(ωt), а напряжение после мостового выпрямителя —
(4) |
Из этого выражения следует, чтобы избежать искажений потребляемого тока около пересечения входным напряжением нуля, необходимо, чтобы коэффициент M(t) мог достигать значения бесконечности.
Для повышающего преобразователя в составе выпрямителя с ККМ, работающего в режиме непрерывного тока дросселя, имеет место соотношение:
(5) |
где d(t) — коэффициент заполнения импульсов для силового ключа.
Поэтому
(6) |
Пульсации тока дросселя (потребляемого тока) в течение периода коммутации силового ключа (Ts) составляют
(7) |
Среднее значение относительно Ts тока дросселя равно
(8) |
В любой момент времени должно выполняться условие режима непрерывного тока в дросселе:
(9) |
Используя выражения (7) и (8), получим: d(t)
Тогда, подставив выражение для d{t) в (6), получим:
(10) |
Вывод основных соотношений для режима разрывного тока в дросселе.
Рассмотрим работу выпрямителя в режиме разрывного тока в дросселе, который имеет место, когда um(t) близко к нулю. На рис.3 представлена диаграмма тока дросселя в этом режиме.
Рис. 3 Диаграмма тока дросселя в режиме разрывного тока
Согласно равенству нулю вольт-секундного баланса напряжения на дросселе относительно периода Ts длительность интервала d2Ts составляет
(11) |
При этом необходимо учесть, что d1 = d. Максимальный ток дросселя определяется выражением
(12) |
Найдем средний (относительно Ts) ток дросселя. В течение каждого интервала времени его величина определяется выражениями
Среднее значение тока относительно периода Ts может быть представлено как
(13) |
пределим регулировочную характеристику в режиме разрывного тока в дросселе. Согласно выражению (3), которое имеет место в любом режиме тока в дросселе,
(14) |
Так как Re={Um}Ts/{iL}Ts
(15) |
Подставив это выражение в (13), получим:
(16) |
Найдем условие, при котором происходит переход из режима непрерывного тока в режим разрывного тока. Подставив в условие (9) выражение для пульсаций тока (7) и регулировочную характеристику (16), получим:
С учетом того, что 1-{Um}Ts/U0=d и выражения (15) это условие можно записать в следующем виде:
(17) |
Анализ данного условия показывает, что переход из режима непрерывного тока в разрывный зависит только от d при неизменных параметрах схемы, таких как выходное напряжение и L.
Окончательная система выражений для регулировочной характеристики выпрямителя с ККМ имеет вид:
(18) | |
Где | |
Аналогично можно получить систему выражений для коэффициента заполнения;
(19) |
График зависимости d от времени в течение полупериода сетевого напряжения представлен на рис. 4а. Зависимость условия от времени и график входного напряжения приведены на рис. 4б.
Рис. 4.а График зависимости d от времени
Рис. 4.б График входного напряжения
Режим разрывного тока характерен при входных напряжениях, близких к нулю. При этом коэффициент заполнения импульсов должен быть близок к единице.
Реализация алгоритма управления высокочастотным выпрямителем с ККМ без обратной связи.
Один из важных этапов проектирования высокочастотного выпрямителя — реализация алгоритма управления силовым ключом. Согласно выражению (1) im(t)~Uвх(t), что соответствует {iL(t)}Ts~{Um(t)}Ts, где коэффициент пропорциональности — Re.
Если на выпрямитель не возлагается задача стабилизации выходного напряжения, то Re — постоянная величина. Тогда для реализации алгоритма управления (рис.5) необходимо сравнить ток дросселя и выпрямленное мостовым выпрямителем напряжение Um, умноженное на постоянный коэффициент Кv. Полученное таким образом напряжение ошибки Ue подается на ШИМ-контроллер. При этом в качестве информации о токе дросселя используется сигнал с датчика тока с сопротивлением Rs. Коэффициент Kv характеризует параметр Rе. Рассмотрим зависимость Re и Kv. Согласно (1), iL(t)=Um(t)/Re.
