Пдк кислорода в воздухе: Содержание кислорода в атмосфере. Информация для газоспасателей – Требования к воздуху рабочих зон (ГОСТ)

Содержание

Содержание кислорода в атмосфере. Информация для газоспасателей

   Качество воздуха, необходимого для поддержания жизненных процессов всех живых организмов на Земле, определяется содержанием в нем кислорода.
   Зависимость качества воздуха от процентного содержания в нем кислорода рассмотрим на примере рисунка 1.

Рис. 1 Процентное содержание кислорода в воздухе

   Благоприятный уровень содержания кислорода в воздухе


   Зона 1-2: такой уровень содержания кислорода характерен для экологически чистых районов, лесных массивов. Содержание кислорода в воздухе на берегу океана может достигать 21,9%


   Уровень комфортного содержания кислорода в воздухе


   Зона 3-4: ограничена законодательно утвержденным стандартом минимального содержания кислорода в воздухе для помещений (20,5%) и «эталоном» свежего воздуха (21%). Для городского воздуха нормальным считается содержание кислорода 20,8%.


   Недостаточный уровень содержания кислорода в воздухе


   Зона 5-6: ограничена минимально допустимым уровнем содержания кислорода, когда человек может находиться без дыхательного аппарата (18%).
   Пребывание человека в помещениях с таким воздухом сопровождается быстрой утомляемостью, сонливостью, снижением умственной активности, головными болями.
   Длительное пребывание в помещениях с такой атмосферой опасно для здоровья


   Опасно низкий уровень содержания кислорода в воздухе


   Зона 7 и далее: при содержании кислорода 16% наблюдается головокружение, учащенное дыхание, 13% — потеря сознания, 12% — необратимые изменения функционирования организма, 7% — смерть.

   Непригодная для дыхания атмосфера также характеризуется не только превышением предельно-допустимых концентраций вредных веществ в воздухе, но и недостаточным содержанием кислорода.
   В связи с различными определениями, которые даются понятию «недостаточное содержание кислорода» газоспасатели очень часто допускают ошибки при описании газоспасательных работа. Это происходит, в том числе и в результате изучения уставов, инструкций, стандартов и других документов, содержащих указание на содержание кислорода в атмосфере.
   Рассмотрим отличия в процентном содержании кислорода в основных регламентирующих документах.

   1.Содержание кислорода менее 20%.
   Газоопасные работы проводятся при содержании кислорода в воздухе рабочей зоны менее 20%.
   - Типовая инструкция по организации безопасного проведения газоопасных работ (утв. Госгортехнадзором СССР 20 февраля 1985 г.):

   1.5. К газоопасным относятся работы … при недостаточном содержании кислорода (объемная доля ниже 20%).
   - Типовая инструкция по организации безопасного проведения газоопасных работ на предприятиях нефтепродуктообеспечения ТОИ Р-112-17-95 (утв. приказом Министерства топлива и энергетики РФ от 4 июля 1995 г. N 144):
   1.3. К газоопасным относятся работы … при содержании кислорода в воздухе менее 20% по объему.
   - Национальный стандарт РФ ГОСТ Р 55892-2013 «Объекты малотоннажного производства и потребления сжиженного природного газа. Общие технические требования» (утв. приказом Федерального агентства по техническому регулированию и метрологии от 17 декабря 2013 г. N 2278-ст):
   К.1 К газоопасным относят работы… при содержании кислорода в воздухе рабочей зоны менее 20%.

