M7 диод как проверить: Как проверить диод мультиметром: полная инструкция

Содержание

Проверка диодов | Fluke

Проверка диодов цифровым мультиметром выполняется одним из двух способов:

  1. Режим проверки диодов: рекомендуется в большинстве случаев.
  2. Режим измерения сопротивления: обычно используется в тех случаях, когда на мультиметре не предусмотрен режим проверки диодов.

Примечание. В некоторых случаях для проверки требуется отсоединить один выход диода от цепи.

Что необходимо знать о проверке диодов в режиме измерения сопротивления:

  • Не всегда позволяет определить, исправен диод или нет.
  • Проверку в таком режиме не рекомендуется проводить для подключенного к цепи диода, поскольку показания могут быть ошибочными.
  • В некоторых областях применения этот режим МОЖНО ИСПОЛЬЗОВАТЬ для подтверждения неисправности диода после того, как проверка диодов выявила неисправность.

Для оптимальной проверки необходимо измерить падение напряжения на диоде при прямом смещении. Диод с прямым смещением действует как замкнутый переключатель, который обеспечивает прохождение тока.

В режиме проверки диодов мультиметр создает небольшое напряжение между измерительными проводами. Мультиметр показывает падение напряжения, когда измерительные провода подключены к диоду с прямым смещением. Проверку диодов следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор (поворотный переключатель) в положение режима проверки диодов ( ). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Подсоедините измерительные провода к диоду. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.

Анализ результатов проверки диодов

  • Для наиболее распространенных кремниевых диодов падение напряжения составляет от 0,5 до 0,8 В, что свидетельствует об исправности диода с прямым смещением. Падение напряжения на некоторых германиевых диодах составляет от 0,2 до 0,3 В.
  • При обратном смещении исправного диода на экране мультиметра отображается OL. OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный диод (с обрывом) делает невозможным прохождение тока в любом направлении. Если диод имеет обрыв, мультиметр отображает OL для обоих направлений.
  • На диоде с коротким замыканием наблюдается одинаковое падение напряжения (приблизительно 0,4 В) в обоих направлениях.

Мультиметр в режиме измерения сопротивления (Ω) можно использовать для проведения дополнительной проверки диода или, как уже говорилось ранее, в тех случаях, если на мультиметре не предусмотрен режим проверки диода.

Диод имеет прямое смещение, если положительный (красный) измерительный провод подсоединен к аноду, а отрицательный (черный) измерительный провод — к катоду.

  • Сопротивление исправного диода с прямым смещением должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • При прямом смещении диода показания сопротивления будут высокими, так как ток от мультиметра проходит через диод, результатом чего становится высокое сопротивление, которое требуется для проверки.

Диод имеет обратное смещение, если положительный (красный) измерительный провод подсоединен к катоду, а отрицательный (черный) измерительный провод — к аноду.

  • Если диод с обратным смещением исправен, на мультиметре отображается OL. Диод неисправен, если показания одинаковы для обоих направлений.

Проверку в режиме измерения сопротивления следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор в положение измерения сопротивления (Ω). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Отсоедините диод от цепи и подключите к нему измерительные провода. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.
  5. Для получения достоверных результатов сравните показания, полученные в режиме измерения сопротивления, с показаниями для известного исправного диода.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Подберите подходящий мультиметр

М7 диод как проверить аналог. Как проверить диод

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.

Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.

Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

На сегодняшний день электроника прочно вошла в жизнь и имеется в составе любого прибора или гаджета. Но, как не прискорбно, это было и приборы, и гаджеты ломаются и приходят в негодность. Самой часто встречающейся причиной, по которой многие приборы ломаются — это поломка одного из элемента электрической сети, к примеру диод.

Выполнить проверку поломки или неисправности этого элемента возможно самостоятельно. В статье разберем подробно как проверить диод мультиметром, а также что представляет из себя этот прибор и как им пользоваться.

Диоды бывают разные

Простой диод является элементом электрической сети и несет в себе роль полупроводника, то есть р-n переход. Он устроен так, что вполне может осуществить пропуск тока по цепи, но только в одну сторону. И осуществляется это от анода к катоду. Для этого обязательно к аноду присоединяется «плюс», а к катоду — «минус».

Обязательно стоит учесть и запомнить! Двигаться в обратном направлении ток в диоде не может. Из-за такого отличительного момента изделие возможно проверить на неисправность с помощью тестера или мультметра. Рассмотрим какие же бывают диоды и чем отличаются друг от друга.

Типы диодов:
  1. Простой диод.
  2. Стабилитрон, как понятно из названия он препятствует повышению напряжения, то есть стабилизирует его.
  3. Варикап, диод обладающий емкостью, часто встречается в УКВ приемниках.
  4. Тиристор, диод с управляющим электродом, при подачи сигнала на управляющий электрод можно управлять состоянием тиристора, то есть открывать его или закрывать. Такой элемент часто встречается в силовой электронике.
  5. Симистор, примерно тоже самое, что и тиристор только для переменного напряжения. Диагностика данного диода будет рассмотрена в другой статье.
  6. Светодиод, диод излучающий свет при прохождении через него тока.
  7. Диод Шотки, диод обладающий повышенным быстродействием и малым падением напряжения.

Также есть фотодиоды, инфракрасные диоды и др.

Несмотря на то, что диоды отличаются по назначению и переходу, их проверка выполняется аналогично. Принцип работы диодов аналогичен.

Что называется мультиметром?

Мультиметр — это прибор, который имеет ряд функций:

  • Измерение напряжения, тока;
  • Измерение сопротивления;
  • Прозвонка, в этом режиме мультиметр показывает напряжение падения в мВ.
  • Также могут буть функции измерения емкости, температуры, частоты и др.
Как проверить диод мультиметром?

После того как определились с типом диодов, их различиями и особенностями, а также с назначением этого прибора, можно рассмотреть порядок работы с ним. Проверка заключается в том, что проверяют пропускную способность тока через них. Если это правило соблюдается, то смело можно заявить, что элемент схемы работает исправно и не имеет недостатков.

Обычные диоды проверяются этим прибором без особых усилий. Чтобы выполнить диагностику этих элементов достаточно выполнить следующие действия:

Проверка работоспособности диода, светодиода, стабилитрона.
  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;

  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;

  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Признаки неисправного диода
  • Если диод неисправен, то в режиме прозвонки прибор запищит, а в режиме измерения сопротивления покажет значение близкое к 0, что говорит о том что диод коротко замкнут, то есть пробит.
  • Если при обоих измерениях прибор показывает 1, тоесть бесконечно большую величину, это означает, что диод в обрывае.