Так как Re=Um(t)/iL(t) и Uref(t)=Kvum(t),
Рис. 5 Схема реализации алгоритма управления выпрямителем без стабилизации выходного напряжения
в установившемся режиме сигнал ошибки близок к нулю, следовательно, Uref(t)= iL(t)Rs
Если учесть (3), то можно определить Kv (при номинальных значениях выходного тока и напряжения). Однако в данном алгоритме не учитывается изменение выходного напряжения. Изменение тока нагрузки в неявной форме учитывается током iL.
Реализация алгоритма управления высокочастотным выпрямителем с ККМ с обратной связью.
Для того, чтобы учитывать изменение выходного напряжения, необходимо ввести дополнительный сигнал исоп. Так как в формировании коэффициента заполнения участвует пилообразное напряжение и напряжение, пропорциональное модулю sin(ωt), то простое суммирование сигнала, характеризующего Re, неприемлемо. Стандартным решением этой проблемы является перемножение напряжения Um и сигнала, характеризующего изменяющееся Re. Схема реализации такого алгоритма представлена на рис.6.
Аналогично выражению (20) можно определить
(21) |
где Re(t)=U2вх rms/pn(t), а pn(t)-изменяющаяся мощность нагрузки.
Рис. 6 Схема реализации алгоритма управления высокочастотным выпрямителем с ККМ с обратной связью
Рис. 7 Функциональная схема выпрямителя с двумя контурами обратной связи
Алгоритм управления с умножителем и интегратором.
В большинстве случаев требуется стабилизация выходного напряжения. Она необходима для выпрямителя как в составе системы распределённого питания, так и отдельного устройства. Для обеспечения стабилизации вводится второй контур обратной связи по выходному напряжению. Тогда в качестве сигнала Ucon выступает сигнал с усилителя ошибки по выходному напряжению. Функциональная схема выпрямителя с двумя контурами обратной связи показана на рис.7.
При данном алгоритме управления используется умножитель напряжения, что усложняет систему управления. Однако возможна и более простая реализация двухконтурной системы управления. Она основана на следующих соотношениях. Допустим, выпрямитель работает в режиме непрерывного тока, тогда, согласно (6),
где iвх— потребляемый ток.
Согласно (1), (1-d)U0sign(iвх)=Re·iвх
Если использовать датчик тока с сопротивлением Rs, то:
Для малых приращений можно заменить Uo на Ue — сигнал с усилителя ошибки:
(22) |
Такой алгоритм может быть легко реализован с помощью цифровых или аналоговых средств. Правая часть выражения получается с датчика тока, который может быть как резистивного типа, так и токовым трансформатором. Левая часть выражения получается путем интегрирования сигнала с усилителя ошибки по периоду коммутации для получения пилообразного напряжения Ue·t/Ts.
Другое достоинство данного алгоритма — отсутствие зависимости от входного напряжения. Схема реализации данного алгоритма управления приведена на рис.8.
Рис. 8 Схема реализации алгоритма управления с умножителем и интегратором
Анализ возможных вариантов однофазных корректоров коэффициента мощности показал, что наиболее предпочтительны два варианта цепи обратной связи: с умножением и интегрированием. Вариант управления с умножением обеспечивает простую реализацию двухконтурной системы управления и может быть создан на основе цифровых или аналоговых средств. Вариант управления с интегрированием допускает простую реализацию одноконтурной системы управления.
Литература
- Zhou D. The switches in the boost cells of superimposed topologies. Synthesis of PWM DC-to-DC Power Converters.- Ph.D. Thesis: California Institute of Technology, October 1995.
- Chen J., Maksimovic D., Erickson R. A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications. — Proc. IEEE APEC, March 4-8, 2001.
