Однофазные двигатели переменного тока: Двигатели переменного тока, асинхронные двигатели

Содержание

Коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели

Во многих отраслях промышленности для выполнения технологических процессов необходимы коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели. Конструктивно они практически не отличаются от своих «собратьев» постоянного тока. Механизм движка переменного тока состоит из:

  • ротора с петлевой (параллельной) или волновой (симметричной) обмоткой;
  • коллектора, к которому присоединяется обмотка;
  • статора, набранного из стальных электротехнических пластин.

Достоинства и недостатки коллекторных двигателей переменного тока

Агрегаты такого типа успешно решают задачи, зависящие от работы электропривода. Главным их достоинством является возможность плавного регулирования скорости в режиме энергосбережения.

Но они подходят для использования не на каждом производстве из-за:

  • сложности их изготовления;
  • дороговизны;
  • необходимости в трудоемком техническом обслуживании щеточного механизма и коллектора;
  • плохих токовых условий в коммутации якорной цепи.

Однофазные коллекторные электродвигатели

В комплектацию однофазного движка входят три обмотки. Первая размещается на электрических полюсах и выполняет функцию возбуждения. Вторая (компенсационная обмотка) расположена в роторных пазах и компенсирует отрицательное явление реакции якоря. Дополнительная обмотка предназначена для добавочных полюсов и шунтируется с помощью активного сопротивления.

Когда основная обмотка возбуждается, возникают компенсационные токи и магнитное поле, создающие вращающий момент. Его направление совпадает с направлением вращения магнитного поля. Переключая выводы возбуждающей обмотки, можно изменить направление вращающего момента.

Компенсационная обмотка уменьшает сопротивление индукции и потокосцепления якорной обмотки, а также увеличивает коэффициент мощности движка. Благодаря добавочным полюсам повышается качество коммутации. ЭДС вращения компенсирует реактивную и трансформаторную ЭДС. Легкость пуска достигается при взаимной компенсации ЭДС. Смена рабочего режима и отклонение токовых параметров от заданных величин приводят к тяжелому пуску агрегата.

Однофазные двигатели считаются универсальными устройствами, так как они могут подключаться к сети как постоянного, так и переменного тока. Они применяются как исполнительные механизмы в системах автоматики, в бытовой технике и электроинструментах. Самыми распространенными являются модели небольшой мощности (до 150Вт).

Трехфазные коллекторные электродвигатели

Эти агрегаты подключаются к трехфазной сети. У них обмотка возбуждения обладает качествами шунтового двигателя. Ротор движка подает питающее напряжение на механизм. Основную рабочую функцию выполняет роторная обмотка, подключенная к сети переменного напряжения с помощью токосъемных контактных колец. Статорная обмотка, расположенная в роторных пазах вместе с основной, всеми фазами соединяется с коллектором движка. Каждой фазе соответствуют определенные щетки, которые раздвигаются и сдвигаются с помощью подвижных траверс.

Для работы механизма в режиме асинхронного двигателя щетки устанавливаются на одни и те же пластины коллектора. Но, в отличие от асинхронного агрегата, в коллекторном двигателе роль первичной обмотки играет роторная обмотка, а роль вторичной обмотки – статорная. ЭДС в механизме создается за счет раздвижения щеток. ЭДС вызывает в статоре ток, который создает и определяет момент вращения механизма.

Для регулировки скорости в коллекторную цепь вводится отсутствующая мощность. Используя трансформаторную связь между обмотками, мощность статора возвращается в электрическую сеть, создавая эффект, позволяющий регулировать количество оборотов вала в экономном режиме. При раздвижении щеток на определенное расстояние частота вращения соответственно увеличивается или уменьшается.

Если щетки, соответствующие своим фазам, смещаются, ЭДС изменяется по фазе. Это дает возможность регулирования cosφ. Его качество повышается, когда значение скорости меньше синхронной, а щетки смещаются в противоположную направлению движения ротора сторону.

Электродвигатели, работающие от трехфазной сети, чаще всего применяются в полиграфии (на ротационных машинах), текстильной и легкой промышленности (на прядильных станках), металлургии (на металлорежущих станках).

Основной недостаток трехфазных агрегатов – плохие коммутационные условия. Это вызывает трудности при получении трансформаторной ЭДС, поскольку повышенная мощность приводит к увеличению магнитного потока. Поэтому в редких случаях для повышения ЭДС и экономичного регулирования количества оборотов вала в цепь вводится асинхронный электродвигатель.


Однофазные асинхронные двигатели | Эксплуатация электрических машин и аппаратуры | Архивы

Страница 12 из 74

Преимущество однофазных двигателей перед трехфазными — их способность работать от однофазной сети.
Станина, сердечник статора и короткозамкнутый ротор в однофазных двигателях такие же, как и в трехфазных. Однофазная обмотка статора занимает 2/3 пазов сердечника. Переменный ток в однофазной обмотке создает пульсирующее, а не вращающее, магнитное поле. Такое поле не способно создать пусковой момент двигателя. Если ротор двигателя развернуть, то возникает момент, действующий в направлении вращения ротора. Однофазный двигатель с одной обмоткой на статоре не имеет преимущественного направления вращения: вращение ротора будет в направлении первоначального толчка.

Однофазные двигатели (рис. 41), кроме рабочей обмотки, имеют пусковую обмотку (фазу), которая занимает 1/3 пазов. Пусковую обмотку изготовляют из провода меньшего сечения, чем рабочую. Для получения фазы сдвига токов в обмотках последовательно с пусковой обмоткой включают активное сопротивление. Часто это сопротивление сосредоточено внутри пусковой обмотки.


Рис. 42. Схема однофазного конденсаторного двигателя: С — конденсатор.

Рис. 43. Схема конденсаторного двигателя с рабочей (Ср) и пусковой (Сп) емкостями.
Рис. 41. Схема однофазного асинхронного двигателя с пусковой обмоткой:

К — ключ; R — активное сопротивление.

При замкнутом ключе К и подаче напряжения к двигателю в системе двух обмоток образуется эллиптическое вращающееся магнитное поле; оно обусловливает пусковой момент. Когда скорость ротора достигнет 70—80% номинальной, пусковая обмотка отключается автоматически или вручную.
В однофазных двигателях с пусковой обмоткой небольшой пусковой момент, малая перегрузочная способность, низкие к. п. д. и Cos ср. Изготовляют такие двигатели мощностью ст нескольких десятков до нескольких сот ватт. Их применяют в стиральных машинах, холодильниках, вентиляторах и т. п.
Для увеличения пускового момента однофазного двигателя последовательно с пусковой обмоткой вместо активного сопротивления включают конденсатор. Благодаря емкости пусковые токи в фазах получаются сдвинутыми относительно друг друга на угол до 90°, что и обусловливает больший пусковой момент. После разбега двигателя пусковая обмотка с конденсатором отключается.

Однофазные конденсаторные двигатели на статоре имеют две обмотки (фазы), занимающие равное число пазов, и в одну из которых включен конденсатор (рис. 42). Постоянно включенный конденсатор обусловливает эллиптическое вращающееся магнитное поле, а в рабочем режиме при определенной нагрузке получается круговое поле, то есть такое же, как в трехфазном двигателе.
Конденсаторный двигатель обладает хорошими рабочими характеристиками. К. п. д. достигает 75%. cos φ = 0,9 и выше Пусковые характеристики этих двигателей неудовлетворительны. Пои пуске двигателя магнитное поле сильно отличается от кругового. Поэтому пусковой момент не превышает 30% номинального.

С целью увеличения пускового момента в однофазном конденсаторном двигателе параллельно рабочей емкости включают пусковую емкость, она после разбега двигателя отключается (рис. 43). Такой двигатель называют конденсаторным с пусковой емкостью.
Во всех однофазных двигателях — с пусковой обмоткой, с конденсаторным пуском и конденсаторных двигателях — для измене- нения направления вращения ротора нужно изменить направление тока в одной из обмоток, то есть переключить пусковую или рабочую фазу.