   2. Содержание кислорода менее 18%.
   Газоспасательные работы проводятся при содержании кислорода менее 18%.
   - Положение о газоспасательном формировании (утверждено и введено в действие первым заместителем Министра промышленности, науки и технологий Свинаренко А.Г. 05.06.2003 г.; согласовано: Федеральный горный и промышленный надзор Российской Федерации 16.05.2003 г. N АС 04-35/373).
   3. Газоспасательные работы …в условиях снижения содержания кислорода в атмосфере до уровня менее 18 об.% …
   - Руководство по организации и ведению аварийно-спасательных работ на предприятиях химического комплекса (утверждено ОАК №5/6 протокол №2 от 11.07.2015 г.).
   2. Газоспасательные работы … в условиях недостаточного (менее 18%) содержания кислорода…


   - ГОСТ Р 22.9.02-95 Безопасность в чрезвычайных ситуациях. Режимы деятельности спасателей, использующих средства индивидуальной защиты при ликвидации последствий аварий на химически опасных объектах. Общие требования (принят в качестве межгосударственного стандарта ГОСТ 22.9.02-97)
   6.5 При высоких концентрациях ОХВ и недостаточном содержании кислорода (менее 18%) в очаге химического заражения использовать только изолирующие СИЗ органов дыхания.

   3. Содержание кислорода менее 17%.
   Запрещается применение фильтрующих СИЗОД при содержании кислорода менее 17%.
   - ГОСТ Р 12.4.233-2012 (ЕН 132:1998) Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Термины, определения и обозначения (утв. и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1824-ст)

   2.87… атмосфера с дефицитом кислорода: Окружающий воздух, содержащий менее 17% кислорода по объему, в котором нельзя использовать фильтрующие СИЗОД.
   - Межгосударственный стандарт ГОСТ 12.4.299-2015 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Рекомендации по выбору, применению и техническому обслуживанию (введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 24 июня 2015 г. N 792-ст)
   B.2.1 Дефицит кислорода. Если анализ условий окружающей среды указывает на наличие или возможность дефицита кислорода (объемная доля менее 17%), то СИЗОД фильтрующего типа не применяют…
   - Решение Комиссии Таможенного союза от 9 декабря 2011 г. N 878 О принятии технического регламента Таможенного союза «О безопасности средств индивидуальной защиты»
   7) …не допускается использование фильтрующих средств индивидуальной защиты органов дыхания при содержании во вдыхаемом воздухе кислорода менее 17 процентов
   - Межгосударственный стандарт ГОСТ 12.4.041-2001 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания фильтрующие. Общие технические требования (введен в действие постановлением Госстандарта РФ от 19 сентября 2001 г. N 386-ст)
   1 …фильтрующие средства индивидуальной защиты органов дыхания предназначенные для защиты от вредных для здоровья аэрозолей, газов и паров и их сочетаний в окружающем воздухе при условии содержания в нем кислорода не менее 17 об. %.


расчет кислород

Руководство по проведению анализа атмосферы в замкнутых пространствах

Это руководство по применению содержит общую информацию, а также является напоминанием об угрозах, сопряженных с опасными атмосферными факторами в замкнутых пространствах.

Руководство по проведению анализа атмосферы в замкнутых пространствах

В руководстве рассматриваются следующие темы:

  • определение замкнутого пространства;
  • атмосферные опасности, характерные для замкнутых пространств;

ОПРЕДЕЛЕНИЕ ЗАМКНУТОГО ПРОСТРАНСТВА

Работа в замкнутых пространствах является частью повседневных рабочих процессов на производстве.

Замкнутым считается пространство:

  • достаточных размеров, чтобы сотрудник мог туда войти и выполнять некую работу;
  • с ограниченным или закрытым входом и выходом;
  • не предназначенное для продолжительного пребывания в нем человека.
Руководство по проведению анализа атмосферы в замкнутых пространствах

Замкнутое пространство, требующее разрешения на доступ, можно охарактеризовать как:
обычное замкнутое пространство, для которого правдиво хотя бы одно из следующих утверждений:

  • содержит или может содержать опасную атмосферу;
  • содержит материалы, склонные к поглощению;
  • устроено таким образом, что вошедший может оказаться в ловушке и задохнуться;
  • содержит любую известную угрозу безопасности или здоровью.

Ниже приведены примеры замкнутых пространств:

  • Резервуары для хранения и цистерны.
  • Канализация и колодцы.
  • Подземные хозяйственные помещения.
  • Склады для сельскохозяйственной продукции.
  • Железнодорожные цистерны.
  • Бункеры на морских суднах.
  • Тоннели.
  • Зерновые элеваторы.