Диодный мост

Бывает, что возникает необходимость в диагностике диодного моста. Он представляет собой сборку, которая состоит из 4 полупроводников. Причем они соединены так, что переменное напряжение преобразуется в постоянное. Принцип проверки практически такой же. Важной отличительной особенностью является то, что нужно определить как подключены диоды в диодном мосту и проверить каждый диод в прямом и обратном направлении.





Заключение

Провести диагностику работоспособности полупроводников в приборе самостоятельно не сложно. Важно соблюдать порядок действий с мультиметром и четко выполнять все по инструкции. Но при этом обязательно начиная проверку нужно обратить внимание на тип элемента, иметь понятие о том, какое должно быть рабочее сопротивление и напряжение у исправного диода этой разновидности и только потом проводить диагностику и делать выводы.

Используя прибор для проверки исправности диода или любых других целей нужно придерживаться техники безопасности при пользовании им. Все щупы должны быть в исправном состоянии, изоляция проводов должна быть целостной. Если имеются какие — ни будь дефекты, то их желательно сразу устранить, чтобы не нанести себе травмы при измерении. Также важно помнить, что у каждого прибора есть своя погрешность, в дешевых моделях она очень большая. И это важно учитывать при проведении проверки. От того насколько правильно будут выполнены все действия по диагностике, будет зависеть и результат проверки, и ее точность. Поэтому нужно уделить этому должное внимание.

Перед использованием светодиодов важным этапом является предварительная проверка работоспособности этих приборов. Особенно актуальным этот вопрос становится при монтаже светодиодов в труднодоступных местах. Например, при установке светодиодов в светильниках, располагаемых на уличных мачтах или потолках промышленных предприятий.

Как и для обычного диода, наиболее простым методом оценки работоспособности является проверка светодиодов тестером или мультиметром. Для этого достаточно подключить его анодом к плюсу измерительного прибора, а катодом — к минусу. Чтобы правильно различать анод и катод необходимо помнить, что обычно вывод анода у светодиода длиннее вывода катода. Но такой «прозвон» возможен только для таких светодиодов, у которых малое рабочее напряжение. Для мощных, с повышенным рабочим напряжением — такой метод неприемлем.

Для оценки исправности светодиодов можно использовать имеющийся в мультиметре разъем для проверки транзисторов.

При этом вывод анода светодиода надо вставить в отверстие, предназначенное для эмиттера проверяемого транзистора (обозначение Е), а вывод катода — в отверстие, в которое должен вставляться коллектор проверяемого транзистора (обозначение C для PNP). При включении мультиметра исправный светодиод будет гореть.

Часто требуется более точное обследование светодиода. Особенно, это касается мощных светодиодов, характеристики которых предназначены для работы с токами в сотни миллиампер и более.

Эти светодиоды могут подсвечиваться при «прозвонке», но при включении их в рабочий режим на полный ток, они горят очень слабо. Такая неисправность может быть связана с дефектом кристалла. И этот дефект может быть выявлен только при более тщательном тестировании прибора.

Как произвести точное тестирование на работоспособность?

Для более точного тестирования исправности светодиода, кроме мультиметра требуется дополнительный источник стабилизированного тока. Тестирование производится следующим образом:

  1. Собирается схема из последовательного включения стабилизированного источника тока, светодиода и мультиметра (предел измерения тока в мультиметре устанавливается в 10 А).
  2. В стабилизированном источнике тока выставляется номинальный ток светодиода, величина которого контролируется с помощью мультиметра.
  3. Источник питания выключается.
  4. Мультиметр подключается параллельно светодиоду (предел измерения напряжения в мультиметре устанавливается в 20 В).
  5. После включения источника тока производится измерение рабочего напряжения на светодиоде.
  6. По полученным данным и вольт амперной характеристике светодиода, приведенной в паспорте на прибор, производится проверка соответствия измеренных и паспортных значений тока и напряжения.
  7. По результатам сравнения делается вывод об исправности светодиода и возможности его эксплуатации.

При сравнении паспортных и измеренных основных характеристик светодиода необходимо учитывать:

  • точности измерений тока и напряжения;
  • тот факт, что вольт амперная характеристика данного типа светодиода отражает усредненную зависимость тока от напряжения.

Вольт амперная характеристика конкретного экземпляра светодиода может несколько отличаться от паспортной характеристики.

Выводы :

1. Перед монтажом светодиодов желательно произвести проверку их работоспособности.

2. При предварительной проверке исправности светодиодов можно использовать мультиметр.

3. Для тщательного тестирования светодиодов, особенно мощных, необходимо использовать схему, включающую мультиметр и источник стабилизированного тока.

Простой способ проверки светодиода мультиметром на видео

Диод полупроводникового типа относится к тем электронным приборам, которым свойственна проводимость только в одну сторону.

Что такое полупроводниковый диод

Пользователи часто сталкиваются с вопросом, как проверить диод. Для того чтобы проверить, нормально ли диод функционирует, лучше всего воспользоваться методом контроля его состояния при помощи цифрового мультиметра. У всех диодов есть два выхода. Один из них — анод — со знаком плюс, а другой — катод — со знаком минус.

С физической точки зрения любой диод — это переходное устройство типа p-n. Следует знать, что приборы с полупроводниковой системой могут иметь несколько таких переходов (динистор имеет 3 перехода). Тем временем, обычный диод с полупроводниковой системой представляет собой самый элементарный электронный прибор из всех существующих, в основе которого лежит один такой переход. Следует также помнить, что диод с полупроводниковой системой может полностью проявить свои физические свойства исключительно после того, как он будет включен на полную силу.

Включение на полную силу подразумевает тот факт, что анод конкретного диода был подключен к напряжению со знаком плюс, а катод — к напряжению со знаком минус. Только тогда происходит полное открытие диода и его переход начинает проводить электрический док. Если сделать все наоборот и подключить к аноду диода минусовое напряжение, а к катоду — плюсовое, то данный диод будет считаться закрытым и не будет пропускать через себя электрический ток. Этот процесс будет длиться до тех пор, пока напряжение в приборе не достигнет предельной отметки, что повлечет за собой разрушение кристаллической основы полупроводника. Таким образом, принцип работы диода — проводимость в одну сторону — подтверждается.

Ответ на вопрос: «Как проверить диод мультиметром?» — очень прост. В большинстве случаев любой современный цифровой тестер (мультиметр), который можно сейчас найти в продаже, обеспечен функцией проверки физической исправности диодов. Этим свойством можно воспользоваться в ситуации, когда требуется проверка работоспособности транзистора.

Во время проверки работоспособности прибора на экране появляется не значение сопротивления перехода, а так называемое «пробивное» напряжение в диоде. Это означает: если превысить данный порог, переход откроется, и диод начнет работать. Как правило, значение этого показателя находится в диапазоне от ста до восьмидесяти милливольт. Они и будут отображены на мониторе устройства. Если же поменять местами выводы мультиметра (с отрицательного на положительный и наоборот), то монитор не должен ничего показывать. Это будет свидетельством того, что диод не пропускает ток в другую сторону, следовательно, функционирует нормально.