В однофазных асинхронных двигателях с двумя обмотками на статоре пусковой момент пропорционален произведению пусковых токов обмоток и синусу угла смещения этих токов. При заданных токах в обмотках пусковой момент будет наибольшим при фазе смещения токов на 90°, что можно достичь только включением емкости в одну (обычно пусковую) обмотку.
В однофазных конденсаторных двигателях для одной какой- либо нагрузки можно добиться строго кругового вращающегося магнитного поля. Для другой нагрузки изменением величины рабочей емкости можно уменьшить обратно вращающееся магнитное поле, но получить вновь строго круговое поле нельзя, оно будет эллиптическим.
Промышленность выпускает однофазные двигатели: АОЛБО с пусковой обмоткой и активным сопротивлением в качестве фазосдвигающего  элемента; АОЛГО с пусковой обмоткой и конденсатором в качестве фазосдвигающего пускового элемента; АОЛДО — конденсаторный однофазный двигатель, в котором для увеличения пускового момента на время пуска параллельно работающей емкости включается пусковой конденсатор.
Кроме однофазных двигателей с двумя обмотками на статоре, есть однообмоточные двигатели. В них статор явно полюсной системы (как в машинах постоянного тока). Для создания вращающегося поля при пуске используют короткозамкнутые витки, охватывающие часть сердечников полюсов. В этих двигателях нельзя изменить направление вращения ротора.

Типы электродвигателей — Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам. Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel.com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора — неподвижная часть
  • ротора — вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе — 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ — обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) — вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) — электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) — электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 — электрические модификации:

Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 — габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 — длина сердечника и/или длина станины:

Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 — количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 — конструктивные модификации электродвигателя:

Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 — климатическое исполнение электродвигателя:

Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 — категория размещения: 

Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 — степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей

Степень защиты IP

Определение первой цифры  —

защита от твердых объектов

Определение второй цифры  — защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 — Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение — для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

Как у однофазного двигателя определить рабочую и пусковую обмотки

Как у однофазного двигателя определить рабочую и пусковую обмотки

Однофазный двигатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока.

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные  двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Ранее ЭлектроВести писали, калифорнийская компания HyPoint утверждает, что ее новая конструкция топливного элемента с турбонаддувом позволяет в три раза увеличить мощность и в четыре раза срок службы обычного топливного элемента, открывая возможность создания высокоскоростных дальнемагистральных электрических самолетов VTOL с водородным двигателем. Плотность энергии новой системы в 3 раза выше, чем у литий-ионных аккумуляторов.

По материалам: electrik.info.

Фазы двигателей

Электродвигатели осуществляют питание с помощью переменного тока.  Электродвигатели разделяются на синхронные и асинхронные, отличие этих двигателей в принципе их работы. Синхронные движутся синхронно с магнитным полем, питающего их напряжения. Они в основном используются при наличии большой мощности. Асинхронные двигатели – это электродвигатели, которые работают с помощью переменного тока, где частота вращения ротора зависит от частоты вращающего магнитного поля. Такие двигатели широко применяются в наше время. Также электродвигатели переменного тока отличаются количеством фаз. Они подразделяются на однофазные, двухфазные, трехфазные и многофазные.

Особенности фаз электродвигателей

  • Однофазные двигатели применяются для подключения к однофазной сети переменного тока. Это асинхронный двигатель, у которого статор имеет одну обмотку, подключающуюся к сети однофазного тока.
  • Двигатель с однофазной обмоткой подключается с помощью вращающегося магнитного поля.
  • Магнитное поле создается основной обмоткой и дополнительной пусковой обмоткой.
  • Преимущество однофазного двигателя, заключается в  простоте конструкции (короткозамкнутый ротор), а недостаток это малый пусковой объем и низкое КПД.

Двигатели двухфазные

  • Двухфазные двигатели имеют две рабочие обмотки, которые сдвинуты на 90 градусов.
  • При подаче переменного тока они питаются по двум токам, и образуется вращающееся магнитное поле.
  • В двухфазном асинхронном двигателе создается вращающийся момент в стержнях ротора электродвигателя.
  • Ротор ускоряется до достижения конечной частоты вращения поля. В настоящее время чаще используется асинхронный двухфазный электродвигатель, имеющий полый ротор.
  • Если двухфазный электродвигатель питать от однофазной сети, то сдвиг фаз может произойти путем подключения конденсатора, имеющего достаточную емкость.

Трехфазный двигатель

  • Трехфазный двигатель предназначен для работы от трехфазной сети переменного тока.
  • Это электродвигатель, статор которого состоит из трех обмоток. В этом случае магнитное поле сдвинуто на 120 градусов.
  • Наибольшее распространение получил асинхронный электродвигатель с короткозамкнутой  обмоткой ротора.

При необходимости приобретения однофазных, двухфазных двигателей обращайтесь в компании, которые сотрудничают с испытанными временем производителями. В нашей компании имеется широкий выбор электродвигателей разных моделей и марок.

Просмотров: 2862

Дата: Воскресенье, 15 Декабрь 2013

Устройство, эксплуатация, применение однофазных двигателей

Трудно найти современное бытовое устройство, где бы не применялся однофазный двигатель. Они нашли широкое применение в самых различных бытовых решениях, поскольку являются идеальным источником образования вращающего момента там, где система электропитания представляет собой стандартную двухпроводную однофазную сеть.

Краткое описание конструкции

Однофазные двигатели по своей конструкционной идее достаточно просты. Чтобы было понятнее, будем рассматривать инженерное решение последовательно, крупными блоками и избежим погружения в физику переменного тока с его встречными полями и другими тонкостями.

Асинхронный двигатель состоит из двух главных деталей — ротора и статора. На них расположены обмотки, к которым подается напряжение. Обмотку статора можно представить как одно целое, подключаемое к двум контактам питания. В то время как на роторе всегда присутствует несколько обособленных обмоток.

Вращение вала ротора происходит из-за разницы направления электромагнитного поля ротора и статора, благодаря чему возникает движущая сила. К обмоткам ротора напряжение прикладывается последовательно, для чего служат токосъемные щетки и несколько пар контактов, расположенных на отдельном цилиндрическом секторе в зоне вала. Пуск двигателя и его дальнейшая работа в классическом, конденсаторном варианте, происходит следующим образом:

  • на статоре, кроме основной обмотки, присутствует маломощная пусковая, подключенная через конденсатор;
  • при начальной подаче напряжения обмотка статора и подключенная щетками обмотка ротора образовывали бы электромагнитные поля со встречными, четко геометрически совпадающими противоположными полюсами, без образования движущей силы. Но пусковая обмотка, подключенная через конденсатор, создает смещенное по фазе поле, которое и вызывает начальный импульс вращения;
  • после поворота ротора происходит переключение щетками контактов новой обмотки, которая уже не совпадает по направлению поля с характеристиками статора и образует основную движущую силу;
  • вращение продолжается, на роторе переключаются обмотки, пусковая обмотка статора отключается, продолжает работать только основная.

После отключения питания вращение ротора какое-то время продолжается по инерции и затухает. Скорость падения оборотов зависит от нагрузки на валу, а также общей массы ротора и показателей трения в соединениях двигателя. Чтобы увеличить коэффициент полезного действия, применяют качественные подшипники скольжения, которые практически не требуют обслуживания.

Какие тонкости конструирования позволяют добиваться нужных показателей работы двигателей

Количество энергии, которое двигатель может образовывать в виде крутящего момента, не зависит напрямую от характеристик потребляемой мощности. Если присмотреться к бытовым приборам, можно заметить, что двигатель кухонного миксера потребляет столько же мощности, сколько привод надежного и производительного сверлильного станка.

Но при этом миксер может поставить в тупик даже густое тесто, а станок не остановит даже полоса закаленной стали толщиной в несколько сантиметров. Все дело в количестве обмоток ротора и в их физических характеристиках, грубо говоря, в напряженности электромагнитного поля, которое они способны создать.

Двигатель миксера оперирует малыми величинами электродвижущей силы, а мотор станка при той же мощности обеспечивает на валу огромный момент благодаря большим показателям генерации внутренних магнитных полей.

В результате с помощью манипулирования характеристиками обмоток ротора и статора, инженеры могут создавать двигатели, которые будут способны выполнять поставленные задачи и одновременно иметь нужные габариты, чтобы компактно разместиться в корпусах разрабатываемых устройств.

Применение однофазных двигателей

Собственно, применение у электрического однофазного двигателя всего одно. Создавать вращающий момент на собственном валу. Задача остальных инженерных решений, которые применяются в различных устройствах — использовать данный вид энергии, с преобразованием или без, в целях, которые задумали инженеры для удовлетворения потребностей пользователя. Опишем кратко, как реализуются те или иные варианты прямого применения вращающего момента и его преобразования в разные формы движения и энергии.

Прямое применение

Самый простой и понятный пример прямого применения вращающего момента электродвигателя — современные вентиляторы. В идеале это всем знакомые изделия китайской промышленности — огромные лопасти, которые закреплены непосредственно на валу однофазного двигателя переменного тока.

Аналогичный принцип используется в бытовых устройствах повсеместно. Это вентиляторы бытовой техники, отвечающие за охлаждение, приводы лопастей тепловентиляторов и даже напольных охладителей — кондиционеров, использующих испарение жидкости на решетках в роли средства понижения температуры.