АТМОСФЕРНЫЕ ОПАСНОСТИ В ЗАМКНУТЫХ ПРОСТРАНСТВАХ

Под атмосферными опасностями в замкнутых пространствах подразумевается воздействие на тех, кто входит в помещение, которое может привести к смерти, попаданию в ловушку, травмам или острым заболеваниям, по одной или нескольким из перечисленных ниже причин.

Кислород

Концентрация кислорода в воздухе ниже 19,5% (дефицит кислорода) или выше 23,5% (переизбыток кислорода).

Возможные последствия пребывания в атмосферах с недостаточным или избыточным содержанием кислорода

Содержание кислорода (об. %)Последствия и симптомы (при атмосферном давлении)
> 23,5%Перенасыщение кислородом, высокая опасность воспламенения
20,9%Концентрация кислорода в обычном воздухе
19,5%Минимально допустимый уровень кислорода
От 15% до 19%Снижение способности к усердной работе; возможно нарушение координации и проявление ранних симптомов у людей, имеющих проблемы с сердцем, легкими или кровообращением
От 10 до 12%Дыхание становится чаще и глубже, плохая ориентация, посинение губ
От 8 до 10%Психическое расстройство, обмороки, потеря сознания, мертвенно-бледный цвет лица, тошнота и рвота
От 6 до 8%После 4–5 минут еще есть шансы на восстановление. Через 6 минут наступает смерть в половине случаев. Через 8 минут смерть наступает в 100% случаев.
От 4 до 6%Впадение в кому через 40 секунд, конвульсии, остановка дыхания, смерть

Указанные значения являются приблизительными и могут отличаться в зависимости от состояния здоровья и физической активности конкретного человека.

Горючие газы

Содержание легковоспламеняющихся газов или паров в воздухе на уровне более 10% нижнего предела взрывоопасной концентрации (LEL/НПВК), но ниже верхнего предела взрывоопасной концентрации (UEL/ВПВК).

Сравнение нижнего (LEL) и верхнего (UEL) пределов взрывоопасной концентрации

Руководство по проведению анализа атмосферы в замкнутых пространствах
  • Минимальную концентрацию (воздушно-топливной смеси), при которой газ может воспламениться, называют нижним пределом взрывоопасной концентрации (LEL). Если концентрация ниже этого предела, ее недостаточно для воспламенения.
  • Максимальная концентрация газа, при которой он может воспламениться — это верхний предел взрывоопасной концентрации (UEL). Если концентрация выше, то смесь слишком насыщена, чтобы воспламениться.

ТЕТРАЭДР ПОЖАРА

Руководство по проведению анализа атмосферы в замкнутых пространствах

Для воспламенения требуется наличие четырех составляющих:

  1. топлива;
  2. кислорода для поддержания горения;
  3. нагревания или источника возгорания;
  4. цепной реакции (все три вышеупомянутые составляющие должны присутствовать в достаточных пропорциях для распространения огня).

Это называют тетраэдром пожара (ранее известный как треугольник пожара). Если хотя бы один из этих элементов отсутствует, воспламенение будет невозможным. Четвертая составляющая (цепная реакция) предполагает, что не все смеси топлива с кислородом при нагревании способны поддерживать горение. Необходимы особые пропорции, чтобы пламя могло распространяться. Это означает, что при обычном составе воздуха концентрация топлива должна находиться между LEL и UEL.

ГОРЮЧИЙ ГАЗ: ПРОЦЕНТНЫЙ ОБЪЕМ

LEL метана составляет 5 об. %, а UEL — 15 об. %. Если концентрация метана в замкнутом пространстве достигает 2,5% — это 50% LEL (соответственно, 5 об. % — это 100% LEL). При концентрации от 5 до 15 об. % от искры может произойти взрыв. Для разных газов 100% LEL составляет разную концентрацию в процентном объеме. Ниже приведены несколько примеров.