Как проверить диод

Для того чтоб облегчить процесс проверки, желательно иметь при себе макетную плату. Прежде всего, следует убедиться, что вы не касаетесь выходов диода и щупов тестера обеими руками. Так поступать нельзя, ведь тогда на результаты измерений повлияет и ваше тело — добавится его сопротивление. Поэтому все необходимо держать только одной рукой — тогда в цепь измерения войдут только необходимые для этого элементы.

Об этой особенности не стоит забывать и при измерении прочих приборов, к примеру, конденсаторов или резисторов. Начать стоит с проверки во время прямого подсоединения. Для этого положительный щуп мультиметра (он красного цвета) нужно подсоединить к аноду диода, а отрицательный щуп (он черного цвета) подсоединить к катоду. Выход катода находится с той стороны устройства, на которую нанесено кольцо белой краской.

Так и отмечается выход катода у большинства диодов современного образца. Если все прошло удачно, и монитор отобразил нормальное значение напряжения, то можно проверять диод, поменяв контакты местами. Стоит отметить, что диоды таки осуществляют пропуск электрического тока в обратном направлении, но в таких малых количествах, что этот показатель никогда не учитывается в расчетах. Так что если подсоединить к аноду щуп черного цвета, а к катоду — красного, то дисплей должен показать значение «один». Это будет говорить о том, что диод функционирует абсолютно нормально.

Возможные неисправности

Полупроводниковым диодам, как правило, свойственны два типа неисправностей: пробивание перехода и обрыв перехода. О них стоит знать следующее:

  • Пробивание перехода . В этом случае диод станет самым обычным проводником и получит свойство пропускать электрический ток как в одном направлении, так и в другом. Об этом пользователю может рассказать визжащий буззер его тестера, а монитор покажет величину сопротивления, которая не свойственна данному диоду. Она будет необычно маленькой
  • Обрыв перехода . Если случился обрыв перехода, исследуемый диод не будет пропускать электрический ток ни в одном, ни в другом направлении. В такой ситуации монитор мультиметра всегда будет демонстрировать цифру «один». Если это произойдет, исследуемый диод станет изолятором. Однако случаются ситуации, когда абсолютно нормально функционирующему диоду ставят диагноз «обрыв». Это случается, в основном, тогда, когда используется тестер с испорченными или просто поношенными щупами. Этот момент нужно контролировать, ведь их провода часто подвергаются механическим воздействиям, что приводит к обрыву

Что стоит знать про пробивное напряжение

Значение пробивного напряжения у большинства германиевых диодов находится в диапазоне от трехсот до четырехсот милливольт. К примеру, часто используемый диод модели Д9, который также применяется как детектор в устройствах радиоприемников, характеризуется этим показателем в размере четырехсот милливольт.

Вот основные типы диодов и напряжения, которые им соответствуют:

  • Диоды из кремния. Им свойственно самое большое напряжение пробоя — от четырехсот до восьмисот милливольт
  • Диоды из германия. Имеют среднее напряжение пробоя в размере от трехсот до четырехсот милливольт
  • Диоды Шоттки. Их напряжение пробоя составляет от ста до двухсот пятидесяти милливольт

Руководствуясь данной методикой, можно не только проверить, насколько хорошо диод функционирует, но и приблизительно выяснить, какой материал служил сырьем для его изготовления. Определить это можно, узнав величину напряжения на пробой.

Где можно заказать проверку диода

Если у вас есть опасения, что вы не сможете самостоятельно проверить исправность диода при помощи мультиметра, лучше всего будет обратиться к специалистам. Воспользовавшись услугами платформы Юду, вы можете всего за десять минут заказать услуги мастера для проверки диода мультиметром.

Это можно сделать следующими способами:

На платформе Юду вы не будете ограничены в выборе мастера и сможете воспользоваться услугами именно того специалиста, которого сочтете наиболее квалифицированным. Все исполнители Юду прошли специальную проверку во время регистрации на сайте и смогут гарантировать высокое качество производимых работ.

Светодиоды как альтернатива лампам накаливания и «экономкам» прочно занимают место в светильниках разных мастей и качества. Их применяют в и для . Для подсветки и в переносных фонариках. Срок службы светодиода превосходит любые другие источники света в несколько раз, но и они перегорают. Рассмотрим, как продиагностировать обычный светодиод с помощью мультиметра.

Что такое светодиод

Глядя на его действие можно сказать, что это обычная лампочка, но это не так. Устройство любого диода предусматривает одну особенность – он пропускает электричество только в одном направлении и работает только с постоянным током. Т.е. для работы светодиода нужен блок питания с постоянным напряжением. Величина напряжения обычно написана на корпусе самого светодиода и составляет от 3 до 12 вольт в зависимости от модели. Отличие светодиода от обычного диода только в том, что при прохождении через него тока он светится. Еще одно отличие заключается в том, что анод (+ плюсовой)и катод (- минусовой) на светодиоде неотличимы визуально.

Как проверять

Обозначение режима проверки диодов на мультиметре

Мультиметр должен иметь специальную функцию «проверка диодов». Эта опция может быть обозначена специальным знаком на корпусе. В этом режиме цифровой мультиметр пропускает через него напряжение и светодиод может быть немного подсвеченным, если совпал плюс на выходе измерительного прибора с анодом на диоде.

Шаг первый. При соблюдении полярности на табло мультиметра отображается падение напряжение на прямом переходе. Необходимую цифру вы можете узнать в документации к диоду:

Подключение светодиода правильное

Шаг второй: При обратной полярности проверки светодиода мультиметром прибор будет показывать единицу. Это свидетельство того, что светодиод исправен.

Обратная полярность при проверке светодиода мультиметром

Такую схему проверки можно выполнять как на отдельных светодиодах, так и прозванивать каждый диод в схеме.

Обязательно проверяйте светодиод и в одну и в другую сторону, чтобы узнать его исправноть. Если светодиод пропускает электричество в две стороны, т.е. на втором шаге у вас показания отличные от единицы, значит он неисправен.

Видео, как проверить светодиод с помощью мультиметра

Комментарии:

Похожие записи

Как выбирать токоизмерительные клещи и не переплатить Виды мультиметров Mastech и сфера применения

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Как проверить диод — как с помощью мультиметра проверить работоспособность диода

Диод полупроводникового типа относится к тем электронным приборам, которым свойственна проводимость только в одну сторону.

Что такое полупроводниковый диод

Пользователи часто сталкиваются с вопросом, как проверить диод. Для того чтобы проверить, нормально ли диод функционирует, лучше всего воспользоваться методом контроля его состояния при помощи цифрового мультиметра. У всех диодов есть два выхода. Один из них – анод – со знаком плюс, а другой – катод – со знаком минус.