Автор: М.Костров, А.Герасимов, Г.Малышков
Дата публикации: 28.04.2004
Мнения читателей
- SG House / 15.03.2007 — 13:57
Мнение моё субъективное такое: слишком накручено. Так, что «за деревьями леса не видно». Не понятно, зачем приводится ряд выражений, которые потом нигде не используются. В реализациях алгоритмов вообще нет ссылок на последние полученные выражения. Непонятно отсюда, зачем получали эти жуткие формулы. Кроме того не может не огорчать ряд простых ошибок в формулах. Например, в (3) нужно либо Re заменить на {Re}, либо Uвх rms — на Uвх(t). Или же в (11) d2Ts — заменить на d2. Интересно, это невнимательность авторов, или намеренное запутывание читателя?…
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Корректор коэффициента мощности | Статья в журнале «Молодой ученый»
Похожие статьи
Математическое моделирование параллельного компенсатора…
Структура инвертора (блок Invertor на рисунке 3) представлена на рисунке 7. Она включает управляемые силовые ключи (VT1 – VT4), включенные по мостовой схеме, и источник питания инвертора, выполненный постоянным источником ЭДС (DC Voltage Source).
Активные и пассивные электрические фильтры | Статья в журнале…
Данный тип фильтров не требует источника питания для функционирования и не усиливает мощность выходного сигнала (в отличие от активного фильтра). В активном фильтре (Рисунок 2) используется один или несколько активных компонентов…
Переход на новый порядок применения контрольно-кассовых…
Помимо инфраструктуры обработки фискальных данных, необходимо плотно работать с производителями ККМ.
Сегодня механизм контроля применения ККМ не выполняет своей основной функции, так как существует возможность манипуляции с данными ККМ (например…
Проектирование прецизионных помехоустойчивых импульсных…
Уменьшение влияния емкости источника сигнала. Конечная емкость источника сигнала Cи может привести к
Основные термины (генерируются автоматически): коэффициент усиления, ток, импульсный усилитель, операционный
Классы усилителей мощности.
Компенсация реактивной мощности в электрических сетях 0,4кВ
где — реактивная суммарная мощность БК по данным завода — изготовителя.
Коэффициент мощности нагрузки НН обычно не превышает 0,8. Сети напряжением 380–660В электрически более удалены от источников питания, поэтому передача реактивной мощности в сеть НН…
Регистратор динамических параметров колебаний на основе…
Устройство записи динамических параметров колебаний состоит из МЭМС-акселерометра, карты памяти, контроллера, таймера и блока питания 12V (Рисунок 2). Устройство
Подключение акселерометра, выполненного по MEMS-технологии, к микроконтроллеру STM32F407VGT6.
Лабораторный стенд на базе ПЛК ОВЕН 110 | Статья в журнале…
Основными компонентами стенда являются: программируемый логический контроллер ОВЕН ПЛК110–30.
Протокол Modbus и сеть Modbus являются самыми распространенными в мире.
– Интерфейсы RS-232 прибора позволяют осуществлять питание подключённых устройств.
Накопители электроэнергии как средство предотвращения…
‒ Демпфирование колебаний мощности, стабилизация работы малоинерционных децентрализованных источников
В нашей работе основное внимание уделено применению накопителей для покрытия КНЭ, а именно для предотвращения провалов напряжения (ПН).
Математическое моделирование параллельного компенсатора…
Структура инвертора (блок Invertor на рисунке 3) представлена на рисунке 7. Она включает управляемые силовые ключи (VT1 – VT4), включенные по мостовой схеме, и источник питания инвертора, выполненный постоянным источником ЭДС (DC Voltage Source).
Активные и пассивные электрические фильтры | Статья в журнале…
Данный тип фильтров не требует источника питания для функционирования и не усиливает мощность выходного сигнала (в отличие от активного фильтра). В активном фильтре (Рисунок 2) используется один или несколько активных компонентов…
Переход на новый порядок применения контрольно-кассовых…
Помимо инфраструктуры обработки фискальных данных, необходимо плотно работать с производителями ККМ.
Сегодня механизм контроля применения ККМ не выполняет своей основной функции, так как существует возможность манипуляции с данными ККМ (например…
Проектирование прецизионных помехоустойчивых импульсных…
Уменьшение влияния емкости источника сигнала. Конечная емкость источника сигнала Cи может привести к
Основные термины (генерируются автоматически): коэффициент усиления, ток, импульсный усилитель, операционный
Классы усилителей мощности.
Компенсация реактивной мощности в электрических сетях 0,4кВ
где — реактивная суммарная мощность БК по данным завода — изготовителя.
