Панельные радиаторы отопления расчет по площади: Расчет стальных радиаторов отопления: как рассчитать панельные радиаторы по площади, мощность, теплоотдача, как подобрать, таблица

Содержание

Кто должен разрабатывать ППР — Портал о строительстве, ремонте и дизайне

Столкнувшись с необходимостью получить проект производства работ, у начинающих строителей возникает проблема — кем разрабатывается ППР?

Подготовка документации разрешена организациям, которые специализируются на выполнении строительно-монтажных работ или проектировании. Чтобы законно заниматься разработкой проектов (см. тут https://ppr48.ru/) , сотрудники организации должны быть аттестованы в Ростехнадзоре. Документы готовятся с привлечением профильных сотрудников, прошедших обучение и проверку знаний. Эти лица несут ответственность за отсутствие ошибок и соответствие разрабатываемых решений установленным требованиям.

Кто отвечает за разработку проекта?

Кто разрабатывает ППР, кого будут привлекать к ответственности, если строительство началось без утвержденного проекта? За подготовку документации отвечает непосредственный исполнитель работ:

  • заказчик строительства — если он планирует выполнять строительно-монтажные операции своими силами;
  • генподрядчик — при подрядном способе разрабатывает документацию для всего объекта;
  • подрядчик или субподрядчик — должен подготовить проекты для выполняемых работ.

Если в компании нет квалифицированных сотрудников для разработки ППР, нужно заказать пакет документов в специализированном предприятии.

Кто утверждает?

Проект производства работ утверждается руководителем организации, занимающейся его разработкой. При субподряде документация подписывается начальником компании — субподрядчика с последующим согласованием у генерального подрядчика.

Утверждение ППР является не менее важным аспектом, чем подготовка, разработка или соблюдение установленных норм. При возникновении чрезвычайных ситуаций из-за ошибок в проекте, лица, подписывающие документ, привлекаются к уголовной ответственности.

Можно ли разработать ППР самостоятельно?

Задаваясь вопросам, кто разрабатывает ППР в строительстве, многие считают, что документы можно подготовить самостоятельно. Да, на практике это возможно, если Вы квалифицированный сотрудник в этой области. При этом следует помнить, что монтажно-строительные работы, нарушение технологии которых может стать причиной аварийной ситуации, требуют детальной проработки комплекса мероприятий по охране труда. Здесь недостаточно знаний из интернета. Любая ошибка может стать причиной разрушения конструкции или выхода из строя оборудования.

Расчет мощности стальных радиаторов отопления

Для типовых квартир, расположенных в зоне умеренного климата со средней температурой зимой не ниже – 18 0С, в СНиП (ДБН) определены стандартные объемы тепла к единице отапливаемого объема Вт/м3:

  • панельные постройки — 41;
  • кирпичные дома и коттеджи — 34.

Чтобы получить необходимые тепловые характеристики оборудования умножьте кубатуру помещения на 41 или 34. Для непредвиденных теплопотерь, специалисты рекомендуют добавить к полученному 20

%. Чтобы узнать кубический объем, измерьте площадь, а затем умножьте результат на высоту потолков. После вычисления необходимой мощности можно сделать точный расчет секций радиаторов, подобрать их оптимальное количество, учитывая индивидуальные условия, особенности эксплуатации пространства.

Учет теплопотерь

Высчитывая производительность теплообменников, следует учитывать не только материал, из которого построен дом или квартира, но и другие параметры. Умножьте расчетную мощность на полученное цифровое значение по каждому параметру. Пример: 100*1,1*0,9*1,05=103,95+15%=119,54.
• Наружные стены
Чем их больше, тем выше теплоотдача. Если в квартире одна наружная стена, расчетную мощность следует умножить на 1,1. При расчете — сколько секций батареи на квадратный метр требуется для угловой комнаты, применяйте поправку 1,2. Для помещений, расположенных на первом или последнем этаже, где три наружные стены, следует использовать коэффициент 1,3. Если чердак отапливается — 0,9. Когда квартира размещена на северной стороне дома, добавьте к расчетным данным 10%.

• Наружная температура

Уличная температура также предусмотрены коэффициенты корректировки характеристик отопительного оборудования:

  • 0,7, если зимой морозы не ниже –10 0С;
  • 0,9 для –15;
  • 1,1 для – 20;
  • 1,3 для –25;
  • 1,5 для – 30.
Высота потолка

Перед тем как рассчитать, сколько секций нужно в комнату, измерьте высоту потолка. Стандартная величина — 250 см. Уменьшение или увеличение этого значения требует внесения правок – 0,05 на каждые 50 см. Пример: если высота 3 м – 1,05.

Теплоизоляция

При дополнительном утеплении стен можно использовать понижающую поправку производительности стального радиатора – коэффициент 0,8–0,9. Точная цифра определяется типом, толщиной изолирующего материала.

Защита

Если обогреватели закрыты декоративными экранами, теплообмен снижается – заказывайте более мощное оборудование. Дополнительные поправки определяет конструкция, при установке теплообменника в нише или с решеткой сверху потери составляют 5–7%. Если экран полностью закрывает прибор, производительность может уменьшаться 15–25%.

Окна, балкон

Выбирая стальные радиаторы вносите корректировку, учитывающую число и габариты оконных проемов. Чем больше количество окон, их габариты, тем выше теплоотдача. Для двух проемов стандартных размеров поправка +20%. Балкон следует учитывать как дополнительное окно.

Остекление

В СНиП определены нормы тепла со стандартными условиями — двойные стеклопакеты. Если установлены деревянные окна с двойным остеклением применяется коэффициент 1,27. Под трехкамерные стеклопакеты — 0,85.

Расчет количества секций

Как рассчитать — сколько секций нужно в комнату? Сначала определитесь с конкретной моделью радиатора. Металлические изделия отличаются по конструкции, габаритами, мощности. Различают шесть типов их исполнения с маркировкой от 10 до 33, отображающей число панелей, конверторов. Плюс к этому, существует много модификаций, отличающихся размерами, конфигурацией, прочим.
При выборе конкретного варианта обогревателя ориентируйтесь на характеристики из технического паспорта. Наиболее простой расчет количества секций стального радиатора — разделить величину тепла, необходимого для комфортного обогрева помещения на производительность, предлагаемых моделей.

Как выбирать батареи с учетом расчетной мощности

Чтобы купить стальные радиаторы в соответствии с расчетными параметрами тепла, нужного для комфортного проживания в конкретном помещении, изучите наш каталог. Интернет магазин «Акваленд» предлагает большой выбор продукции AVM, NewStar и других популярных брендов. Для каждого наименования предусмотрен подробный обзор, описание.
Перед покупкой конкретной модели изучите следующие моменты:
• Материал — разновидность металлопроката, из которого изготовлено изделие, обычно это холоднокатаный сплав стали.
• Тепловая мощность определяет — сколько стальных радиаторов AVM или другой марки потребуется для обогрева пространства.
• Диаметр подключения определяет пропускную способность, размеры резьбы трубопровода, к которому будет подключаться конструкция.

• Тип исполнения:
o 10. Приборы с одной секцией без конвекторов отличаются небольшой массой и эффективностью. 1 – указывает число панелей, 0 — отсутствие ребер. Ключевое преимущество — не накапливают пыль.
o 11. Отличаются от первой группы дополнительным набором пластин оребрения, смонтированных на задней поверхности. Верхней решетки и боковых стенок нет.
o 21. Две секции, оснащены гофрированными пластинами из стали. Сверху предусмотрена решетка, по бокам — стенки.
o 22. По сравнению с предыдущей категорией отличаются увеличенной производительностью, благодаря ребрам, приваренным к обеим частям.
o 30. Три панели с конверторами, верхней решеткой и боковыми стенками
o 33. Высокая эффективность реализована благодаря трем панелям с большой глубиной 170 мм тройного оребрения.
• Вариант подключения: стальные радиаторы NewStar и других производителей поставляются с диагональным, нижним, боковым, односторонним или двухсторонним типом подключения.
• Габариты определяют размеры пространства, необходимого для монтажа. Эти параметры особо актуальны, когда планируется установка теплообменников в ниши или под низким подоконником.
Помните, если возникают сложности всегда можно обратиться за помощью к специалистам, которые помогут подобрать оптимальные конструкции.

Панельные радиаторы отопления расчет по площади


Стальные панельные радиаторы: виды и определение мощности

Стальные панельные радиаторы — конкурент привычных отопительных приборов секционного типа. Они привлекательны тем, что по сравнению со всеми секционными моделями при меньших габаритах имеют более высокий коэффициент теплоотдачи. Состоят из панелей, в которых по сформированным ходам, движется теплоноситель. Панелей может быть несколько: одна, две или три. Вторая составляющая — пластины гофрированного металла, которые называют оребрением. Вот за счет этих пластин и достигается высокий уровень теплоотдачи этих устройств.

Стальные панельные радиаторы имеют разные размеры и мощность

Для получения разной тепловой мощности панели и оребрение комбинируют в нескольких вариантах. Каждый вариант имеет разную мощность. Чтобы правильно подобрать размер и мощность нужно знать, что каждый из них собой представляет. По строению стальные панельные батареи бывают следующих типов:

  • Тип 33 — трехпанельный. Самый мощный класс, но и самый габаритный. Имеет три панели, к которым подсоединены три пластины оребрения (потому и обозначается 33).
  • Тип 22 — двухпанельный с двумя пластинами оребрения.
  • Тип 21. Две панели и между ними одна пластина с гофрированным металлом. Эти отопительные приборы при равных размерах имеют меньшую мощность по сравнению с типом 22.
  • Тип 11. Однопанельные стальные радиаторы с одной пластиной оребрения. Имеют еще меньшую тепловую мощность, но и меньший вес и габариты.
  • Тип 10. В этом типе имеется только одна панель с теплоносителем. Это самые маломощные и легкие модели.

Все эти типы могут иметь разную высоту и длину. Очевидно, что мощность панельных радиаторов зависит как от типа, так и от габаритов. Так как рассчитать этот параметр самостоятельно невозможно, то каждый производитель составляет таблицы, в которых заносит результаты испытаний. По этим таблицам и подбираются радиаторы для каждого помещения.

Типы стальных панельных радиаторов

Определяем мощность

Мощность стальных панельных радиаторов нужно определять исходя из теплопотерь помещения, в котором они будут устанавливаться. Для квартир, расположенных в стандартных домах, можно исходить из норм СНиПа, которые нормируют требуемое количество тепла на 1м3 обогреваемой площади:

  • Помещения в зданиях из кирпича требую 34Вт на 1м3.
  • Для панельных домов на 1м3 уходит 41Вт.

Исходя из этих норм, определяете, какое количество тепла требуется для обогрева каждой из комнат.

Например, помещение в панельном доме 3,2м*3,5м, высота потолков 3м. Рассчитаем объем 3,2*3,5*3=33,6м3. Умножив на норму по СНиП  для панельных домов получаем: 33,6*41=1377,6Вт.

Нормы СНиПа указаны для средней климатической зоны. Для остальных имеются соответствующие коэффициенты в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Нужна коррекция потерь тепла и в зависимости от количества наружных стен, ведь понятно, что чем больше таких стен, тем больше тепла через них уходит. Потому учитываем и их: если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3.

Чтобы правильно определить мощность панельного радиатора, нужно рассчитать теплопотери помещения

Внесем корректировки для нашего примера. Пусть средние зимние температуры по региону -25оС, имеется две наружных стены. Получается: 1378Вт*1,3*1,2=2149,68Вт, округляем 2150Вт.

Требуется еще учесть тип материала, кровли, какие помещения находятся сверху или снизу и т.д. Какие для этого существуют коэффициенты, смотрите в статье «Как рассчитать количество секций радиаторов»

А для примера воспользуемся этой цифрой. При условии, что утепление у дома и окон среднее, найденная цифра достаточно точна.

Расчет радиаторов Kermi

Перед определением мощности нужно определиться с маркой стальных панельных батарей. Естественно, доверять можно лидерам. Практически вне конкуренции сегодня немецкие стальные радиаторы Kermi. Вот и рассчитаем мощность по таблицам этого производителя.

Пусть решили установить одну из новых моделей Kermi Therm X2 Plan. По таблице, в которой указаны мощности всех имеющихся моделей, находим подходящие значения. Точного совпадения искать не стоит, ищите значение, которое чуть больше, чем рассчитанное (в теплотехнике лучше иметь хоть небольшой запас «на всякий случай»). В таблице подходящие для нашего случая варианты отмечены красными квадратиками. Пусть для нас более приемлема высота 505мм (указана вверху таблицы). Больше других привлекают менее длинные (1005мм) панельные радиаторы 33 типа. Если нужны еще более короткие, можно обратить внимание на модели с высотой 605мм.

Таблица расчета тепловой мощности стальных радиаторов Kermi (кликните для увеличения размера)

Пересчет мощности панельных радиаторов в зависимости от температурного режима

Но значения в данной таблице справедливы для системы с параметрами 75/65/20 (температура подачи 70оС, обратки 65оС, в помещении поддерживается 20оС). По этим значениям рассчитывается дельта температур: (75+65)/2-20=50оС.

Если параметры вашей системы другие, необходим перерасчет. Для подобных случаев в «Керми» составили таблицу с корректирующими коэффициентами.

Таблица пересчета в зависимости от температур системы отопления (кликните для увеличения размера)

Пусть предполагается низкотемпературная система с параметрами 60/50/22 (температура подачи 60оС, обратки 50оС, в помещении поддерживается 22оС). Считаем дельту температур: (60+50)/2-22=33оС. Находим в таблице строку с температурой проводимой воды, потом с температурой отводимой воды и доходим до значения температуры в помещении (22оС в нашем случае). В этой клетке стоит коэффициент 1,73 (отмечен зеленым цветом).

На него умножаем рассчитанное количество теплопотерь для нашего помещения: 2150Вт*1,73=3719,5Вт. Теперь ищем подходящие варианты в таблице мощностей для этого случая (отмечены зеленым). Выбор скромнее, но и радиаторы требуются гораздо мощнее.

Вот вся методика определения мощности панельных радиаторов. По ней вы сможете подобрать стальные панельные батареи для любой комнаты и любой системы.

