Определите силу тока в проводе если на участок этого провода длиной 20 см: Определите силу тока в проводе, если на участок этого провода длиной 20 см действует с силой 0,5 Н однородное магнитное поле, магнитная индукция которого равна

Содержание

Закон Ома — формулировка простыми словами, определение

Покажем, как применять знание физики в жизни

Начать учиться

171.2K

Резистор — смелый элемент, потому что умудряется противостоять хитрому и умному электрическому току. О том, почему ток вдруг хитрый, и как все величины электрической цепи взаимосвязаны — в этой статье.

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

Сопротивление

R = ρ · l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм2]

ρ — удельное сопротивление [Ом · мм2/м]

Единица измерения сопротивления — ом.

Названа в честь физика Георга Ома.

Будьте внимательны!

Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм2. При умножении мм2 сокращаются и мы получаем величину в СИ.

Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм2.

Знайте!

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Пятерка по физике у тебя в кармане!

Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!

Таблица удельных сопротивлений различных материалов

Материал

Удельное сопротивление

ρ, Ом · мм2

Алюминий

0,028

Бронза

0,095–0,1

Висмут

1,2

Вольфрам

0,05

Железо

0,1

Золото

0,023

Иридий

0,0474

Константан (сплав NiCu + Mn)

0,5

Латунь

0,025–0,108

Магний

0,045

Манганин (сплав меди марганца и никеля — приборный)

0,43–0,51

Медь

0,0175

Молибден

0,059

Нейзильбер (сплав меди, цинка и никеля)

0,2

Натрий

0,047

Никелин (сплав меди и никеля)

0,42

Никель

0,087

Нихром (сплав никеля, хрома, железа и марганца)

1,05–1,4

Олово

0,12

Платина

0,107

Ртуть

0,94

Свинец

0,22

Серебро

0,015

Сталь

0,103–0,137

Титан

0,6

Хромаль

1,3–1,5

Цинк

0,054

Чугун

0,5–1,0

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным.

В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:


В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:


Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:


Источник: сайт компании Ekits

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Реостат

Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.


Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.

По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:

Сопротивление

R = ρ · l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм2]

ρ — удельное сопротивление [Ом · мм2/м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».


У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье. 😇

Давайте решим несколько задач на закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.

Решение:

Возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/880 = 0,25 А

Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.

Задача два

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.

Решение:

Сначала найдем сопротивление проводника.

R = ρ · l/S

Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.

Это значит, что все величины уже даны в СИ и перевод не требуется:

R = 1,05 · 0,5/0,01 = 52,5 Ом

Теперь возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/52,5 ≃ 4,2 А

Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

Задача три

Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А

Решение:

Возьмем закон Ома для участка цепи и выразим из него сопротивление:

I = U/R

R = U/I

Подставим значения и найдем сопротивление нити:

R = 220/8,8 = 25 Ом

Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:

R = ρ · l/S

ρ = RS/l

Подставим значения и получим:

ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

Закон Ома для полной цепи

I — сила тока [A]

ε — ЭДС [В]

R — сопротивление нагрузки [Ом]

r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

Решим задачу на полную цепь.

Задачка

Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

Решение:

Возьмем закон Ома для полной цепи:

Подставим значения:

A

Ответ: сила тока в цепи равна 1 А.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.


Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.


Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.


Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом


Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

Ом

Ответ: общее сопротивление цепи равно Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом


Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соединены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.


Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

R + r = ε/I

r = ε/I − R

Подставим значения:

r = 12/0,5 − 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

 

Карина Хачатурян

К предыдущей статье

Сила тока

К следующей статье

Удельная теплоемкость вещества

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Задачи на постоянный ток с подробными решениями

Закон Ома для участка цепи. Сопротивление

7.1.1 Определить силу тока, проходящего через сопротивление 15 Ом, если напряжение на нем
7.1.2 Определить падение напряжения на проводнике, имеющем сопротивление 10 Ом
7. 1.3 Через лампочку накаливания проходит ток 0,8 А. Сколько электронов проводимости
7.1.4 Удлинитель длиной 30 м сделан из медного провода диаметром 1,3 мм. Каково сопротивление
7.1.5 Эквивалентное сопротивление трех параллельно соединенных проводников равно 30 Ом
7.1.6 Проволока имеет сопротивление 36 Ом. Когда ее разрезали на несколько равных частей
7.1.7 Определить плотность тока, текущего по медной проволоке длиной 10 м, на которую
7.1.8 Определить плотность тока, если за 0,4 с через проводник сечением 1,2 мм2 прошло
7.1.9 Найти плотность тока в стальном проводнике длиной 10 м, на который подано напряжение
7.1.10 Какое напряжение надо приложить к концам стального проводника длиной 30 см
7.1.11 Допустимый ток для изолированного медного провода площадью поперечного сечения
7.1.12 Определить падение напряжения на полностью включенном реостате, изготовленном
7.1.13 Определить падение напряжения в линии электропередачи длиной 500 м при токе
7.1. 14 Найти массу алюминиевого провода, из которого изготовлена линия электропередачи
7.1.15 Вольтметр показывает 6 В. Найти напряжение на концах участка цепи, состоящей
7.1.16 На сколько надо повысить температуру медного проводника, взятого
7.1.17 Медная проволока при 0 C имеет сопротивление R_0. До какой температуры надо нагреть
7.1.18 Вольфрамовая нить электрической лампы при температуре 2000 C имеет сопротивление
7.1.19 Определить сопротивление вольфрамовой нити электрической лампы при 24 C
7.1.20 Сопротивление медной проволоки при температуре 20 C равно 0,04 Ом
7.1.21 При нагревании металлического проводника от 0 до 250 C его сопротивление увеличилось
7.1.22 До какой температуры нагревается нихромовая электрогрелка, если известно, что ток
7.1.23 Плотность тока в проводнике сечением 0,5 мм2 равна 3,2 мА/м2. Сколько электронов
7.1.24 По проводнику с поперечным сечением 0,5 см2 течет ток силой 3 А. Найти среднюю скорость
7.1.25 Средняя скорость упорядоченного движения электронов в медной проволоке сечением
7. 1.26 К концам медного провода длиной 200 м приложено напряжение 18 В. Определить среднюю
7.1.27 Какой ток покажет амперметр, если напряжение U=15 В, сопротивления R1=5 Ом, R2=10 Ом
7.1.28 За одну минуту через поперечное сечение проводника прошел заряд 180 Кл
7.1.29 Какой ток покажет амперметр, если R1=1,25 Ом, R2=1 Ом, R3=3 Ом, R4=7 Ом, напряжение
7.1.30 В рентгеновской трубке пучок электронов с плотностью тока 0,2 А/мм2 попадает на участок
7.1.31 За какое время в металлическом проводнике с током 32 мкА через поперечное сечение
7.1.32 Анодный ток в радиолампе равен 16 мА. Сколько электронов попадает на анод лампы
7.1.33 Участок цепи AB состоит из пяти одинаковых проводников с общим сопротивлением 5 Ом
7.1.34 Четыре лампы накаливания сопротивлением 110 Ом каждая включены в сеть с напряжением