LEL пропана составляет 2,1 об. %; LEL пентана — 1,5 об. %; LEL гексана — 1,1 об. %, а LEL бензина — 1,3 об. %.

ТОКСИЧНЫЕ ГАЗЫ

Содержание токсичных соединений в атмосфере выше предельно допустимой концентрации, учрежденной организациями OSHA, NIOSH и ACGIH. Ниже приведены примеры распространенных токсичных газов, характерных для замкнутых пространств.

Токсичный газTWA (Макс за 8 ч)STEL (Макс единовременно)Верхний предел
Аммиак (Nh4)25 ppm35 ppm
Окись углерода (CO)25 ppm200 ppm
Хлор (Cl2)0,5 ppm1 ppm
Цианистый водород (HCN)4,7 ppm
Сероводород (h3S)10 ppm15 ppm
Оксид азота (NO)25 ppm
Диоксид серы (SO2)2 ppm5 ppm

Опасное для жизни воздействие: CO и h3S

Последствия от воздействия окиси углерода

ppm Длительность Последствия и симптомы
35 8 часов Предельно допустимая концентрация
200 3 часа Небольшая головная боль, дискомфорт
400 2 часа Головная боль, дискомфорт
600 1 час Головная боль, дискомфорт
От 1000 до 2000 2 часа Головокружение, дискомфорт
От 1000 до 2000 От 30 мин до 1 часа Нарушение равновесия
От 1000 до 2000 30 Слегка учащенное сердцебиение
От 2000 до 2500 30 Потеря сознания
4000 > 1 часа Смертельный исход

Последствия от воздействия сероводорода

ppm Длительность Последствия и симптомы
10 8 часов Предельно допустимая концентрация
От 50 до 100 1 час Слабовыраженное раздражение глаз и органов дыхания
От 200 до 300 1 час Выраженное раздражение глаз и органов
От 500 до 700 30 мин –1 час Потеря сознания, смерть
> 1000 Несколько минут Потеря сознания, смерть

МОНИТОРИНГ ЗАМКНУТЫХ ПРОСТРАНСТВ НА ПРЕДМЕТ НАЛИЧИЯ ОПАСНЫХ АТМОСФЕРНЫХ ФАКТОРОВ

Прежде чем войти в замкнутое пространство, следует проверить состояние воздуха в нем. Анализ атмосферы в замкнутом пространстве на предмет опасностей необходимо производить удаленно, непосредственно перед входом в такое пространство и в указанном ниже порядке.

  • Кислород. Убедитесь, что там достаточно кислорода.
  • Горючие газы. Убедитесь, что там нет горючих газов.
  • Токсичные газы. Убедитесь, что содержание токсичных газов не превышает предельно допустимую концентрацию, учрежденную OSHA. Из токсичных газов в замкнутых пространствах чаще всего обнаруживается сероводород (h3S) и окись углерода (СО), но могут присутствовать и другие токсичные соединения.

Чтобы определить неоднородную концентрацию газов и паров в замкнутом пространстве, важно отбирать несколько образцов: в верхней, средней и нижней части пространства. Газы могут скапливаться в высокой концентрации вверху или внизу замкнутого пространства, в зависимости от их плотности по сравнению с воздухом (большая или меньшая). Разреженные газы и пары в пределах миллионных долей распределяются в замкнутом пространстве равномерно.

Руководство по проведению анализа атмосферы в замкнутых пространствах

Особенно важно брать образцы на некотором расстоянии от проема, поскольку из-за проникновения воздуха в зону возле входа извне может сложиться ложное впечатление о достаточности кислорода в воздухе.

После завершения удаленной проверки, если по ее результатам зона является безопасной для пребывания человека, необходимо оформить соответствующие разрешения на вход в замкнутое пространство и соблюдать их. После первого входа в замкнутое пространство в нем должен непрерывно производиться мониторинг воздуха. Сопровождающий или наблюдатель при работе в замкнутом пространстве должен постоянно следить за составом воздуха. Условия в замкнутом пространстве могут незаметно измениться из-за утечек, токсичных испарений или вследствие определенных действий с содержимым помещения.