Возможно, вам будет интересно почитать о том, как рассчитать мощность котла и о том, как определить диаметр труб для отопления.

Итоги

Для расчета мощности панельных радиаторов необходимо знать теплопотери помещения, фирму, изделия которой вы хотите купить, и параметры вашей системы отопления (температуру подачи, обратки и температуру в комнате). По этим данным по таблицам мощностей можно определить модели, которые удовлетворяют вашим условиям. Потом из этих вариантов выбрать тот, который больше подходит по параметрам (высота/длина/глубина). Вот и вся методика.

teplowood.ru

Расчета мощности стальных радиаторов отопления

Главная / Радиаторы / Таблица расчета мощности стальных радиаторов отопления

Сегодня потребительский рынок наполнен множеством моделей отопительных устройств, которые различаются по габаритам и показателям мощности. Среди них стоит выделить стальные радиаторы. Данные приборы довольно легкие, имеют привлекательный внешний вид и обладают хорошей теплоотдачей. Перед выбором модели необходимо произвести расчет мощности стальных радиаторов отопления по таблице.

Разновидности

Виды стальных радиаторов отопления

Рассмотрим стальные радиаторы панельного типа, которые различаются по габаритам и степени мощности. Устройства могут состоять из одной, двух или трех панелей. Другой важный элемент конструкции – оребрение (гофрированные металлические пластины). Чтобы получить определенные показатели тепловой отдачи, в конструкции устройств используется несколько комбинаций панелей и оребрения. Перед выбором наиболее подходящего устройства для качественного отопления помещения, необходимо ознакомиться с каждой разновидностью.

Основные типы стальных радиаторов

Стальные панельные батареи представлены следующими типами:

  • Тип 10. Здесь устройство оснащено только одной панелью. Такие радиаторы имеют легкий вес и самую низкую мощность.

Стальные радиаторы отопления тип 10

  • Тип 11. Состоят из одной панели и пластины оребрения. Батареи обладают чуть большим весом и габаритами, чем предыдущий тип, отличаются повышенными параметрами тепловой мощности.

Стальной панельный радиатор типа 11

  • Тип 21. В конструкции радиатора две панели, между которыми располагается гофрированная металлическая пластина.
  • Тип 22. Батарея состоит из двух панелей, а также двух пластин оребрения. По размерам устройство схоже с радиаторами 21-го типа, однако, по сравнению с ними, обладают большей тепловой мощностью.

Стальной панельный радиатор типа 22

  • Тип 33. Конструкция состоит из трех панелей. Данный класс – самый мощный по тепловой отдаче и самый большой по размерам. В его конструкции к трем панелям присоединены 3 пластины оребрения (отсюда и цифровое обозначение типа — 33).

Стальной панельный радиатор типа 33

Каждый из представленных типов может различаться по длине прибора и его высоте. На основании этих показателей и формируется тепловая мощность устройства. Самостоятельно рассчитать данный параметр невозможно. Однако каждая модель панельного радиатора проходит соответствующие испытания производителем, поэтому все результаты заносятся в специальные таблицы. По ним очень удобно подобрать подходящую батарею для отопления различных типов помещений.

Определение мощности

Для точного расчета тепловой мощности необходимо отталкиваться от показателей тепловых потерь помещения, в котором планируется установить эти устройства.

Таблица для расчета количества радиаторов на М2

Для обычных квартир можно руководствоваться СНиПом (Строительными нормами и правилами), в которых прописаны объемы тепла из расчета на 1м3 площади:

  • В панельных зданиях на 1м3 требуется 41Вт.
  • В кирпичных домах на 1м3 расходуется 34 Вт.

На основании данных норм можно выявить мощность стальных панельных радиаторов отопления.

В качестве примера, возьмем комнату в стандартном панельном доме с габаритами 3,2*3,5м и высотой потолков в 3 метра. Первым делом определим объем помещения: 3,2*3,5*3=33,6м3. Далее обратимся к нормам СНиП и найдем числовое значение, которое соответствует нашему примеру: 33,6*41=1377,6Вт. В результате, мы получили количество тепла, необходимое для обогрева комнаты.

Дополнительные параметры

Нормативные предписания СНиПа составлены для условий средней климатической зоны.

Параметры микроклимата в помещениях установленные СНиП

Чтобы произвести расчет в областях с более холодными зимними температурами, нужно скорректировать показатели при помощи коэффициэнтов:

  • до -10° C – 0,7;
  • -15° C – 0,9;
  • -20° C — 1,1;
  • -25° C — 1,3;
  • -30° C — 1,5.

При расчете тепловых потерь, нужно брать во внимание и количество стен, которые выходят наружу. Чем их больше, тем выше будут показатели теплопотерь помещения. К примеру, если в комнате одна наружная стена – применяем коэффициент 1,1. Если мы имеем две или три наружные стены, то коэффициент будет 1,2 и 1,3 соответственно.

Насколько сильно должна греть батарея

Рассмотрим пример. Допустим, в зимний период в регионе держится средняя температура -25° C, а в помещении расположены две наружных стены. Из расчетов мы получим: 1378 Вт*1,3*1,2=2149,68 Вт. Итоговый результат округляем до 2150 Вт. Дополнительно необходимо учитывать, какие помещения расположены на нижнем и верхнем этаже, из чего сделана кровля, каким материалом утеплялись стены.

Расчет радиаторов Kermi

Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.

Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка. В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.

Радиатор Kermi Therm Х2 Plan-K

Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.

Пересчет мощности исходя из температурного режима

Однако данные в этой таблице прописаны для показателей 75/65/20, где 75° C – температура провода, 65° C – температура отвода, а 20° C – температура, которая поддерживается в помещении. На основе этих значений производится расчет (75+65)/2-20=50° C, в результате которого мы получаем дельту температур. В том случае, если у вас иные системные параметры, потребуется перерасчет. Для этой цели в Kermi подготовили специальную таблицу, в которой указаны коэффициенты для корректировки. С ее помощью можно осуществить более точный расчет мощности стальных радиаторов отопления по таблице, что позволит подобрать наиболее оптимальное устройство для обогрева конкретного помещения.

Рассмотрим низкотемпературную систему, показатели которой составляют 60/50/22, где 60° C – температура провода, 50° C – температура отвода, а 22° C – температура, поддерживаемая в помещении. Вычисляем дельту температур по уже известной формуле: (60+50)/2-22=33° C. Затем смотрим в таблицу и находим температурные показатели проводимой/отводимой воды. В клетке с поддерживаемой температурой помещения находим нужный коэффициент 1,73 (в таблицах отмечается зеленым цветом).

Далее берем количество тепловых потерь помещения и умножаем его на коэффициент: 2150 Вт*1,73=3719,5 Вт. После этого возвращаемся к таблице мощностей, чтобы посмотреть подходящие варианты. В таком случае выбор будет скромнее, поскольку для качественного обогрева потребуются гораздо более мощные радиаторы.

Заключение

Как видим, правильный расчет мощности для стальных панельных радиаторов невозможен без знания определенных показателей. Обязательно необходимо выяснить теплопотери помещения, определиться с фирмой-производителем батареи, иметь представление о температуре проводимой/отводимой воды, а также о температуре, которая поддерживается в помещении. На основе этих показателей можно легко определить подходящие модели батарей.

Фотогалерея (13 фото)

13.11.2016

gopb.ru

Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь

От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.

Если предстоит замена старых батарей на новые или переустройство всей отопительной системы, то следует тщательно ознакомиться с требованиями СНиП. Это избавит от возможных недочетов и нарушений при монтажных работах.

Стальные радиаторы отопления: расчет мощности (таблица)

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0.7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:

  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:

  1. При наличии двух наружных стен и одного окна показатель увеличивается на 20%.
  2. Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
  3. Когда стены внутренние, но окно выходит на север, то на 10%.
  4. Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.

Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

netholodu.com

Расчет мощности стальных радиаторов

Чтобы максимизировать эффективность отопительной системы, нужно сделать правильные расчеты площади и приобрести качественные отопительные элементы, которые будут подходить своими техническими характеристиками именно под нужную отопительную систему. Теплоотдача в таком случае будет также максимальной.

Формула с учетом площади

Формула расчета мощности стального устройства отопления с учетом площади:

Р = V x 40 + потери тепла из-за окон + потери тепла из-за наружной двери

  • Р – мощность;
  • V – объем помещения;
  • 40 Вт – тепловая мощность для обогрева 1м3;
  • потери тепла из-за окон – расчет из значения 100 Вт (0,1 кВт) на 1 окно;
  • потери тепла из-за наружной двери – расчет из значения 150-200 Вт.

Пример:

Комната 3х5 метров, с высотой 2,7 метров, с одним окном и одной дверью.

Р = (3 х 5 х 2,7) х40 +100 +150 = 1870 Вт

С помощью этих расчетов можно узнать, какая будет теплоотдача устройством отопления на обеспечение достаточного обогрева заданной площади.

Но, если комната расположена на углу или торце здания, к расчетам мощности батареи нужно добавить еще 20% запаса. Столько же нужно добавлять в случае частых понижений температуры теплоносителя.

Стальные радиаторы отопления в среднем значении выдают 0,1-0,14 кВт/секции теплоэнергии.

Т 11 (1 секция)

Глубина емкости: 63 мм. Р = 1,1 кВт

Т 22 (2 секции)

Глубина емкости:100 мм. Р = 1,9 кВт

Т 33 (3 секции)

Глубина емкости: 155 мм. Р = 2,7 кВт

Мощность Р приведена для батарей высотой 500 мм длиной 1 м при dT = 60 град (90/70/20) – типовая конструкция радиаторов, подходит для моделей стальных изделий от разных производителей.

Таблица: теплоотдача радиаторов отопления

Расчет на 1 (11 тип), 2 (22 тип), 3 (33 тип) секции   

Теплоотдача отопительного устройства должна быть не менее 10% от площади помещения, если высота потолка менее 3 м. Если потолок выше, то прибавляется еще 30%.

Как правило, в комнате батареи устанавливаются под окнами у наружной стены, вследствие чего, тепло распространяется самым оптимальным образом. Холодный воздух из окон блокируется тепловым потоком с радиаторов, идущим вверх, тем самым исключает образование сквозняков.

Если жилое помещение расположено в районе с суровыми морозами и злыми зимами, нужно полученные цифры умножать на 1,2 – коэффициент потери тепла.

Еще один пример расчета

За пример взято помещение площадью 15 м2 и с высотой потолка 3 м. Рассчитывается объем комнаты: 15 х 3=45 м3. Известно, что для обогрева помещения в местности со средним климатом нужно 41 Вт/1 м3.

45 х 41 = 1845 Вт.

Принцип тот же, что и в предыдущем примере, но не учитываются потери теплоотдачи из-за окон и двери, что создает определенный процент погрешности. Основное, для правильного расчета – нужно знать, сколько выдают тепла секции, каждая из них. Секции могут быть в разном количестве у стальных панельных батарей от 1 до 3. Сколько секций у батареи на столько, соответственно, и усилится теплоотдача. Чем больше теплоотдача от системы отопления, тем лучше, ведь для того она и была придумана. Только по сути, добиться такого эффекта довольно сложно, если положиться только на свои знания. Информация – сила и возможности.

(7 голосов, рейтинг: 4,86 из 5) Загрузка…

poluchi-teplo.ru

Мощность стальных радиаторов отопления таблица

Как узнать мощности стальных радиаторов отопления: их особенности

Что может быть неприятней дорогих и холодных батарей в зимний сезон?

Иногда при замене старой отопительной системы люди задаются вопросом, какие установить обогреватели, вместо того, чтобы подумать, как узнать мощность панельного радиатора и сверить ее с имеющимся в системе давлением и теплоносителем.

Только понимая, что такое теплоотдача и от чего зависит ее уровень, можно правильно подобрать радиаторы в помещения.

Свойство теплоотдачи

Мощность стальных радиаторов отопления, так же как и всех остальных видов обогревателей основана на принципе их работы:

  1. Теплоноситель, попадая в батарею, циркулирует по резервуару (у стальных панельных моделей – это каналы), при этом в горячем состоянии он направлен вверх, тогда как при остывании идет вниз. В автономной или централизованной отопительной системе нагревом носителя занимается котел.
  2. За время, что горячая вода соприкасается с радиатором, она отдает ему свое тепло, нагревая его стенки. Этот момент очень важен, так как от размера обогревателя зависит, какой длины будет ее путь, и чем он дольше, тем горячее радиатор.
  3. Нагретые стенки конструкции отдают свою температуру воздуху, который распространяется по помещению под воздействием потоков тепла.
  4. Чтобы увеличить уровень теплоотдачи, производители «снабжают» отопительный прибор теплообменниками, как это видно по стальным радиаторам типа 11, 22 и 33.

Наличие теплообменников значительно увеличивает мощность стальных радиаторов, работая по двум нагревательным принципам: радиаторному, при котором используется тепло стенок устройства, и конвекторному, который образует движение разогретого воздуха.

Как правило, показатели мощности изготовитель указывает в техпаспорте, поэтому можно ориентироваться по нему, но еще лучше самостоятельно произвести расчеты с учетом площади помещения, температуре воздуха и количеству теплопотерь.

Последствиями неправильно подобранного обогревателя являются:

  1. Так называемое перетапливание, когда в помещении настолько жарко, что приходится держать форточку открытой. Это создает вредный для организма микроклимат, вынуждает платить больше за энергозатраты или устанавливать термостаты, чтобы снижать нагрузку на систему.
  2. Если мощность панельных стальных радиаторов отопления ниже необходимого уровня, то в комнате холодно даже при их максимальной нагрузке.
  3. Сильные перепады давления в отопительной системе, оснащенной слабыми батареями, приведет к аварии, так как они не выдержат подобных «стрессов».

Всех перечисленных проблем можно избежать, если знать, что именно влияет на теплоотдачу батарей отопления, и как поднять их эффективность.

Что влияет на теплоотдачу?

При выборе модели обогревателя нужна таблица мощности стальных радиаторов, которую потребителям должен предоставлять производитель или продавец-консультант.