Закон Ома для полной цепи

7.2.1 Источник тока с ЭДС 18 В имеет внутреннее сопротивление 6 Ом. Какой ток потечет
7.2.2 Кислотный аккумулятор имеет ЭДС 2 В, а внутреннее сопротивление 0,5 Ом. Определить
7.2.3 Определить ЭДС источника питания, если при перемещении заряда 10 Кл сторонняя сила
7.2.4 К источнику тока с ЭДС 12 В и внутренним сопротивлением 2 Ом подсоединили
7.2.5 При внешнем сопротивлении 3,75 Ом в цепи идет ток 0,5 А. Когда в цепь ввели еще
7.2.6 Источник тока замкнут внешним резистором. Определить отношение электродвижущей силы
7.2.7 ЭДС аккумуляторной батареи равна 12 В, внутреннее сопротивление 0,06 Ом, а сопротивление
7.2.8 ЭДС батареи равна 1,55 В. При замыкании ее на нагрузку сопротивлением 3 Ом
7.2.9 В цепи, состоящей из источника тока с ЭДС 3 В и резистора сопротивлением 20 Ом
7.2.10 ЭДС элемента 15 В. Ток короткого замыкания равен 20 А. Чему равно внутреннее сопротивление
7.2.11 Определить ток короткого замыкания источника тока, если при внешнем сопротивлении
7.2.12 Батарея с ЭДС в 6 В и внутренним сопротивлением 1,4 Ом питает внешнюю цепь
7.2.13 Определить силу тока в проводнике R1, если ЭДС источника 14 В, его внутреннее сопротивление
7. 2.14 В сеть с напряжением 220 В включены последовательно десять ламп сопротивлением по 24 Ом
7.2.15 ЭДС источника 6 В. При внешнем сопротивлении цепи 1 Ом сила тока 3 А. Какой будет
7.2.16 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда в цепь
7.2.17 Генератор с ЭДС 80 В и внутренним сопротивлением 0,2 Ом соединен со сварочным аппаратом
7.2.18 Для включения в сеть дуговой лампы, рассчитанной на напряжение 42 В и силу тока 10 А
7.2.19 Определить внутреннее сопротивление источника тока, имеющего ЭДС 1,1 В
7.2.20 Какой ток покажет амперметр, если R1=1,5 Ом, R2=1 Ом, R3=5 Ом, R4=8 Ом, ЭДС источника
7.2.21 Батарея гальванических элементов с ЭДС 15 В и внутренним сопротивлением 5 Ом замкнута
7.2.22 В сеть с напряжением 24 В включены два последовательно соединенных резистора. При этом
7.2.23 Щелочной аккумулятор создает силу тока 0,8 А, если его замкнуть на сопротивление 1,5 Ом
7.2.24 Какова ЭДС источника, если при измерении напряжения на его зажимах вольтметром
7. 2.25 Два источника тока с ЭДС 2 и 1,2 В, внутренними сопротивлениями 0,5 и 1,5 Ом соответственно
7.2.26 Аккумулятор подключен для зарядки к сети с напряжением 12,5 В. Внутреннее сопротивление
7.2.27 Батарея элементов замкнута двумя проводниками сопротивлением 4 Ом каждый
7.2.28 Цепь состоит из аккумулятора с внутренним сопротивлением 5 Ом и нагрузки 15 Ом
7.2.29 Два источника с одинаковыми ЭДС 2 В и внутренними сопротивлениями 0,2 и 0,4 Ом соединены
7.2.30 Источник тока имеет ЭДС 12 В. Сила тока в цепи 4 А, напряжение на внешнем сопротивлении 11 В
7.2.31 Два элемента с внутренним сопротивлением 0,2 и 0,4 Ом соединены одинаковыми полюсами
7.2.32 Два элемента соединены параллельно. Один имеет ЭДС E1=2 В и внутреннее сопротивление
7.2.33 Два элемента с ЭДС, равными E1=1,5 В и E2=2 В, соединены одинаковыми полюсами
7.2.34 Определить число последовательно соединенных элементов с ЭДС 1,2 В и внутренним