Преобразование с целью увеличение крутящего момента

Можно уверенно сказать, что в большинстве случаев в использовании однофазных электрических моторах применяются методики понижения количества оборотов на валу конечного исполнительного устройства. Это ведет к росту вращающего момента (развиваемого усилия), что с инженерной точки зрения имеет массу преимуществ:

  • на исполнительном устройстве в большинстве случаев не нужно такое большое количество оборотов, которое развивает вал двигателя;
  • при преобразовании происходит снижение нагрузки на мотор;
  • устройство развивает хороший момент, который при определенной мощности двигателя может обеспечиваться с отличными показателями стабильности при широких колебаниях нагрузки.

Говоря простым языком, дешевая китайская дрель, у которой преобразование оборотов минимально, просто заклинит при попытке пройти сверлом твердый или крайне вязкий и прочный материал. Та же по мощности качественная дрель, оснащенная механическим преобразователем, на сниженных оборотах легко справится с поставленной задачей.

Такой принцип преобразования момента позволяет инженерам минимизировать размеры двигателей или же гарантировать, что устройство справится с очень серьезными нагрузками.

Преобразование рода движения

Рассмотрим, что происходит в разного рода приборах, исполнительный орган которых совершает возвратно-поступательные движения. Все эти приборы приводятся в действие однофазным двигателем. Однако его вал передает движение либо кулачковому механизму, либо расположеному в центре круга, на краю которого в одной точке закреплен конец шатуна.

Работа кулачкового механизма может быть охарактеризована просто: усилие развивается в одном направлении движения исполнительного органа. Обратный ход обеспечивает либо еще один кулачковый механизм, что достаточно сложно в реализации, либо пружина. При работе шатуна двигатель отвечает за обе фазы возвратно-поступательного движения, что гарантирует полное использование мощности.

На таком принципе построено множество бытовых и промышленных механизмов. К примеру, массажеры с режимом вибрации, машинки для стрижки волос, электрические лобзики, швейные машины, компрессоры холодильников (в общем случае), уплотнители для бетона и многое другое.

Чем выгодны однофазные электрические двигатели

Прежде всего, однофазный электрический двигатель ценен простотой конструкции, отсутствием специального управления, а также возможностями тонкой регулировки как оборотов, так и скорости пуска. Поэтому с инженерной точки зрения такое устройство имеет массу преимуществ:

  • при стабильной нагрузке выделяет четко фиксированное количество тепла, что позволяет обеспечить режим охлаждения и безопасность работы;
  • с применением систем понижения оборотов возможно обеспечивать высокое усилие на конечном исполнительном органе и нивелировать броски нагрузки на валу двигателя;
  • массогабаритные показатели электромотора могут быть рассчитаны точно под выполнение конкретных задач, не перегружая и не создавая избыточную стоимость бытового или промышленного устройства;
  • применяя системы плавного пуска, можно добиться чрезвычайно долгой безаварийной работы однофазного двигателя переменного тока;
  • используемым в конструкции подшипникам качения не требуется специальное обслуживание;
  • однофазные двигатели ремонтопригодны благодаря простой конструкции.

Как следствие, покупая электродвигатель однофазного переменного тока, можно быть уверенным в его надежности и долговечности. Обеспечивая стабильные параметры входного напряжения, надлежащий режим охлаждения и не допуская перегрузок электромотора, можно не обслуживать его если не десятилетиями, то годами — наверняка.


Однофазный двигатель — это… Что такое Однофазный двигатель?

Однофа́зный дви́гатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока. Фактически является двухфазным, но вследствие того, что рабочей является только одна обмотка, двигатель называют однофазным.

Однофазный асинхронный двигатель

Строго говоря, именно однофазным называется такой асинхронный двигатель, который имеет на статоре одну рабочую обмотку, которая подключается к сети однофазного тока. Запуск осуществляется дополнительной (меньшей) пусковой обмоткой, которая подключается через ёмкость/индуктивность к основной сети на время пуска или замыкается накоротко (в двигателях малой мощности).

Преимуществом двигателя является простота конструкции (короткозамкнутый ротор). Недостатки — малый пусковой момент (или вообще его отсутствие) и низкий КПД.

Применяются в основном в вентиляторах малой мощности (настольных, оконных, для ванных комнат и т.п.). Самым массовым советским вентилятором такого типа (и двигателем для него) был «ВН-2» мощностью 15 Ватт. Особенностью его конструкции является установка шарикового подшипника только с одной стороны вала двигателя (противоположной крыльчатке вентилятора), в результате из-за значительных изгибающих нагрузок подшипник (и двигатель) сильно шумит даже на малых оборотах.

Многофазные двигатели в однофазной сети

Не вполне корректно однофазными двигателями также называют конструктивно двух- и трёхфазные асинхронные электродвигатели, подключаемые через схемы согласования в однофазную сеть (конденсаторные двигатели).

Двухфазный двигатель, как правило, проектируется именно в расчёте на работу в однофазной сети (как конденсаторный двигатель). Обе его обмотки (фазы двигателя) являются рабочими и включены постоянно — одна непосредственно в сеть, вторая — через фазосдвигающую цепь (как правило, конденсаторы). Он имеет лучшие эксплуатационные параметры из всех типов асинхронных двигателей при работе в однофазной сети. Широко применялся в активаторных стиральных машинах советского времени.

Трехфазный асинхронный электродвигатель также может работать в однофазной сети с потерей мощности. При этом для запуска необходима фазосдвигающая цепь, которая обычно строится или из ёмкости или из индуктивности:

  • При ёмкостном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость, которая сдвигает фазу тока вперёд на 90° (без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.
  • При индуктивном запуске на одну из обмоток подаётся напряжение (ток) через индуктивность, которая сдвигает фазу тока назад на 90° (без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.
  • В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Ссылки

Однофазный электродвигатель

Двигатели переменного тока

| Однофазный | 3 фазы | Миннеаполис, Миннесота

ISC Компании и дочерняя компания Adams-ISC являются дистрибьюторами деталей механической передачи энергии, включая двигатели переменного тока. Для получения дополнительной информации о брендах, которые мы предлагаем, и / или ценах, свяжитесь с нами по телефону 763-559-0033, по электронной почте [email protected] или заполнив нашу онлайн-форму для связи.


Переменный ток (AC) — это то, что энергетические компании передают по электрическим проводам.Переменный ток движется в обоих направлениях и используется для того, чтобы трансформаторы могли повышать и понижать напряжение. Электрогенераторы производят электричество низкого напряжения, а трансформаторы используются для повышения напряжения при передаче на большие расстояния.

Электропитание в розетках в домах составляет 115 В или 230 В , однофазный . Однофазный означает, что на двигатель подается только одна форма напряжения. Трехфазный , 230 В, 460 В, 575 В или выше, имеет три провода, которые подают сигналы напряжения, каждый из которых подает электричество в разное время.Трехфазный более эффективен и экономичен и на промышленных площадках предусмотрен для тяжелого оборудования с трехфазными двигателями.

Конструкция трехфазного асинхронного двигателя переменного тока

Двигатель переменного тока состоит из двух основных частей: ротора и статора. Статор является внешней оболочкой и остается неподвижным. Он имеет обмотки, которые преобразуют поступающее электричество в магнитное поле. Это заставляет ротор намагничиваться в противоположной полярности, отталкиваться и вращаться.Статор может быть намотан двумя или более наборами обмоток, называемых полюсами. Количество полюсов определяет частоту вращения двигателя. Доступны стандартные синхронные скорости; 900, 1200, 1800 и 3600 об / мин. Асинхронный двигатель вращается немного медленнее, чем синхронный двигатель, и имеет форму двигателя с короткозамкнутым ротором. Снижение скорости называется проскальзыванием двигателя.

Ротор состоит из продольных алюминиевых или медных стержней. Электрический ток индуцируется в этих стержнях, создавая магнитное поле.Это индуцирование тока и дало имя асинхронному двигателю. Ротор асинхронного двигателя имеет две конструкции: с короткозамкнутым ротором и намотанный.

  • Ротор с короткозамкнутым ротором (наиболее распространенный) представляет собой цилиндр из стали с алюминиевыми или медными проводниками.
  • Ротор с фазным ротором имеет обмотки, которые через контактные кольца соединены с внешними сопротивлениями.
Магнитные полюса

Число полюсов в двигателе всегда четное и бывает по два (север и юг). В двигателе переменного тока количество полюсов работает вместе с частотой, чтобы определить синхронную скорость.