Отказ от ответственности. Это руководство по применению содержит только общее описание анализа атмосферы в замкнутых пространствах. Ни при каких обстоятельствах не разрешается входить в замкнутое пространство или использовать оборудование для мониторинга никому, кроме квалифицированного и специально обученного персонала, и только после внимательного ознакомления со всеми инструкциями, а также при соблюдении всех правил техники безопасности.

ПДК вредных веществ в воздухе рабочей зоны

Согласно Трудовому кодексу, работодатель должен обеспечить на предприятии безопасные условия труда. При работе на определенных производствах, в воздухе рабочей зоны содержатся вредные вещества, оказывающие влияние на здоровье людей – в обязанности работодателя входит контроль такого показателя, как предельная концентрация вредных веществ в воздухе (ПДК вредных веществ в воздухе рабочей зоны). Величины концентрации веществ определены и распределены по типу химического строения и токсикологического воздействия.

Разновидности ПДК в воздухе рабочей зоны

В зависимости от тяжести воздействия на живой организм, вредные вещества делят на 4 группы по опасности:

  • Чрезвычайно опасные;
  • Очень опасные;
  • Опасные;
  • Умеренно (сдержанно) опасные.

Допустимая ПДК в воздухе рабочей зоны меняется в зависимости от принадлежности того или иного вещества к группе опасности, меняется также время, которое живые организмы могут находиться при воздействии данных химических соединений.

Измерение ПДК вредных веществ в воздухе рабочей зоны

На предприятии, согласно санитарным нормам, обязательно должен производиться контроль за концентрацией вредных веществ в воздухе в области работы сотрудников. Данная обязанность возлагается на ответственных сотрудников, обеспечивающих охрану труда на предприятии.

Там, где применяются чрезвычайно опасные вредные вещества первого класса, необходим непрерывающийся контроль с помощью автоматических самопишущих приборов, которые выдают сигнал при увеличении уровня концентрации, а там, где применяются менее вредные вещества (умеренно опасные, опасные и очень опасные) — периодический контроль при помощи отбора и анализа проб воздуха. Ниже мы рассмотрим ПДК наиболее часто встречающихся на производстве вредных веществ и их воздействие на организм человека.

ПДК соляной кислоты в воздухе рабочей зоны — 5 мг/м3. Соляная кислота может попадать в организм при дыхании. Данное вещество оказывает разъедающее действие на глаза, кожный покров и дыхательные пути. Вдыхание человеком газа высокой концентрации может вызывать болезни легких -пневмонию, отек легких, приводить к синдрому дисфункции дыхательных путей. Долговременное воздействие может привести к возникновению хронических заболеваний. Вещество может воздействовать на зубы, приводя к их эрозии.

ПДК метана в воздухе рабочей зоны — 7000 мг/м3. Метан – это бесцветный газ, очень взрывоопасен. В небольшой концентрации метан нетоксичен и неопасен для здоровья человека. В высоких концентрациях может воздействовать на нервную систему, вызывает удушье, головную боль. Кроме того, метан оказывает очень негативное влияние на окружающую среду, так как является сильным парниковым газом.

ПДК сероводорода в воздухе рабочей зоны — 10 мг/м3. Сероводород — это не имеющий цвета сжатый сжиженный газ с характерным запахом протухших яиц. Сероводород оказывает сильное раздражающее действие на глаза и дыхательные пути человека. Вдыхание газа может привести к отеку легких, потере человеком сознания. Эффекты от воздействия могут иметь отсроченный характер, обострятся при физической нагрузке. Вещество является чрезвычайно огнеопасным.

ПДК бензина в воздухе рабочей зоны – если бензин растворитель — 300 мг/м3, топливного бензина — 100 мг/м3. В случае отравления бензином, наблюдаются тошнота, слабость, головокружение. Бензин хорошо всасывается через кожу, дыхательные пути, слизистые оболочки. При длительном воздействии бензина на организм возможна потеря сознания, появление галлюцинаций, судороги.