7.2.35 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда
7.2.36 В схеме, показанной на рисунке, внутреннее и внешние сопротивления одинаковы, а расстояние
7.2.37 Имеется 5 одинаковых аккумуляторов с внутренним сопротивлением 1 Ом каждый
7.2.38 Определите заряд на обкладках конденсатора C=1 мкФ в цепи, изображенной на рисунке
7.2.39 Конденсатор и проводник соединены параллельно и подключены к источнику с ЭДС 12 В
7.2.40 Определите заряд на обкладках конденсатора C=1 мкФ. ЭДС источника 4 В, внутреннее
7.2.41 Проволока из нихрома изогнута в виде кольца радиусом 1 м. В центре кольца помещен
7.2.42 Указать направление вектора сторонней силы, действующей на положительный заряд q
7.2.43 В конце заряда батареи аккумуляторов током I1 присоединенный к ней вольтметр показывал
7.2.44 Источники тока, имеющие одинаковые внутренние сопротивления r=1 Ом, подключены
7.2.45 Источники тока, имеющие одинаковые внутренние сопротивления r=0,5 Ом, подключены
7.2.46 В указанной электрической схеме R1=R2=R3=6 Ом, ЭДС источника тока E=3,9 В, а его внутреннее
7. 18 ионов в секунду. Найти силу тока в газе
7.3.3 Определите массу алюминия, который отложится на катоде за 10 ч при электролизе Al2(SO4)3
7.3.4 Цинковый анод массой 5 г поставлен в электролитическую ванну, через которую проходит ток
7.3.5 При какой силе тока протекает электролиз водного раствора сульфата меди, если за 50 мин
7.3.6 Определить затраты электроэнергии на получение 1 кг алюминия из трехвалентного состояния
7.3.7 Через раствор медного купороса в течение 2 с протекал электрический ток силой 3,2 А
7.3.8 При электролизе сернокислого цинка ZnSO4 в течение 4 ч выделилось 24 г цинка. Определить
7.3.9 Электролиз алюминия проводится при напряжении 10 В на установке с КПД 80%. Какое
7.3.10 Определите массу выделившейся на электроде меди, если затрачено 6 кВтч электроэнергии
7.3.11 При никелировании изделий в течение 2 ч отложился слой никеля толщиной 0,03 мм. Найти
7.3.12 При электролизе медного купороса за 1 ч выделяется медь массой, равной 0,5 г. Площадь
7.3.13 При электролизе раствора серной кислоты за 50 минут выделилось 0,3 г водорода. Определить
7.3.14 Определите сопротивление раствора серной кислоты, если известно, что при прохождении тока
7.3.15 Две электролитические ванны соединены последовательно. В первой ванне выделилось
7.3.16 Какой толщины слой серебра образовался на изделии за 3 мин, если плотность тока в растворе
7.3.17 Плотность тока при серебрении контактов проводов равна 40 А/м2. Определить толщину
7.3.18 В ряде производств водород получают электролизом воды. При каком токе, пропускаемом
7.3.19 Никелирование пластинок производится при плотности тока 0,4 А/дм2. С какой скоростью
7.3.20 Электролиз воды ведется при силе тока 2,6 А, причем в течение часа получено 0,5 л кислорода
7.3.21 Сколько электроэнергии надо затратить для получения 2,5 л водорода при температуре 25 C
7.3.22 Электрический пробой воздуха наступает при напряженности поля 3 МВ/м. Определить потенциал
7.3. (-7) кг/Кл. Сколько меди выделится на электроде
7.3.27 К источнику с ЭДС 200 В и внутренним сопротивлением 2 Ом подсоединены последовательно

Работа и мощность тока

7.4.1 По проводнику сопротивлением 20 Ом за 5 мин прошло количество электричества 300 Кл
7.4.2 Электрический паяльник рассчитан на напряжение 120 В при токе 0,6 А. Какое количество
7.4.3 Батарея, включенная на сопротивление 2 Ом, дает ток 1,6 А. Найти мощность, которая теряется
7.4.4 Дуговая сварка ведется при напряжении 40 В и силе тока 500 А. Определить энергию
7.4.5 К источнику тока с внутренним сопротивлением 0,6 Ом подключено внешнее сопротивление
7.4.6 Чему равен КПД источника тока с ЭДС 12 В и внутренним сопротивлением 0,5 Ом
7.4.7 Кипятильник работает от сети с напряжением 125 В. Какая энергия расходуется в кипятильнике
7.4.8 Во сколько раз увеличится количество теплоты, выделяемое электроплиткой, если сопротивление
7.4.9 Какое количество электроэнергии расходуется на получение 5 кг алюминия, если электролиз
7. 4.10 Во сколько раз изменятся тепловые потери в линии электропередачи при увеличении напряжения
7.4.11 Найти полезную мощность, которую может дать батарея, ЭДС которой равна 24 В
7.4.12 Два резистора сопротивлением 2 и 5 Ом соединены последовательно и включены в сеть
7.4.13 Определите силу тока в кипятильнике, если при подключении к напряжению 12 В, он нагревает
7.4.14 Напряжение на зажимах автотранспортного генератора равно 24 В. Определить работу
7.4.15 Поперечное сечение медной шины 80 мм2. Какое количество теплоты выделится на 1 м длины
7.4.16 Мощность автомобильного стартера 6000 Вт. Какова сила тока, проходящего через стартер
7.4.17 Две лампы имеют одинаковые мощности. Одна из них рассчитана на напряжение 120 В
7.4.18 ЭДС источника тока равна 2 В, внутреннее сопротивление 1 Ом. Внешняя цепь потребляет
7.4.19 На сколько градусов изменится температура воды в калориметре, если через нагреватель
7.4.20 Через поперечное сечение спирали нагревательного элемента паяльника каждую секунду
7. 4.21 Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В
7.4.22 Два проводника, соединенных параллельно, имеют сопротивления 4 и 8 Ом. При включении
7.4.23 Масса воды в нагревателе 2,5 кг. На сколько градусов повысится температура воды, если
7.4.24 Мощность, выделяемая на резисторе, подключенном к источнику тока с ЭДС 3,0 В
7.4.25 Из комнаты за сутки теряется 87 МДж тепла. Какой длины нужна нихромовая проволока
7.4.26 Две одинаковые лампочки мощностью 50 Вт каждая, рассчитанные на напряжение 10 В
7.4.27 Электролампа с вольфрамовой спиралью в момент включения при 20 C потребляет мощность
7.4.28 Электробритва имеет мощность 15 Вт и рассчитана на напряжение 110 В. При напряжении
7.4.29 При замыкании источника тока с внутренним сопротивлением 2 Ом на сопротивление 4 Ом
7.4.30 Емкость аккумулятора 75 А*ч. Какую работу должен совершить источник тока для зарядки
7.4.31 Электроплитка, работающая от сети с напряжением 220 В, расходует мощность 600 Вт
7. 4.32 Девять нагревательных элементов с сопротивлением 1 Ом каждый соединены
7.4.33 Скоростной лифт массой 1600 кг за 300 с поднимается на высоту 30 м. Определить силу тока
7.4.34 Четыре одинаковых источника тока соединены, как показано на рисунке. ЭДС каждого
7.4.35 На сколько градусов поднимется температура медного стержня, если по нему в течение 0,5 с
7.4.36 Определить ток короткого замыкания источника питания, если при токе 15 А он отдает
7.4.37 ЭДС батареи аккумуляторов 12 В. Сила тока короткого замыкания 5 А. Какую наибольшую
7.4.38 В электрочайник с сопротивлением 140 Ом налита вода массой 1,5 кг при температуре 20 С
7.4.39 Два элемента с ЭДС 5 и 10 В и внутренними сопротивлениями 1 и 2 Ом соединены последовательно
7.4.40 Батарея состоит из параллельно соединенных источников тока. При силе тока во внешней цепи
7.4.41 Три лампочки мощностью P01=50 Вт и P02=25 Вт и P03=50 Вт, рассчитанные на напряжение
7.4.42 К источнику тока подключен реостат. При сопротивлении реостата 4 Ом и 9 Ом получается
7.4.43 Определить ЭДС аккумулятора, если при нагрузке в 5 А он отдает во внешнюю цепь 10 Вт
7.4.44 На резисторе внешней цепи аккумулятора выделяется тепловая мощность 10 Вт
7.4.45 При подключении к источнику тока ЭДС 15 В сопротивления 15 Ом КПД источника равен 75%
7.4.46 По линии электропередачи протяженностью в 100 км должен пройти электрический ток
7.4.47 Линия имеет сопротивление 300 Ом. Какое напряжение должен иметь генератор
7.4.48 Источник тока с ЭДС 5 В замыкается один раз на сопротивление 4 Ом, а другой раз – на 9 Ом
7.4.49 При замыкании на сопротивление 5 Ом батарея элементов дает ток 1 А
7.4.50 Определите КПД электропаяльника сопротивлением 25 Ом, если медная часть его массой
7.4.51 Найти ток короткого замыкания в цепи генератора с ЭДС 70 В, если при увеличении
7.4.52 Два чайника, каждый из которых потребляет при напряжении 200 В по 400 Вт, закипают
7.4.53 При силе тока 2 А во внешней цепи выделяется мощность 24 Вт, а при силе тока 5 А – мощность 30 Вт
7. 4.54 Элемент замыкают один раз сопротивлением 4 Ом, другой – резистором сопротивлением 9 Ом
7.4.55 Сила тока, протекающего в проводнике, сопротивление которого равно 15 Ом, меняется
7.4.56 Лампу, рассчитанную на напряжение U1=220 В, включили в сеть с напряжением U2=110 В
7.4.57 Две лампочки имеют одинаковые мощности. Первая лампочка рассчитана на напряжение 127 В
7.4.58 При ремонте бытовой электрической плитки ее спираль была укорочена на 0,2 первоначальной
7.4.59 Сопротивление лампочки накаливания в рабочем состоянии 240 Ом. Напряжение в сети 120 В
7.4.60 Два резистора с одинаковым сопротивлением каждый включаются в сеть постоянного напряжения
7.4.61 Стоимость 1 кВт*ч электроэнергии равна 50 коп. Паяльник, включенный в сеть с напряжением
7.4.62 Определите силу тока в обмотке двигателя электропоезда, развивающего силу тяги 6 кН

Амперметр и вольтметр в электрической цепи. Шунты и добавочные сопротивления

7.5.1 Сопротивление вольтметра 400 Ом, предел измерения 4 В. Какое дополнительное сопротивление
7.5.2 Какое дополнительное сопротивление нужно подключить к вольтметру со шкалой 100 В
7.5.3 Миллиамперметр имеет сопротивление 25 Ом, рассчитан на предельный ток 50 мА
7.5.4 К амперметру с сопротивлением 0,1 Ом подключен шунт с сопротивлением 11,1 мОм
7.5.5 Какой шунт нужно подсоединить к гальванометру со шкалой на 100 делений, ценой деления 1 мкА
7.5.6 Вольтметр постоянного тока рассчитан на измерение максимального напряжения 3 В
7.5.7 Для измерения напряжения сети 120 В последовательно соединили два вольтметра
7.5.8 Амперметр имеет сопротивление 0,02 Ом, его шкала рассчитана на 1,2 А. Каково должно
7.5.9 Имеется миллиамперметр с внутренним сопротивлением 10 Ом, который может измерять
7.5.10 Предел измерения амперметра с внутренним сопротивлением 0,4 Ом 2 А. Какое шунтирующее
7.5.11 Зашунтированный амперметр измеряет токи до 10 А. Какую наибольшую силу тока
7.5.12 Амперметр показывает ток 0,04 А, а вольтметр – напряжение 20 В. Найти сопротивление
7.5.13 Вольтметр, рассчитанный на измерение напряжения до 20 В, необходимо включить в сеть
7.5.14 Гальванометр имеет сопротивление 200 Ом, и при силе тока 100 мкА стрелка отклоняется
7.5.15 Гальванометр со шкалой из 100 делений и ценой деления 50 мкА/дел, надо использовать как
7.5.16 К амперметру с внутренним сопротивлением 0,03 Ом подключен медный шунт длиной 10 см
7.5.17 Предел измерения амперметра 5 А, число делений шкалы 100, внутреннее сопротивление
7.5.18 Вольтметр, внутреннее сопротивление которого 50 кОм, подключенный к источнику
7.5.19 Вольтметр с внутренним сопротивлением 3 кОм, включенный в городскую осветительную сеть
7.5.20 Если подключить к гальванометру шунт 100 Ом, вся шкала соответствует току во внешней цепи
7.5.21 Стрелка миллиамперметра отклоняется до конца шкалы, если через миллиамперметр идет ток
7.5.22 Гальванометр со шкалой из 50 делений имеет цену деления 2 мкА/дел
7.5.23 Вольтметр, соединенный последовательно с сопротивлением R1=10 кОм, при включении
7. 5.24 Амперметр с внутренним сопротивлением 2 Ом, подключенный к батарее, показывает ток 5 А
7.5.25 Вольтметр, подключенный к источнику с ЭДС 12 В, показывает напряжение 9 В. К его клеммам
7.5.26 Аккумулятор замкнут на некоторый проводник. Если в цепь включить два амперметра
7.5.27 К источнику тока подключены последовательно амперметр и резистор. Параллельно резистору
7.5.28 Два вольтметра, подключенные последовательно к ненагруженной батарее, показывают
7.5.29 В цепь, состоящую из источника ЭДС и сопротивления 2 Ом, включают амперметр сначала
7.5.30 Каково удельное сопротивление проводника, если его длина 10 км, площадь поперечного
7.5.31 Медный провод длиной 500 м имеет сопротивление 2,9 Ом. Найти вес провода
7.5.32 Проводники сопротивлением 2, 3 и 4 Ом соединены параллельно. Найти общее
7.5.33 Какого сопротивления проводник нужно соединить параллельно с резистором 300 Ом
7.5.34 Три проводника сопротивлением 2, 3 и 6 Ом соединены параллельно. Найти наибольший ток
7. 5.35 В городскую осветительную сеть включены последовательно электрическая плитка, реостат
7.5.36 Во сколько раз площадь поперечного сечения алюминиевого провода больше, чем у медного
7.5.37 Цепь состоит из трех сопротивлений 10, 20 и 30 Ом, соединенных последовательно
7.5.38 Два электронагревателя сопротивлением 25 и 20 Ом находятся под напряжением 100 В
7.5.39 ЭДС батареи 6 В, внутреннее и внешнее сопротивления соответственно равны 0,5 и 11,5 Ом
7.5.40 Атомная масса золота 197,2, валентность 3. Вычислить электрохимический эквивалент золота
7.5.41 Лампу, рассчитанную на напряжение 220 В, включили в сеть напряжением 110 В. Во сколько
7.5.42 Спираль электронагревателя укоротили на 0,1 первоначальной длины. Во сколько раз
7.5.43 Сколько времени длилось никелирование, если был получен слой никеля массой 1,8 г
7.5.44 Электромотор имеет сопротивление 2 Ом. Какую мощность потребляет мотор при токе
7.5.45 Через раствор сернокислой меди (медного купороса) прошло 2*10^4 Кл электричества
7. 5.46 Какой ток должен проходить по проводнику в сети напряжением 120 В, чтобы в нем
7.5.47 По проводнику сопротивлением 4 Ом в течение 2 минут прошло 500 Кл электричества
7.5.48 В схеме, изображенной на рисунке, R1=5 Ом, R2=6 Ом, R3=3 Ом, сопротивлением амперметра
7.5.49 Вольтметр, внутреннее сопротивление которого равно 50 кОм, подключенный к источнику
7.5.50 Определите показание амперметра в электрической цепи, изображенной на рисунке
7.5.51 Какой величины надо взять дополнительное сопротивление, чтобы можно было включить

12.2 Магнитное поле, создаваемое тонким прямым проводом – University Physics Volume 2

Глава 12. Источники магнитных полей

Цели обучения

К концу этого раздела вы сможете:

  • Объяснять, как закон Био-Савара используется для определения магнитного поля, создаваемого тонким прямым проводом.
  • Определить зависимость магнитного поля от тонкого прямого провода в зависимости от расстояния до него и тока, протекающего в проводе.
  • Нарисуйте магнитное поле, создаваемое тонким прямым проводом, используя второе правило правой руки.

Какой ток необходим для создания значительного магнитного поля, возможно, такого же сильного, как поле Земли? Геодезисты скажут вам, что воздушные линии электропередач создают магнитные поля, которые мешают показаниям их компаса. Действительно, когда в 1820 году Эрстед обнаружил, что ток в проводе влияет на стрелку компаса, он не имел дело с чрезвычайно большими токами. Как форма проводов, по которым течет ток, влияет на форму создаваемого магнитного поля? В главе 28 мы отмечали, что токовая петля создает магнитное поле, подобное магнитному стержню, но как насчет прямого провода? Мы можем использовать закон Био-Савара, чтобы ответить на все эти вопросы, включая определение магнитного поля длинного прямого провода.

На рис. 12.5 показано сечение бесконечно длинного прямого провода, по которому течет ток I . Чему равно магнитное поле в точке P , расположенной на расстоянии R от провода?

Рисунок 12. Участок тонкого прямого провода с током. Независимая переменная [латекс]\тета[/латекс] имеет пределы [латекс]{\тета}_{1}[/латекс] и [латекс]{\тета}_{2}.[/латекс]

Начнем с рассмотрения магнитного поля, создаваемого элементом тока [latex]I\phantom{\rule{0.2em}{0ex}}d\stackrel{\to }{\textbf{x}}[/latex], расположенным в позиция х . Используя правило правой руки 1 из предыдущей главы, [латекс]d\stackrel{\to }{\textbf{x}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2 em}{0ex}}\hat{\textbf{r}}[/latex] указывает за пределы страницы для любого элемента вдоль проводника. Таким образом, в точке P магнитные поля, обусловленные всеми элементами тока, имеют одинаковое направление. Это означает, что мы можем вычислить там чистое поле, оценивая скалярную сумму вкладов элементов. С [латексом] | d \ stackrel {\ to } {\ textbf {x}} \ phantom {\ rule {0.2em} {0ex}} × \ phantom {\ rule {0.2em} {0ex}} \ hat {\ textbf{r}}|=\left(dx\right)\left(1\right)\mathrm{sin}\phantom{\rule{0. {2}}}.\hfill \end {массив}[/латекс] 9{\infty}.[/латекс]

Подстановка пределов дает нам решение

[латекс] B = \ frac {{\ mu } _ {o} I} {2 \ pi R}. [/latex]

Силовые линии магнитного поля бесконечного провода имеют круглую форму с центром в проводе (рис. 12.6) и идентичны во всех плоскостях, перпендикулярных проводу. Поскольку поле уменьшается с расстоянием от провода, расстояние между линиями поля должно соответственно увеличиваться с расстоянием. Направление этого магнитного поля можно найти с помощью второй формы правила правой руки (показано на рис. 12.6). Если вы держите провод правой рукой так, чтобы большой палец был направлен вдоль тока, то ваши пальцы обхватывают провод в том же смысле, что и [латекс]\stackrel{\to }{\textbf{B}}.[/latex ]

Рисунок 12.6  Некоторые силовые линии магнитного поля бесконечной проволоки. Направление [латекс]\stackrel{\to }{\textbf{B}}[/латекс] можно найти с помощью правила правой руки.

Направление силовых линий можно наблюдать экспериментально, поместив несколько маленьких стрелок компаса на окружность рядом с проводом, как показано на рис. 12.7. Когда в проводе нет тока, иглы выравниваются с магнитным полем Земли. Однако, когда по проводу проходит большой ток, все стрелки компаса касаются окружности. Железные опилки, разбросанные по горизонтальной поверхности, также очерчивают линии поля, как показано на рис. 12.7.

Рисунок 12.7  Форму линий магнитного поля длинного провода можно увидеть с помощью (а) маленькой стрелки компаса и (б) железных опилок.

Пример

Расчет магнитного поля, создаваемого тремя проводами

Три провода расположены по углам квадрата, и все они пропускают ток силой 2 ампера на страницу, как показано на рис. 12.8. Вычислите величину магнитного поля в другом углу квадрата, точке P , если длина каждой стороны квадрата равна 1 см.

Рисунок 12.8  По трем проводам на страницу течет ток. Магнитное поле определяется в четвертом углу квадрата.
Стратегия

Рассчитывается магнитное поле каждого провода в нужной точке. Диагональное расстояние рассчитывается по теореме Пифагора. Затем направление вклада каждого магнитного поля определяется путем рисования круга с центром в точке провода и в направлении желаемой точки. Направление вклада магнитного поля от этого провода тангенциально к кривой. Наконец, работая с этими векторами, вычисляется результирующая. 9{\text{−5}}\text{T}.\end{массив}[/latex]

Значение

Геометрия в этой задаче приводит к тому, что вклады магнитного поля в направлениях x и y имеют одинаковую величину. Это не обязательно так, если бы токи были разных значений или если бы провода располагались в разных положениях. Независимо от численных результатов, работа с компонентами векторов даст результирующее магнитное поле в нужной точке.

Проверьте свое понимание

Используя пример 12.3, сохраняя одинаковые токи в проводах 1 и 3, какой должен быть ток в проводе 2, чтобы противодействовать магнитным полям от проводов 1 и 3, чтобы в точке P не было результирующего магнитного поля. ?

Show Solution

4 ампера, вытекающие из страницы

Резюме

  • Сила магнитного поля, создаваемого током в длинном прямом проводе, определяется выражением [latex]B=\frac{{\mu }_{0}I}{2\pi R}[/latex] (длинный прямой провод), где 9{\text{−7}}\phantom{\rule{0. 2em}{0ex}}\text{T}\cdot \text{м/с}[/latex] — проницаемость свободного пространства.
  • Направление магнитного поля, создаваемого длинным прямым проводом, задается правилом правой руки 2 (RHR-2): Направьте большой палец правой руки в направлении тока, а пальцы согните в направлении магнитного поля. петли поля, созданные им.

Концептуальные вопросы

Как бы вы сориентировали два длинных прямых проводника с током так, чтобы между ними не было результирующей магнитной силы? ( 9{4}[/latex] A. Оцените магнитное поле на расстоянии 1 м от болта.

Величина магнитного поля на расстоянии 50 см от длинного тонкого прямого провода составляет [латекс]8,0\фантом{\правило{0,2em}{0ex}}\текст{мкТл}.[/латекс] Какова сила тока по длинному проводу?

Показать раствор

20 А

По линии электропередачи, натянутой на высоте 7,0 м над землей, протекает ток силой 500 А. Каково магнитное поле на земле непосредственно под проводом? Сравните свой ответ с магнитным полем Земли. 9{\text{−5}}\text{T}.[/latex]

По двум длинным параллельным проводам, показанным на прилагаемом рисунке, текут токи в одном направлении. Если [латекс]{I}_{1}=\text{10 A}[/latex] и [латекс]{I}_{2}=20\phantom{\rule{0.2em}{0ex}}\text {A},[/latex] каково магнитное поле в точке P?

На прилагаемом рисунке показаны два длинных прямых горизонтальных провода, расположенных параллельно и на расстоянии 2 a друг от друга. Если по обоим проводам течет ток I в одном и том же направлении, (а) каково магнитное поле в точке [латекс]{P}_{1}?[/латекс] (б) [латекс]{P}_{2} ?[/латекс]

Показать решение

В точке P1 чистое магнитное поле равно нулю. В P2 [латекс]B=\frac{3{\mu }_{o}I}{8\pi a}[/latex] на страницу.

Повторите расчеты предыдущей задачи с обратным направлением тока в нижнем проводе.

Рассмотрим область между проводами предыдущей задачи. На каком расстоянии от верхнего провода суммарное магнитное поле минимально? Предположим, что токи равны и текут в противоположных направлениях.

Показать решение

Магнитное поле минимально на расстоянии a от верхнего провода или на полпути между проводами.

Лицензии и атрибуты

Магнитное поле из-за тонкого прямого провода. Автор : Колледж OpenStax. Расположен по адресу : https://openstax.org/books/university-physics-volume-2/pages/12-2-magnet-field-due-to-a-thin-direct-wire. Лицензия : CC BY: Attribution . Условия лицензии : Скачать бесплатно на https://openstax.org/books/university-physics-volume-2/pages/1-introduction

Объяснение урока: Магнитное поле, создаваемое током в прямом проводе

В этом объяснении мы узнаем, как рассчитать магнитное поле, создаваемое током в прямом проводе.

Мы знаем, что движущийся заряд или ток создает магнитное поле. Длинный прямой отрезок провода, по которому течет ток. 𝐼 показано на диаграмме ниже. Поскольку в проводе присутствует ток, магнитное поле производится вокруг провода и состоит из замкнутых концентрических кругов, как показано серыми петлями на диаграмме.

Силу результирующего магнитного поля 𝐵 можно найти на любом расстоянии 𝑑 от провода, используя приведенное ниже уравнение.

Напряженность магнитного поля, вызванного током в прямом проводе

Напряженность магнитного поля, 𝐵, на некотором расстоянии 𝑑 от прямого провода с током 𝐼 можно найти с помощью уравнения 𝐵=𝜇𝐼2𝜋𝑑, где 𝜇 — константа, известная как «проницаемость свободного пространства», и имеет значение 𝜇=4𝜋×10⋅/TmA.

Следует отметить, что расстояние 𝑑 необходимо измерять перпендикулярно проводу. Перпендикуляр измерение расстояния показано на диаграмме ниже.

Напряженность поля, 𝐵, уменьшается по мере удаления от провода, 𝑑, увеличивается. Это показано на приведенной ниже диаграмме, на которой показан вид по длине прямого токоведущего провода. проволока. Следует отметить, что точка в центре провода указывает на то, что ток направлен наружу и перпендикулярно — экрану.

Области, где линии поля расположены ближе друг к другу, указывают, где поле сильнее. Хотя только некоторые линии поля показаны выше, поле технически присутствует даже на бесконечно большом расстоянии от провода. Тем не менее, сила поле пренебрежимо мало очень далеко. Это потому, что расстояние 𝑑 появляется в знаменателе уравнения для напряженности магнитного поля; таким образом, 𝐵 и 𝑑 обратно пропорциональны друг к другу, а напряженность магнитного поля стремится к 0, когда 𝑑 стремится к бесконечности. Эта пропорциональность показано на графике ниже.

Давайте попрактикуемся в использовании уравнения для магнитного поля, создаваемого прямым проводом с током.

Пример 1: Расчет магнитного поля, создаваемого током в прямом проводе

По длинному прямому кабелю на промышленной электростанции протекает постоянный ток 100 А. Рассчитайте напряженность результирующего магнитного поля на перпендикулярном расстоянии 0,06 м от этого кабеля. Использовать 4𝜋×10 Т⋅м/А для значения 𝜇. Дайте ответ в экспоненциальном представлении с точностью до двух знаков после запятой.

Ответ

Для начала вспомним уравнение для определения напряженности магнитного поля на расстоянии 𝑑 от прямого провода с током 𝐼, 𝐵=𝜇𝐼2𝜋𝑑.

Поскольку нам были даны значения для 𝜇, 𝐼 и 𝑑, мы готовы подставить их и решить для силы магнитного поля, 𝐵. Таким образом, у нас есть 𝐵=4𝜋×10⋅/()2𝜋(0,06).TmAAm

Мы можем упростить математику, сократив некоторые термины и единицы измерения. Мы отменим единицы метров, потому что м появляется в числителе и знаменателе. В числитель входят как 1/A и А, так что ампер тоже компенсируется. Это оставляет нам только единицу напряженности магнитного поля, тесла. Далее мы можем отменить 2𝜋 от числителя и знаменателя, поэтому имеем 𝐵=2×10(100)0,06=3,333×10,TT

Округлив до двух знаков после запятой, ответ будет 3,33×10 T.

Помимо использования точных значений для расчета напряженности поля, мы можем использовать уравнение магнитного поля, чтобы исследовать некоторые другие концептуальные свойства.

Пример 2. Определение пропорциональности магнитного поля, создаваемого током в прямом проводе

По длинному прямому проводу течет постоянный ток, который создает напряженное магнитное поле 𝐵 тесла на перпендикулярном расстоянии 𝑑см от проволоки. Предполагая система не меняется, какова связь между 𝐵 и силой напряженности магнитного поля 𝐵 на перпендикулярном расстоянии 2𝑑 см от провода? Предположим 𝐵 и 𝐵 намного больше, чем напряженность магнитного поля Земли.

  1. 𝐵 = 14𝐵
  2. 𝐵 = 12𝐵
  3. 𝐵 = 𝐵
  4. 𝐵 = 2𝐵
  5. 𝐵 = 4𝐵

Ответ

Пусть начну определить напряженность магнитного поля на некотором расстоянии от прямой провод с током, 𝐵=𝜇𝐼2𝜋𝑑.

Здесь у нас есть два измерения напряженности поля, 𝐵 и 𝐵, измеренные на расстояниях которые мы будем называть 𝑑 и 𝑑 соответственно. Нам говорят, что все остальные свойства системы постоянны, поэтому величина 𝜇𝐼2𝜋 эквивалентна в обоих случаях. Мы можем разработать соотношение, чтобы связать эти значения: 𝐵𝐵=𝑑𝑑.

Сравнивая измеренные расстояния от провода, мы знаем, что 𝑑 вдвое больше, чем 𝑑, поэтому 𝑑=2𝑑.

Подставляя это в уравнение выше, мы имеем 𝐵𝐵=2𝑑𝑑.

Теперь мы можем сократить члены 𝑑 в правой части уравнения: 𝐵𝐵=2.

Теперь, находя 𝐵, 𝐵=12𝐵.

Таким образом, напряженность магнитного поля 𝐵 измеряется на удвоенном расстоянии от провода как 𝐵 и имеет половину силы 𝐵. Следовательно, вариант Б правильный.

Пример 3. Расчет силы тока в прямом проводе с учетом магнитного поля. Напряженность поля

По прямому проводу в электрической цепи протекает постоянный ток 𝐼 A. Результирующее магнитное поле при перпендикулярное расстояние 18 мм от этого провода измерено как 1,2 × 10 T. Рассчитайте 𝐼 с точностью до ампера. Использовать 4𝜋×10 Т⋅м/А для значения 𝜇.

Ответ

Здесь нам дано значение магнитного поля, создаваемого током в прямом проводе, и мы сказали найти значение тока. Начнем с того, что вспомним уравнение для напряженности магнитного поля за счет прямого токоведущего провода, 𝐵=𝜇𝐼2𝜋𝑑.

Чтобы найти ток 𝐼, мы умножим обе части уравнения на 2𝜋𝑑𝜇. Таким образом, у нас есть 𝐼=2𝜋𝑑𝐵𝜇.

Прежде чем мы продолжим, мы конвертируем наше значение расстояния в метры, так как оно дано нам в миллиметры. Мы знаем это 𝑑=18=0,018мм.

Теперь, подставив все наши значения, мы имеем 𝐼=2𝜋(0,018)1,2×104𝜋×10⋅/=10,8.mTTmAA

Округляя до ближайшего ампера, получаем, что сила тока в проводе равна 11 А.

До сих пор мы интересовались только величиной или силой магнитного поля, возникающего из-за тока в проводе. Однако, мы должны помнить, что магнитное поле является векторной величиной, поскольку оно определяется как величиной, так и направлением. Мы будем используйте правило правой руки, чтобы определить направление магнитного поля, как описано ниже.

Правило: Правило правой руки для магнитного поля, обусловленного током в прямом проводе

Чтобы определить направление магнитного поля, обусловленного прямым проводником с током, выполните следующие действия:

  1. Направив большой палец правой руки в сторону течения.
  2. «Возьмите» проволоку, скручивая пальцы вокруг ее воображаемой оси. Направление, в котором сгибаются пальцы в соответствует направлению магнитного поля.

На приведенной ниже схеме показано, как правой рукой обматывать проволоку вокруг оси. Обратите внимание, как большой палец указывает на направление тока и что пальцы загибаются в том же направлении, что и магнитное поле.

В следующем примере мы попрактикуемся в использовании правила правой руки.

Пример 4: Использование правила правой руки для магнитного поля, обусловленного током в прямом проводе

По длинному прямому проводу течет постоянный ток 𝐼, который индуцирует магнитное поле 𝐵. Силовые линии магнитного поля 𝐵 показаны на диаграмме. Судя по схеме, укажите направление условного тока в проводе.

Ответ

Вспомните, что движущиеся заряды создают магнитное поле и что мы можем определить направление тока в проводе, используя правило правой руки. Для этого правой рукой «схватите» провод, большим пальцем указывая в направлении тока. Затем согните пальцы в кулак, и направление, в котором сгибаются пальцы, указывает направление движения. результирующее магнитное поле.

Чтобы проверить, идет ли ток снизу вверх, мы направляем большой палец вверх и сгибаем пальцы. В этом случае, как если смотреть сверху (как на диаграмме), магнитное поле будет направлено против часовой стрелки. Это противоречит тому, что показано на диаграмме, поэтому мы знаем, что ток не движется снизу вверх.

Мы можем убедиться, что ток действительно движется сверху вниз, сделав правой рукой большой палец вниз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*