Мотор скольжения

Разница между синхронной скоростью и фактической скоростью ротора называется скольжением. Большинство асинхронных двигателей переменного тока имеют скольжение от 3 до 5 процентов при полной нагрузке. В таблицах двигателей и в каталогах производителей указаны номинальные числа оборотов с учетом скольжения.

Критические уровни крутящего момента

Кривая скорость-крутящий момент (S-T) отображает четыре значения крутящего момента, которые имеют решающее значение для выбора двигателя и его применения. Заторможенный ротор — это крутящий момент, доступный при нулевой скорости для ускорения.Подтягивание — это минимум, доступный при ускорении. Пробойный момент создается двигателем непосредственно перед тем, как он перестает вращаться из-за внезапной нагрузки.

Многофазные двигатели (3-фазные)

Из-за высокой эффективности и низкой стоимости трехфазные асинхронные двигатели переменного тока являются наиболее распространенным типом двигателей, используемых в промышленности.

Типы конструкции трехфазного двигателя
Стандарты

в Северной Америке признают четыре распространенных конструкции асинхронных двигателей: конструкция A, конструкция B, конструкция C и конструкция D.Конструкции A, B и C имеют аналогичные соотношения между мощностью и рамой. Двигатели конструкции D больше и дороже.

  • Двигатели конструкции A имеют более высокий ток заторможенного ротора с более высоким крутящим моментом пробоя, чем двигатели конструкции B.
  • Конструкция B — стандартный двигатель промышленного назначения. У него приемлемый пусковой момент при умеренном пусковом токе. Обычно применяется к вентиляторам, нагнетателям, насосам, компрессорам и другим легким пусковым устройствам.
  • Конструкция C рассчитана на высокий пусковой крутящий момент.Обычно применяется для нагруженных конвейеров, дробилок, миксеров, мешалок, поршневых компрессоров, поршневых насосов и других нагрузок с жестким пуском.
  • Двигатели
  • конструкции D устанавливаются на пробивные прессы, ножницы, подъемники, насосы для нефтяных скважин и другие машины с высокой пиковой нагрузкой. У них больше всего проскальзывают.

Многоскоростные двигатели

Трехфазные асинхронные двигатели также доступны для работы на двух или более скоростях. Двигатели этого типа работают только на одно напряжение. Обмотки статора могут быть соединены между собой для получения разного числа полюсов.

Приводы переменного тока с регулируемой скоростью

Чтобы удовлетворить потребность в регулируемой скорости, был разработан контроллер двигателя (инвертор). Управление технологическим процессом и энергосбережение являются основными причинами использования привода с регулируемой скоростью.

Преимущества управления технологическим процессом при использовании привода с регулируемой скоростью:
  • Управление ускорением, крутящим моментом и натяжением
  • Отрегулируйте скорость производства с разными рабочими скоростями для каждого процесса
  • Компенсация за изменение переменных процесса
  • Обеспечивает медленную работу в целях настройки
  • Обеспечить точное позиционирование
Однофазные асинхронные двигатели

Однофазный двигатель работает по тому же принципу, что и многофазный двигатель, за исключением того, что эффект вращающегося магнитного поля, создаваемый статором, не существует до тех пор, пока не будет достигнута рабочая частота вращения.Поскольку пусковой крутящий момент отсутствует, предусмотрен конструктивный механизм для запуска двигателя. Это различные обозначения:

Кривые крутящего момента-скорости для различных однофазных асинхронных двигателей

Затененный полюс: Имеет только одну главную обмотку и без пусковой обмотки. Эта конфигурация вызывает сдвиг приложенного магнитного поля по отношению к ротору, создавая постоянный крутящий момент. Применения включают вентиляторы и мелкую бытовую технику.

Split-Phase (двигатель с индукционным пуском): Имеет два набора обмоток статора.«Пусковые» обмотки расположены под углом 90 градусов к «рабочим» обмоткам и смещают магнитное поле статора, создавая пусковой момент. Применения включают небольшие измельчители, маленькие вентиляторы и воздуходувки.

Capacitor-Start: Наиболее распространенный однофазный двигатель, используемый в промышленности. Это модифицированный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для обеспечения ускоренного пуска. Применение: небольшие конвейеры, большие нагнетатели, насосы и прямые приводы.

Постоянный разделенный конденсатор (PSC): Использует идентичные основные и вспомогательные обмотки с конденсатором для обеспечения пускового момента. Это самый надежный однофазный двигатель, поскольку не требуется центробежный пусковой выключатель. Применения включают вентиляторы и насосы в HVAC и холодильной промышленности.


Лучшие бренды предлагаемых нами двигателей переменного тока


Содержимое этой страницы было создано с использованием выдержек из Руководства по передаче электроэнергии (5 издание) , которое написано и продается Ассоциацией дистрибьюторов силовой передачи (PTDA).

Закажите копию здесь

Трехфазные и однофазные двигатели переменного тока: что нужно знать

Если вам интересно узнать о разнице между трехфазными и однофазными двигателями переменного тока, просто запомните это. Однофазные двигатели переменного тока обычно работают от однофазного источника питания, а трехфазные двигатели переменного тока работают от трехфазного источника питания. Однофазный переменный ток — наиболее распространенный источник энергии, используемый большинством домашних хозяйств и непромышленных предприятий.Это мощность, которая используется для освещения домов и питания телевизоров в Северной Америке. Сегодня в большинстве коммерческих зданий в США используются трехфазные двигатели переменного тока из-за их гибкости и плотности мощности. Трехфазный двигатель переменного тока особенно распространен на крупных предприятиях, в том числе на производстве и в промышленности.

Центры обработки данных сегодня стали энергоемкими, поэтому они могут предлагать хранилища и вычислительные возможности. Это привело к росту спроса на источники питания для удовлетворения потребностей этих центров обработки данных.Однофазный силовой двигатель переменного тока больше не может удовлетворять потребности этих центров обработки данных в электроэнергии, поскольку требует дорогостоящего переналадки. Трехфазный силовой двигатель переменного тока экономичен для подачи энергии в центр обработки данных, поскольку для подачи электроэнергии требуется меньше проводящего материала. Это объясняет, почему трехфазный двигатель переменного тока используется для передачи, производства и распределения электроэнергии в большинстве стран мира. Однофазный двигатель переменного тока менее надежен и более дорог для использования в национальной электросети по сравнению с трехфазным двигателем переменного тока.

Трехфазные и однофазные двигатели переменного тока состоят из двух частей, а именно ротора и статора. Статор — это неподвижная часть двигателя, а ротор — это просто вращающаяся часть двигателя.

Преимущества трехфазных двигателей переменного тока по сравнению с однофазными

Одним из основных преимуществ трехфазного двигателя переменного тока является его гибкость для разделения электрической нагрузки на три фазы. Это снижает нагрузку на одну фазу, и если вы используете в своем доме три кондиционера, вы можете настроить ее таким образом, чтобы каждый кондиционер использовал свою собственную фазу.Это снизит нагрузку на одну фазу источника питания. Использование трехфазного двигателя переменного тока может привести к экономии средств. То есть трехфазный двигатель переменного тока может передавать больше электроэнергии при меньших затратах по сравнению с однофазным двигателем переменного тока. Большинство предприятий в Северной Америке используют трехфазные двигатели переменного тока, поскольку это приводит к снижению затрат на электроэнергию в долгосрочной перспективе при одновременном повышении эффективности электроснабжения. Это связано с тем, что для передачи электроэнергии на большую территорию дешевле использовать трехфазный двигатель переменного тока. Кроме того, они более эффективны при передаче электроэнергии, следовательно, способны передавать больший объем электроэнергии с меньшими затратами.

Недостатки трехфазных однофазных электродвигателей переменного тока

Основным недостатком трехфазных электродвигателей переменного тока является то, что отказ одного трансформатора приведет к полному отключению всей системы. Кроме того, стоимость ремонта трехфазного двигателя переменного тока высока по сравнению с однофазным двигателем переменного тока. Если у вас есть какие-либо вопросы относительно трехфазных и однофазных двигателей переменного тока, в том числе о том, как они работают, мы будем рады ответить на них. Вы можете отправлять свои вопросы или комментарии через наши контакты, указанные на этом сайте.

Чтобы узнать больше об услугах, которые предлагает наша компания, посетите нашу домашнюю страницу.

Асинхронные двигатели и мотор-редукторы переменного тока

Однофазные асинхронные двигатели и мотор-редукторы переменного тока

Асинхронные двигатели

переменного тока оптимальны для однонаправленной и непрерывной работы, например, для конвейерных систем. Все, что вам нужно, это подключить конденсатор и подключить двигатель к источнику питания переменного тока, и двигателем можно будет легко управлять.