Так же следует учесть несколько нюансов, которые им присущи:

  1. Перед покупкой новых батарей отопления следует поинтересоваться, какая температура теплоносителя в системе. Чем она горячее, тем выше будет нагрет радиатор, а значит, и теплоотдача будет больше. Узнав точную температуру, нужно сравнить ее с показателями выбранной модели, которые указываются в техпаспорте. Для безопасной и эффективной работы они должны совпадать.
  2. Размер радиатора имеет значение. Чем он больше, тем дольше в нем находится носитель, а от этого горячее становятся его стенки.
  3. Теплопроводность материала так же важна. В данном случае речь идет о листовой стали не более 1.5 мм толщины, что указывает на способность быстро нагреваться.

Из таких нюансов складывается мощность панельных радиаторов, поэтому при ее расчете следует учитывать все их параметры.

Мощность стальных радиаторов отопления (таблица)

Особенности батарей из стали

Конструкция панельных радиаторов такова, что они изготавливаются из двух штампованных листов стали, соединенных вместе, внутри которых находятся 2 горизонтальных канала вверху и внизу и по 3 вертикальных на каждые 10 см длины.

Слабым «звеном» подобных обогревателей является узость этих каналов, поэтому так важно, чтобы теплоноситель был без примесей. В централизованной отопительной системе это невозможно поэтому, сделав выбор в пользу радиаторов из стали, нужно устанавливать фильтр на входе подачи теплоносителя в подающую трубу квартиры.

Как правило, кВт стальных радиаторов зависит от их типа и в среднем составляет 0.1-014 на секцию:

  1. Для типа 11. который состоит из одной секции и конвектора при глубине 63 мм мощность равна 1.1 кВт.
  2. Для 22 типа. состоящего из двух секций с двумя конвекторами при глубине 100 мм – это 1.9 кВт.
  3. 33-тий тип признан самым эффективным, так как состоит из трех секций с тремя конвекторами при глубине 150 мм. Мощность панельного стального радиатора этого типа равна 2.7 кВт.

Для примера были взяты конструкции с конвекторами, так как без них стальные панели малоэффективны и годятся для небольших автономных систем отопления.

Чтобы сделать правильный выбор, следует перед покупкой ознакомиться со следующими параметрами:

  1. Сколько кВт в 1 секции стального радиатора.
  2. Как влияет высота и длина изделия на его мощность.
  3. Сколько в нем секций и конвекторов.

Только получив ответы на эти вопросы, можно подобрать оптимальный вариант обогревателя для каждого помещения в отдельности.

Расчета мощности стальных радиаторов отопления

Сегодня потребительский рынок наполнен множеством моделей отопительных устройств, которые различаются по габаритам и показателям мощности. Среди них стоит выделить стальные радиаторы. Данные приборы довольно легкие, имеют привлекательный внешний вид и обладают хорошей теплоотдачей. Перед выбором модели необходимо произвести расчет мощности стальных радиаторов отопления по таблице.

Разновидности

Виды стальных радиаторов отопления

Рассмотрим стальные радиаторы панельного типа, которые различаются по габаритам и степени мощности. Устройства могут состоять из одной, двух или трех панелей. Другой важный элемент конструкции – оребрение (гофрированные металлические пластины). Чтобы получить определенные показатели тепловой отдачи, в конструкции устройств используется несколько комбинаций панелей и оребрения. Перед выбором наиболее подходящего устройства для качественного отопления помещения, необходимо ознакомиться с каждой разновидностью.

Основные типы стальных радиаторов

Стальные панельные батареи представлены следующими типами:

  • Тип 10. Здесь устройство оснащено только одной панелью. Такие радиаторы имеют легкий вес и самую низкую мощность.

Стальные радиаторы отопления тип 10

  • Тип 11. Состоят из одной панели и пластины оребрения. Батареи обладают чуть большим весом и габаритами, чем предыдущий тип, отличаются повышенными параметрами тепловой мощности.

Стальной панельный радиатор типа 11

  • Тип 21. В конструкции радиатора две панели, между которыми располагается гофрированная металлическая пластина.
  • Тип 22. Батарея состоит из двух панелей, а также двух пластин оребрения. По размерам устройство схоже с радиаторами 21-го типа, однако, по сравнению с ними, обладают большей тепловой мощностью.

Стальной панельный радиатор типа 22

  • Тип 33. Конструкция состоит из трех панелей. Данный класс – самый мощный по тепловой отдаче и самый большой по размерам. В его конструкции к трем панелям присоединены 3 пластины оребрения (отсюда и цифровое обозначение типа — 33).

Стальной панельный радиатор типа 33

Каждый из представленных типов может различаться по длине прибора и его высоте. На основании этих показателей и формируется тепловая мощность устройства. Самостоятельно рассчитать данный параметр невозможно. Однако каждая модель панельного радиатора проходит соответствующие испытания производителем, поэтому все результаты заносятся в специальные таблицы. По ним очень удобно подобрать подходящую батарею для отопления различных типов помещений.

Определение мощности

Для точного расчета тепловой мощности необходимо отталкиваться от показателей тепловых потерь помещения, в котором планируется установить эти устройства.

Таблица для расчета количества радиаторов на М2

Для обычных квартир можно руководствоваться СНиПом (Строительными нормами и правилами), в которых прописаны объемы тепла из расчета на 1м 3 площади:

  • В панельных зданиях на 1м3 требуется 41Вт.
  • В кирпичных домах на 1м3 расходуется 34 Вт.

На основании данных норм можно выявить мощность стальных панельных радиаторов отопления.

В качестве примера, возьмем комнату в стандартном панельном доме с габаритами 3,2*3,5м и высотой потолков в 3 метра. Первым делом определим объем помещения: 3,2*3,5*3=33,6м 3. Далее обратимся к нормам СНиП и найдем числовое значение, которое соответствует нашему примеру: 33,6*41=1377,6Вт. В результате, мы получили количество тепла, необходимое для обогрева комнаты.

Дополнительные параметры

Нормативные предписания СНиПа составлены для условий средней климатической зоны.

Параметры микроклимата в помещениях установленные СНиП

Чтобы произвести расчет в областях с более холодными зимними температурами, нужно скорректировать показатели при помощи коэффициэнтов:

При расчете тепловых потерь, нужно брать во внимание и количество стен, которые выходят наружу. Чем их больше, тем выше будут показатели теплопотерь помещения. К примеру, если в комнате одна наружная стена – применяем коэффициент 1,1. Если мы имеем две или три наружные стены, то коэффициент будет 1,2 и 1,3 соответственно.

Насколько сильно должна греть батарея

Рассмотрим пример. Допустим, в зимний период в регионе держится средняя температура -25° C, а в помещении расположены две наружных стены. Из расчетов мы получим: 1378 Вт*1,3*1,2=2149,68 Вт. Итоговый результат округляем до 2150 Вт. Дополнительно необходимо учитывать, какие помещения расположены на нижнем и верхнем этаже, из чего сделана кровля, каким материалом утеплялись стены.

Расчет радиаторов Kermi

Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.

Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка. В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.

Радиатор Kermi Therm Х2 Plan-K

Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.

Пересчет мощности исходя из температурного режима

Однако данные в этой таблице прописаны для показателей 75/65/20, где 75° C – температура провода, 65° C – температура отвода, а 20° C – температура, которая поддерживается в помещении. На основе этих значений производится расчет (75+65)/2-20=50° C, в результате которого мы получаем дельту температур. В том случае, если у вас иные системные параметры, потребуется перерасчет. Для этой цели в Kermi подготовили специальную таблицу, в которой указаны коэффициенты для корректировки. С ее помощью можно осуществить более точный расчет мощности стальных радиаторов отопления по таблице, что позволит подобрать наиболее оптимальное устройство для обогрева конкретного помещения.

Рассмотрим низкотемпературную систему, показатели которой составляют 60/50/22, где 60° C – температура провода, 50° C – температура отвода, а 22° C – температура, поддерживаемая в помещении. Вычисляем дельту температур по уже известной формуле: (60+50)/2-22=33° C. Затем смотрим в таблицу и находим температурные показатели проводимой/отводимой воды. В клетке с поддерживаемой температурой помещения находим нужный коэффициент 1,73 (в таблицах отмечается зеленым цветом).

Далее берем количество тепловых потерь помещения и умножаем его на коэффициент: 2150 Вт*1,73=3719,5 Вт. После этого возвращаемся к таблице мощностей, чтобы посмотреть подходящие варианты. В таком случае выбор будет скромнее, поскольку для качественного обогрева потребуются гораздо более мощные радиаторы.

Заключение

Как видим, правильный расчет мощности для стальных панельных радиаторов невозможен без знания определенных показателей. Обязательно необходимо выяснить теплопотери помещения, определиться с фирмой-производителем батареи, иметь представление о температуре проводимой/отводимой воды, а также о температуре, которая поддерживается в помещении. На основе этих показателей можно легко определить подходящие модели батарей.

Фотогалерея (13 фото)

Стальные панельные радиаторы: виды и определение мощности

Стальные панельные радиаторы — конкурент привычных отопительных приборов секционного типа. Они привлекательны тем, что по сравнению со всеми секционными моделями при меньших габаритах имеют более высокий коэффициент теплоотдачи. Состоят из панелей, в которых по сформированным ходам, движется теплоноситель. Панелей может быть несколько: одна, две или три. Вторая составляющая — пластины гофрированного металла, которые называют оребрением. Вот за счет этих пластин и достигается высокий уровень теплоотдачи этих устройств.

Стальные панельные радиаторы имеют разные размеры и мощность

Для получения разной тепловой мощности панели и оребрение комбинируют в нескольких вариантах. Каждый вариант имеет разную мощность. Чтобы правильно подобрать размер и мощность нужно знать, что каждый из них собой представляет. По строению стальные панельные батареи бывают следующих типов:

  • Тип 33 — трехпанельный. Самый мощный класс, но и самый габаритный. Имеет три панели, к которым подсоединены три пластины оребрения (потому и обозначается 33).
  • Тип 22 — двухпанельный с двумя пластинами оребрения.
  • Тип 21. Две панели и между ними одна пластина с гофрированным металлом. Эти отопительные приборы при равных размерах имеют меньшую мощность по сравнению с типом 22.
  • Тип 11. Однопанельные стальные радиаторы с одной пластиной оребрения. Имеют еще меньшую тепловую мощность, но и меньший вес и габариты.
  • Тип 10. В этом типе имеется только одна панель с теплоносителем. Это самые маломощные и легкие модели.

Все эти типы могут иметь разную высоту и длину. Очевидно, что мощность панельных радиаторов зависит как от типа, так и от габаритов. Так как рассчитать этот параметр самостоятельно невозможно, то каждый производитель составляет таблицы, в которых заносит результаты испытаний. По этим таблицам и подбираются радиаторы для каждого помещения.

Типы стальных панельных радиаторов

Определяем мощность

Мощность стальных панельных радиаторов нужно определять исходя из теплопотерь помещения, в котором они будут устанавливаться. Для квартир, расположенных в стандартных домах, можно исходить из норм СНиПа, которые нормируют требуемое количество тепла на 1м 3 обогреваемой площади:

  • Помещения в зданиях из кирпича требую 34Вт на 1м 3 .
  • Для панельных домов на 1м 3 уходит 41Вт.

Исходя из этих норм, определяете, какое количество тепла требуется для обогрева каждой из комнат.

Например, помещение в панельном доме 3,2м*3,5м, высота потолков 3м. Рассчитаем объем 3,2*3,5*3=33,6м 3. Умножив на норму по СНиП для панельных домов получаем: 33,6*41=1377,6Вт.

Нормы СНиПа указаны для средней климатической зоны. Для остальных имеются соответствующие коэффициенты в зависимости от средних температур зимой:

Нужна коррекция потерь тепла и в зависимости от количества наружных стен, ведь понятно, что чем больше таких стен, тем больше тепла через них уходит. Потому учитываем и их: если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3.

Чтобы правильно определить мощность панельного радиатора, нужно рассчитать теплопотери помещения

Внесем корректировки для нашего примера. Пусть средние зимние температуры по региону -25 о С, имеется две наружных стены. Получается: 1378Вт*1,3*1,2=2149,68Вт, округляем 2150Вт.

Требуется еще учесть тип материала, кровли, какие помещения находятся сверху или снизу и т.д. Какие для этого существуют коэффициенты, смотрите в статье «Как рассчитать количество секций радиаторов»

А для примера воспользуемся этой цифрой. При условии, что утепление у дома и окон среднее, найденная цифра достаточно точна.

Расчет радиаторов Kermi

Перед определением мощности нужно определиться с маркой стальных панельных батарей. Естественно, доверять можно лидерам. Практически вне конкуренции сегодня немецкие стальные радиаторы Kermi. Вот и рассчитаем мощность по таблицам этого производителя.

Пусть решили установить одну из новых моделей Kermi Therm X2 Plan. По таблице, в которой указаны мощности всех имеющихся моделей, находим подходящие значения. Точного совпадения искать не стоит, ищите значение, которое чуть больше, чем рассчитанное (в теплотехнике лучше иметь хоть небольшой запас «на всякий случай»). В таблице подходящие для нашего случая варианты отмечены красными квадратиками. Пусть для нас более приемлема высота 505мм (указана вверху таблицы). Больше других привлекают менее длинные (1005мм) панельные радиаторы 33 типа. Если нужны еще более короткие, можно обратить внимание на модели с высотой 605мм.

Таблица расчета тепловой мощности стальных радиаторов Kermi (кликните для увеличения размера)

Пересчет мощности панельных радиаторов в зависимости от температурного режима

Но значения в данной таблице справедливы для системы с параметрами 75/65/20 (температура подачи 70 о С, обратки 65 о С, в помещении поддерживается 20 о С). По этим значениям рассчитывается дельта температур: (75+65)/2-20=50 о С.

Если параметры вашей системы другие, необходим перерасчет. Для подобных случаев в «Керми» составили таблицу с корректирующими коэффициентами.

Таблица пересчета в зависимости от температур системы отопления (кликните для увеличения размера)

Пусть предполагается низкотемпературная система с параметрами 60/50/22 (температура подачи 60 о С, обратки 50 о С, в помещении поддерживается 22 о С). Считаем дельту температур: (60+50)/2-22=33 о С. Находим в таблице строку с температурой проводимой воды, потом с температурой отводимой воды и доходим до значения температуры в помещении (22 о С в нашем случае). В этой клетке стоит коэффициент 1,73 (отмечен зеленым цветом).