С физической точки зрения любой диод – это переходное устройство типа p-n. Следует знать, что приборы с полупроводниковой системой могут иметь несколько таких переходов (динистор имеет 3 перехода). Тем временем, обычный диод с полупроводниковой системой представляет собой самый элементарный электронный прибор из всех существующих, в основе которого лежит один такой переход. Следует также помнить, что диод с полупроводниковой системой может полностью проявить свои физические свойства исключительно после того, как он будет включен на полную силу.

Включение на полную силу подразумевает тот факт, что анод конкретного диода был подключен к напряжению со знаком плюс, а катод – к напряжению со знаком минус. Только тогда происходит полное открытие диода и его переход начинает проводить электрический док. Если сделать все наоборот и подключить к аноду диода минусовое напряжение, а к катоду – плюсовое, то данный диод будет считаться закрытым и не будет пропускать через себя электрический ток. Этот процесс будет длиться до тех пор, пока напряжение в приборе не достигнет предельной отметки, что повлечет за собой разрушение кристаллической основы полупроводника. Таким образом, принцип работы диода – проводимость в одну сторону – подтверждается.

Ответ на вопрос: «Как проверить диод мультиметром?» – очень прост. В большинстве случаев любой современный цифровой тестер (мультиметр), который можно сейчас найти в продаже, обеспечен функцией проверки физической исправности диодов. Этим свойством можно воспользоваться в ситуации, когда требуется проверка работоспособности транзистора.

Во время проверки работоспособности прибора на экране появляется не значение сопротивления перехода, а так называемое «пробивное» напряжение в диоде. Это означает: если превысить данный порог, переход откроется, и диод начнет работать. Как правило, значение этого показателя находится в диапазоне от ста до восьмидесяти милливольт. Они и будут отображены на мониторе устройства. Если же поменять местами выводы мультиметра (с отрицательного на положительный и наоборот), то монитор не должен ничего показывать. Это будет свидетельством того, что диод не пропускает ток в другую сторону, следовательно, функционирует нормально.

Как проверить диод

Для того чтоб облегчить процесс проверки, желательно иметь при себе макетную плату. Прежде всего, следует убедиться, что вы не касаетесь выходов диода и щупов тестера обеими руками. Так поступать нельзя, ведь тогда на результаты измерений повлияет и ваше тело – добавится его сопротивление. Поэтому все необходимо держать только одной рукой – тогда в цепь измерения войдут только необходимые для этого элементы.

Об этой особенности не стоит забывать и при измерении прочих приборов, к примеру, конденсаторов или резисторов. Начать стоит с проверки во время прямого подсоединения. Для этого положительный щуп мультиметра (он красного цвета) нужно подсоединить к аноду диода, а отрицательный щуп (он черного цвета) подсоединить к катоду. Выход катода находится с той стороны устройства, на которую нанесено кольцо белой краской.

Так и отмечается выход катода у большинства диодов современного образца. Если все прошло удачно, и монитор отобразил нормальное значение напряжения, то можно проверять диод, поменяв контакты местами. Стоит отметить, что диоды таки осуществляют пропуск электрического тока в обратном направлении, но в таких малых количествах, что этот показатель никогда не учитывается в расчетах. Так что если подсоединить к аноду щуп черного цвета, а к катоду – красного, то дисплей должен показать значение «один». Это будет говорить о том, что диод функционирует абсолютно нормально.

Возможные неисправности

Полупроводниковым диодам, как правило, свойственны два типа неисправностей: пробивание перехода и обрыв перехода. О них стоит знать следующее:

  • Пробивание перехода. В этом случае диод станет самым обычным проводником и получит свойство пропускать электрический ток как в одном направлении, так и в другом. Об этом пользователю может рассказать визжащий буззер его тестера, а монитор покажет величину сопротивления, которая не свойственна данному диоду. Она будет необычно маленькой
  • Обрыв перехода. Если случился обрыв перехода, исследуемый диод не будет пропускать электрический ток ни в одном, ни в другом направлении. В такой ситуации монитор мультиметра всегда будет демонстрировать цифру «один». Если это произойдет, исследуемый диод станет изолятором. Однако случаются ситуации, когда абсолютно нормально функционирующему диоду ставят диагноз «обрыв».  Это случается, в основном, тогда, когда используется тестер с испорченными или просто поношенными щупами. Этот момент нужно контролировать, ведь их провода часто подвергаются механическим воздействиям, что приводит к обрыву

Что стоит знать про  пробивное напряжение

Значение пробивного напряжения у большинства германиевых диодов находится в диапазоне от трехсот до четырехсот милливольт. К примеру, часто используемый диод модели Д9, который также применяется как детектор в устройствах радиоприемников, характеризуется этим показателем в размере четырехсот милливольт.

Вот основные типы диодов и напряжения, которые им соответствуют:

  • Диоды из кремния.  Им свойственно самое большое напряжение пробоя – от четырехсот до восьмисот милливольт
  • Диоды из германия. Имеют среднее напряжение пробоя в размере от трехсот до четырехсот милливольт
  • Диоды Шоттки. Их напряжение пробоя составляет от ста до двухсот пятидесяти милливольт

Руководствуясь данной методикой, можно не только проверить, насколько хорошо диод функционирует, но и приблизительно выяснить, какой материал служил сырьем для его изготовления. Определить это можно, узнав величину напряжения на пробой.

Где можно заказать проверку диода

Если у вас есть опасения, что вы не сможете самостоятельно проверить исправность диода при помощи мультиметра, лучше всего будет обратиться к специалистам. Воспользовавшись услугами платформы Юду, вы можете всего за десять минут заказать услуги мастера для проверки диода мультиметром.

Это можно сделать следующими способами:

  • Воспользоваться мобильным приложением Юду, чтобы заказать необходимую услугу
  • Самостоятельно отыскать интересующую вас услугу в каталоге платформы Юду и связаться с мастером
  • Оформить заявку, заполнив соответствующую форму прямо на этой странице, дождаться, когда специалист на нее откликнется, и позвонить ему

На платформе Юду вы не будете ограничены в выборе мастера и сможете воспользоваться услугами именно того специалиста, которого сочтете наиболее квалифицированным. Все исполнители Юду прошли специальную проверку во время регистрации на сайте и смогут гарантировать высокое качество производимых работ.

Как проверить диод используя цифровой и аналоговый мультиметр

Диоды — одни из компонентов, которые могут быть очень легко протестированы. Обычные диоды такие как Диоды Зенера могут быть проверены при помощи мультиметра. При тестировании диода прямой режим проведения и обратный режим блокирования должны быть протестированы отдельно.