  • 1 Вт (1/750 л.с.) до 400 Вт (1/2 л.с.)
  • Мотор-редукторы с параллельным валом, прямоугольным сплошным валом и прямоугольным полым валом
    • Доступны выходные валы из нержавеющей стали
  • Круглый вал (без шестерни) Типы
  • Электромагнитный тормоз в наличии
  • Однофазный 110/115 В переменного тока или однофазный 220-230 В переменного тока

Трехфазные асинхронные двигатели и мотор-редукторы переменного тока

Асинхронные двигатели

переменного тока оптимальны для однонаправленной и непрерывной работы, например, для конвейерных систем.Все, что вам нужно, это подключить двигатель к источнику питания переменного тока, и двигателем можно будет легко управлять.

  • 6 Вт (1/125 л.с.) до 3 л.с.
  • Мотор-редукторы с параллельным валом, прямоугольным сплошным валом и прямоугольным полым валом
    • h2 Доступны мотор-редукторы для пищевой консистентной смазки h2
  • Круглый вал (без шестерни) Типы
  • Электромагнитный тормоз в наличии
  • Трехфазный 200-230 В переменного тока или трехфазный 208/230/460 В переменного тока
  • Инверторы продаются отдельно

Асинхронные двигатели переменного тока и мотор-редукторы

На следующем рисунке показана конструкция асинхронного двигателя переменного тока.

1. Фланцевый кронштейн Кронштейн из литого под давлением алюминия с механической обработкой, запрессованный в корпус двигателя

2. Статор Состоит из сердечника статора из электромагнитных стальных пластин, медной катушки с полиэфирным покрытием и изоляционной пленки

3. Корпус двигателя Литой под давлением алюминий с механической обработкой внутри

4. Ротор Пластины из электромагнитной стали из литого под давлением алюминия

5.Выходной вал Доступен с круглым валом и валом-шестерней. В валу используется металл S45C. Вал с круглым валом имеет плоский вал (выходная мощность 25 Вт 1/30 л.с. и более), а вал шестерни подвергается прецизионной чистовой обработке.

6. Подшипник шариковый

7. Выводные провода Выводные провода с термостойким полиэтиленовым покрытием

8. Покраска Запеченная отделка из акриловой или меламиновой смолы


Скорость — крутящий момент асинхронных двигателей

На рисунке ниже показаны характеристики скорости — момента асинхронных двигателей.

Без нагрузки двигатель вращается со скоростью, близкой к синхронной. По мере увеличения нагрузки скорость двигателя падает до уровня (P), при котором достигается баланс между нагрузкой и крутящим моментом двигателя (Tp). Если нагрузка увеличивается и достигает точки M, двигатель не может создавать больший крутящий момент и останавливается в точке R. Другими словами, двигатель может работать в стабильном диапазоне между M и O, тогда как диапазон между R и M подвержен нестабильности.

Асинхронные двигатели

выпускаются двух типов: однофазные (конденсаторные) и трехфазные асинхронные двигатели.У однофазного двигателя пусковой крутящий момент обычно меньше рабочего крутящего момента, в то время как трехфазный двигатель имеет относительно больший пусковой крутящий момент.

Крутящий момент, создаваемый двигателем, изменяется пропорционально примерно вдвое большему напряжению источника питания. Например, если 110 В подается на двигатель с номинальным напряжением 100 В, крутящий момент, создаваемый двигателем, увеличивается примерно до 120%. В этом случае температура двигателя повысится и может превысить допустимый диапазон.Если на тот же двигатель подается 90 В, крутящий момент, создаваемый двигателем, уменьшается примерно до 80%. В этом случае двигатель может не работать с автоматическим оборудованием должным образом. По указанным выше причинам напряжение источника питания должно поддерживаться в пределах ± 10% от номинального напряжения. В противном случае, когда напряжение источника питания колеблется за пределами вышеупомянутого диапазона, температура двигателя может вырасти за пределы допустимого диапазона или крутящий момент двигателя может упасть, и тем самым сделать работу оборудования нестабильной.

Что такое мотор PSC

Двигатель с постоянным разделенным конденсатором (PSC) — это однофазный двигатель переменного тока; более конкретно, тип асинхронного двигателя с расщепленной фазой, в котором конденсатор подключен постоянно (а не только при запуске).

Двигатели переменного тока

можно разделить на однофазные и трехфазные в зависимости от того, приводятся ли они в действие от одного источника питания * 1 или трехфазного * 2 .
Однофазные асинхронные двигатели имеют ряд различных типов.Один из них включает использование конденсатора * 3 для создания магнитного поля таким образом, что он имитирует вторую фазу источника питания, тем самым создавая крутящий момент, необходимый для запуска двигателя, вращающегося на * 4 . Такие двигатели называются «двигателями с конденсаторным запуском», чтобы отразить использование конденсатора для этой цели. В эту категорию также входят двигатели, в которых конденсатор остается подключенным все время (а не только при запуске), и они называются «двигателями с конденсаторными двигателями» или «двигателями с постоянными конденсаторами».

  • * 1

    Однофазный: Тип источника питания, используемый в жилых домах.

  • * 2

    Трехфазный: Тип источника питания, вырабатываемого на электростанциях и подаваемого на фабрики и другие промышленные нагрузки.

  • * 3

    Конденсатор: электронное устройство, способное накапливать и разряжать электрическую энергию, также исторически известное как конденсатор. Альтернативной конструкцией однофазного асинхронного двигателя, в котором не используется конденсатор, является двигатель с экранированными полюсами.

  • * 4

    Помимо двигателей с конденсаторным пуском, двумя другими конструкциями однофазных асинхронных двигателей, не требующими конденсатора для создания пускового момента, являются асинхронный двигатель с расщепленной фазой и двигатель с экранированными полюсами.

Как работают двигатели PSC

Чтобы использовать однофазный источник питания, доступный в жилых домах, для привода двигателя, необходим механизм, запускающий двигатель. В двигателе PSC это достигается за счет наличия отдельных основных и вторичных обмоток (как показано на схеме), при этом основная обмотка подключается непосредственно к источнику питания, а вторичные обмотки подключаются через конденсатор.

При включении источника питания ток течет сначала в основной обмотке, а затем, с небольшой задержкой из-за конденсатора, во вторичной обмотке. Эта разница в токах основной и вторичной обмоток принимает форму разности фаз (это означает, что их формы сигналов смещены друг от друга по оси времени), вызывая чередование пикового магнитного поля между двумя обмотками и, таким образом, генерируя крутящий момент, который запускает вращение двигателя.

Предпосылки разработки двигателей PSC

Одним из принципов, лежащих в основе однофазного асинхронного двигателя (двигатель PSC), является феномен «вращения Араго», открытый Франсуа Араго в 1824 году.Его открытие заключалось в том, что когда магнит вращается рядом с диском из немагнитного материала (металл, такой как медь или алюминий, который не притягивается магнитом), диск также начинает вращаться вместе с магнитом.

В конце 19 века Никола Тесла, признанный одним из основных сторонников системы электроснабжения переменного тока (AC), изобрел первый практический асинхронный двигатель и установил связанные с ним технологии, что привело к широкому распространению двигателей переменного тока в промышленности. .Последующее появление простых и недорогих однофазных асинхронных двигателей, которые отличались простотой использования и компактностью, привело к еще более широкому использованию этих двигателей для питания бытовых приборов и другого оборудования в различных условиях, включая дома и малые / средние предприятия. заводы.

В настоящее время, однако, двигатели с электронной коммутацией (ЕС) стали обычным явлением в широком диапазоне областей, будучи более эффективными и простыми в использовании, чем однофазные асинхронные двигатели. Эти ЕС-двигатели широко известны как бесщеточные двигатели постоянного тока (BLDC).

Сравнение двигателей PSC и EC

В то время как конденсаторные двигатели практичны и просты в использовании, двигатели с электронным управлением стали широко использоваться в самых разных областях применения благодаря преимуществам, которые включают превосходную энергоэффективность и более простое управление скоростью и другими аспектами характеристик двигателя.
В следующей таблице перечислены преимущества и недостатки двух типов двигателей.

Применения для двигателей PSC и двигателей EC

В то время как способность двигателей PSC работать от привычной однофазной энергии привела к их широкому использованию в таких областях, как обычное домашнее хозяйство, небольшие фабрики и сельское хозяйство, использование двигателей с электронным управлением расширилось в последние годы.

Применения для двигателей ЕС включают следующее.