На него умножаем рассчитанное количество теплопотерь для нашего помещения: 2150Вт*1,73=3719,5Вт. Теперь ищем подходящие варианты в таблице мощностей для этого случая (отмечены зеленым). Выбор скромнее, но и радиаторы требуются гораздо мощнее.

Вот вся методика определения мощности панельных радиаторов. По ней вы сможете подобрать стальные панельные батареи для любой комнаты и любой системы.

Для расчета мощности панельных радиаторов необходимо знать теплопотери помещения, фирму, изделия которой вы хотите купить, и параметры вашей системы отопления (температуру подачи, обратки и температуру в комнате). По этим данным по таблицам мощностей можно определить модели, которые удовлетворяют вашим условиям. Потом из этих вариантов выбрать тот, который больше подходит по параметрам (высота/длина/глубина). Вот и вся методика.

Источники: http://netholodu.com/elementy-otopleniya/radiatory/stalnye/moshhnost.html, http://gopb.ru/radiatory/tablica-rascheta-moshhnosti-stalnyx-radiatorov-otopleniya/, http://teplowood.ru/stalnye-panelnye-radiatory-otopleniya.html

Справочник покупателя | PURMO

Выбор системы отопления для дома или квартиры — ключевое решение, которое необходимо принять на этапе планирования строительства или вложения инвестиций. Стоит подчеркнуть, что система отопления должна быть долговечной, экономичной и обеспечивать максимальный  комфорт.

  • Как выбрать мощность радиатора для ванной?
  • Достаточно ли теплого пола для обогрева дома?
  • Как выбрать радиатор?
  • Полы с подогревом дешевле радиаторов?

Наши специалисты ответили на эти и другие важные вопросы, с помощью коротких обучающих видео.

Приглашаем вас к просмотру!

Путеводитель по Purmo

ПОДБОР РАДИАТОРОВ

Радиатор является одним из важнейших элементов системы отопления, поскольку он принимает непосредственное участие в отдаче тепла помещению. Из этого следует необходимость его правильного выбора, обеспечивающего поддержание соответствующей температуры в помещении, которое он будет обогревать.

В коммерческом предложении нашей фирмы имеется много типов радиаторов, отличающихся друг от друга назначением, конструкцией, габаритами, формой, иногда цветом, и каждый клиент наверняка найдёт радиатор, подходящий ему больше всего. Выбор радиатора, наиболее подходящего с визуальной точки зрения, всегда необходимо производить, опираясь на некую величину, которая с учётом самого предназначения радиатора является наиболее важной, но при этом часто недооцененной. Это тепловая мощность радиатора, указываемая в ваттах [Вт] для различных температур теплоносителя в подающей и обратной магистралях и температуры в помещении, в котором будет установлен радиатор. Радиатор должен быть подобран таким образом, чтобы его тепловая мощность превышала или, по меньшей мере, равнялась потребности в тепле данного помещения (часто употребляется также понятие теплопотери помещения). Величина потерь тепла связана с особенностями здания, а также с его размещением и должна рассчитываться проектантом. Эти расчёты прилагаются к большинству проектов готовых многоквартирных домов, а в индивидуальных проектах зачастую отсутствуют.

Частой ошибкой, совершаемой при выборе радиаторов, является определение их мощности с учётом показателей на основании площади или кубатуры помещений. Этот метод подвержен большой погрешности, поскольку показатель потребности в тепле на единицу площади может колебаться от 40 вплоть до 200 Вт/м2, поскольку он зависит от многих факторов, которые всегда необходимо принимать во внимание. Чтобы сделать возможным правильный выбор радиаторов, мы приводим ниже основные факторы, которые мы должны знать при определении потерь тепла помещений и тем самым – размера радиаторов:

Наружная температура
В зависимости от местоположения определяется климатическая зона, для которой принимается расчётная наружная температура воздуха. Она колеблется от –16 °C у моря до –24 °C в горах. Чем ниже расчётная наружная температура, тем потери тепла для идентичного здания будут больше.

Расположение здания и ветровые условия
В зданиях, стоящих на открытой местности и в ветреных регионах, потребность в тепле выше, чем для такого же здания, стоящего в плотно застроенном городском районе или в местности, защищённой деревьями.

Термическая защита помещений – коэффициент теплоотдачи стен, перекрытия и пола
Хорошо изолированные здания с низким коэффициентом теплотдачи ограждающих конструкций требуют значительно  меньше тепла для поддержания комфортной температуры внутри помещений.

Тип окон и вид остекления
Высококачественные окна с низкими значениями коэффициента теплоотдачи позволяют экономить на расходах на отопление. Большие площади остекления увеличивают потери тепла.

Количество и расположение по отношению к сторонам света внутренних стен в помещении
Тепло, поступающее от солнечного освещения, позволяет выбрать радиаторы меньшего размера.

Внутренняя температурa
Она обусловлена назначением помещения – чем выше требуемая температура, тем больший радиатор мы должны выбрать.

Параметры теплоносителя
В большинстве случаев тепловая мощность указывается в зависимости от параметров теплоносителя, т. е. температуры питания и возврата, а также температуры в помещении на уровне 75/65/20 °C или 70/55/20 °C. Если система работает при других параметрах, чем указанные в таблицах мощности, или если температура у нас в помещениях не равна 20 °C, мы должны воспользоваться корректирующими коэффициентами, позволяющими произвести надлежащий перерасчёт мощности радиатора.

Необходимо также помнить о том, что радиатор следует устанавливать на наружной стене, лучше всего под окном. Тогда холодный воздух, проникающий через окно, нагревается радиатором и уже нагретый поступает в помещение. Благодаря этому достигается равномерное распределение температуры в помещении. Другое размещение радиатора вызывает необходимость увеличения его размера вплоть до 20%. Кроме того на эффективность обогрева будет влиять то, будет ли радиатор встроенным или закрытым, и в таких случаях необходимо выбирать радиаторы соответственно большего размера.

Как мы видим, вопрос выбора радиатора соответствующего размера не так прост, как может иногда показаться. Чтобы облегчить его, фирма ООО «Rettig Heating» разработала специальную программу под названием «Purmo SDG» для упрощённого (но не основанного на показателях) подбора радиаторов марки «Purmo» в односемейных домах. Программу можно скачать с сайта производителя www.purmo.com/pl/pobierz-pliki_programy-komputerowe.html и после очень удобного инсталлирования, на основании вводимых данных, в большинстве своём описанных выше, подобрать нужные радиаторы.

Для коттеджей мы предлагаем целую гамму панельных радиаторов, радиаторов для ванных комнат, декоративных. При этом необходимо подчеркнуть, что в помещениях, в которых имеет место повышенная влажность воздуха, т. е. в ванных комнатах, саунах – не следует использовать панельные и декоративные радиаторы. Если система скрыта в стенах здания, можно применить панельные радиаторы с боковым подключением питания — тип C. Если система находится в полу, можно использовать радиаторы с подключением снизу — тип V. Высота радиаторов, устанавливаемых под окном, зависит от расстояния от подоконника до пола – нижняя грань радиатора должна находиться, как минимум, в 10 см от пола, а верхняя грань – как минимум, на 10 см ниже подоконника.

методика + встроенный калькулятор,объем батареи,для панорамных окон, объем воды в радиаторе отопления таблица, отопительные приборы систем водяного отопления,тепло


Здесь вы узнаете:

  • Тепловая мощность радиаторов отопления
  • Биметаллические радиаторы
  • Расчет по площади
  • Простой расчет
  • Очень точный расчет

Проектирование отопительной системы включает в себя такой важный этап, как расчет радиаторов отопления по площади через калькулятор или вручную. Он помогает вычислить количество секций, необходимых для обогрева той или иной комнаты. Берутся самые разные параметры, начиная от площади помещений и заканчивая характеристиками утепления. От правильности произведенных расчетов будет зависеть:

  • равномерность обогрева комнат;
  • комфортная температура в спальнях;
  • отсутствие холодных мест в домовладении.

Давайте разберемся, как производится расчет радиаторов отопления и что учитывается в вычислениях.

Тепловая мощность радиаторов отопления

Расчет радиаторов отопления частного дома начинается с выбора самих устройств. В ассортименте для потребителей представлены чугунные, стальные, алюминиевые и биметаллические модели, отличающиеся по своей тепловой мощности (теплоотдаче). Какие-то из них греют лучше, а какие-то хуже – тут следует ориентироваться на количество секций и на размеры батарей. Давайте посмотрим, какой тепловой мощностью обладают те или иные конструкции.

Как рассчитать количество секций радиаторов

Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций



Биметаллические радиаторы

Секционные биметаллические радиаторы изготавливаются из двух компонентов – это сталь и алюминий. Их внутренняя основа состоит из прочной стали, выдерживающей высокое давление, стойкой к гидроударам и агрессивному теплоносителю. Поверх стального сердечника методом литья под давлением наносится алюминиевая «рубашка». Именно она и отвечает за высокую теплоотдачу. В результате у нас получается эдакий бутерброд, стойкий к любым негативным воздействиям и характеризующийся приличной тепловой мощностью.
Теплоотдача биметаллических радиаторов зависит от межосевого расстояния и от конкретно выбранной модели. Например, устройства от компании Rifar могут похвастаться тепловой мощностью до 204 Вт при межосевом расстоянии 500 мм. Аналогичные модели, но с межосевым расстоянием 350 мм, отличаются тепловой мощностью 136 Вт. Для небольших радиаторов с межосевым расстоянием 200 мм теплоотдача составляет 104 Вт.

Теплоотдача биметаллических радиаторов от других производителей может отличаться в меньшую сторону (в среднем 180-190 Вт при расстояние между осями 500 мм). Например, максимальная тепловая мощность батарей от Global составляет 185 Вт на секцию при расстояние между осями 500 мм.

Алюминиевые радиаторы

Тепловая мощность алюминиевых устройств практически ничем не отличается от теплоотдачи биметаллических моделей. В среднем она составляет около 180-190 Вт на секцию при расстояние между осями 500 мм. Максимальный показатель достигает 210 Вт, но нужно учитывать высокую стоимость таких моделей. Приведем более точные данные на примере Rifar:

  • межосевое расстояние 350 мм – теплоотдача 139 Вт;
  • межосевое расстояние 500 мм – теплоотдача 183 Вт;
  • межосевое расстояние 350 мм (с нижней подводкой) – теплоотдача 153 Вт.

Для продукции других производителей данный параметр может отличаться в ту или иную сторону.

Алюминиевые приборы ориентированы на использование в составе индивидуальных систем отопления. Они выполнены в простом, но привлекательном дизайне, отличаются высокой теплоотдачей и работают при давлении до 12-16 атм. Для установки в централизованных системах отопления они не годятся в связи с отсутствием стойкости к агрессивному теплоносителю и гидроударам.

Проектируете отопительную систему в собственном домовладении? Советуем приобрести для этого алюминиевые батареи – они обеспечат качественный обогрев при их минимальных размерах.

Стальные пластинчатые радиаторы

Алюминиевые и биметаллические радиаторы имеют секционную конструкцию. Поэтому, используюя их, принято учитывать теплоотдачу одной секции. В случае с неразборными стальными радиаторами учитывается теплоотдача всего устройства при определенных размерах. Например, теплоотдача двухрядного радиатора Kermi FTV-22 с нижней подводкой высотой 200 мм и шириной 1100 мм составляет 1010 Вт. Если мы возьмем панельный стальной радиатор Buderus Logatrend VK-Profil 22-500-900, то его теплоотдача составит 1644 Вт.
Проводя расчет радиаторов отопления частного дома, необходимо записать вычисленную тепловую мощность для каждого помещения. На основании полученных данных приобретается необходимое оборудование. Подбирая стальные радиаторы, обращайте внимание на их рядность – при тех же размерах трехрядные модели обладают большей теплоотдачей, чем их однорядные аналоги.

Стальные радиаторы, как панельные, так и трубчатые, могут использоваться в частных домах и в квартирах – они выдерживают давление до 10-15 атм и обладают стойкостью к агрессивному теплоносителю.

Чугунные радиаторы

Теплоотдача чугунных радиаторов составляет 120-150 Вт, в зависимости от расстояние между осями. Для отдельных моделей этот показатель достигает 180 Вт и даже больше. Чугунные батареи могут работать при давлении теплоносителя до 10 бар, хорошо противостоя разрушающей коррозии. Они применяются как в частных домах, так и в квартирах (не считая новостроек, где преобладают стальные и биметаллические модели).
Выбирая чугунные батареи для обогрева собственного жилища, необходимо учитывать теплоотдачу одной секции – исходя из этого, приобретаются батареи с тем или иным количеством секций. Например, для чугунных батарей МС-140-500 с межосевым расстоянием 500 мм теплоотдача составляет 175 Вт. Мощность моделей с межосевым расстоянием 300 мм составляет 120 Вт.

Чугунные хорошо подходят для монтажа в частных домах, радуя продолжительным сроком службы, высокой теплоемкостью и неплохой теплоотдачей. Но нужно учитывать и их недостатки:

  • большой вес – 10 секций с межосевым расстоянием 500 мм весят более 70 кг;
  • неудобство в монтаже – этот недостаток плавно вытекает из предыдущего;
  • большая инерционность – способствует слишком длительному прогреву и лишним расходам на генерацию тепла.

Несмотря на некоторые минусы, они до сих пор пользуются спросом.

Требования к выбору радиаторов


Перед покупкой необходимо произвести все расчеты, затем подбирать размер радиатора
Выбирая размеры батарей отопления для размещения под окном, полагается отталкиваться от значений ширины оконного проема и предполагаемой дистанции краев элементов до подоконника и поверхности пола. Перед отправлением в магазин надлежит произвести все необходимые измерения и ориентироваться на них при рассмотрении вариантов. Стандартный показатель ширины проема – 110-120 см. Размер приобретаемой батареи должен составлять не менее 70-75% от данного значения. Если речь идет о секционном устройстве из алюминия, потребуется радиатор из 10-12 элементов (ширина одного обычно составляет около 8 см).