Коэффициент мощности нагрузки НН обычно не превышает 0,8. Сети напряжением 380–660В электрически более удалены от источников питания, поэтому передача реактивной мощности в сеть НН…
Регистратор динамических параметров колебаний на основе…
Устройство записи динамических параметров колебаний состоит из МЭМС-акселерометра, карты памяти, контроллера, таймера и блока питания 12V (Рисунок 2). Устройство
Подключение акселерометра, выполненного по MEMS-технологии, к микроконтроллеру STM32F407VGT6.
Накопители электроэнергии как средство предотвращения…
‒ Демпфирование колебаний мощности, стабилизация работы малоинерционных децентрализованных источников
В нашей работе основное внимание уделено применению накопителей для покрытия КНЭ, а именно для предотвращения провалов напряжения (ПН).
Математическая модель понижающего преобразователя…
Строим непрерывную модель регулятора 1-го типа для постоянной частоты коммутации и изменяемого коэффициента заполнения D1 для режима непрерывного (CCM) и прерывистого (DCM) токов дросселя. Рассматриваем широтно-импульсное регулирование проводящего…
Компактный блок питания с корректором мощности, выходным напряжением 48 Вольт и заявленной мощностью в 400 Ватт
Попал ко мне в руки очередной блок питания, покупал его не я, а мой товарищ, но в данном случае это не важно. Прежде всего заинтересовал меня данный блок питания тем, что имеет заявленную мощность в 400 Ватт, довольно компактный размер, а еще и корректор коэффициента мощности.Изначально данный блок питания планировался для платы преобразователя типа DPS5012, но как пойдет дальше, еще неизвестно, так как тесты показали не тот результат, который ожидался.
Впрочем лучше по порядку, я постараюсь в обзоре показать как достоинства, так и недостатки и возможно подобный БП найдет свою целевую аудиторию.
Блок питания выполнен в открытом исполнении, т.е. предполагает установку внутрь корпуса, а не использование отдельно. Габаритные размеры составляют примерно 128х82х43мм, что для заявленной мощности весьма компактно.
Сбоку корпуса имеется наклейка из которой можно узнать что БП имеет:
Входное напряжение 100-240 Вольт
Выходное напряжение 48 Вольт
Выходной ток до 8.3 Ампера
Коэффициент мощности более 0.95
Блок питания смонтирован на алюминиевом шасси которое выполняет роль радиатора, для защиты от повреждений наклеена пленка, которую надо снять перед установкой БП в изделие.
На странице магазина есть и расширенное описание, а так как оно на китайском, то предлагаю вольный гуглоперевод, которого в общем-то достаточно для понимания характеристик.
Меня же кроме мощности и напряжения интересовал также и заявленный уровень пульсаций, который составляет 150 мВ, что очень мало для БП 48 Вольт 400 Ватт.
Монтаж блока питания плотный, хотя я бы не сказал что уж совсем, например у БП MeanWell, которые я обозревал ранее, бывает и гораздо плотнее.
По входу установлен довольно приличный фильтр, я был даже удивлен. Здесь установлено два двухобмоточных дросселя, два конденсатора Х типа и три Y типа. Единственное чего здесь нет — варистора, хотя место для него на плате есть, но вот «забыли» распаять. Если установить варистор, то можно сказать что фильтр «по учебнику».
При этом двухобмоточные дроссели имеют пластиковые каркасы, что также правильно.
1. Также по входу есть термистор для ограничения тока заряда конденсатора и предохранитель. При этом предохранитель один, установлен по цепи фазы (обозначено на клеммнике), но сам предохранитель мелкий, что не очень хорошо.
2. Три помехоподавляющих конденсатора Y типа соединены с корпусом БП.
3. Диодный мост прижат к корпусу через изолирующую прокладку, хотя сам по себе имеет изолированный корпус. Думаю что в данном случае прокладка просто заменяет термопасту.
4. Входной конденсатор имеет емкость всего в 100мкФ. Для БП с активным корректором требования к емкости входного конденсатора менее жесткие чем для обычных БП, но все равно 100мкФ при 400 Ватт это маловато, раза так в 2-2,5 меньше чем требуется. Справа от конденсатора виден дроссель активного корректора мощности.