  • Кондиционер
  • Бытовая техника
  • Водонагреватели и горелочные устройства
  • Экологическое оборудование
  • Товары для ванной
  • Торговые автоматы
  • Витрина морозильная и холодильная
  • Банкоматы, автоматы по обмену купюр, обменные аппараты, автоматы по продаже билетов
  • Чистые помещения
  • Оптическая продукция
  • Принтеры
  • Копировальные аппараты
  • Медицинское оборудование
  • Торговое оборудование

В чем разница между двигателями переменного тока и двигателями постоянного тока?

Между двигателями переменного и постоянного тока существует много различий.Наиболее очевидное различие — это тип тока, который каждый двигатель превращает в энергию: переменный ток в случае двигателей переменного тока и постоянный ток в случае двигателей постоянного тока. Двигатели переменного тока известны своей повышенной выходной мощностью и эффективностью, в то время как двигатели постоянного тока ценятся за их регулировку скорости и диапазон выходной мощности. Двигатели переменного тока доступны в одно- или трехфазной конфигурации, тогда как двигатели постоянного тока всегда однофазные.

Подробнее об асинхронных двигателях

В двигателе переменного тока энергия поступает из магнитных полей, генерируемых через катушки, намотанные вокруг выходного вала.Двигатели переменного тока состоят из нескольких частей, включая статор и ротор. Двигатели переменного тока эффективны, долговечны, бесшумны и универсальны, что делает их жизнеспособным решением для многих потребностей в производстве электроэнергии.

К двум типам двигателей переменного тока относятся:

  • Синхронный: Синхронный двигатель вращается с той же скоростью, что и частота питающего тока, что и дало ему название. Синхронные двигатели состоят из статора, ротора и синхронных двигателей, которые используются в широком спектре приложений.
  • Индукция: Асинхронные двигатели — это самый простой и самый надежный из имеющихся электродвигателей. Эти электродвигатели переменного тока состоят из двух электрических узлов: статора с обмоткой и узла ротора. Электрический ток, необходимый для вращения ротора, создается за счет электромагнитной индукции, создаваемой обмоткой статора. Асинхронные двигатели являются одними из наиболее часто используемых типов двигателей в мире.
  • Электродвигатели переменного тока

используются в различных сферах, включая насосы для предприятий общественного питания, водонагреватели, садовое и газонное оборудование и многое другое.

Подробнее о двигателях постоянного тока

Энергия, используемая двигателем постоянного тока, поступает от батарей или другого генерируемого источника энергии, обеспечивающего постоянное напряжение. Двигатели постоянного тока состоят из нескольких частей, наиболее известными из которых являются подшипники, валы и редуктор или шестерни. Двигатели постоянного тока обеспечивают лучшее изменение скорости и управление, а также обеспечивают больший крутящий момент, чем двигатели переменного тока.

К двум типам двигателей постоянного тока относятся:

  • Матовый: Один из самых старых типов двигателей, щеточные двигатели — это электродвигатели с внутренней коммутацией, работающие от постоянного тока.Щеточные двигатели состоят из ротора, щеток, оси, а заряд и полярность щеток управляют направлением и скоростью двигателя.
  • Бесщеточные: В последние годы бесщеточные двигатели приобрели популярность для многих применений, в основном из-за их эффективности. Бесщеточные двигатели устроены так же, как и щеточные двигатели, за исключением, конечно, щеток. Бесщеточные двигатели также включают специализированную схему для управления скоростью и направлением. В бесщеточных двигателях вокруг ротора установлены магниты, что повышает эффективность.

Двигатели постоянного тока используются в широком спектре приложений, включая электрические инвалидные коляски, ручные распылители и насосы, кофеварки, внедорожное оборудование и многое другое.

Список однофазных двигателей переменного тока

Однофазные двигатели более широко используются, чем трехфазные, по двум основным причинам:

Во-первых, из соображений экономии большинство домов, офисов, а также в сельской местности снабжается однофазным переменным током, а вторым фактором является экономичность двигателя и его параллельной цепи.Постоянные нагрузки, требующие не более 0,5 кВт, обычно наиболее экономично обслуживаются однофазным питанием и однофазным двигателем. Однофазные двигатели просты по конструкции, надежны, легко ремонтируются и сравнительно дешевле по стоимости, поэтому находят широкое применение в вентиляторах, холодильниках, пылесосах, стиральных машинах, другом кухонном оборудовании, инструментах, воздуходувках, центробежных насосах, в небольших фермерских хозяйствах. техника и др.

Однофазные двигатели переменного тока можно разделить на три основных класса, а именно:

(i) Асинхронные двигатели

(ii) Коллекторные двигатели и

(iii) Синхронные двигатели.

Асинхронные двигатели далее классифицируются как двигатели с расщепленной фазой, двигатели с расщепленными полюсами и асинхронные двигатели отталкивания в соответствии с методом создания пускового момента. Коллекторные двигатели — это серийные двигатели, универсальные двигатели (переменного / постоянного тока), отталкивающие асинхронные двигатели с различными модификациями и применяемыми комбинациями этих типов.

Однофазные асинхронные двигатели очень малых размеров (от 1/400 до 1/25 кВт) используются в игрушках, фенах, торговых автоматах и ​​т. Д. Универсальный двигатель широко используется в портативных инструментах, пылесосах и кухонном оборудовании.Основными недостатками однофазных двигателей являются низкая перегрузочная способность, низкий КПД, низкий коэффициент мощности и низкая выходная мощность по сравнению с трехфазным двигателем данного типоразмера.

1. Однофазные асинхронные двигатели:

Однофазный асинхронный двигатель внешне похож на трехфазный асинхронный двигатель с короткозамкнутым ротором. Ротор однофазного асинхронного двигателя с короткозамкнутым ротором практически такой же, как и ротор, используемый в трехфазных асинхронных двигателях. Между статором и ротором имеется равномерный воздушный зазор, но отсутствует электрическое соединение между ними (статор и ротор).За исключением типов с расщепленными полюсами, сердечник статора также очень похож. Однофазный двигатель может быть намотан на любое четное число полюсов, чаще всего — два, четыре и шесть. Как и в трехфазных машинах, соседние полюса имеют противоположную магнитную полярность, и уравнение синхронной скорости также применяется (N s = 120f / P).

Когда обмотка статора однофазного асинхронного двигателя подключена к однофазному источнику переменного тока, создается магнитное поле, ось которого всегда проходит вдоль оси катушек статора.При переменном токе в неподвижной катушке статора МДС-волна неподвижна в пространстве, но пульсирует по величине и изменяется во времени синусоидально. Токи индуцируются в проводниках ротора под действием трансформатора, причем эти токи имеют такое направление, чтобы противостоять статору mmf.

Таким образом, ось mmf-волны ротора совпадает с осью поля статора, угол крутящего момента, следовательно, равен нулю, и крутящий момент не создается при запуске. Однако, если ротор такого двигателя толкнуть рукой или другим способом в любом направлении, он наберет скорость и продолжит вращаться в том же направлении, развивая рабочий крутящий момент.Таким образом, однофазный асинхронный двигатель не запускается автоматически и требует специальных средств запуска.

Коммерческие однофазные асинхронные двигатели используют принцип «разделения фаз» и поэтому известны как двигатели с расщепленной фазой.

2. Двигатель серии переменного тока:

Шунтирующий или последовательный двигатель постоянного тока вращается в одном и том же направлении независимо от полярности питания, то есть, если клеммы линии поменяны местами, двигатель продолжает вращаться в том направлении, в котором он вращался до того, как клеммы линии были перевернуты.Исходя из этого, кажется, что любой двигатель постоянного тока будет удовлетворительно работать при подключении к однофазной сети переменного тока.

Однако это неправда. Некоторые модификации необходимы в двигателе серии постоянного тока, который должен удовлетворительно работать от однофазного источника переменного тока. Таким образом, конструкция двигателя переменного тока очень похожа на двигатель постоянного тока, за исключением некоторых модификаций (например, многослойная магнитная цепь, последовательное поле с минимально возможным количеством витков, большое количество проводников якоря, использование угольных щеток с высоким сопротивлением. , многочисленные полюса с меньшим магнитным потоком на полюс, очень короткий воздушный зазор и т. д.) включены. Машина снабжена компенсирующей обмоткой и промежуточными полюсами для улучшения коммутации. Принципиальная схема однофазного последовательного двигателя с межполюсной и компенсационной обмотками приведена на рис. 1.42.

Среднее значение крутящего момента на валу двигателя равно

.

Где I — эффективное значение тока, φ max — пиковое значение магнитного потока на полюс, а θ — фазовый угол между векторами φ и I.