При выборе размеров радиаторов надо принимать во внимание высоту расположения подоконника. Между ним и верхним краем радиаторных элементов должно быть расстояние в 6-12 см. Высота монтажа отопительных приборов над полом должна быть не менее 8 см. В этом случае достигается отдача тепла, максимально соответствующая заявленной изготовителем.

Также в условиях частного сектора большое значение имеет объем помещающейся в секцию жидкости. Если в многоквартирных домах, жильцы которых пользуются централизованным отоплением, данный параметр не играет роли, то при использовании собственной системы она нужна для расчета объема, когда требуется выяснить эффективность насоса или котла.

Важнейшим показателем при выборе отопительного оборудования является тепловая мощность. Далеко не всегда целесообразно выбирать высокомощные варианты. В жилищах с качественной теплоизоляцией достаточно модели со средним значением данного параметра.

Поскольку площадь поверхности радиатора влияет на равномерность теплоотдачи, лучше выбрать большее число секций, обладающих средней мощностью, чем меньшее с высокой. Это обеспечит отсутствие зон холода и оседания конденсата на оконном стекле.

Расчет по площади


Простая таблица для расчета мощности радиатора для отопления помещения определенной площади.

Как осуществляется расчет батареи отопления на квадратный метр обогреваемой площади? Для начала нужно ознакомиться с базовыми параметрами, учитываемыми в вычислениях, которые включают в себя:

  • тепловую мощность для обогрева 1 кв. м – 100 Вт;
  • стандартную высоту потолков – 2,7 м;
  • одну внешнюю стену.

Исходя из таких данных, тепловая мощность, необходимая для обогрева помещения площадью 10 кв. м, составляет 1000 Вт. Полученная мощность делится на теплоотдачу одной секции – в результате получаем необходимое количество секций (или подбираем подходящий стальной панельный или трубчатый радиатор).

Для самых южных и холодных северных регионов применяются дополнительные коэффициенты, как повышающие, так и понижающие, – речь о них пойдет дальше.

Размеры алюминиевых батарей

В советское время «крылатый металл» почти не использовался в производстве металлоконструкций и бытовых приборов из-за его дефицита, радиаторы из алюминия появившись лишь в 90-е годы. Поэтому, они характерны большим разнообразием размеров. Самые распространённые размеры: 80х100х585 мм.

Теплоотдача составляет до 200 Ватт на одну секцию радиатора. Рабочее давление теплоносителя в системе — 16 атмосфер. Низкие алюминиевые радиаторы представлены широким спектром размерностей: от 150 до 400 мм. Самые распространённые — 40х200х180 мм.

Как видим, малая длина и высота секции компенсируется высокой глубиной, которая почти вдвое превышает показатели на радиаторах советского стандарте. Это позволяет радиаторам «низкого» формата иметь весьма вариативную теплоотдачу — от 50 до 180 Ватт на секцию. Рабочее давление — 16-24 атм.

Простой расчет


Таблица расчета требуемого количества секций в зависимости от площади отапливаемого помещения и мощности одной секции.

Расчет количества секций батарей отопления с помощью калькулятора дает неплохие результаты. Приведем простейший пример для обогрева помещения площадью 10 кв. м — если помещение не угловое и в нем установлены двойные стеклопакеты, требуемая тепловая мощность составит 1000 Вт. Если мы хотим установить алюминиевые батареи с теплоотдачей 180 Вт, нам понадобятся 6 секций – просто делим полученную мощность на теплоотдачу одной секции.

Соответственно, если вы купите радиаторы с теплоотдачей одной секции 200 Вт, то количество секций составит 5 шт. В помещении будут высокие потолки до 3,5 м? Тогда количество секций возрастет до 6 шт. В комнате две внешние стены (угловая комната)? В этом случае нужно добавить еще одну секцию.

Также нужно учитывать запас по тепловой мощности на случай слишком холодной зимы – он составляет 10-20% от расчетной.

Узнать информацию о теплоотдаче батарей можно из их паспортных данных. Например, расчет количества секций алюминиевых радиаторов отопления ведется из расчета теплоотдачи одной секции. То же самое относится к биметаллическим радиаторам (и чугунным, хоть они и неразборные). При использовании стальных радиаторов берется паспортная мощность всего прибора (мы приводили примеры выше).

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола: 10% — 0,8
  • 20% — 0,9
  • 30% — 1,0
  • 40% — 1,1
  • 50% — 1,2
  • остекление:
      трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
  • обычный двухкамерный стеклопакет — 1,0
  • обычные двойные рамы — 1,27.
  • Стены и кровля

    Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

    • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
    • недостаточная (отсутствует) — 1,27
    • хорошая — 0,8

    Наличие наружных стен:

    • внутреннее помещение — без потерь, коэффициент 1,0
    • одна — 1,1
    • две — 1,2
    • три — 1,3

    На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

    Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

    Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

    Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

    Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

    Климатические факторы

    Можно внести корректировки в зависимости от средних температур зимой:

    Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

    Стальные радиаторы отопления расчет мощности таблица

    Не секрет, что для комфорта в доме нужна система отопления, грамотно рассчитанная и надежно смонтированная. На сегодняшний день самой популярной является система из контуров труб и радиаторов отопления. Среди огромного множества моделей выгодно отличаются сейчас стальные батареи – они недорогие, легкие, привлекательные внешне и достаточно эффективны в обогреве.

    Мощность стального радиатора – ключевой критерий выбора

    Самый важный вопрос, ответ на который нужно найти перед покупкой радиаторов – какого размера он должен быть, какую он должен иметь мощность, чтобы поддерживать в помещении комфортную температуру.


    А еще в сети есть множество онлайн-калькуляторов, где, введя исходные данные, Вы можете получить готовый результат необходимой тепло-мощности радиаторов. Но все же доверяй, но проверяй! Мы советуем Вам разобраться в схеме расчета лично, чтобы понимать алгоритм и владеть полной информацией.

    При изначальном проектировании отопительной системы есть возможность обратиться к специалистам, которые совершат для Вас сложные и точные теплотехнические расчеты. Однако стоит это недешево, и, по большому счету, Вы можете произвести упрощенный расчет и самостоятельно.

    Таблица расчета стальных радиаторов отопления + формула

    Исходные данные, необходимые нам для расчетов – размеры отапливаемого помещения (длина, ширина и высота комнаты), особенности помещения (внешние стены, количество окон, наличие балкона и т.п.).

    Формула для упрощенного расчета без учета особенностей помещения довольно проста и выглядит так:

                                                                    P= V x 40,

    где P – необходимая тепловая мощность радиатора (Вт),

    V – объем комнаты (длина * ширина * высота) (м3),

    40 – тепловая мощность, нужная для обогрева 1 м3 площади (Вт).

    Полученный результат необходимо подкорректировать с учетом дополнительных факторов, влияющих на увеличение или уменьшение потерь тепла. Для каждого из возможных факторов рассчитаны коэффициенты корректировки (Кк), приведенные в подробной таблице:

    Количество стен (с улицы, внешних)      Показатель


    Кк (Коэффициент корректировки) 

    Одна


    1           

    Две


    1,2

    Три


    1,3           

    Тип окон
    Показатель


    Кк  

    Окна с деревянными рамами и двойным стеклом

    1,27
    Окна с однокамерными стеклопакетами 
    —   
    1
    Окна с двойными стеклопакетами  


    0,85

    Географическая ориентация помещения
    Показатель


    Кк  

    Комната в западной или южной части здания


    1

    Комната в восточной или северной части здания


    1,1

     
    Утепленность внешних стен
    Показатель


    Кк 

    Утепленные поверхностными материалами стены

    1
    Стены с хорошим утеплением


    0,85

    Стены без утепления 


    1,27

    Высота потолков
    Показатель

    Кк 
    до 2,7 м

    1
    2,7 — 3 м

    1,05
    до 3,5 м

    1,1
    Степень открытости батарей
    Показатель


    Кк 

    Батарея под подоконником


    1

    Батарея в стенной нише


    1,07

    Батарея под декоративным кожухом


    1,2

    Тип помещения, расположенного над тем, для которого производится расчет
    Показатель


    Кк 

    Неотапливаемое помещение

    1
    Утепленный чердак


    0,9   

    Отапливаемое помещение 


    0,8

    Коэффициент остекления помещения (площадь окон/площадь помещения)
    Показатель

    Кк 
    До 0,1

    0,8
    От 0,11 до 0,2

    0,9
    От 0,21 до 0,3 

    1
    Тип подключения радиаторов  Показатель


    Кк 

    Подача воды сверху, труба-обратка – снизу, подключение по диагонали

    1
    Подача воды и труба-обратка снизу, двустороннее подключение

    1,25
    Подача воды сверху, труба-обратка снизу, одностороннее подключение; или нижнее одностороннее подключение того и другого


    1,28

    Если Вы учтете все приведенные в таблице факторы, Вы сможете получить довольно точный результат тепловой мощности, необходимой для обогрева Вашего помещения.

    У производителей радиаторов тепловая мощность наряду с другими техническими характеристиками указана в сопроводительных документах. Воспользовавшись этими данными, Вы сможете подобрать стальной панельный радиатор, один или несколько, нужной Вам мощности.

    Иногда производители указывают не мощность батареи, а расход теплоносителя. Не пугайтесь, мы поможем Вам и тут – 1 киловатт мощности соответствует расходу теплоносителя 1 л/ мин. Что касается объема теплоносителя, то для стальных панельных радиаторов он составляет 250 мл на каждые 10 сантиметров длины для типа 11 и 500 мл на 10 сантиметров для типа 22 (при высоте радиаторов 500 мм). 


    Теперь Вы знаете, как рассчитать количество теплоносителя в стальном радиаторе и какие факторы нужно учитывать при выборе батарей. Будем рады, если с нашей помощью Вы научитесь рассчитывать мощность стальных радиаторов отопления, таблица, приведенная выше, поможет Вам в этом. А купить стальные радиаторы любой мощности Вы можете в магазине Инсталтрейд по отличной цене. 

    Справочник по радиаторам | Домодерево

    Радиаторы

    служат вашим основным источником тепла, регулируя температуру в вашем доме. При выборе радиатора вы должны учитывать широкий спектр факторов, а также широкий выбор различных конструкций, типов и стилей, доступных сейчас на рынке. В Hometree мы составили краткое, но исчерпывающее руководство, которое поможет вам выбрать правильный радиатор и направит вас на путь к подходящей и энергоэффективной покупке.

    Как рассчитать нужный размер радиатора

    Лучше всего начать с выбора радиатора, чтобы рассчитать мощность в БТЕ, необходимую для обогрева помещения, которое вы планируете отапливать. Расчет радиаторов для выбранной комнаты основан на тепловой мощности, измеренной с использованием британских тепловых единиц в час (британские тепловые единицы в час), которая рассчитывается с использованием объема комнаты и с учетом возможных потерь тепла в этой комнате. Сначала рассчитайте объем помещения по следующей формуле:

    Длина помещения (м) x Ширина помещения (м) x Высота помещения (м) = Объем помещения (м3)

    На втором этапе вы умножаете объем комнаты на 153.В результате получается мощность в БТЕ, необходимая для обогрева помещения.

    Однако, как упоминалось ранее, есть несколько факторов, которые играют роль в увеличении или уменьшении требуемого выхода BTU. Например, если ваш дом не изолирован, вам потребуется радиатор с немного более высокой выходной мощностью BTU. См. Подробную информацию в таблице ниже и соответствующим образом отрегулируйте выход BTU.

    Термин «радиаторы» вводит в заблуждение, особенно потому, что они выделяют намного больше тепла.Большинство радиаторов выделяют около 80% тепла за счет конвекции, а 20% — за счет излучения. Радиаторы работают, когда воздух поступает через нижнюю часть радиатора и над конвекционными ребрами, заставляя атомы в воздухе вибрировать и создавать тепловую энергию. Конвекционные токи образуются непрерывно, когда воздух над радиатором нагревается, а затем охлаждается. Создаваемые при этом токи перемещают тепло по комнате.

    Обычно лучшее место для установки радиатора — под окном, так как холодный воздух будет выталкивать больше горячего воздуха в комнату за счет теплопроводности.Причина выбора места под окном заключается в том, что это, как правило, самая холодная часть комнаты, если только ваши окна не имеют двойного остекления.

    Виды радиаторов

    Что касается типов радиаторов, обычно у вас есть выбор между обычными обычными радиаторами или конвекторным радиатором (если вам нужна помощь в выборе радиатора, ознакомьтесь с нашим руководством здесь). В обычных радиаторах горячая вода течет сверху вниз через компоненты, которые сделаны из различных металлов.Однако в конвекторных радиаторах горячая вода циркулирует по трубе, окруженной небольшими ребрами, каждое из которых увеличивает контакт с окружающим воздухом и, следовательно, усиливает теплообмен между радиатором и окружающим воздухом. Преимущество выбора конвекторного радиатора заключается в том, что вы можете выбрать меньшую модель, чем если бы вы выбирали обычный радиатор, который требует большей площади поверхности и, следовательно, занимает больше места.

    Переходя к более техническим терминам, вы могли или не могли встретить следующие названия радиаторов: P1, K1, P + и так далее.При выборе радиатора и принимая во внимание ваши расчеты, вам может потребоваться взглянуть на одинарные или двойные панельные радиаторы, а также на то, имеют ли они определенное количество конвекционных ребер. Ниже приводится краткое руководство по каждому типу радиаторов и их предложениям:

    Панели радиаторов — это просто «резервуары», наполненные горячей водой для отвода тепла в вашу комнату. Чем больше панелей, тем больше тепла они излучают (при условии, что площадь поверхности такая же, как у однопанельного радиатора).Решение инвестировать в одну, две или даже три панели может быть основано на ряде факторов, хотя часто определяющим фактором является пространство.