ПДК ацетона в воздухе рабочей зоны (ацетонциангидрина) – 0,9 мг/м3. Это жидкость с резким характерным запахом чаще бесцветного цвета. При вдыхании может вызывать судороги, кашель, тошноту, потерю сознания. При длительном воздействии ацетон может оказывать действие на центральную нервную систему и щитовидку, приводя к нарушениям в работе.

ПДК нефти в воздухе рабочей зоны – 10 мг/м3. Нефть – это горючее ископаемое и в необработанном виде представляет вязкую маслянистую жидкость темно-коричневого цвета. Отравление нефтью и получаемыми и нее продуктами может вызвать головную боль, головокружение, сердечные боли, бессонницу. При многократном воздействии наблюдаются нарушения в работе желудочно-кишечного тракта, повышенная заболеваемость органов дыхательных путей.

ПДК водорода в воздухе рабочей зоны (хлороводорода) – 5 мг/м3. Хлористый водород -это бесцветный сжатый сжиженный газ с резким запахом, не горючий. При многократном воздействии на организм вещество может оказывать действие на легкие, приводя к возникновению хронического бронхита. При вдыхании вызывает ощущение жжения, может вызывать кашель, боль в горле, симптомы могут проявиться через некоторое время (имеет отсроченное действие).

ПДК хлора в воздухе рабочей зоны – 1 мг/м3, порог восприятия запаха — 2 мг/м3. Хлор – это зеленовато-желтый газ с резким запахом. Воздействие 120 – 180 мг/м3 в течение 30-60 минут очень опасно для жизни, при 300 мг/м3 возможен летальный исход. При вдыхании вызывает ощущение жжения, тошноту, симптомы могут иметь отсроченное влияние (проявиться спустя время). Оказывает едкое воздействие на глаза, может вызвать сильные глубокие ожоги.

ПДК ртути в воздухе рабочей зоны – 0,005 мг/м³ (среднесменная). Ртуть – это тяжелый жидкий металл, не имеющий выраженного запаха, серебристого цвета, может попадать в организм при вдыхании паров и через кожные покровы. Вдыхание паров может вызвать проблемы с легкими (пневмонию). Вещество может оказывать действие на нервную систему, приводить к эмоциональным и психическим расстройствам, ртутному тремору, расстройству речи.

ПДК пропана в воздухе рабочей зоны — 300 мг/ м³. Пропан – это сжиженный нефтяной газ. Слабое однократное воздействие пропаном может вызвать у человека головную боль, головокружение. При многократном воздействии может привести к более серьезным последствиям.

ПДК бензола в воздухе рабочей зоны составляет 5 мг/м и совпадает с порогом восприятия запаха. Бензол – это бесцветная жидкость с резким запахом, может вызывать сонливость, головокружение, тошноту, судороги. Сильно огнеопасно. При многократном воздействии вещество может оказывать действие на органы кроветворения, печень и иммунную систему. Вещество очень канцерогенно для человека.

Воздух — Википедия

Материал из Википедии — свободной энциклопедии

Во́здух — смесь газов главным образом азота и кислорода — 98—99 % в сумме и зависит от влажности (концентрации водяного пара), а также аргона, углекислого газа, водорода, образующая земную атмосферу. Воздух необходим для нормального существования на Земле живых организмов. Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы). В промышленности и в быту кислород воздуха используется для сжигания топлива с целью получения тепла и механической энергии в двигателях внутреннего сгорания. Из воздуха, используя метод сжижения, добывают инертные газы. В соответствии с федеральным законом РФ «Об охране атмосферного воздуха» под атмосферным воздухом понимается «жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений».

Доказательства зонального распределения температуры воздуха: она понижается от экватора к полюсам. В этом направлении угол падения солнечных лучей уменьшается, что приводит к снижению нагревания земной поверхности. Средняя годовая температура на всей земной поверхности +14 °C. Южное полушарие холоднее Северного.

Состав воздуха

В 1754 году Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не простое вещество[1].

Химический состав осушенного воздуха :
Вещество Обозначение По объёму, % По массе, %
Азот N2 78,084 75,5
Кислород O2 20,9476 23,15
Аргон Ar 0,934 1,292
Углекислый газ CO2 0,03 0,046
Неон Ne 0,001818 0,0014
Криптон Kr 0,000114 0,003
Метан CH4 0,0002 0,000084
Гелий He 0,000524 0,000073
Водород H2 0,00005 0,00008
Ксенон Xe 0,0000087 0,00004

Состав воздуха может меняться в небольших пределах: в крупных городах содержание углекислого газа немного выше, чем в лесах; в высокогорье и на больших высотах концентрация кислорода немного ниже вследствие того, что молекулы кислорода тяжелее молекул азота, и поэтому концентрация кислорода с высотой уменьшается быстрее.

Существенное влияние на концентрацию газов в воздухе вносит водяной пар, концентрация которого зависит от температуры, влажности, времени года, климата. Так, при температуре 0 °C 1 м³ воздуха может содержать максимально 5 г воды, а при температуре +10 °C — уже 10 г.

Физические свойства воздуха:
Параметр Значение
Средняя молярная масса 28,98 г/моль
Плотность сухого воздуха при нормальном атмосферном давлении (101 325 Па)
Температура °C Значение плотности кг/м³
−25 1,424
0 1,2929
20 1,2047
225 0,7083
Средняя удельная теплоёмкость при постоянном давлении cp 1,006 кДж/(кг·К)
Средняя удельная теплоёмкость при постоянном объёме cv 0,717 кДж/(кг·К)
Показатель адиабаты 1,40
Скорость звука (при н. у.) 331 м/с (1193 км/ч)[2]
Средний коэффициент теплового расширения в интервале температур 0—100 °C 3,67⋅10−3 1/К
Коэффициент динамической вязкости воздуха (при н. у.) 17,2 мкПа·с
Растворимость воздуха в воде 29,18 см3
Коэффициент теплопроводности воздуха при нормальном атмосферном давлении (101325 Па)
Температура °C Значение теплопроводности Вт/(м·К)
–173 0.00922
–143 0.01204
–113 0.01404
–83 0.01741
–53 0.01983
–23 0.02207
–3 0.02348
0,1 0.02370
7 0.02417
17 0.02485
27 0.02553
37 0.02621
67 0.02836
97 0.03026
Показатель преломления (при стандартных условиях) 1,0002926
Коэффициент изменения показателя преломления 2,8⋅10−9 1/Pa
Средняя поляризуемость молекулы 1,7⋅10−30
Константа Сатерленда Sat 171⋅10−7

В философии Эмпедокла воздух (аэр) — это одна из четырех стихий космоса, наряду с огнём, землей и водой. В философии Аристотеля воздух относится к подлунным легким элементам.

Немецкий мыслитель Фридрих Вильгельм Ницше писал о воздухе, что это наивысшая и самая тонкая из материй. Из воздуха соткана свобода человека. Поэтому символ воздуха в первую очередь — это символ свободы. Это свобода, для которой нет никаких преград, ведь воздух нельзя ограничить, нельзя поймать и придать ему форму[3][4].

Это символ не только физической, но и духовной свободы, свободы мысли. Поэтому присутствие символов воздуха на какой-либо поверхности говорит о легкости мышления, свободе и непредсказуемости[5].

  1. Gribbin, John. Science. A History (1543-2001). — L.: Penguin Books, 2003. — 648 с. — ISBN 978-0-140-29741-6.
  2. ↑ Скорость звука // Физическая энциклопедия / под. ред. А. М. Прохорова. — М.: «Советская энциклопедия», 1988. — Т. 4.
  3. Ковальчук Т. Ю. Структура художественного пространства в лирике Д. С. Мережковского 1880—1900-х годов // Вестник Челябинского государственного университета. Филология. Искусствоведение. — Вып. 49.— 2010. — № 34 (215). — С. 58.
  4. ↑ Энциклопедия символов, знаков, эмблем. / авт.-сост. В. Андреева и др. — М. : МИФ : АСТ, 2001. — С. 96—97.
  5. ↑ Воздух // Символы, знаки, эмблемы: Энциклопедия / авт.-сост. В. Э. Багдасарян, И. Б. Орлов, В. Л. Телицын; под общ. ред. В. Л. Телицына. — 2-е изд. — М.: ЛОКИД-ПРЕСС, 2005. — 495 с.

6.1. Состав атмосферного воздуха. Допустимая концентрация кислорода в воздухе рабочей зоны. Способы обеспечения нормальных условий труда при работе с прв.

Атмосферный воздух представляет собой смесь газообразных веществ.

Объемный состав воздуха, в %: азота — 78,16; кислорода – 20,9; инертных газов (аргон, гелий, криптон, неон, и родон) – 0,94.

Массовый состав воздуха, в %: азота – 75,5; кислорода – 23,2; инертных газов – 1,3.

Кроме кислорода, азота и инертных газов, составляющих основную массу воздуха, в его состав входят в небольшом количестве диоксид углерода (СО2), водяные пары и пыль.

Причем диоксид углерода в атмосферу поступает от заводов и других объектов, сжигающих много топлива, содержание его в воздухе составляет в среднем около 0,03% (объемных), и содержание его в воздухе постоянное, потому что диоксид углерода поглощается растениями и хорошо растворяется в воде.

Содержание водяных паров в воздухе колеблется в пределах от долей процента до нескольких процентов и зависит как от местных условий, так и от температуры. Чем выше температура окружающего воздуха, тем больше водяных паров он содержит, вследствие чего содержание влаги в воздухе летом больше, а зимой меньше.

В основном пыль, находящаяся в воздухе, состоит из мельчайших частичек земли, песка, угля, пыльцы растений, а также различных бактерий. Количество ее в воздухе постоянно меняется. Например, после дождя воздух становится чище, потому что капли дождя уносят с собой пыль и бактерии.

Воздух, освобожденный от диоксида углерода, водяных паров и пыли, совершенно бесцветен, прозрачен, не имеет ни вкуса, ни запаха. Масса 1 л чистого воздуха при 0°С и давлении 760 мм рт. ст. – 1,293 г. При темп5ературе 140°С и давлении около 4 МПа он сгущается в бесцветную прозрачную. Жидкость плотностью – 960 кг/м3, закипающую при — t = 192°С (при нормальном давлении).

Окружающий нас воздух давит на поверхность земли на уровне моря с силой

101,3 кПа (760 мм рт. ст.).

6.2. Назначение и устройство регулирующей арматуры.

Вентиль относится к запорно-регулирующей арматуре (бывают вентили запорные и регулирующие).

Вентиль состоит из: корпуса, крышки, штока, маховика, грундбуксы, нажимной крышки сальника, тарелки, седла, прокладки, сальника.

Вентили, у которых тарелка выполнена в виде конуса (иглы) называются регулирующими.

Вентили, у которых тарелка имеет плоскую форму, называются запорными.

Вентили изготовленные из чугуна запрещено устанавливать на давление свыше 16 кгс/см2 и на пар.

Корпус может быть изготовлен также из бронзы, литой или легированной стали.

По способу присоединения вентили бывают: фланцевые, под сварку, с наружной и внутренней резьбой, муфтовые.

По способу уплотнения вентили бывают: сальниковые, сильфонные, мембранные.

Гидравлическое сопротивление вентиля больше, чем гидравлическое сопротивление задвижки.

В комплексе с автоматическими регуляторами регулирующая арматура предназначена для постоянного поддержания давления и расхода. Комплектуется с электроприводами и мембранно-исполнительными механизмами.

ГН 2.1.6.1338-03 Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест / 2 1 6 1338 03

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*