Для данного значения крутящего момента T и приложенного напряжения ток якоря такой же, но падение напряжения в случае последовательного двигателя переменного тока намного больше, чем в случае последовательного двигателя постоянного тока, и поэтому скорость последовательного двигателя переменного тока для данного развиваемый крутящий момент меньше, чем у двигателя постоянного тока, как показано на рис. 1.43.

Однофазный двигатель переменного тока имеет практически те же рабочие характеристики, что и двигатель постоянного тока. Крутящий момент или тяговое усилие изменяется почти как квадрат тока, а скорость изменяется обратно пропорционально току.Это показано на рис. 1.44.

Однако в случае последовательного двигателя переменного тока (i) коэффициент мощности очень низкий при пуске и при перегрузках из-за высокой индуктивности цепей последовательного возбуждения и якоря (ii) КПД не так хорош, как в соответствующей машине постоянного тока. из-за потерь на вихревые токи и влияния коэффициента мощности и (Hi) пусковой крутящий момент низкий из-за низкого коэффициента мощности при запуске.

Для данного номинального значения мощности двигателя переменного тока мощность и размер двигателя переменного тока в 1,5-2 раза больше, чем у соответствующего двигателя постоянного тока.Стоимость конструкции двигателя переменного тока намного больше, чем у двигателя постоянного тока.

Скорость двигателя переменного тока можно эффективно регулировать с помощью ответвлений на трансформаторе, что невозможно в случае двигателя постоянного тока.

Характеристика крутящего момента однофазного последовательного двигателя аналогична характеристике последовательного двигателя постоянного тока, т. Е. Высокий пусковой крутящий момент и снижение скорости с увеличением нагрузки, что делает его способным к саморазгрузке при большой чрезмерной нагрузке, поэтому такая машина особенно пригодится для тяговых служб.

3. Универсальный двигатель:

Универсальный двигатель — это специально разработанный двигатель с последовательной обмоткой, который работает примерно с одинаковой скоростью и мощностью на постоянном или переменном токе примерно одинакового напряжения. Из-за сложности достижения одинаковых характеристик на постоянном и переменном токе на низких скоростях большинство универсальных двигателей рассчитаны на работу на скоростях, превышающих 3500 об / мин. Обычны двигатели, работающие со скоростью от 8000 до 10 000 об / мин. Универсальный двигатель сконструирован с несколькими последовательными полевыми витками, многослойными цепями якоря и возбуждения, магнитным трактом с низким сопротивлением, увеличенными проводниками якоря и сегментами коммутатора и с использованием низкой плотности потока, чтобы минимизировать неблагоприятные эффекты, вызванные высокими реактивными сопротивлениями поля, вихревыми токами и гистерезисом. убытки.

Универсальные двигатели могут быть либо компенсированного (распределенное поле), либо некомпенсированного (сосредоточенное поле) типа, последний тип используется только для более высоких скоростей и меньшей выходной мощности (обычно не более 200 Вт).

Характеристика крутящего момента универсального двигателя очень похожа на характеристику двигателя постоянного тока с последовательным заводом, то есть высокий пусковой крутящий момент и высокая скорость холостого хода. Универсальные двигатели представляют собой высокоскоростные двигатели, они меньше по размеру и легче по сравнению с другими двигателями той же мощности.Коэффициент мощности при полной нагрузке высокий (примерно 0,9), но плохой при запуске и при перегрузках. Направление вращения любого последовательного двигателя можно изменить, изменив направление потока тока либо в цепи возбуждения, либо в цепи якоря (но не через оба). Скорость универсального двигателя для любой заданной нагрузки может быть изменена путем изменения магнитного потока, приложенного напряжения или того и другого.

Универсальные двигатели с очень малой выходной мощностью, которые обычно не превышают 5 или 10 Вт, используются в таком оборудовании, как швейные машины, вентиляторы, переносные ручные инструменты, фены, кинопроекторы и электробритвы.Универсальные двигатели более высокой мощности (5-500 Вт) используются в пылесосах, электрических пишущих машинках, миксерах и блендерах, кинопроекторах, фотоаппаратах, а также в счетных машинах.

Двигатели малых серий часто поставляются в виде частей двигателя, то есть состоящих из голых статоров и роторов (с валом), но без подшипников или опор. Затем их можно компактно «встроить» в устройства, использующие питание.

4. Отталкивающие двигатели:

Характеристики отталкивающих двигателей аналогичны характеристикам серийных двигателей, т.е.е., высокий пусковой момент и высокая скорость малой нагрузки. Его конструкция также аналогична конструкции последовательного двигателя, за исключением того, что якорь замыкается накоротко на себя, а не последовательно со статором. Упрощенная принципиальная схема представлена ​​на рис. 1.46. Отталкивающий двигатель развивает крутящий момент в направлении, в котором щетки смещены от оси поля.

Крутящий момент, развиваемый отталкивающим двигателем, теоретически должен быть максимальным, когда пространственный угол между осью полюса и осью щетки составляет 45 °, но на практике угол наклона составляет около 15-25 электрических градусов.

Отталкивающий двигатель имеет лучшую коммутацию, чем последовательный двигатель, на скоростях ниже синхронной скорости и плохую коммутацию на очень высоких скоростях. Направление вращения отталкивающего двигателя можно изменить, перемещая щетки вокруг коммутатора с другой стороны от оси поля. На регулирование скорости можно влиять, изменяя напряжение, подаваемое на двигатель, или устанавливая щетки на коромысле, который можно вращать с помощью рычажной ручки, установленной на торцевом щите двигателя.

Отталкивающий двигатель имеет высокий пусковой момент (примерно в 3-5 раз превышающий крутящий момент при полной нагрузке) и умеренный пусковой ток (примерно в 3-4 раза превышающий ток при полной нагрузке), но плохое регулирование скорости.Переключение щеток во время работы дает широкий диапазон регулирования скорости, вплоть до соотношения 6: 1, и при этом обеспечивает непрерывное изменение. Максимальная скорость не ограничена частотой. Двигатель реверсивный, направление вращения можно менять.

К недостаткам отталкивающих двигателей относятся:

(i) изменения скорости с изменениями нагрузки — опасно высокие без нагрузки

(ii) низкий коэффициент мощности, за исключением высоких скоростей,

(iii) склонность к искрообразованию на щетках — искрение на щетках незначительно при номинальной скорости, что обычно имеет место вблизи синхронной скорости

(iv) более высокая стоимость и

(v) требуется больше внимания и обслуживания.

Отталкивающий двигатель никогда не пользовался популярностью. Двигатель используется там, где требуется прочный двигатель с большим пусковым моментом и регулируемой скоростью. Чаще всего этот тип двигателя используется в намотчиках рулонов, в которых оператор регулирует скорость, перемещая щетки; мотор оснащен специальным рычажным механизмом, который перемещает щетки при нажатии педали.

Номинальные характеристики отталкивающих двигателей ограничены из-за проблем с коммутацией.Обычная мощность отталкивающего двигателя не превышает 5 кВт.

5. Синхронные двигатели:

Существует множество приложений для измерения времени, в которых малые двигатели с точными характеристиками постоянной скорости будут очень полезны. Были разработаны очень маленькие двигатели с постоянными скоростными характеристиками. Они работают от однофазной сети. Из-за их точных характеристик постоянной скорости они называются однофазными синхронными двигателями. Им не требуется источник питания постоянного тока для возбуждения.Основное применение таких однофазных синхронных двигателей — это привод электрических часов, фонографов, проигрывателей виниловых пластинок, магнитной ленты и других устройств хронометража.

Наиболее часто используемые типы однофазных синхронных двигателей — это реактивные двигатели и двигатели с гистерезисом. У этих двигателей низкий КПД и способность развивать крутящий момент. Мощность большинства доступных коммерческих двигателей составляет всего несколько ватт. Практично проектировать двигатели с гистерезисом примерно до 125 Вт.

и. Электродвигатель сопротивления:

Это асинхронный двигатель с расщепленной фазой и правильно спроектированными выступающими полюсами. Он состоит из статора с основной и вспомогательной обмотками для создания синхронно вращающегося магнитного поля. Перфорация ротора для 4-полюсного синхронного электродвигателя реактивного типа показана на рис. 1.50. Такие двигатели обладают низким коэффициентом мощности, низким КПД и низким крутящим моментом.