    В дополнение к панелям ребра конвектора представляют собой зигзагообразные металлические полосы, расположенные за одной радиаторной панелью или между двумя радиаторными панелями. Они были введены в повседневные радиаторы как средство для выделения большего количества тепла, поступающего от резервуара главной панели и проводимого через эти ребра. Что касается однопанельных радиаторов, то без этих конвекционных ребер они не будут выделять столько тепла, как радиаторы с конвекционными ребрами.Ниже представлен графический обзор различных типов радиаторов:

    Конструкция, материалы и эффективность радиаторов

    Материал радиатора определяет, насколько быстро радиатор может нагреваться и охлаждаться, в то время как различные металлы и покрытия могут излучать больше или меньше тепла. Вот краткое описание каждого материала радиатора:

    • Чугунные радиаторы обогнали современную изоляцию и предлагают ощущение «викторианской эпохи».Если радиатор изготовлен из чугуна, ему потребуется намного больше времени, чтобы нагреться, и время, чтобы остыть. Если вы предпочитаете старый, более объемный викторианский вид, то для этого дизайна доступны версии из нержавеющей стали.
    • Низкоуглеродистая сталь — наиболее распространенный материал, используемый для радиаторов по всей стране. Они недорогие, и вы найдете множество дизайнов, а также широкий выбор цветов. Низкоуглеродистая сталь — это нечто среднее между другими материалами для радиаторов, поскольку она нагревается и остывает с постоянной скоростью.
    • Нержавеющая сталь не ржавеет и долго будет оставаться теплой после того, как вы выключите отопление. Радиаторы из нержавеющей стали дороже и предлагают лучшее качество, чем другие типы радиаторов, упомянутые здесь.
    • Алюминий легкий и действует как сверхпроводник. Когда вы включаете отопление, радиатор почти сразу начинает обогревать ваш дом. Они также легкие и простые в установке (что снижает затраты на установку).Единственная проблема с алюминием заключается в том, что он быстро остывает после выключения отопления, что может быть не идеально зимой.
    • Что касается отделки, то обычный хромированный радиатор может быть менее эффективным и излучать меньше тепла из-за этого покрытия, которое обеспечивает изоляцию. Выбор правильного материала для радиатора опять же зависит от выходной мощности BTU, необходимой для вашей комнаты.

    Несмотря на то, что некоторые радиаторы имеют разный уровень нагрева при прикосновении, для маленьких детей и домашних животных можно приобрести покрытие, которое также может быть разных цветов и стилей, подходящих для вашего дома.Однако также важно помнить, что с крышками вы также сталкиваетесь с проблемами, когда ваш радиатор работает менее эффективно из-за захваченного тепла. Это было бы то же самое, если бы у вас был диван или другая мебель перед радиатором. Вы также можете приобрести широкий ассортимент радиаторов LST (= низкая температура поверхности), которые обеспечивают превосходные тепловые характеристики, а также безопасность в домашних условиях и в критически важных с точки зрения безопасности условиях.

    Благодаря постоянно расширяющемуся выбору и достижениям в области радиаторов, теперь вы можете просматривать широкий спектр дизайнерских радиаторов.Дизайнерские радиаторы бывают самых разных форм, размеров, стилей и внешнего вида, каждый из которых придает вашей комнате стильную и гладкую отделку, которая вписывается в ее планировку. Дизайн также может быть фактором при выборе подходящего радиатора, каждый дизайн и стиль предлагается по разным ценам от разных производителей.

    Насколько энергоэффективным будет мой радиатор?

    Чтобы ответить на этот вопрос, есть много способов обеспечить максимальную эффективность радиатора, предотвратить потерю тепла и обеспечить отвод тепла максимально возможным.Например, вы можете установить листы фольги, которые приклеиваются к стене за радиатором, таким образом предотвращая выход тепла через соединенную стену.

    Также важно регулярно удалять воздух из существующих радиаторов. Стравливание — это процесс выпуска воздуха из радиатора, который со временем может привести к тому, что радиаторы перестают нагреваться равномерно и правильно. Даже если небольшое количество воздуха поступает в вашу систему центрального отопления через сеть, воздух начнет собираться в верхней части ваших радиаторов, что начнет снижать их нагревательную способность.Если вы хотите проверить свои радиаторы, подождите, пока включится отопление, пока ваш дом полностью не нагреется, а затем начните прощупывать каждый радиатор. Если вы заметили, что они нагревают только нижнюю часть радиатора, а в верхней части есть холодное пятно, вам нужно будет удалить воздух. Если вы обнаружите, что один из ваших радиаторов вообще не нагревается, возможно, вам придется полностью удалить воздух из него, чтобы он снова заработал. Регулярное удаление воздуха из радиаторов и проверка на наличие коррозии позволят держать систему отопления под контролем.Перейдите к нашему руководству по прокачке, чтобы узнать больше о прокачке радиаторов.

    Отсутствие засоров в радиаторе приведет к уменьшению потребления энергии для производства тепла в вашем доме. Если кровотечение не помогает, следующим вариантом может быть промывка радиаторов под давлением. Промывка с электроприводом проводится профессионалами и включает в себя очистку вашей системы центрального отопления от любого шлама и мусора, накопившегося за несколько лет. Это стоит сделать, так как ваш котел может работать больше, чем нужно, и вы обнаружите, что после этого ваш дом будет отапливаться более эффективно.Powerflush — более сложная процедура и обычно стоит несколько сотен фунтов. Вы должны знать, что старые радиаторы могут быть не в состоянии выдерживать интенсивное давление и поток воды от промывки, что в конечном итоге может привести к их утечке.

    После механической промывки ваш инженер может порекомендовать заменить магнитный фильтр (или установить его), чтобы замедлить накопление мусора и шлама. Они также добавят антикоррозийную жидкость в уже очищенную воду, чтобы предотвратить образование ржавчины или коррозии на любых трубопроводах.Для получения дополнительной информации о том, как работает Powerflush, щелкните здесь.

    Какие радиаторные клапаны мне понадобятся?

    Ручной клапан — Ручной клапан является самым простым в использовании из всех других типов клапанов. Все, что вам нужно сделать, это повернуть крышку рукой, и это изменит поток горячей воды в радиатор, как если бы вы открывали или закрывали кран. Ручные клапаны, как правило, намного меньше, чем TRV, а также намного проще.

    TRV — Термостатические клапаны (также известные как TRV) по конструкции схожи с ручными клапанами с ключевым отличием в том, что они оснащены датчиком температуры. Хотя датчик может показаться довольно высокотехнологичным (если у вас уже есть электронная версия или вы не собираетесь ее покупать), TRV обычно содержат немного воска или жидкости, которая реагирует на температуру окружающего воздуха и регулирует мощность радиатора. Таким образом, TRV даст вам базовый контроль, необходимый для начала экономии энергии.

    Запорный клапан — Запорные клапаны входят в комплект поставки клапана, чтобы регулировать поток воды, выходящей из радиатора. Этот тип клапана используется для балансировки вашей системы и гарантирует, что все ваши радиаторы нагреваются с одинаковой скоростью. Итак, когда вы покупаете пару клапанов, один из них будет запорным.

    Если вы хотите узнать больше о радиаторных клапанах, ознакомьтесь с нашим руководством здесь.

    Дизайн и проектирование для вашего дома

    Runtal предлагает широкий выбор радиаторов «на складе» и «на заказ».Для определения размеров радиаторов необходимо рассчитать потребность дома в тепле. Этот расчет, измеряемый в БТЕ / час, должен выполняться для каждой комнаты. Это может сделать либо подрядчик по отоплению, либо квалифицированный сантехник.

    Практические правила для регионов страны

    • Новая Англия, Верхний Средний Запад или Южный Онтарио: 40 BTUH на квадратный фут площади

    • Нью-Йорк — Филадельфия: 40 BTUH

    • Филадельфия — Вашингтон: 35 BTUH

    • Сан-Франциско — Сиэтл: 25 BTUH

    Выбор стиля радиатора

    Сначала определите высоту и длину участка стены, который вы хотите использовать для радиатора (ов).

    Во-вторых, , разделите потребность помещения в BTUH на общую длину пространства стены, выбранного для размещения радиатора. Это установит требуемую BTUH на фут.

    Третий , выберите модель, у которой номинальное значение BTUH на фут в пределах ± 10% от уровня, рассчитанного для устройства (обратите внимание, что BTUH для вертикальной панели рассчитывается на фут ВЫСОТЫ, а другие — на фут ДЛИНЫ).

    Расчет мощности BTUH для различных температур воды

    Выходы BTUH указаны для температуры воды 180 F градусов.Следующая таблица может использоваться для расчета выходных значений BTUH для различных температур воды. Просто умножьте поправочный коэффициент, соответствующий средней температуре воды в системе.

    120F 0,38 160F 0,78

    130F 0,48 170F 0,89

    140F 0.57 180F 1

    150F 0,67 190F 1,13

    Выбор радиатора (PDF)

    Выходная мощность радиатора

    — SimplifyDIY

    Измерьте ширину и высоту своего радиатора, затем используйте соответствующую таблицу ниже, чтобы определить выходную мощность в ваттах.

    • 1 киловатт (кВт) = 1000 Вт.
    • 1 Вт составляет прибл. 3,4 БТЕ / час или
    • 1000 БТЕ / час = 293 Вт.


    Однопанельный

    )

    Однопанельный
    Длина

    мм

    600

    900

    900

    900

    900

    1800

    футов

    2

    3

    4

    5

    82

    300 мм (12 дюймов)

    450 мм (18 дюймов)

    600 мм (24 дюйма)

    30256

    750 мм

    260

    390

    520

    650

    780

    380

    570

    570

    490

    735

    980

    1125

    1470

    5809

    5809

    1740


    Одиночная панель с ребрами

    Одиночная панель с ребрами 900 мм Длина 900

    600

    900

    1200

    1500

    1800

    2

    89 2

    5

    6

    9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018 9018
    Высота

    300 мм (12 дюймов)

    9дюймов 187 24 дюйма)

    300 мм (12 дюймов)

    750 мм (30 дюймов)

    740

    5 60

    370

    555

    740

    740

    840

    1120

    1400

    1680

    720

    1080

    1080

    1080

    9029

    860

    1290

    1720

    2150

    2580

    Длина

    мм

    600

    900

    1200

    1500

    82 1800

    0003 010

    2

    3

    4

    5

    6

    450 мм (18 дюймов)

    600 мм (24 дюйма)

    750 мм (30 дюймов)

    600189

    800

    1000

    1200

    560

    840

    1120

    1120

    1050

    1400

    1750

    2100

    860

    1290

    9018

    82
    Двойная панель с ребрами

    Двойная панель с ребрами 1200

    82 600

    9226

    3
    Длина

    мм

    1500

    1800

    футов

    2

    3

    4

    4

    Высота 750000

    450 мм (18 дюймов)

    9196 9192 30ins)

    300 мм (12 дюймов)

    450 мм (18 дюймов)

    580

    870

    1160

    1450

    1450

    1720

    2150

    2580

    1100

    1650

    2200

    2750

    2750

    2750

    1920

    2560

    3200

    3840


    Двойная панель с двойными ребрами


    9018 9018 9018 9018 Длина

    мм

    600

    900

    1200

    1500

    1800

    1800

    3

    4

    5

    6

    Высота 9000 9018 9 0268

    450 мм (18 дюймов)

    600 мм (24 дюйма)

    750 мм (30 дюймов)

    7

    1900

    2280

    1040

    1560

    2080

    2600

    2600

    2600

    2680

    3350

    4020

    1600

    2400

    3200

    52

    52


    Дополнительная информация и полезные ссылки




    Описание калькулятора BTU | Только радиаторы

    Добро пожаловать обратно в блог Only Radiators, где на этой неделе мы разоблачим неуловимую BTU.

    Мы начнем с разбивки самого устройства, а затем перейдем к использованию лучших функций нашего калькулятора BTU, чтобы улучшить ваши впечатления от просмотра нашего обширного интернет-магазина, позволив вам отфильтровать поиск радиаторов только до наиболее актуальные единицы.

    Итак, давайте начнем с вопроса, который мы слышим так часто.

    Что означает BTU?

    «Британская тепловая единица» — традиционная единица тепла, определяемая как количество, необходимое для поднятия одного фунта воды на один градус по Фаренгейту.Если вы хотите понять, что это означает в реальном мире, одна БТЕ составляет примерно 1,06 кДж (килоджоулей) или тепло, выделяемое при сжигании одной деревянной спички на кухне!

    Итак, теперь у нас есть определение, давайте перейдем к делу.

    Сколько БТЕ для обогрева комнаты?

    «Сколько БТЕ мне нужно для обогрева дома?» Это вопрос, который мы слышим так же часто, и ответ сводится к ключевым элементам комнаты, которую мы хотим отапливать.

    Требования к БТЕ помещения зависят от таких факторов, как площадь пола и высота по вертикали, наличие в помещении внешних стен, количество пространства на стенах, занимаемое окнами и их остеклением, и т. Д.

    Что расположено в комнате внизу — пол с подогревом, комната с подогревом, деревянный пол или что-то еще? А сверху — шиферная, соломенная или деревянная крыша и какой толщины утеплителя?

    В расчетах

    БТЕ учитывается количество тепла, необходимое для наполнения комнаты, а также количество тепла, которое может уйти. Лучшая изоляция равняется меньшему количеству БТЕ, в то время как то же самое верно и для противоположного.

    Очень просто!

    Расчет BTU

    Чтобы узнать количество БТЕ, необходимое для обогрева помещения с новым радиатором, вы можете использовать наш удобный калькулятор БТЕ .

    Использование нашего калькулятора BTU

    Имея всего лишь рулетку (или один из тех классных лазерных инструментов, если вы чувствуете себя футуристично!), Комнату для измерений и несколько минут вашего времени, вы успешно сузите свой поиск до только самых подходящих радиаторов. , экономя ваши деньги, время и усилия, и позволяя вам непрерывно просматривать наш огромный интернет-магазин.

    Давайте рассмотрим это шаг за шагом.

    Шаг 1 — Размеры комнаты

    Во-первых, вам нужно измерить длину, ширину и высоту помещения, которое вы хотите обогреть.Затем вы можете ввести эти измерения в калькулятор БТЕ в метрах или футах.

    Шаг 2 — Дополнительная информация о комнате

    Далее калькулятору BTU требуется немного больше информации о планировке и конструкции вашей комнаты.