Для тестирование обычного диода, используя цифровой мультиметр.
Чтобы проверить обычный кремниевый диод, используя цифровой мультиметр, поместите селектор мультиметра в диодный режим проверки. Соедините положительный вывод мультиметра к анодному и отрицательный вывод к катоду диода. Если мультиметр выводит на экран напряжение между 0.6 к 0.7, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямой режим проводимости диода. Выведенное на экран значение — фактически потенциальный барьер кремниевого диода и его диапазонов значений от 0.6 до 0.7 вольт в зависимости от температуры.
Теперь соедините положительный вывод мультиметра к катоду и отрицательный вывод к аноду. Если мультиметр показывает бесконечное чтение (по диапазону), мы можем предположить, что диод исправен. Это — тест для того, чтобы проверить обратный режим блокирования диода.

 

Для того, чтобы протестировать Германиевые диоды, процедура — та же, но дисплей будет между 0.25 и 0.3 В, чтобы указать верное условие в прямосмещенном режиме. Потенциальный барьер для Германиевого диода между 0.25 и 0.3V.When, реверс смещения мультиметра, покажет бесконечное чтение (по диапазону).

 

Тестирование обычного диода, используя аналоговый мультиметр.


Чтобы проверить обычный Кремниевый диод, используя аналоговый мультиметр, поместите селектор мультиметра в позицию низкого сопротивления ( 1K). Соедините положительный вывод мультиметра к аноду диода и отрицательный вывод мультиметра к катоду диода. Если мультиметр показывает чтение низкого сопротивления, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить прямосмещенный режим диода.
Теперь поместите селектор мультиметра в позицию высокого сопротивления (100K).  Соедините положительный вывод мультиметра к катоду диода и отрицательный вывод к аноду диода. Если мультиметр показывает бесконечное чтение, мы можем предположить, что диод исправен. Этот — тест для того, чтобы проверить обратный режим блокирования диода. Мультиметр показывает бесконечное или очень высокое сопротивление, потому что у обратно-смещенного диода есть очень высокое сопротивление (обычно в диапазоне сотен Омов K).

 

Тестирование Диода Зенера.

Прямые характеристики Диода Зенера подобны обычному диоду. Так методы, используемые для того, чтобы протестировать вперед проводящий режим любого обычного диода, также применимо к Диоду Зенера . Но в обратном режиме, у напряжения обратного пробоя есть большое значение, и это должно быть в частности протестировано. Например, 5.3-вольтовый Диод Зенера должен начать проводить только, когда примененное обратное напряжение просто превышает 5.3V. Режим обратного смещения Диода Зенера может быть легко протестирован при помощи схемы, данной ниже. Сопротивление R1 может обычно быть 100 Омов. Мультиметр должен быть в режиме напряжения. Теперь медленно увеличивайте производство переменного источника питания и одновременно наблюдайте напряжение, показанное в мультиметре. Дисплей мультиметра увеличивается вместе с увеличением напряжения источника питания до напряжения пробоя. Кроме того показания мультиметра остается неизменным несмотря на напряжение источника питания. Это вызвано тем, что Диод Зенера находится теперь в области пробоя, и напряжение через него останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя. Если показание мультиметра  равно напряжению пробоя, определенному производителем, мы можем предположить, что Диод Зенера исправен.

При выполнении этого теста не забудьте не превышать входное напряжение возбуждения к точке, которая вынуждает Диод Зенера рассеять больше питания. Обычно оно не должно превышать  больше, чем 10mA.

Диод

M7: техническое описание, распиновка, корпус, аналог, Smd

Диод M7 Диод M7

Диод M7 — это SMD-версия обычного диода 1n4007, технические характеристики диода M7 такие же, как у диода 1n4007.

Диод M7 — это версия обычного диода для поверхностного монтажа, одно из основных применений на основе этих диодов — выпрямительные схемы.

Распиновка диода M7 Распиновка диода M7

Диод M7 имеет два вывода, анод и катод, вывод катода будет отмечен крошечной линией на поверхности корпуса диода M7.

Пакет диодов M7

Диод M7 — это компонент для поверхностного монтажа, поэтому они имеют DO-214AC (SMA)

Лист данных диода M7

Информация в техническом описании диода M7 дает нам представление об электрических характеристиках, показываемых устройством.

Максимальное повторяющееся пиковое обратное напряжение и максимальное напряжение блокировки постоянного тока диода M7 составляют 1000 В, а максимальное среднеквадратичное напряжение составляет 700 В.

Максимальное значение тока на диоде M7 составляет 1А, значение будет указывать на схожесть диода M7 с обычными диодами.

Значение диода M7
  • Максимальное повторяющееся пиковое обратное напряжение (В RRM ) = 1000 В
  • Максимальное среднеквадратичное напряжение (В RMS ) = 700 В
  • Максимальное напряжение блокировки постоянного тока = 1000 В
  • Максимальный средний прямой выпрямительный ток = 1 А
  • Максимальное мгновенное прямое напряжение = 1,1 В
  • Максимальный постоянный обратный ток при номинальном постоянном блокирующем напряжении = 50Ua
  • Емкость перехода = 15 пФ
  • Термическое сопротивление = 75C˚C / Вт
  • Рабочая температура перехода и хранения = от -65 до + 75˚C

Характеристики диода M7
  • У них были низкие обратные течи
  • Встроенный компенсатор натяжения
  • Устойчивость к высокому прямому импульсному току
  • Гарантированная высокая температура при пайке 250 ° C / 10 секунд на клемме

Тест диодов M7
  • Процедура тестирования диода M7 такая же, как и для обычного диода, то есть сначала на мультиметре нам нужно установить проверку диода или вариант с очень низким сопротивлением.
  • Затем подключите щупы мультиметра к диоду в прямом положении, который покажет низкое сопротивление.
  • А также перевернуть щупы покажут очень высокое сопротивление на мультиметре
  • Эти значения обеспечивают правильную работу диода M7.

Эквивалент диода M7

Эквивалентными диодами для диода M7 являются выпрямительные диоды M1, M6 и M5 для поверхностного монтажа.

Падение напряжения на диоде M7

Падение напряжения на диодах М7 0.7V , это конкретное значение связано с кремниевым материалом.

Использование диода M7

Диод M7 применяется в платах для поверхностного монтажа, в настоящее время каждая печатная плата построена с использованием технологии поверхностного монтажа.

Диод M7 используется в схемах выпрямителя на плате для поверхностного монтажа в адаптерах, зарядных устройствах, схемах зарядных устройств и блоках питания телевизоров и компьютеров.

Как проверить диод

Диоды — это один из компонентов, которые можно очень легко протестировать.Обычные диоды, а также стабилитроны можно проверить с помощью мультиметра. При тестировании диода режим прямой проводимости и режим блокировки обратного направления должны проверяться отдельно.

Проверка обычного диода с помощью цифрового мультиметра.
Чтобы проверить обычный кремниевый диод с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов. Подключите положительный вывод мультиметра к аноду, а отрицательный — к катоду диода.Если мультиметр показывает напряжение от 0,6 до 0,7, можно предположить, что диод исправен. Это тест для проверки режима прямой проводимости диода. Отображаемое значение фактически является потенциальным барьером кремниевого диода, и его значение колеблется от 0,6 до 0,7 вольт в зависимости от температуры.

Теперь подключите положительный провод мультиметра к катоду, а отрицательный — к аноду. Если мультиметр показывает бесконечное значение (вне диапазона), можно предположить, что диод исправен.Это тест для проверки режима обратной блокировки диода.

Процедура проверки германиевых диодов такая же, но на дисплее будет от 0,25 до 0,3 В, чтобы указать исправное состояние в режиме прямого смещения. Потенциальный барьер для германиевого диода составляет от 0,25 до 0,3 В. При обратном смещении мультиметр будет показывать бесконечное значение (вне диапазона), указывая на нормальное состояние.

Проверка обычного диода аналоговым мультиметром.
Чтобы проверить обычный кремниевый диод с помощью аналогового мультиметра, установите селекторный переключатель мультиметра в положение низкого сопротивления (скажем, 1 кОм). Подключите положительный вывод мультиметра к аноду диода, а отрицательный вывод мультиметра к катоду диода. Если измеритель показывает низкое сопротивление, можно предположить, что диод исправен. Это тест для проверки режима прямого смещения диода.

Теперь переведите переключатель мультиметра в положение с высоким сопротивлением (скажем, 100 кОм).Подключите положительный вывод мультиметра к катоду диода, а отрицательный — к аноду диода. Если счетчик показывает бесконечное значение, можно считать, что диод исправен. Это тест для проверки режима обратной блокировки диода. Измеритель показывает бесконечное или очень высокое сопротивление, потому что диод с обратным смещением имеет очень высокое сопротивление (обычно в диапазоне сотен кОм).

Проверка стабилитрона.
Прямые характеристики стабилитрона аналогичны обычному диоду.Таким образом, методы, используемые для проверки режима прямой проводимости любого обычного диода, применимы и к стабилитрону. Но в обратном режиме обратное напряжение пробоя имеет большое значение, и его необходимо специально проверять. Например, стабилитрон на 5,3 В должен начать проводить только тогда, когда приложенное обратное напряжение чуть превышает 5,3 В. Режим обратного смещения стабилитрона можно легко проверить с помощью схемы, представленной ниже. Сопротивление R1 обычно может составлять 100 Ом. Мультиметр должен быть в режиме напряжения.Теперь медленно увеличивайте мощность переменного источника питания и одновременно наблюдайте за напряжением, показанным на мультиметре. Показания мультиметра увеличиваются вместе с увеличением напряжения питания до напряжения пробоя. Кроме того, показания мультиметра остаются неизменными, несмотря на наличие напряжения питания. Это связано с тем, что стабилитрон теперь находится в области пробоя, и напряжение на нем останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя.Если показание мультиметра в этот момент равно напряжению пробоя, указанному производителем, можно считать, что стабилитрон исправен.

При проведении этого теста помните, что входное напряжение возбуждения не должно превышать такое значение, при котором стабилитрон рассеивает больше мощности, чем он может безопасно обрабатывать. Обычно ток через диод не должен превышать 10 мА.

Диодный выпрямитель M7 (SMD 4001-4007)

  1. Диодный выпрямитель M7 (SMD 4001-4007) (PDF: 155KB) ↓ Скачать

Kingtronics производит и продает диодный выпрямитель M7 на протяжении многих лет.Наше качество подтверждено многими известными заказчиками. Цены на диодный выпрямитель М7 вполне конкурентоспособны на рынке. Технически говоря, диодный выпрямитель M7 может заменить диодный выпрямитель M1, диодный выпрямитель M2, диодный выпрямитель M3, диодный выпрямитель M4, диодный выпрямитель M5 и диодный выпрямитель M6.

На рынке разные производители диодов называли M7 по-разному, например: S1M, SMA, GS1M, SMD 1N4007.

Диодный выпрямитель M7 (S1M, SMA, GS1M, SMD 1N4007) Характеристики

  • Обратное напряжение от 50 до 1000 Вольт; прямой ток -1.0 ампер
  • Пластиковая упаковка имеет классификацию горючести лаборатории страховщика 94V-0
  • Для поверхностного монтажа
  • Низкая обратная утечка
  • Встроенная разгрузка от натяжения, идеально подходит для автоматического размещения
  • Устойчивость к высокому прямому импульсному току
  • Гарантированная высокотемпературная пайка: 250 ℃ / 10 секунд на клеммах
  • Корпус DO214AC, открытый переход

Диоды, Выпрямители и транзисторы Полный список

Быстрый доступ к диодам и выпрямителям PDF Datasheet.

  1. Диодный выпрямитель M7 (SMD 4001-4007) (PDF: 155KB) ↓ Скачать
  2. Пластиковый выпрямитель общего назначения 1N4001S-1N4007S (PDF: 118KB) ↓ Скачать
  3. Выпрямитель общего назначения 1N4001-1N4007 (PDF: 115KB) ↓ Скачать
  4. Выпрямитель общего назначения 1N5391-1N5399 (PDF: 116 КБ) ↓ Скачать
  5. 2.0A Стандартный диод RL201-RL207 (PDF: 116 КБ) ↓ Скачать
  6. Выпрямители общего назначения 1N5400-1N5408 (PDF: 133KB) ↓ Скачать
  7. 6.0A Кремниевый выпрямитель 6A05-6A10 (PDF: 127KB) ↓ Скачать
  8. 1.0A Диод быстрого восстановления FR101-FR107 (PDF: 115KB) ↓ Скачать
  9. 1.0A Диод быстрого восстановления 1N4933-1N4937 (PDF: 115KB) ↓ Скачать
  10. 1.5A Диод быстрого восстановления FR151-FR157 (PDF: 115KB) ↓ Скачать
  11. 2.0 A Диод быстрого восстановления FR201-FR207 (50V-1000V; 2.0A) (PDF: 115KB) ↓ Скачать
  12. 1A выпрямитель с барьером Шоттки 1N5817-1N5819 (PDF: 116KB) ↓ Скачать
  13. 3.0A выпрямитель с барьером Шоттки 1N5820-1N5822 (PDF: 117KB) ↓ Скачать
  14. Fast Switching Diode LL4148 Minimelf SOD80 (PDF: 98KB) ↓ Скачать
  15. Стабилитрон
  16. BZV55-SERIES (PDF: 98KB) ↓ Скачать
  17. Выпрямитель быстрого восстановления RS1M для поверхностного монтажа (PDF: 520KB) ↓ Скачать
  18. Кремниевые планарные силовые стабилитроны
  19. 1N4727A-1N4761A (PDF: 488KB) ↓ Скачать
  20. Кремниевые планарные стабилитроны
  21. BZX55C (PDF: 375KB) ↓ Скачать
  22. Кремниевый эпитаксиальный планарный переключающий диод 1N4148 (PDF: 396KB) ↓ Скачать
  23. Кремниевый эпитаксиальный планарный переключающий диод 1N4148W (PDF: 254KB) ↓ Скачать
  24. Кремниевый эпитаксиальный планарный переключающий диод 1N4148WS (PDF: 258KB) ↓ Скачать
  25. Кремниевый эпитаксиальный планарный переключающий диод 1N4148WT (PDF: 278KB) ↓ Скачать
  26. Выпрямитель для поверхностного монтажа от S1A до S1M (PDF: 783KB) ↓ Скачать

Купить Современный диод Шоттки m7 для ваших нужд

О товарах и поставщиках:
 

Выбрать. диод Шоттки m7 из огромной коллекции на Alibaba.com. Вы можете купить массив. диод Шоттки m7 включая, помимо прочего, светодиод, микрофон, выпрямитель, лазер, стабилитрон, триггер, Шоттки, SMD, энергосберегающий диод лампы. Вы можете выбрать. диод Шоттки m7 с широким набором основных параметров, спецификаций и номиналов для ваших целей.

диод Шоттки m7 на Alibaba.com удобны в установке и использовании. Используемый пластик более высокого качества обеспечивает изоляцию, снижающую нагрев.Они доступны в кремнии и германии. Диод Шоттки m7 используется в различных отраслях промышленности для различных электрических функций и датчиков. Они используются в инверторах, светодиодах, автомобильной электронике, потребительских товарах, USB 2.0 и USB 3.0, HDMI 1.3 и HDMI 1.4, SIM-карте, мобильной одежде, беспроводной связи, автомобильном генераторе и лазерной эпиляции. Они используются в качестве выпрямителя, датчика освещенности, излучателя света, для рассеивания нагрузки и т. Д. Различная физическая упаковка для. диод Шоттки m7 предлагается для монтажа на печатной плате, радиатора, проводного и поверхностного монтажа.

Основные особенности. диод Шоттки m7 - это толстая медная опорная пластина, низкая утечка, высокая токовая нагрузка, низкое прямое падение напряжения, легирование золотом, низкое инкрементное сопротивление перенапряжения, отличная зажимная способность, быстрое время отклика и т. Д. Технические характеристики, предлагаемые на. диод Шоттки m7 включает в себя различные оптические и электрические характеристики, такие как максимальная мощность, напряжение, оптический выход, время обратного восстановления, рабочая температура и т. Д. диоды Шоттки m7 производятся в соответствии со стандартными процедурами для поддержания высочайшего качества.Они соответствуют требованиям RoHS и IEEE 1394.

Получите лучшее. диод Шоттки m7 предлагает на Alibaba.com различные поставщики и оптовики. Получите высшее качество. диод Шоттки m7 для требований вашего проекта.

Chanzon SMD Fast Switching / Schottky / Rectifier Diode Assorted Kit (15 значений, всего 150 шт .: M1 M4 M7 S1M S2M S3M SS14 SS16 SS24 SS26 SS34 SS36 RS1M US1M LL4148) Ассортимент электронных компонентов: Amazon.com: Industrial & Scientific 9000


Цена: 7 долларов.99 ($ 0.53 / 10 шт.) +1,37 $ перевозки
  • Убедитесь, что это подходит введя номер вашей модели.
  • Бессвинцовые / соответствующие требованиям директивы RoHS компоненты электроники / кремниевые диоды для поверхностного монтажа для проектов Arduino DIY
  • Всего в упаковке 150 штук (15 номеров по 10 штук) с разным током и напряжением
  • Максимальный средний прямой выпрямленный ток: 1A 2A 3A
  • Максимальное повторяющееся пиковое обратное напряжение: 40 В 50 В 60 В 100 В 400 В 1000 В
]]>
Характеристики
Фирменное наименование ШАНЗОН
Идентификатор отраслевого стандарта Соответствует RoHS и не содержит свинца
Форма изделия Smd
Материал кремний
Номер модели 15 номеров деталей (всего 150 шт.)
Количество позиций 150
Номер детали ДИОД-КИТ2-СМД-150
Особые характеристики Упаковать в пакет ESD со специальной этикеткой
Соответствие спецификации Рисунок 2-7 для таблицы технических характеристик
Код UNSPSC 32111504

м7% 20диод% 20Полярность, техническое описание и примечания по применению

м7 диод

Аннотация: ДИОД М7, диоды М7, М7113, М713, М7963 Диод, М7, М741
Текст: нет текста в файле


Оригинал
PDF 34-200CA m7 диод ДИОД М7 m7 диоды M7113 m713 m7963 Диод, М7 M741
2006 — диод m7

Реферат: ДИОД М7 выпрямительный диод М7 выпрямительный диод М7, выпрямительный диод М7 м7 диод М76 М7 ВЫПРЯМИТЕЛЬ диоды м7 диод м7 мощность
Текст: нет текста в файле


Оригинал
PDF 34-200CA 34-200CA m7 диод ДИОД М7 выпрямитель М7 m7 выпрямительный диод Диод, М7 выпрямительный диод м7 Диод M76 ВЫПРЯМИТЕЛЬ M7 m7 диоды мощность диода m7
2004 — диод m7

Аннотация: 5w 10RJ резистор 6K8J диод M7 10RJ HMV LV5 5w 3r3j 6K8J 7W 4k7 7w резистор 1K5J
Текст: нет текста в файле


Оригинал
PDF
2014 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
SPD-NS02

Аннотация: Диод 9П5А М7 uPD72870A uPD72870AGM C5145 SPD-NS02A
Текст: нет текста в файле


Оригинал
PDF PD72870A 72870B SSG-Z-141 0033F) 0085F) 0079J, SPD-NS02 9П5А диод М7 uPD72870A uPD72870AGM C5145 SPD-NS02A
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF 2X16X89 7X13X94 0B50CETE A55DMEDY 04-ЯНВ-01 amp40973 / главная / amp40973 / edmmod
1АМ7

Аннотация: POP-11 766KHz 6512 494B DCM-16 BV-24 M7 OKI MSM6512 MSM6502
Текст: нет текста в файле


Сканирование OCR
PDF b724240 MSM6502 / 6512 MSM6502 / 6512 dLMS-40 1AM7 ПОП-11 766 кГц 6512 494B DCM-16 БВ-24 M7 OKI MSM6512 MSM6502
2000 — РК-77