Они не могут разгонять высокоинерционные нагрузки до синхронной скорости.Моменты втягивания и вытяжки у таких двигателей небольшие. Изменение направления вращения может быть выполнено, как и в любом однофазном асинхронном двигателе. Такие двигатели широко используются для приложений с абсолютной постоянной скоростью, например, в устройствах синхронизации, сигнальных устройствах, записывающих приборах, проигрывателях фонографов, устройствах управления и т. Д.

ii. Гистерезис двигателя:

Это синхронный двигатель с равномерным воздушным зазором, но без возбуждения постоянным током. Его работа зависит от эффекта гистерезиса.2-полюсный гистерезисный двигатель с расщепленными полюсами, используемый для управления обычными часами, показан на рис. 1.51. Из-за бесшумной работы и способности управлять высокоинерционными нагрузками, гистерезисные двигатели особенно хорошо подходят для привода синхронизирующих устройств, электрических часов, магнитофонов, вертушек и другого высокоточного аудиооборудования. Коммерческие двигатели, будучи двухполюсными двигателями, работают со скоростью 3000 об / мин, поэтому для приведения в действие электрических часов и других показывающих устройств зубчатая передача соединена с валом двигателя для снижения скорости.Изменяя количество полюсов статора через переключатели полюсов, можно получить набор синхронных скоростей для двигателя.

iii. Синхронный двигатель с постоянным магнитом:

Он состоит из постоянных магнитов, встроенных в ротор, как показано на рис. 1.52. Сам ротор имеет конструкцию с короткозамкнутым ротором для обеспечения пускового момента. Когда двигатель подключен к однофазному источнику переменного тока, он запускается как асинхронный двигатель, достигает почти синхронной скорости и синхронизируется с полем вращающегося статора, близким к синхронной скорости.Такой двигатель работает тише, имеет высокий коэффициент мощности и КПД, приближающийся к многофазному. Таким образом, он находит более широкое применение даже при низких значениях интегральной мощности (0,5–1,5 кВт).

6. Шаговый двигатель:

Шаговый двигатель представляет собой разновидность синхронного двигателя, который предназначен для вращения на определенное количество градусов для каждого электрического импульса, полученного его блоком управления. Типичные шаги составляют 2, 2,5, 5, 7,5 и 15 ° на импульс. Шаговый двигатель используется в цифровых системах управления, где двигатель получает команды разомкнутого контура в виде последовательности импульсов для поворота вала или перемещения пластины на определенное расстояние.

Типичное применение двигателя — позиционирование рабочего стола в двух измерениях для автоматического сверления в соответствии с инструкциями по размещению отверстий на ленте. При использовании шагового двигателя датчик положения и система обратной связи обычно не требуются, чтобы выходной элемент выполнял инструкции ввода. Шаговые двигатели созданы для отслеживания сигналов со скоростью до 1200 импульсов в секунду и с эквивалентной номинальной мощностью до нескольких киловатт.

Шаговые двигатели

обычно имеют многополюсную многофазную обмотку статора, которая мало чем отличается от обмоток обычных машин.Обычно в них используются 3- и 4-фазные обмотки, причем количество полюсов определяется желаемым угловым изменением на входной импульс. Роторы бывают с переменным магнитным сопротивлением или с постоянными магнитами. Шаговые двигатели работают с внешней логической схемой привода; когда на вход схемы управления подается последовательность импульсов, схема подает соответствующие токи на обмотки статора двигателя, заставляя ось поля воздушного зазора перемещаться по оси в соответствии с входными импульсами. В зависимости от частоты импульсов и крутящего момента нагрузки, включая эффекты инерции, ротор следует оси магнитного поля воздушного зазора благодаря крутящему моменту сопротивления и / или крутящему моменту постоянного магнита.

Элементарная работа 4-полюсного шагового двигателя с 2-полюсным ротором проиллюстрирована в последовательности рис. 1.53. Ротор принимает углы θ = 0, 45 °, 90 °… поскольку обмотки возбуждаются в последовательности N a , N a + N b , N b ,…. Шаговый двигатель, показанный на рис. 1.53, также можно использовать для шагов по 90 °, возбуждая катушки по отдельности. В последнем случае можно использовать только ротор с постоянными магнитами.

Характеристики шагового двигателя часто представлены как зависимость крутящего момента от скорости тактирования импульсов, подаваемых на привод, как показано на рис.1.54. По мере увеличения скорости шага двигатель может обеспечивать меньший крутящий момент, потому что у ротора меньше времени для перевода нагрузки из одного положения в другое при смещении схемы тока обмотки статора.

Шаговый двигатель, по сути, является устройством управления положением и имеет следующие преимущества по сравнению с обычной машиной:

1. Угловое смещение можно точно контролировать без какой-либо обратной связи.

2. Его можно легко подключить к микропроцессору / контроллеру на базе компьютера.

Шаговые двигатели

имеют широкий спектр применения: двигатели подачи бумаги в пишущих машинках и телетайпах, позиционирование печатающих головок, перья в графических плоттерах X-Y, записывающие головки в компьютерных дисковых накопителях, а также для позиционирования рабочих столов и инструментов в обрабатывающем оборудовании с числовым программным управлением.

Шаговый двигатель также используется для выполнения многих других функций, таких как дозирование, смешивание, резка, смешивание, перемешивание и т. Д. Во многих коммерческих, военных и медицинских приложениях, обычно вместе с микропроцессором и управляемыми переключателями.

все, что вам нужно знать — Блог CLR

Электродвигатели позволяют получать механическую энергию самым простым и эффективным способом. В зависимости от количества фаз питания , мы можем найти однофазных , двухфазных и трехфазных двигателей с витыми пусковой обмоткой и с спиральной пусковой обмоткой с конденсатором . Причем выбор того или другого будет зависеть от необходимой мощности .

Если вы участвуете в проекте и не знаете, какой тип двигателя вам следует использовать, этот пост вас заинтересует! В нем мы расскажем вам о каждом моторе и его отличиях. Поехали!

Что такое однофазный двигатель?

Однофазный двигатель — это вращающаяся машина с электрическим приводом , которая может преобразовывать электрическую энергию в механическую энергию .

Работает от однофазного источника питания . Они содержат два типа проводки : горячую и нейтральную.Их мощность может достигать 3 кВт, , а напряжения питания меняются в унисон.

У них только одно переменное напряжение . Схема работает с двумя проводами , и ток, который проходит по ним, всегда одинаков.

В большинстве случаев это малые двигатели с ограниченным крутящим моментом . Однако есть однофазные двигатели мощностью до 10 л.с., которые могут работать с подключениями до 440 В.

Они не создают вращающегося магнитного поля; они могут генерировать только переменное поле , что означает, что для запуска им нужен конденсатор.

Они просты в ремонте, и обслуживании, а также доступны по цене .

Этот тип двигателя используется в основном в домах, офисах, магазинах и небольших непромышленных компаниях . Чаще всего использует , включая бытовую технику, домашнее и рабочее оборудование HVAC и другую технику, такую ​​как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

Возможно, вас заинтересует: Советы по выбору малых электродвигателей

Что такое двухфазный двигатель?

Двухфазный двигатель — это система, которая имеет два напряжения, разнесенных на 90 градусов , которые в настоящее время больше не используются.Генератор состоит из двух обмоток, расположенных под углом 90 градусов друг к другу.

Для них требуется 2 провода под напряжением и один провод заземления, которые работают в двух фазах . Один увеличивает ток до 240 В для движения, а другой поддерживает плавность тока для использования двигателя.

Что такое трехфазный двигатель?

Трехфазный двигатель — это электрическая машина , которая преобразует электрическую энергию в механическую энергию посредством электромагнитных взаимодействий .Некоторые электродвигатели обратимы — они могут преобразовывать механическую энергию в электрическую, действуя как генераторы.

Они работают от источника трехфазного питания . Они приводятся в действие тремя переменными токами одинаковой частоты , пик которых приходится на переменные моменты времени. Они могут иметь мощность от до 300 кВт и скорость от 900 до 3600 об / мин .

Трехпроводные линии используются для передачи, но для конечного использования требуются 4-проводные кабели, которые соответствуют 3 фазам плюс нейтраль.

Трехфазная электроэнергия — наиболее распространенный метод , используемый в электрических сетях по всему миру, поскольку он передает больше энергии и находит значительное применение в промышленном секторе .

Различия между однофазным двигателем и трехфазным двигателем

Во-первых, нам нужно различать тип установки и ток , протекающий через него. В этом отношении разница между однофазным током и трехфазным током заключается в том, что однофазный ток передается по одной линии.Кроме того, поскольку имеется только одна фаза или переменный ток , напряжение не меняется .

Однофазные двигатели используются, когда трехфазная система недоступна и / или для ограниченной мощности — они обычно используются для мощностью менее 2 кВт или 3 кВт .

Трехфазные двигатели обычно находят более широкое применение в промышленности , так как их мощность более чем на 150% больше, чем у однофазных двигателей, и создается трехфазное вращающееся магнитное поле .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*