    Как он вписывается в остальную часть дома, какой тип остекления предлагает окна и насколько комната подвержена воздействию элементов.

    Ответьте на них, выбрав тип комнаты, тип окна и уровень укрытия.

    Шаг 3 — Результаты BTU!

    И вот вам ответ.

    Наш калькулятор БТЕ предоставляет вам два измерения — БТЕ / час и требуемую мощность в ваттах. Это единственные два измерения, которые вам понадобятся, и два измерения, которые вы найдете для каждого радиатора в нашем интернет-магазине.

    Минимальная производительность — это самое важное число здесь. При условии, что мощность в BTU выбранного вами радиатора равна или превышает минимальное значение, указанное калькулятором, у вас будет достаточно тепла, чтобы обогреть комнату.

    Просмотр только радиаторов по BTU

    Теперь, когда вы знаете, как рассчитать, сколько БТЕ для обогрева комнаты, вы можете отточить свой поиск до самых подходящих доступных радиаторов.

    Чтобы просмотреть наши радиаторы по мощности в BTU, сначала зайдите в любой раздел нашего обширного интернет-магазина, например, на главную страницу вертикальных радиаторов , и обратите внимание на набор критериев поиска в левой части страницы.

    Наряду с возможностью просматривать наш выбор по размеру, цвету и другим параметрам, мы даем вам возможность осуществлять поиск по:

    • БТЕ: количество БТЕ, вытесняемых радиатором за час.
    • Вт: стандарт для определения размера электрического обогревателя, необходимого для обогрева помещения.

    Общее правило — 10 Вт мощности на квадратный фут отапливаемого помещения. Следите за новостями, чтобы увидеть статью о том, что к чему с ваттами, а пока давайте вернемся к нашим любимым БТЕ.

    Гибкость БТЕ?

    Не отчаивайтесь, если окажется, что радиатор, который вам просто необходим, недостаточно мощный, чтобы наполнить комнату теплом.

    Радиатор со слишком низкой выходной мощностью в BTU может быть не в состоянии эффективно обогревать комнату в одиночку, хотя, если это абсолютно необходимо, обычно будет нормально около 10% ниже.

    Помните, что измерение, полученное с помощью нашего калькулятора BTU, является всеобъемлющим показателем, учитывающим все возможные нагревательные элементы в комнате. Несмотря на то, что зимой вам не нужно ставить в ряд шесть дополнительных электрических обогревателей, вы, безусловно, можете выбрать два или три радиатора меньшего размера, которые соответствуют требованиям вашей комнаты.

    На самом деле нет высшего класса, когда дело доходит до спецификации BTU, поэтому вам не нужно беспокоиться о чрезмерных расходах на радиатор, здесь вам пригодятся термостатические клапаны, вы можете просто выключить их, чтобы найти идеальный тепло.

    Вот почему использование нашего калькулятора BTU на самом деле увеличивает гибкость при покупке нового радиатора, а не ограничивает его.

    Если у вас есть расчет в БТЕ, ваш поиск станет намного проще, и вы не будете тратить деньги на запуск гигантских радаров на половинной мощности или выстраивание шести электрических обогревателей, чтобы пополнить незащищенное помещение зимой.

    Нажимая темп

    Вы можете увеличить или уменьшить BTU радиатора несколькими способами, например, увеличив температуру воды, протекающей через систему.Хотя обычно используется тепло 50 ° C, его можно увеличить до 60 ° C с небольшой регулировкой, которая повысит BTU радиатора.

    И когда дело доходит до материала радиатора, который вы имеете в виду, он также имеет большое значение для выхода продукта в BTU. Если вам требуется максимальное количество тепла от радиатора наименьшего размера, лучше всего подойдет одна из наших алюминиевых моделей.

    БТЕ и вы

    Проще говоря, БТЕ — это универсальная единица измерения эффективности радиатора.

    Думайте о них как о руководстве по выбору размеров радиатора и верном пути к поиску радиатора подходящего размера для вашей комнаты.

    Теперь наслаждайтесь просмотром нашего сайта и получите еще более полное представление о радиаторе, который идеально вам подойдет!

    И если вам нужен совет или помощь относительно того, что мы только что рассмотрели, позвоните нашей группе экспертов.

    Изменение размера радиаторов в системе

    В этом случае энергоэффективного ремонта теплоизоляция и воздухонепроницаемость оболочки здания, включая окна и входные двери, улучшаются, чтобы почти соответствовать требованиям нового строительства.

    Системы обслуживания зданий, такие как системы отопления, водоснабжения и вентиляции, а также электрические и телекоммуникационные системы, также будут модернизированы, чтобы сделать их более функционально эффективными и энергоэффективными. Было показано, что даже в старых зданиях годовое потребление энергии может быть снижено до менее 75 кВтч / (м2а).

    При ремонте старых зданий потребность помещений в тепле значительно снижается. Типично, что соотношение потребности в тепле между разными помещениями также меняется, например, когда дополнительная теплоизоляция не всегда может быть применена равномерно ко всем помещениям.Улучшенная вентиляция также часто меняет соотношение потребности в тепле между помещениями. По этим причинам для реконструируемого здания необходимо произвести новый надлежащий расчет потребности в тепле.

    В качестве примера рассмотрим ситуацию в типичном малоэтажном здании 50-х и 60-х годов, когда энергопотребление здания обычно превышает 250 кВтч / (м2a).
    Сравнение проводится по комнатам аналогичных размеров на трех этажах здания.


    Рисунок 1. Подобные помещения на трех этажах перекрытия.

    Расчет потребности в тепле основан на инструкциях раздела «Энергоэффективность 2018» Строительного кодекса Финляндии. Начальные значения для старого здания взяты из приложения к Руководству по энергетическому сертификату Министерства окружающей среды на 2018 год — типичные исходные проектные значения для существующих старых зданий.

    Примечание! В примере расчета в качестве новой системы вентиляции была выбрана двунаправленная система вентиляции. В качестве альтернативы вентиляция может быть достигнута с помощью однонаправленной системы вентиляции, в которой тепло вытяжного воздуха передается в систему отопления и горячее водоснабжение с помощью теплового насоса вытяжного воздуха.В этом случае старые радиаторы заменяются радиаторами приточного воздуха.

    Расчетные значения

    Площадь, м2
    Старое начальное состояние
    Состояние после ремонта
    Площадь 20 20
    Наружная стенка 7 7
    Окно 2.0×1.5 3 3
    Верхняя, средняя и нижняя подошва 20 20
    Высота помещения, м 2.5 2,5

    Показатель U, Вт / (м2 · К)
    Наружные стены
    0,8 0,17 (дополнительная изоляция +15 см)
    Окна и входные двери
    3,0 1,0
    Верхняя подошва
    0,5 0,1 (дополнительная изоляция +25 см)
    Нижнее основание
    0.5 0,5 (без дополнительной изоляции, земляной)
    Вентиляция, 1 / ч
    0,5 (сила тяжести) 0,5 (рекуперация тепла η = 80%)

    Прочие исходные данные
    • Мосты холода и инфильтрация воздуха по расчетной инструкции.
    • Расчетная температура внутри помещения 21 ° C и снаружи -26 ° C
    Тепловая нагрузка, Вт
    Старое начальное состояние
    Состояние после ремонта
    По сравнению со старым
    1 этаж 1304 429 33%
    2 этаж 1119 244 22%
    3 этаж 1604 353 22%


    Выводы

    — Если бы старые радиаторы были сохранены, для помещения на 1-м этаже (цокольном этаже) потребовалось бы на 50% больше относительной мощности (33% / 22% = 1.50), чем комнаты на других этажах. Регулирование температуры подающей линии, кривая нагрева, устанавливается в соответствии с максимальным требованием температуры, то есть в соответствии с требованиями помещения на 1-м этаже. В этом случае в другие помещения поступает перегретая вода, что приводит к постоянному открытию-закрытию термостатов, колебаниям комнатной температуры и дисбалансу отопительной сети.

    — С точки зрения энергоэффективности, и особенно при использовании теплового насоса для производства тепла, рекомендуется заменить радиатор 1-го этажа меньшего размера на радиаторы, которые на 50% больше и, следовательно, более эффективны, чтобы температуру подачи можно было контролировать на более низкий уровень кривой нагрева и единообразие для всех радиаторов.

    Рекомендация

    Тепловая сеть должна быть изменена, а системная арматура модернизирована, когда здание реконструируется с целью достижения уровня здания с почти нулевым потреблением энергии. Изменилось несколько факторов: потребность в тепле, распределение тепла, уровни температуры и потоки воды и, возможно, новый способ производства тепла. Как правило, обслуживаются стояки и перекачивающие трубы, статические регулирующие клапаны линии заменяются автоматическими регуляторами перепада давления в соответствии с новыми размерами, а радиаторы оснащаются новыми предварительно настроенными термостатическими клапанами.



    Рис. 2. Радиатор правильного размера имеет большую поверхность излучения. Замена радиатора упрощается при замене соединительных труб от стояков к радиаторным клапанам.

    Во многих случаях старые радиаторы полностью заменяются новыми. Таким образом, расчетные температуры могут быть оптимально выбраны как для системы отопления, так и для производства тепла. Когда все излучатели тепла в здании заменяются одновременно, потребность в замене отдельных радиаторов в будущем уменьшится.Это макроэкономическое решение. Новые радиаторы также улучшают эстетический вид комнат.

    Рекомендуемые расчетные температуры радиаторной сети
    • Тепловые насосы 45/35/21 ° C
    • Котлы горения 55/45/21 ° C
    • Централизованное теплоснабжение 60/30/21 ° C

    Табличные данные, относящиеся к сравнению мощности радиаторов.


    Рисунок 3. Зависимость коэффициента полезного действия радиатора k от превышения температуры ΔT. Например, тепловая мощность радиатора в старом здании составляет 1304 Вт при температурах Tflow / Trtn / Tin = 80/60 / 21oC1, где ΔT = 48.3К. После ремонта потребность в тепле при нормальных условиях составляет 429 Вт, или 33% от прежней. В соответствии с примером на рисунке, точки с 1 по 4, новая избыточная температура составляет ΔT20,5K, с которой реализуются необходимые 429 Вт. Подходящие температуры составляют, например, 50/35/21 ° C (ΔT20,6K) и 45/39 / 21 ° C (ΔT20,9K).
    Контрольное значение k = 1,0 для ΔT50K на диаграмме относится к тепловой мощности радиатора, указанной в соответствии со стандартом EN 442.

    Тип 10 11 20 21 22 30 33
    Скорость ОП 1.00 1,59 1,75 2,12 2,64 2,40 3,63


    Рисунок 4. Коэффициенты мощности панельных радиаторов в зависимости от типа радиатора. Обозначение типа описывает количество панелей и конвекционных плит. Например, тип 21 означает, что радиатор имеет две панели для циркуляции воды и, кроме того, одну конвекционную пластину. Например, вывод типа 22 в 2,64 / 1,59 = 1,67 раза выше, чем вывод типа 11 при тех же размерах ширины / высоты.

    Высота 300 400 450 500 600 900
    Скорость ОП 1,00 1,25 1,37 1,45 1,70 2,31


    Рисунок 5. Коэффициенты мощности панельных радиаторов в зависимости от высоты. Например, радиатор того же типа высотой 600 мм и шириной 1,70 / 1,25 = 1.В 36 раз выше, чем высота 400 мм. Мощность панельных радиаторов линейна пропорциональна их ширине.

    Значения, показанные на рисунках 3, 4 и 5, можно использовать для предварительных оценок. Однако рекомендуется использовать более точные программы расчета мощности, например, опубликованные производителями радиаторов.
    _______________________________________________________________________________________
    1. Например, информация о кривой нагрева и опыте эксплуатации.

    Влияние различных геометрических размеров конвекторов на теплопередачу от панельных радиаторов

    Изучение влияния различных размеров конвекторов, используемых в панельных радиаторах, на теплопередачу было основной целью настоящего численного исследования. Таким образом, было проведено интенсивное моделирование толщины конвектора ( t ), высоты конвектора ( H ), трапециевидной высоты конвектора ( L ), расстояния между двумя противоположными конвекторами ( d ), ширины кончика конвектора ( b ), вертикальное расположение конвектора ( f ) и коэффициент отсечки конвектора ( c ).Полученные результаты были нормализованы для радиатора длиной один метр, чтобы наблюдать эффект для всего радиатора.

    На рис. 5 показано изменение теплопередачи в зависимости от толщины листа конвектора. Кроме того, для толщины t = 0,25 мм и t = 0,60 мм показаны распределения температуры на горизонтальном уровне z = 300 мм. Высота конвектора, трапецеидальная высота конвектора и расстояние между противоположными конвекторами были приняты постоянными: H = 510 мм, L = 37 мм и d = 7 мм соответственно.С увеличением толщины конвектора происходит постоянное увеличение теплоотдачи. Это связано с тем, что площадь поперечного сечения конвектора увеличивается с толщиной; следовательно, увеличивается площадь теплопроводности. Этот факт более четко прослеживается по распределению температуры, где значения температуры вокруг конвекторов и вблизи них выше при толщине конвектора t = 0,60 мм.

    Рис. 5

    Зависимость теплопередачи на метр длины радиатора от толщины конвектора и распределения температуры на горизонтальном уровне 300 мм

    В диапазоне от 0.25 мм ≤ t ≤ 0,30 мм происходит резкое увеличение теплоотдачи, а для t > 0,30 мм крутизна изменения теплоотдачи уменьшается. Увеличение скорости в диапазоне 0,25 мм ≤ t ≤ 0,30 мм составляет почти 10,5%, тогда как скорость увеличения теплопередачи для 0,30 мм ≤ t ≤ 0,60 мм была рассчитана как всего 9,2%. Это увеличение показывает, что для толщины t = 0,25 мм передача тепла не могла происходить должным образом, а при увеличении до толщины t = 0.30 мм эту проблему можно решить. Это также наблюдается из распределения температуры t = 0,25 мм на горизонтальном уровне 300 мм, где температура намного ниже на конце конвекционного ребра, по сравнению со случаем t = 0,60 мм.