Все силовые радиоэлементы прижаты к алюминиевому шасси через изоляторы.
В данном БП трансформатор не имеет зазора, привычного для обычный, обратноходовых преобразователей и это конечно увеличивает его мощность, но все равно выглядит как-то скромно для 400 Ватт выходной мощности особенно с заявленной возможности работать при пассивном охлаждении.
1. Между платой ШИМ контроллера и трансформатором установлено еще два небольших электролитических конденсатора. Нагрев в данном месте скорее всего будет весьма заметным, потому срок их службы может быть снижен.
2. В цепи обратной связи установлен один оптрон, а в качестве помехоподавляющего конденсатора правильный, Y типа.
3. Выход БП также соединен с корпусом, но уже через обычный высоковольтный конденсатор. С учетом того что в первичной цепи стоят Y конденсаторы такой вариант вполне допустим и безопасен.
4. На выходе стоит большой накопительный дроссель и три конденсатора 470мкФ 63 Вольта. Суммарная емкость фильтра всего около 1500 мкФ при более чем 8 Ампер выходного тока, что мало, кроме того на выходе нет дросселя для снижения уровня пульсаций.
Пояснения по поводу конденсаторов Y и X типа, а также входного дросселя.
Зачем нужны помехоподавляющие конденсаторы и чем они отличаются.
Y конденсаторX конденсатор
Входной фильтр
Вообще при взгляде на выходную часть платы создается впечатление что плата универсальная, под разные конфигурации напряжения/тока и в данном случае частично упрощена. Слева виден подстроечный резистор для коррекции выходного напряжения.
Разбирается конструкция очень просто, три винта прижимают радиоэлементы и еще четыре крепят плату. Здесь я пожалуй поставил бы плюс, при всей своей относительно плотной компоновке устройство вполне ремонтопригодно.
На некоторые выводы элементов надеты фторопластовые изолирующие трубочки, мелочь, но весьма полезная.
Входной диодный мост KBL406, транзистор корректора — 20N50, выходной диод корректора — SFF10006A.
Транзистор инвертора — FHA9N90, выходная диодная сборка MUR3060PT. При беглом анализе все элементы установлены с запасом по току и напряжению.
/Но нашлись и следы небольшой, но явной экономии. Дело в том, что изолирующие прокладки изготовлены путем разрезания пополам нормального изолятора.
Подобные изоляторы обычно охватывают силовой элемент полностью, например как компонент установленный в левой части данной платы. Думаю теперь понятно «как это сделано».
Управляет всем блоком питания ШИМ контроллер CM6800G, который установлен на небольшой платке.
CM6800 является совмещенным ШИМ контроллером, который умеет попутно к основной функции управлять еще и корректором коэффициента мощности. Производится неизвестной мне фирмой Champion.
Схему блока питания я не перечерчивал, но она очень похожа на схему из даташита на контроллер, потому в случае ремонта её вполне можно использовать.
Монтаж двухсторонний, качество очень хорошее.
Высоковольтная часть, входные помехоподавляющие конденсаторы имеют разрядную цепь, часть дорожек усилена припоем.
Выходная часть также довольно аккуратна, но вот «сопля» припоя между минусовыми контактами выхода несколько необычна, видимо есть версия БП где эти точки разделены.
По поводу работы корректора думал сначала описать с картинками, но потом вспомнил про видео, думаю так будет проще понять.
Если в двух словах, то поясню:
Обычный блок питания потребляет от сети энергию только тогда, когда напряжение (амплитудное) выше чем напряжение на входном накопительном конденсаторе, соответственно имеем большие броски тока в моменты подзарядки конденсатора.
Блок питания с корректором содержит по сути повышающий преобразователь на входе, только без накопительного конденсатора (он стоит после корректора) и может потреблять ток от сети в большом диапазоне изменения напряжения, фактически приближая нагрузочную характеристику к активной нагрузке.
При этом после корректора стоит тот же обычный БП, только питающийся стабилизированным напряжением и потому можно сделать меньше запас на регулировку повысив тем самым КПД, но общий КПД падает за счет того, что сам корректор тоже имеет КПД ниже 100% и в итоге «то на то и получаем».
Блок питания построен по однотактной прямоходовой (Forward) схемотехнике, тогда как более распространенные маломощные однотактные БП строятся по однотактной обратноходовой (Flyback).
На блок схеме цветом выделены узлы прямоходового преобразователя (справа), которых нет в схеме обратноходового (слева). В прямоходовом добавлен диод, дроссель и одна из обмоток трансформатора включена в обратной полярности (это важно).
Кроме того есть еще одно отличие, в случае прямоходовой схемы у сердечника трансформатора не делают зазор, который обязателен в обратноходовой схеме.
Данная схемотехника очень похожа на классический понижающий (stepdown) преобразователь.
В обоих схемах входной ключ «накачивает» выходной дроссель, а в паузе через диод отдает энергию в нагрузку. Только в случае прямоходового БП в роли ключа выступает как сам транзистор, так и трансформатор и один из выходных диодов.
Ниже показаны сходные узлы, они обозначены одним цветом для наглядности. Думаю что теперь понятно, почему выше я писал, что фильтрующего выходного дросселя в этом БП нет, потому как тот что установлен, является накопительным. Закорачивать этот дроссель категорически нельзя!
Осматривать больше особо нечего, перейдем к тестам.
Изначально БП был настроен на 48.3 Вольта, впрочем это не важно. Диапазон регулировки составляет 41.8-54 Вольта, что довольно много, но если надо точно выставить выходное напряжение, то могут быть сложности из-за грубой регулировки.
Первый из тестов, оценка точности удержания выходного напряжения в зависимости от изменения нагрузки, оценки КПД и коэффициента мощности. Для теста использовалось два мультиметра, Ваттметр и электронная нагрузка. В тесте с напряжением 110 Вольт был добавлен автотрансформатор.
В процессе выяснилось, что при токах нагрузки около 4-5 Ампер и больше выходное напряжение начинает снижаться, причем не просто снизилось и остановилось, а этот процесс занимает некоторое заметное время. Подобный эффект бывает в случае резкого прогрева резисторов цепи обратной связи если там использованы обычные резисторы с высоким ТКС. Но когда я выключил нагрузку на горячем БП, то увидел что напряжение мгновенно пришло к исходному значению, потому в данном случае это скорее всего банальная перегрузка блока питания.
Ниже два фото, до теста, на холодном БП и сразу после снятия нагрузки на горячем, можно видеть что от прогрева напряжение практически не зависит.
Табличка с тестом. В тесте при низком напряжении погрешность измерения КПД заметно больше, потому приведена скорее ориентировочно, кроме последний тест при низком напряжении и максимальном токе не проводился, так как БП работал явно с перегрузкой.
Фактически я проверил БП при практически максимальном его токе, реально в нагрузке было почти 400 Ватт, но БП в этом режиме работал грустно, сильный нагрев, снижение выходного напряжения, хотя и не очен большое, но заметное.
Попутно отмечу интересное наблюдение, при включении через трансформатор он (трансформатор) начинал жужжать когда ток нагрузки БП находился в диапазоне 2.5-3.5 Ампера с пиком около 3 Ампер.
Измерение уровня пульсаций на выходе БП является довольно важным тестом, так как этот параметр сильно влияет как на корректную работу нагрузки, так и на долговечность выходной части устройства.
Для измерения этого параметра у меня перед щупом установлен рекомендованный фильтр состоящий из пары конденсаторов — электролитического 1мкФ 63 Вольта и керамического 0.1мкФ.
Пульсации измеряются на частоте работы преобразователя (ВЧ) и удвоенной частоте сети (НЧ).
Все осциллограммы.
Напряжение на входе 230 Вольт, ВЧ и НЧ на холостом ходу.ВЧ под нагрузкой 25, 50, 75 и 100%
То же самое, но на НЧ.
Выше на последней осциллограмме была видна странная картина, на ВЧ пульсации явно наложены НЧ, причем рост пульсаций начинался резко при превышении тока в 8 Ампер, но пока я переключал режим работы осциллографа они пропали, хотел увидеть их на НЧ. Больше эти пульсации не появлялись, что это было, не знаю.
Все почти то же самое, но при входном напряжении около 105 Вольт.
В данном случае тест при 100% нагрузки не проводился, так как БП работал с явной перегрузкой, в итоге на осциллограммах мощность соответствует — ХХ, 25, 50 и 75%
ВЧ
НЧ
Сводная картина работы БП
1. 230 Вольт входное, ВЧ, 100% нагрузки
2. То же самое, но НЧ
3. 105 Вольт входное, НЧ, 75% нагрузки
4. То же самое но НЧ.
Как ни странно это говорить, но БП влез в заявленные 150мВ пульсаций, единственное что в первом тесте были наложены большие НЧ пульсации которые в процессе экспериментов пропали.
Не менее важный тест — проверка температурного режима. В описании было указано что БП рассчитан на пассивное охлаждение и меня еще на начальном этапе тестов терзали сомнения что он вытянет такой режим на максимальной мощности так как даже после короткого теста он уже сильно нагревался. Я предположил что максимальный длительный ток составит около 6 Ампер, но как выяснилось, сильно ошибся, максимально что я смог относительно безопасно получить длительно это всего 4.2 Ампера или около 200 Ватт.
Дело в том, что потери на БП в таком режиме составляли около 35 Ватт, а рассеивать такую мощность при столь компактных размерах можно только с активным охлаждением.
В итоге тест проводился «по сокращенной программе», сначала при токе 2.1 Ампера или 25% нагрузки, затем при 4.2 Ампера или 50% нагрузки, но так как уже при 50% БП явно сильно грелся, то следующий прогон был только при токе 4.5 Ампера, что даже меньше чем 55% нагрузки.
Каждый тест занимал привычные 20 минут, общее время теста 1 час.
Так как контрольных точек было много, то напишу их в соответствии с таблицей:
Входной диодный мост
Транзистор корректора мощности
Диод корректора мощности
Дроссель корректора мощности
Входной конденсатор инвертора
Транзистор инвертора
Трансформатор
Выходная диодная сборка
Выходной накопительный дроссель
Выходные конденсаторы.
На термофото все выглядит примерно также.
1. Температуры после теста стабильности напряжения, общее время теста около 15 минут с постепенным увеличением тока с 0 до 8.3 Ампера.
2. После завершения теста при токе нагрузки 4.2 Ампера
3. Еще через 20 минут нагрузки током 4.5 Ампера.
При этом тепловизор «видел» какой-то компонент установленный между трансформатором и выходным дросселем и показывал максимальную температуру до 145 градусов, изменение угла наклона тепловизора меняло это значение, реальная температура основных компонентов есть выше в таблице.
Спрашивается, а как же так, мощность указана 400 Ватт, но длительно может отдавать только 200, что за ерунда.
Ответ прост и скрыт в описании товара, БП для усилителей звука, а в таком применении как раз и получается при максимальной в 400 Ватт средняя около 200.
А теперь резюме.
Конструктивно БП выполнен неплохо, присутствует нормальный входной фильтр, все силовые радиоэлементы установлены на радиатор, применены безопасные конденсаторы Y типа, дроссели намотаны медным проводом, присутствует активный корректор. Придраться можно только к таким вещам как — отсутствие варистора по входу, дроссели удерживаются только за счет жесткости провода обмотки.
Основная часть компонентов стоит с запасом, но это не относится к емкости входного и выходных конденсаторов, которые нормальны для мощности в 200 Ватт, но явно малы для 400.
В плане уровня пульсаций можно также сказать что все нормально, ну кроме странного эффекта резкого увеличения размаха пульсаций при токе выше 8 Ампер, который потом прошел и больше себя не проявлял.
Но исходя из результатов тестов я могу сказать что данный БП имеет максимальную длительную мощность всего в 200 Ватт, используя активное охлаждение ее можно без проблем поднять до 300, при этом 400 Ватт это кратковременная (несколько минут) мощность. Можно конечно увеличить емкость конденсаторов, БП будет работать немного лучше, но длительная мощность от этого практически не изменится.
В общем такой вот неоднозначный блок питания. На этом у меня все, надеюсь что обзор был полезен. Отдельное спасибо Александру за предоставленный для тестов блок питания.