Аннотация: Транзистор B955 H7B транзистор A4I kab1 b11wb
Текст: нет текста в файле


Оригинал
PDF 5119BE —B11WB & 13KLW RC-77 B955 Транзистор H7B транзистор A4I kab1 b11wb
2002 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 100 В переменного тока 03 октября 2002 г.
2003 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
2003 — маркировка диодов м7

Аннотация: Потенциометр Spectrol 1 м Маркировка диода m7 диод m7 ПОТЕНЦИОМЕТР 10K LOG Потенциометр 25K 5k линейный потенциометр маркировка код LG -led M7 vishay LINEAR MARKING
Текст: нет текста в файле


Оригинал
PDF 100 В переменного тока 17.03.03 маркировка диодов м7 Потенциометр Spectrol 1 м Маркировка диодов м7 m7 диод ПОТЕНЦИОМЕТР 10K ЖУРНАЛ Потенциометр 25К Линейный потенциометр 5k код маркировки LG -led М7 вишай ЛИНЕЙНАЯ МАРКИРОВКА
2004 — СТ М25П80

Аннотация: EE-230 EE-220 EE-180 ADSP-21262 ADSP-21161N ADSP-21161 ADSP-21065L spi flash параллельный порт диод m7
Текст: нет текста в файле


Оригинал
PDF EE-230 ADSP-2126x ADSP2126x) EE-66) ADSP-21161N EE-180) EE-220) M25P80 ADSP-21262 СТ М25П80 EE-230 EE-220 EE-180 ADSP-21161 ADSP-21065L spi flash параллельный порт m7 диод
ATI Mobility Radeon

Аннотация: Mobility Radeon M6 RADEON Mobility M6 radeon ETX-P3Tx Mobility Radeon M6 16 Мб Контроллеры мыши ATI Radeon ETX-P3 radeon m6
Текст: нет текста в файле


Оригинал
PDF 82801DB feature030301-e 040730LZE ATI Mobility Radeon Мобильность Radeon M6 RADEON Mobility M6 radeon ETX-P3Tx мобильность radeon m6 16mb Контроллеры мыши ATI Radeon ETX-P3 radeon m6
2003-П075

Реферат: Поворотный потенциометр 098-AB Потенциометр B 504
Текст: нет текста в файле


Оригинал
PDF PDB18 P075 098-AB поворотный потенциометр B 504 Потенциометр
2005 — СТ М25П80

Аннотация: EE-66 EE-231 EE-230 EE-220 EE-180 ADSP-21262 ADSP-21161N ADSP-21161 ADSP-21065L
Текст: нет текста в файле


Оригинал
PDF EE-230 EE-220) M25P80 ADSP-21262 EE-231) ADSP-2126x EE-230) СТ М25П80 EE-66 EE-231 EE-230 EE-220 EE-180 ADSP-21161N ADSP-21161 ADSP-21065L
Схема подключения
для удерживающего контактора с нормально разомкнутым, нормально замкнутым контактом

Реферат: МАРКИРОВКА диодов М16 Маркировка диодов М7 диод М7 Маркировка диодов М7 Ультразвуковой датчик расстояния
Текст: нет текста в файле


Оригинал
PDF
2004 — ПДБ181-П

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF PDB18 PDB181-P
постоянного тока m7

Аннотация: IEC60947-5-2 V31-WM-2M-PVC
Текст: нет текста в файле


Оригинал
PDF IEC60947-5-2 dc m7 IEC60947-5-2 В31-WM-2M-ПВХ
2003 — Потенциометр Spectrol 1м

Реферат: диод M7 Маркировка диода m7 Potentiometer 25K потенциометр 102 5K control spectrol 5k M7 vishay p25f
Текст: нет текста в файле


Оригинал
PDF 100 В переменного тока 16-июл-03 Потенциометр Spectrol 1 м диод М7 Маркировка диодов м7 Потенциометр 25К потенциометр 102 5K контрольный спектр 5к М7 вишай p25f
2009 — диод М7

Реферат: потенциометр по часовой стрелке PDB181-B PDB181-D PDB181-K PDB181-P
Текст: нет текста в файле


Оригинал
PDF PDB18 диод М7 потенциометр против часовой стрелки PDB181-B PDB181-D PDB181-K PDB181-P
2005 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF AC234 Компы / Core10100
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Сканирование OCR
PDF
2004 — MOELLER PKZM

Реферат: PKZM 1-10 PKZM0-32 DILM7-10 DILM32-XHI11 DILM32-XHI22 pkzm 0-0.6 DILA-XHIV22 DILM50 DILM9-10
Текст: нет текста в файле


Оригинал
PDF ясноM0-25 ДИЛМ25-01 ПКЗМ0-32 DILM32-01 МОЕЛЛЕР ПКЗМ ПКЗМ 1-10 ПКЗМ0-32 DILM7-10 DILM32-XHI11 DILM32-XHI22 пкзм 0-0,6 DILA-XHIV22 DILM50 DILM9-10
2003 — Панасоник ewv

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF

Купить диод M7 (1N4007) — (пакет SMD) — диод 1A онлайн в Индии

Диод M7 (1N4007) — это общий выпрямитель M7 для поверхностного монтажа с обратным напряжением пластикового пассивирующего перехода от 50 до 1000 В при прямом токе 1.0 Ампер. Следующие характеристики:

• Пластиковая упаковка имеет страховку Laborator

• Класс воспламеняемости 94V-O

• Для поверхностного монтажа

• Низкая обратная утечка

• Встроенный компенсатор натяжения, идеально подходит для автоматического размещения

• Высокая пропускная способность в прямом направлении

• Гарантия высокотемпературной пайки 250010 секунд на клеммах

• Низкое прямое падение напряжения

• Высокая пропускная способность

• Легкость захвата и установки

• Высокая стойкость к импульсным токам

• Используемый пластик Лабораторная классификация Underwriters 94V-0

Механические данные: —

• Корпус: формованный пластиковый корпус JEDEC DO-214AC

• Клеммы, нанесенные припоем в соответствии с MIL-STD-7SO, метод

• Полярность: цветная полоса обозначает конец катода

• Монтажное положение: любое

• Вес: 0.003 унции

Спецификация: —

Символ Параметр Значение Единицы
VRRM Пиковое значение Напряжение 700 В
В постоянного токаМаксимальное напряжение блокировки постоянного тока 1000 В
IF (AV) Максимальный средний прямой выпрямленный ток 1 Непериодический пиковый прямой импульсный ток 30 A
TJ Диапазон рабочих температур перехода — 65 до +175 ° C
Tstg Диапазон температур хранения — 65 до +175 ° C


Документ: —

M7 (1N4007) Diode SMD Data Sheet

* Изображения продукта показаны только в иллюстративных целях и могут отличаться от реального продукта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*