    Влияние высоты конвектора на теплопередачу показано на рис. 6а. Конвекторы размещаются в средней части по высоте канала. При исследовании использовалась постоянная толщина конвектора t = 0,50 мм.Трапецеидальная высота L = 37 мм и расстояние между противоположными конвекторами d = 7 мм были смоделированы при исследовании влияния высоты конвектора.

    Рис. 6

    a Зависимость теплопередачи на метр длины радиатора от высоты конвектора, b Распределение температуры на различных горизонтальных уровнях 150 мм, 300 мм и 450 мм

    Теплопередача увеличивается почти линейно с увеличение высоты конвектора.Увеличение высоты конвектора увеличивает время контакта проходящего внутри вертикального прохода воздуха с конвектором. В диапазоне 450 мм ≤ H ≤ 570 мм происходит увеличение теплоотдачи почти на 7,6%, тогда как для 570 мм ≤ H ≤ 600 мм увеличение скорости теплоотдачи составляет 4,7%. . Из-за увеличенной площади теплообмена происходит увеличение теплоотдачи в нижней части канала. Однако этого не наблюдается для конвектора высотой H = 450 мм.Рисунок 6b показывает, что увеличение высоты конвектора приводит к повышению температуры, и особенно в области кончика конвектора могут наблюдаться более высокие температуры. Кроме того, из-за расширенной поверхности в нижней части канала для H = 600 мм теплопередача максимальна в этой области, что в целом оказывает увеличивающее влияние на общую теплопередачу. Для H = 600 мм конвектор расширяется по всему каналу, что препятствует смешиванию холодного воздуха снаружи конвекторов с нагретым воздухом, заключенным внутри конвекторов, что дополнительно увеличивает теплоотдачу.

    В целом, теплопередача может быть увеличена примерно на 8% при увеличении высоты конвектора с H = 450 мм до H = 600 мм. При этом общий объем материала увеличился почти на 18% [16].

    Трапецеидальная высота конвекторов является важным параметром, так как она является продолжением конвекционного ребра в направлении теплопередачи. Таким образом, влияние трапециевидной высоты конвектора для диапазона 25 мм ≤ L ≤ 80 мм на теплопередачу, а распределение температуры вдоль канала показано на рис.7. Как видно, теплоотдача увеличивается и достигает максимума при L = 75 мм. При L > 75 мм происходит уменьшение теплоотдачи. Также было замечено, что в диапазоне 25 мм ≤ L ≤ 60 мм увеличение теплоотдачи происходит со скоростью 36,8%, тогда как скорость увеличения уменьшается для L > 60 мм, а в диапазоне 60 мм ≤ L ≤ 80 мм скорость увеличения составила 3,1%. При проектировании конвекционных ребер должна быть получена соответствующая длина ребер из-за того, что температура экспоненциально падает вдоль ребра [17].Следовательно, в исследованном диапазоне трапециевидных высот настоящего исследования было замечено, что это ограничение было достигнуто.

    Рис. 7

    a Зависимость теплопередачи на метр длины радиатора от трапециевидной высоты конвектора, b Распределение температуры на различных горизонтальных уровнях 150 мм, 300 мм и 450 мм

    Этот факт можно наблюдать далее ясно на рис. 7б. Распределение температуры по высоте канала и на разных отметках показано на этом рисунке для L = 25 мм и L = 60 мм.Для меньших высот были получены более высокие значения температуры по высоте канала и на разных отметках. Однако из-за ограничения скорость воздуха уменьшается, что оказывает уменьшающееся влияние на теплопередачу. С другой стороны, было замечено, что с увеличением высоты трапеции температура падает вдоль ребра, и более низкие значения температуры наблюдаются в области кончика ребра. Это показывает, что при определенном значении трапециевидной высоты теплопроводность не могла возникнуть должным образом, что снижает влияние на теплопередачу.

    Влияние расстояния между двумя противоположными конвекторами на теплопередачу и распределение температуры было исследовано для диапазона 0 мм ≤ d ≤ 12 мм. Остальные параметры оставались постоянными: H = 510 мм, t = 0,50 мм, L = 37 мм, а конвекторы были размещены в средней части по высоте канала. Влияние расстояния между противоположными конвекторами на теплопередачу показано на рис. 8а. Теплопередача увеличивается с увеличением расстояния и становится почти постоянной для расстояния d ≥ 6 мм.Это происходит из-за большого расстояния между конвекторами, которое не оказывает нагревающего воздействия на воздушный поток за пределами границы и в пространстве между противоположными ребрами. Следовательно, после определенного значения теплопередача почти не изменяется. Однако в диапазоне 0 мм ≤ d ≤ 6 мм теплопередача увеличивается примерно на 17,9%. Наихудший случай был получен для d = 0 мм. Это происходит из-за воздушного потока, который блокируется в области наконечника, следовательно, с уменьшением скорости воздушного потока уменьшается теплопередача.

    Рис. 8

    a Зависимость теплопередачи на метр длины радиатора от расстояния между двумя противоположными конвекторами, b Распределение температуры на разных горизонтальных уровнях 150 мм, 300 мм и 600 мм

    Полученные распределения температуры показаны на рис. 8б. Было замечено, что на расстоянии d = 0 мм высокие температуры возникают вокруг концевой области конвекторов; однако вблизи верхней области (участок C – C) возникает холодная область.Как видно из распределений скоростей, происходит обратный поток и наблюдается унос холодного воздуха. Это снижает теплопередачу; следовательно, наименьшая теплопередача была получена при d = 0 мм. На расстоянии d = 12 мм видна холодная зона вне конвекторов. Эта холодная зона находится между двумя противоположными конвекторами. Следовательно, после определенного значения расстояния между противоположными конвекторами теплопередача практически не изменяется.

    Ширина кончиков конвекторов была исследована, результаты представлены на рис.9. Увеличение ширины наконечника увеличивает теплопередачу. На рисунке 9b показано, что ширина кончика b = 0 мм образует треугольную область, ограниченную конвектором. Внутри этой треугольной области наблюдаются высокие температуры, а за пределами конвекторов наблюдаются более низкие температуры. Из-за малой площади поток перекрывается, и, кроме того, небольшая площадь поверхности имеет место на кончике конвектора. Это сказывается на общей теплопередаче, поэтому наименьшая теплопередача была получена для b = 0 мм.В противном случае наибольшая теплоотдача получается при b = 12 мм. Увеличение ширины наконечника увеличивает площадь поверхности в области наконечника конвектора. Кроме того, за счет увеличения площади внутри зоны конвектора не перекрывается воздушный поток, что положительно сказывается на теплопередаче.

    Рис. 9

    a Зависимость теплопередачи на метр длины радиатора от ширины кончика конвекторов, b Распределение температуры на разных горизонтальных уровнях 150 мм, 300 мм и 450 мм

    Влияние вертикального расположения работы конвектора для конвектора высотой H = 510 мм по теплоотдаче представлена ​​на рис.10. Вертикальное распределение температуры по высоте канала и локальный перепад температур между обогреваемой стенкой и воздухом показаны на рис. 10б. Было замечено, что наибольшая теплопередача может быть получена для случая f = 0 мм, когда конвектор расположен в нижней выходной секции ( z = 0 мм) вертикального канала. Теплопередача уменьшается с увеличением вертикального расположения. Для f = 0 мм холодный воздух, попадающий в вертикальный канал, обтекает выступающие поверхности; следовательно, увеличение разницы температур в указанной области увеличивает теплопередачу.По-разному, для f = 90 мм холодная зона возникает в нижней части канала, пока воздушный поток не достигает конвекторов. Следовательно, происходит уменьшение теплопередачи. На вертикальном уровне z = 0 мм более высокая температура воздуха может быть получена при f = 0 мм; следовательно, разница температур между стеной и воздухом ниже по сравнению с f = 90 мм. Это противоположно для z = 600 мм, где более высокие температуры имеют место для f = 90 мм; это конвекторы, которые расположены близко к верхней выходной секции.В обоих случаях температура снижается с увеличением высоты по вертикали.

    Рис.10

    a Зависимость теплопередачи на метр длины радиатора от вертикального расположения конвектора, b среднее распределение температуры на разных горизонтальных уровнях для f = 0 мм и f = 90 мм и температуры распределения на плоскости x z

    Идея создания камеры смешения между конвекторами была предложена Myhren и Holmberg [5], где они исследовали влияние камеры смешения на естественную и принудительную конвекцию вентиляционных радиаторов. конвекционные ребра.В настоящем исследовании использовалась высота конвектора H = 510 мм, и процент отсечки использовался в средней части конвекторов, чтобы наблюдать влияние этих смесительных камер на теплопередачу. Ребра конвекции были прерваны в средней части, чтобы создать пространство, которое образовало смесительную камеру. Это отношение расстояния откачиваемой части к общей высоте ребра. Используя такую ​​зону среза конвекционных ребер, можно разрушить изолирующий тепловой пограничный слой, и, кроме того, можно будет использовать меньше материала.Изменение тепловой мощности по отношению к коэффициентам отключения показано на рис. 11. Увеличение коэффициента отключения снижает теплопередачу, и самая низкая теплопередача была получена для случая без конвекторов, установленных на обогреваемой стене. На рис. 11б наблюдался разрыв пограничного слоя; однако в условиях естественной конвекции уменьшение площади поверхности конвекторов оказывает большое влияние на теплопередачу и, соответственно, на распределение температуры. Следовательно, с увеличением коэффициента отсечки теплоотдача, а также значения температуры, происходящие внутри вертикального канала, уменьшаются.Левый рисунок на рис. 11b показывает, что разница температур для случая без конвекционного ребра наибольшая. Это связано с воздухом, который контактирует только с нагретым воздухом, а за пределами пограничного слоя температура остается на уровне 20 ° C. С другой стороны, для случая c = 50% и c = 0% разница температур между стеной и воздухом почти одинакова для 0 ≤ z ≤ 200 мм. Для z > 200 мм унос холодного воздуха происходит для c = 50% и разница температур увеличивается, тогда как для c = 0% температура воздуха продолжает расти, а разница температур уменьшается.

    Рис. 11

    a Зависимость теплопередачи на метр длины радиатора от коэффициента отсечки конвекторов, b разность температур между стеной и воздухом по высоте канала и температурные контуры на x z плоскость

    Для теплопередачи внутри канала была получена корреляция с использованием полученных результатов моделирования. Метод регрессии наименьших квадратов был использован для получения показателей степени коэффициентов.{1.387}; \, \, 0.25 \, {\ text {mm}} \ le t \ le 0.60 \, {\ text {mm}}; \, \, 25 \, {\ text {mm}} \ le L \ le 80 \, {\ text {мм}}; \\ & 450 \, {\ text {mm}} \ le H \ le 600 \, {\ text {mm}}; \, \, 2 \, {\ text {mm}} \ le d \ le 12 \ , {\ text {mm}}; \, \, 2 \, {\ text {mm}} \ le b \ le 12 \, {\ text {mm}} \\ \ end {выровнено} $$

    (13)

    Рис. 12

    Результаты корреляции исследуемых параметров

    Полученная корреляция будет полезна производителям при более эффективном проектировании новых панельных радиаторов.

    Калькулятор

    БТЕ — UK Radiators

    Вы когда-нибудь задумывались, как подобрать радиатор идеального размера для каждой конкретной комнаты в вашем доме? Что ж, не удивляйтесь, ведь наш калькулятор БТЕ делает именно это.

    BTU, иначе известная как британская тепловая единица, измеряет соответствующее количество энергии (и, следовательно, тепла), необходимое вашим радиаторам для надлежащего обогрева любой комнаты вашего дома.

    Удельная тепловая мощность радиатора измеряется в БТЕ, чтобы определить количество энергии, необходимое для нагрева одного фунта воды на один градус по Фаренгейту.Это дает вам представление о том, сколько БТЕ требуется для обогрева комнаты, и, в свою очередь, о требуемом размере радиатора.

    Расчет БТЕ для комнаты каждого размера важен для поддержания энергоэффективности в вашем доме. Важно тщательно продумать размер каждого радиатора, чтобы обеспечить соответствующее отопление для каждой комнаты и удовлетворить требования к теплоизоляции.

    Установка радиаторов ненадлежащего размера в комнату может вызвать проблемы с изоляцией, поскольку она не отвечает требованиям отопления необходимого помещения.Вот почему важно использовать калькулятор БТЕ и точно рассчитать количество БТЕ, необходимое для обогрева каждой комнаты в вашем доме.

    Как рассчитать БТЕ

    Когда дело доходит до расчета БТЕ, необходимого для конкретного помещения, следует учитывать два основных фактора.

    Во-первых, вам нужно решить, при какой температуре вы хотите поддерживать каждую комнату. Довольно просто, правда?

    Во-вторых, необходимо учитывать потери тепла из комнаты, поскольку они напрямую влияют на постоянный уровень температуры, поддерживаемой в помещении.

    Есть несколько факторов, влияющих на теплопотери помещения; его размер, количество окон и их изоляционные свойства (с одинарным или двойным остеклением), то, что окружает комнату, а также количество внутренних и внешних стен.

    Учет всех этих факторов может показаться немного сложным, но общее правило выбора размеров радиаторов заключается в том, что чем больше размер комнаты, тем больше БТЕ требуется для поддержания постоянной и комфортной температуры.

    Рассчитать БТЕ для комнаты

    Вы можете точно измерить требуемые БТЕ для комнаты любого размера, просто введя необходимую информацию в калькулятор ниже, убедившись, что данные измерения являются максимально точными и краткими.

    Результаты покажут необходимое общее количество БТЕ, необходимое для поддержания постоянной температуры в помещении такого размера. Для поддержания постоянной и комфортной температуры вам может понадобиться более одного установленного радиатора.

    В The Heating Boutique у нас есть широкий ассортимент радиаторов для удовлетворения ваших потребностей в отоплении, и они бывают всех форм и размеров, чтобы ваша комната дольше оставалась теплой. Свяжитесь с нами сегодня, чтобы получить радиатор идеального размера для каждой комнаты в вашем доме, сэкономив вам на затратах на электроэнергию и проблемах!


    Заполните форму ниже, указав данные о вашей комнате, и пусть наш калькулятор BTU сделает все остальное за вас.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *