Расчет диаметра трубопровода для компрессора: Калькулятор диаметра трубопровода для компрессора – Как рассчитать внутренний диаметр трубопровода сжатого воздуха?

Содержание

Калькулятор диаметра трубопровода для компрессора

Внимание! Пожалуйста, вместо запятой при отделении дробной части чисел используйте точку. В противном случае, калькулятор не будет работать.

Длина трубопровода — это не только его собственная длина, но и условная добавка к ней, которая берется из суммы длин трубы, примерно соответствующих по уровню вызываемого падения давления изменениям направления трубы, сужениям, а также некоторым фитингам. Примерно эквивалентные длины элементов трубопровода указаны в таблице внизу. 

Если Вы не знаете сколько на трубопроводе будет сужений/расширений, изгибов, вентилей или точный расчет не отвечает стоящим перед Вами целям, мы рекомендуем вместо поправок применять к длине трубопровода поправочный коэффициент 1,6.

Эквивалентная длина трубопровода

Фитинг

Рисунок

Длина трубопровода, эквивалентная фитингу с определенным ДУ, м

DN25 DN40 DN50 DN80 DN100 DN125 DN150

Изгиб 90o, резкий

Izgib-90.png 1,5 2,5 3,5 5 7 10 15

Изгиб 90o, R=d

Izgib-d.png 0,3 0,5 0,6 1,0 1,5 2,0 2,5

Изгиб 90o, R=2d

Izgib-2d.png 0,15 0,25 0,3 0,5 0,8 1,0 1,5

Ответвление

Otvetvlen.png 2 3 4 7 10 15 20

Сужение d=2d

Sygenie.png 0,5 0,7 1,0 2,0 2,5 3,5 4,0

Шаровой кран или «бабочка»

Shar-kran.png 0,3 0,5 0,7 1,0 1,5 2,0 2,5

Седловой вентиль

Sed-vent.png 8 10 15 25 30 50 60

Как рассчитать внутренний диаметр трубопровода сжатого воздуха?

Диаметр трубопровода


Диаметры трубопроводов определяются при помощи расчётного графика (см. рис. 1) или вычисляются при помощи приблизительной формулы:


где
d = внутренний диаметр трубы, м
Vэф = общий объёмный расход, м3/сек
L = номинальная длина трубопровода, м
∆Р = перепад давления, бар
Рраб = рабочее давление, бар

Определение внутреннего диаметра трубопровода при помощи расчётного графика

(пример 1):

 

На рис.1 показан расчётный график, при помощи которого может быть определён внутренний диаметр трубопровода.


Использование расчётного графика:
• Отметим длину трубы на линии А, а объёмный расход на линии В;
• Соединим точки прямыми линиями и продолжим их до оси 1;
• Отметим давление в системе на линии Е, а допустимое снижение давления – на линии G;
• Соединим точки прямой линией. Эта линия пересечёт линию D;
• Диаметр трубы соответствует точке пересечения прямых.

Рис.1 Расчётный график для определения внутреннего диаметра трубопровода и перепада давления


Определение внутреннего диаметра трубопровода при помощи расчётного графика

(пример 2):

 

Если расчётный график, изображённый на рис. 1, непонятен для вас или работать с ним слишком трудно, то тогда смотрите рис. 2. Этот расчётный график позволяет определять только самые важные параметры и соответственно является более простым в использовании.


Использование расчетного графика:
• Проведём линию от левого столбца, в соответствии с необходимым расходом воздуха.
• Определим длину трубопровода, отметив соответствующий столбец.
• На пересечении линии и столбца в области между ломаными линиями находится соответствующее
значение диаметра.

Пример:
— Расход воздуха = 1000 л/мин
— Длина трубопровода = 100 м
— Необходимый диаметр трубопровода = 1”

Рис.2 Расчётный график для определения диаметра трубопровода и перепада давления


Дополнительная арматура:

Вся установленная арматура (клапаны, кронштейны, колена и т.д.) является дополнительным сопротивлением для потока и должны учитываться при расчёте.
Длины, которые должны прибавляться к длине трубопровода, приводятся в таблице (см. Рис. №3)

 

Пример: Отсечной клапан диаметра G 3/4 имеет значение длины 4,00; теоретически, трубопровод должен быть удлинён на 4 м.

Рис.3 Таблица зависимости длины от диаметра трубы и арматуры

Теперь, после подбора диаметра трубы и зная расход воздуха можно смело подбирать соответствующий компрессор, при этом размер его подсоединения сжатого воздуха не должен быть больше диаметра трубы. Компрессор подбирается в этом разделе нашего сайта.

Чтобы получить на него коммерческое предложение присылайте запрос на е-мэйл: [email protected], или на факс (812) 458-01-85.

Перейти в раздел

Расчёт внутреннего диаметра трубопровода сжатого воздуха при помощи графиков

АЭРО
  • Каталог продукции
    • Компрессоры
      • Винтовые электрические компрессоры
        • Компрессоры Ceccato (Италия)
          • Серия CSL (0,22 — 1,63 м3/мин)
          • Серия CSM (0,24 — 4,3 м3/мин)
          • Серия CSA (0,49 — 2,00 м3/мин)
          • Серия CSC (3,48 — 7,80 м3/мин)
          • Серия CSD (7,08 — 11,5 м3/мин)
          • Серия DRB (1,95 — 6,1 м3/мин)
          • Серия DRC (4,25 — 8,2 м3/мин)
          • Серия DRD (7,20 — 12,5 м3/мин)
          • Серия DRE (11,67 — 20,02 м3/мин)
          • Серия DRF (18,1 — 52,3 м3/мин)
          • Серия IVR с частотным приводом (0,3 — 52,3 м3/мин)
            • Серия CSC IVR (1,3-7,78 м3/мин)
            • Серия DRA IVR (0,27-2,29 м3/мин)
            • Серия DRB IVR (0,78-6,36 м3/мин)
            • Серия DRC IVR (1,45-7,87 м3/мин)
            • Серия DRE IVR (3,68-19,08 м3/мин)
            • Серия DRF IVR (5,5-52,3 м3/мин)
            • Серия DRD IVR PM (1,8-13,2 м3/мин)
        • Компрессоры Atlas Copco (Швеция)
        • Компрессоры MARK (Италия)
        • Компрессоры RENNER (Германия)
        • Компрессоры COMPRAG (Германия)
        • Компрессоры REMEZA (Беларусь)
        • Компрессоры Fini (Италия)
        • Компрессоры ЗИФ (Россия)
        • Компрессоры BERG (Германия)
        • Компрессоры DALI (Китай)
        • Компрессоры Abac (Италия)
      • Винтовые дизельные и бензиновые компрессоры
      • Безмасляные компрессоры
        • Компрессоры Ceccato (Италия)
        • Компрессоры Atlas Copco (Швеция)
        • Компрессоры RENNER (Германия)
          • Безмасляные компрессоры RENNER серия RSW с прямым приводом
          • Безмасляные компрессоры RENNER серия RSW F с прямым приводом и частотным преобразователем
          • Безмасляные спиральные компрессоры RENNER серия SCROLL
            • Безмасляные спиральные компрессоры RENNER серия SL-S 1,5 – 7,5 кВт
            • Безмасляные спиральные компрессоры RENNER серия SLK-S 1,5 – 7,5 кВт с осушителем
            • Безмасляные спиральные компрессоры RENNER серия SLD-S 1,5 – 7,5 кВт на ресивере 90 и 250 л
            • Безмасляные спиральные компрессоры RENNER серия SLDK-S 1,5 – 7,5 кВт с осушителем на ресивере 90 и 250 л
            • Безмасляные спиральные компрессоры RENNER серия SLM-S 7,5 – 30,0 кВт
            • Безмасляные спиральные компрессоры RENNER серия SLKM-S 7,5 – 22,0 кВт с осушителем
            • Безмасляные спиральные компрессоры RENNER серия SLDM-S 7,5 – 15,0 кВт на ресивере 500 л
            • Безмасляные спиральные компрессоры RENNER серия SLDKM-S 7,5 – 11,0 кВт с осушителем на ресивере 500 л
            • Безмасляные спиральные компрессоры RENNER серия SLD-S 1,5 – 7,5 кВт на ресивере 90 и 250 л
            • Безмасляные спиральные компрессоры RENNER серия SLDK-I 1,5 – 7,5 кВт с осушителем на ресивере 90 л и 250 л
            • Безмасляные спиральные компрессоры RENNER серия SLKT 1,5-7,5 кВт на поворотных колесах и с ручкой для перемещения
            • Безмасляные спиральные компрессоры RENNER серия SL-I 1,5-7,5 кВт
            • Безмасляные спиральные компрессоры RENNER серия SLK-I 1,5-7,5 кВт с осушителем
        • Компрессоры DALGAKIRAN (Турция)
        • Компрессоры REMEZA (Беларусь)
        • Компрессоры Garage (Россия)
        • Компрессоры Fubag (Германия)
        • Компрессоры Fini (Италия)
        • Компрессоры ABAC (Италия)
      • Поршневые электрические компрессоры
        • Стационарные на 220 В
        • Стационарные на 380 В
          • Компрессоры Ceccato (Италия)
            • Компрессоры Ceccato серии AGRE MKK (0,17 — 0,19 м3/мин)
            • Компрессоры Ceccato серии AGRE MGK (0,18 — 0,7 м3/мин)
            • Компрессоры Ceccato серии AGRE MEK (0,3 — 0,6 м3/мин)
            • Компрессоры на 380В с ресивером Ceccato (0,26 — 1,21 м3/мин)
            • Компрессоры на 380В на раме Ceccato (0,43 — 1,21 м3/мин)
          • Компрессоры Atlas Copco (Швеция)
          • Компрессоры АСО Бежецк (Россия)
          • Компрессоры REMEZA (Беларусь)
          • Компрессоры Fini (Италия)
          • Компрессоры ABAC (Италия)
          • Компрессоры ПКС (Украина)
          • Компрессоры Fiac (Италия)
          • Компрессоры RENNER (Германия)
        • Передвижные на 220 В
        • Передвижные на 380 В
      • Поршневые дизельные и бензиновые компрессоры
      • Дожимные компрессоры (бустеры)
      • Компрессоры для пневмотранспорта
      • Компрессоры для электротранспорта
      • Воздуходувки
      • Модульные компрессорные станции
      • Подбор компрессора по назначению
    • Подготовка сжатого воздуха и газов
    • Ресиверы
    • Генераторы
    • Тепловые пушки и тепловентиляторы
    • Окрасочное оборудование
    • Пескоструйное оборудование
    • Пневмо, электро и ударный инструмент
    • Hасосы и мотопомпы для жидкостей
    • Вакуумные насосы
    • Строительное оборудование
    • Металлообрабатывающее оборудование
    • Фитинги, хомуты, штуцера
    • Покупка и продажа б/у оборудования
    • Аренда оборудования
    • Ремонт, техническое обслуживание и запчасти

Калькулятор диаметра трубопровода для компрессора

Внимание! Пожалуйста, вместо запятой при отделении дробной части чисел используйте точку. В противном случае, калькулятор не будет работать.

Длина трубопровода — это не только его собственная длина, но и условная добавка к ней, которая берется из суммы длин трубы, примерно соответствующих по уровню вызываемого падения давления изменениям направления трубы, сужениям, а также некоторым фитингам. Примерно эквивалентные длины элементов трубопровода указаны в таблице внизу. 

Если Вы не знаете сколько на трубопроводе будет сужений/расширений, изгибов, вентилей или точный расчет не отвечает стоящим перед Вами целям, мы рекомендуем вместо поправок применять к длине трубопровода поправочный коэффициент 1,6.

Эквивалентная длина трубопровода

Фитинг

Рисунок

Длина трубопровода, эквивалентная фитингу с определенным ДУ, м

DN25 DN40 DN50 DN80 DN100 DN125 DN150

Изгиб 90o, резкий

Izgib-90.png 1,5 2,5 3,5 5 7 10 15

Изгиб 90o, R=d

Izgib-d.png 0,3 0,5 0,6 1,0 1,5 2,0 2,5

Изгиб 90o, R=2d

Izgib-2d.png 0,15 0,25 0,3 0,5 0,8 1,0 1,5

Ответвление

Otvetvlen.png 2 3 4 7 10 15 20

Сужение d=2d

Sygenie.png 0,5 0,7 1,0 2,0 2,5 3,5 4,0

Шаровой кран или «бабочка»

Shar-kran.png 0,3 0,5 0,7 1,0 1,5 2,0 2,5

Седловой вентиль

Sed-vent.png 8 10 15 25 30 50 60

Как выбрать размер трубопровода сжатого воздуха?

Итак, Вам нужно узнать, как подобрать правильный размер трубопроводов сжатого воздуха. Все еще встречаются места, где размер трубы в системе сжатого воздуха слишком мал. Это либо потому, что производство со временем расширилось, и старая система стала слишком маленькой, или просто изначально были установлены неподходящие трубопроводы. В чем проблема со слишком маленькой трубой для сжатого воздуха? Это падение давления. Нужное количество сжатого воздуха попросту не пройде через эту трубу. Результатом будет является перепад давления между началом и концом трубы. Чем плох перепад давления? Это лишние затраты. Если падение давления становится слишком высоким, Вам нужно будет установить компрессор на более высокое давление. Чем оно выше, тем больше электроэнергии (и денег) он будет требовать. Поэтому желательно, чтобы падение давления составляло максимум 0,1 бар.

Что влияет на падение давления?

Конечно, не только сами трубы, но также повороты трубопровода, муфты, гибкие шланги, — все они создают перепады давления. И чем длиннее трубопровод, тем больше будет падение давления. Количество воздуха, проходящего через трубу, также влияет на величину перепада давления. Чем больше воздуха должно проходить через трубу в момент времени, тем больше падение давления. Поэтому падение давления нужно всегда измерять при всех включенных потребителях воздуха.

Ниже приведены величины, необходимые для расчета падения давления:

  • диаметр трубы;
  • длина трубы;
  • количество изгибов, муфт и т. д.;
  • поток воздуха через трубу.

Воздушный поток

Чтобы начать расчет, вам нужно знать, сколько воздуха проходит через вашу систему. Самый простой способ узнать (максимальный) расход воздуха — это посмотреть на характеристики вашего компрессора. Там всегда будет указана максимальная мощность машины в литрах в секунду, м3 в минуту или час. Есть также важная вещь. Производительность компрессора указана для стандартных условий, которые составляют 1 бар, 20 градусов по Цельсию и 0% относительной влажности. Однако производительность компрессора при нормальных условиях и фактическая производительность отличается. Таким образом, на самом деле производительность компрессора при нормальных условиях представляет собой количество воздуха, всасываемого компрессором в единицу времени. Затем воздух сжимается и транспортируется через систему трубопроводов. Таким образом, фактическая производительность компрессора будет ниже, чем производительность при нормальных условиях. Эта разница часто упускается из виду; большинство людей не знают об этом и неправильно пользуются характеристиками компрессорного оборудования.

Таблица размеров труб для сжатого воздуха

Здесь представлена простая таблица, которая ответит на все вопросы по размерам трубопроводов. В левом столбце указана производительность компрессора. Теперь измерьте или рассчитайте общую длину Ваших трубопроводов сжатого воздуха и посмотрите на верхнюю строчку. Таким образом Вы можете узнать нужный диаметр трубы в мм. Эта таблица рассчитана на давление компрессора 7 бар и максимальный перепад давления 0,3 бар. Указанные значения относятся к прямой трубе без каких-либо поворотов, клапанов и т.д. Как рассчитать влияние этих факторов можно узнать из следующего абзаца.

Таблица 1: диаметры трубопроводов сжатого воздуха (в миллиметрах).

Произв., м3/ч 50 м 100 м 150 м 300 м 500 м 750 м 1000 м 2000 м
10 15 15 15 20 20 25 25 25
30 15 15 15 25 25 25 25 40
50 15 25 25 25 40 40 40 40
70 25 25 25 40 40 40 40 40
100 25 25 40 40 40 40 40 63
150 25 40 40 40 40 40 40 63
250 40 40 40 40 63 63 63 63
350 40 40 40 63 63 63 63 80
500 40 40 63 63 63 63 63 80
750 40 63 63 63 63 80 80 100
1000 63 63 63 63 63 80 80 100
1250 63 63 63 63 63 100 100 100
1500 63 63 63 80 80 100 100 125
1750 63 63 80 80 80 100 100 125
2000 63 80 80 80 100 100 100 125
2500 63 80 80 80 100 125 125 125
3000 80 80 76 100 100 125 125 150
3500 80 80 100 100 125 125 125 150
4000 80 100 100 100 125 125 125 150
4500 80 100 100 125 125 125 150 150
5000 80 100 100 125 125 150 150 150

Влияние изгибов, муфт и других составляющих трубопровода на падение давления

Ниже приведена таблица для определения того, как различные составляющие трубопровода влияют на перепад давления. Значение зависит от диаметра трубы. Чтобы узнать эквивалентную длину трубы для клапана или изгиб в вашей системе, просто посмотрите на диаметр трубы Вашей системы сжатого воздуха, чтобы найти эквивалентную длину трубы клапана или изгиб. Например, колено в 25-миллиметровой трубе имеет эквивалентную длину трубы 1,5 метра. Это означает, что это колено создаст такое же падение давления, как и 1,5 метра прямой трубы.

Таблица 2. Эквивалентные длины труб (значения в метрах).

Диаметр трубопровода 25 мм 40 мм 50 мм 80 мм 100 мм 125 мм 150 мм
Изгиб 90° (R=d) 0.3 0.5 0.6 1.0 1.5 2.0 2.5
Bend 90° (R=2d) 0.15 0.25 0.3 0.5 0.8 1.0 1.5
Колено (90°) 1.5 2.5 3.5 5 7 10 15
Т-образное соединение 2 3 4 7 10 15 20
Обратный клапан 8 10 15 25 30 50 60
Диафрагменный клапан 1.2 2.0 3.0 4.5 6 8 10
Задвижка 0.3 0.5 0.7 1.0 1.5 2.0 2.5

Пример расчета требуемого диаметра трубы

Предположим, у нас есть винтовой компрессор мощностью 30 кВт производительностью 250 Нм3/час (4200 Нл/мин. Есть также труба диаметром 40 мм и нам нужно проверить, правильно ли подобран ее диаметр.

Допустим, у нас есть 20 метров трубы с углом 90 градусов (R=2d означает, что радиус изгиба в 2 раза больше диаметра трубы) и обратный клапан, а затем снова 4 метра трубы.

Эквивалентная длина трубы для такого изгиба составляет 0,25 метра. Эквивалентная длина трубы для обратного клапана составляет 10 метров. Общая длина теперь составляет: 20 + 0,25 +10 + 4 = 34,25 метра.

Теперь мы можем найти требуемый диаметр трубы в таблице 1 для длины трубы 34,25 метра и производительности 250 Нм3/час. Получим диаметр трубы 40 мм.

Для новой системы, если Вы не уверены, сколько изгибов, клапанов и т.д будет в системе, умножьте длину трубопровода на 1.7.

Определение диаметра трубопровода

Перейти к каталог трубопроводной арматуры Потеря давления в трубопроводе, кроме прочего, зависит от расхода скорости потока и вязкости среды протекания. Чем больше количество пара, проходящего через трубопровод определённого номинального диаметра, тем выше трение о стенки трубопровода. Иными словами, чем выше скорость пара, тем выше сопротивление или потери давления в трубопроводе.

На сколько высоки могут быть потери давления определяется назначением пара. Если перегретый пар подается через трубопровод к паровой турбине, то потери давления должны быть по возможности минимальными. Такие трубопроводы значительно дороже обычных, причём больший диаметр, в свою очередь, приводит к значительно большим затратам. Инвестиционный расчёт основывается на времени возврата (срок окупаемости) инвестиционного капитала в сравнении с прибылью от работы турбины.

Этот расчёт должен основываться не на средней нагрузке турбины, а исключительно на ее пиковой нагрузке. Если, например, в течении 15 минут набрасывается пиковая нагрузка в 1000 кг пара, то трубопровод должен иметь пропускную способность 60/15x 1000 = 4000 кг/ч.

Расчёт

В главе далее — Работа с конденсатом, поясняется методика расчёт диаметра конденсатопроводов. В расчётах паро- воздухо- и водопроводов действуют примерно те же исходные принципы. В завершении этой темы в этом разделе будут приведены расчеты для определения диаметра паро- воздухо- и водопроводов.

В расчётах диаметров в качестве основной применяется формула:

формула1.jpg

, где:

Q = расход пара, воздуха и воды в м3/с.

D = диаметр трубопровода в м.

v = допустимая скорость потока в м/с.

В практике рекомендуется вести расчет по расходу в м3/ч и по диаметру трубопровода в мм. в этом случае выше приведённая формула расчёта диаметра трубопровода изменяется следующим образом:

формула2.jpg

, где:

D = диаметр конденсатопровода в мм.

Q = расход в м3/ч.

V = допустимая скорость потока в м/с.

Расчет трубопроводов всегда ведется по объёмному расходу (м3/ч), а не по массовому (кг/ч). Если известен только массовый расход, то для пересчёта кг/ч в м3/ч необходимо учитывать удельный объём по таблице пара.

Пример:

Удельный объем насыщенного пара при давлении 11 бар составляет 0,1747 м3/кг. Таким образом, объемный расход от 1000 кг/ч насыщенного пара при 11 бар будет составлять 1000 * 0,1747 = 174,7 м3/ч. Если речь будет идти о таком же количестве перегретого пара при давлении 11 бар и 300 °С, то удельный объём составит 0,2337 м3/кг, а объемный расход 233,7 м3/ч. Таким образом это означает, что один и тот же паропровод не может одинаково подходить для транспорта одного количества насыщенного и перегретого пара.

Также для случая воздуха и других газов расчет необходимо повторить с учетом давления. Производители компрессорного оборудования указывают производительность компрессоров в м3/ч, под которым понимается объем в м3 при температуре 0 °С.

Если производительность компрессора 600 мп3/ч и давление воздуха 6 бар, то объемный расход составляет 600/6 = 100 м3/ч. в этом также заключается основа расчета трубопроводов.

Допустимая скорость потока

Допустимая скорость потока в системе трубопроводов зависит от многих факторов.

  • стоимость установки: низкая скорость потока приводит к выбору большего диаметра.
  • потеря давления: высокая скорость потока позволяет выбрать меньший диаметр, однако вызывает большую потерю давления.
  • износ: особенно в случае конденсата высокая скорость потока приводит к повышенной эрозии.
  • шум: высокая скорость потока увеличивает шумовую нагрузку, напр. Паровой редукционный клапан.

В ниже приведенной таблице представлены данные норм относительно скорости потока для некоторых сред протекания.

Среда

Назначение

Скорость потока в м/с

пар

До 3 бар

10 – 15

3 – 10 бар

15 – 20

10 – 40 бар

20 – 40

Конденсат

Заполненный конденсатом

2

Конденсато-паровая смесь

6 – 10

Питательная вода

Трубопровод всаса

0,5 – 1

Трубопровод подачи

2

Вода

Питьевого качества

0,6

Охлаждение

2

Воздух

Воздух под давлением

6 – 10

* Трубопровод всаса насоса питательной воды: из-за низкой скорости потока низкая потеря давления, что препятствует образованию пузырьков пара на всасе питательного насоса.

Нормы для определения скорости потока

Примеры:

a) Вода

Расчет диаметра трубопровода для воды при 100 м3/ч и скорости потока v = 2 м/с.

D = √ 354*100/2 = 133 мм. Выбранный номинальный диаметр DN 125 или DN 150.

b) Воздух под давлением

расчет диаметра трубопровода для воздуха при 600 м3/ч, давление 5 бар и скорости потока 8 м/с.

Перерасчет с нормального расхода 600 м3/ч на рабочий м3/ч 600/5 = 120 м3/ч.

D = √ 354*120/8 = 72 мм. Выбранный номинальный диаметр DN 65 или DN 80.

В зависимости от назначения воды или воздуха выбирается трубопровод DN 65 или DN 80. Необходимо иметь ввиду, что расчет диаметра трубопровода усреднен и не предусматривает случая наступления пиковой нагрузки.

c) Насыщенный пар

Расчет диаметра трубопровода для насыщенного пара при 1500 кг/ч, давлении 16 бар и скорости потока 15 м/с.

В соответствии с таблицей пара удельный объем насыщенного пара при давлении 16 бар составляет v = 0,1237 м3/кг.

D = √ 354*1500*0,1237/15 = 66 мм.

И здесь должен быть решен вопрос DN 65 или DN 80 в зависимости от возможной пиковой нагрузки. В случае необходимости предусматривается также возможность расширения установки в будущем.

d) Перегретый пар

Если в нашем примере пар перегреет до температуры 300 °С, то его удельный объем изменяется на v = 0,1585 м3/кг.

D = √ 354*1500*0,1585/15 = 75 мм, выбирается DN 80.

Изображение 4.9 в форме номограммы показывает, как можно произвести выбор трубопровода без проведения расчета. На изображении 4-10 этот процесс представлен для случая насыщенного и перегретого пара.

е) Конденсат

Если речь идёт о расчёте трубопровода для конденсата без примеси пара (от разгрузки), тогда расчёт ведётся как для воды.

Горячий конденсат после конденсатоотводчика, попадая в конденсатопровод, разгружается в нём. В главе 6.0 Работа с конденсатом поясняется, как определить долю пара от разгрузки.

Правило к проведению расчёта:

Доля пара от разгрузки = (температура перед конденсатоотводчиком минус температура пара после конденсатоотводчика) х 0,2. При расчёте конденсатопровода необходимо учитывать объём пара от разгрузки.

Объём оставшейся воды в сравнении с объёмом пара от разгрузки настолько мал, что им можно пренебречь.

Расчёт диаметра конденсатопровода на расход 1000 кг/ч сконденсированного пара 11 бар (h2 = 781 кДж/кг) и разгруженного до давления 4 бар (h’ = 604 кДж/кг,v = 0,4622 м3/кг и r — 2133 кДж/кг).

Доля разгруженного пара составляет: 781 – 604/ 100 % = 8,3%

Количество разгруженного пара: 1000 х 0,083 = 83 кг/ч или 83 х 0,4622 -38 м3/ч. Объёмная доля разгруженного пара составляет около 97 %.

Диаметр трубопровода для смеси при скорости потока 8 м/с:

D = √ 354*1000*0,083*0,4622/8 = 40 мм.

Для сети атмосферного конденсата (v“ = 1,694 м3/кг) доля разгруженного пара составляет:

781 – 418/2258*100 % = 16 % или 160 кг/ч.

В этом случае диаметр трубопровода:

D = √ 354*1000*0,16*1,694/8 = 110 мм.

Источник: «Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010»

Для более верного выбора оборудования можно обратиться на эл. почту: [email protected]

Трубы для сжатого воздуха (пластик, полипропилен, гост)

Прокладка и монтаж трубопровода сжатого воздуха

Трубопровод сжатого воздуха на улице располагают на скользящих опорах или под землёй. При расположении на опорах узлы утепляют, а при прокладке под землёй — на местах стыков располагают смотровые колодцы. В помещении трубы располагают на полу, стенах или по потолку, в зависимости от удобства в конкретном случае.

Ответвления трубы к потребителям сжатого воздуха располагают в зависимости от рабочего давления, чем выше давление потребителя, тем ближе следует его располагать к компрессору. Труба на протяжении первых 200 м от компрессора должна размещаться на паронитовых или асбестовых прокладках, применять для этой цели картон нельзя.

Монтаж трубопроводов сжатого воздуха из полипропилена максимально прост из-за лёгкого веса труб и отсутствия необходимости сварочных работ. После соединения всех стыков и установки клапанов, муфт, конденсатоотводчиков и др. нужно провести испытания на герметичность и только потом проводить работы по изоляции.

При монтаже трубопровода для сжатого воздуха отдельный комплекс мер проводят по предупреждению попадания конденсата в компрессоры потребителей. Для этого трубу делают с уклоном, в самой нижней точке которого установлен клапан для удаления воды. Кроме того, изогнут и снабжён клапаном должен быть и каждый отвод к потребителю (так называемая «гусиная шея»).

На участках трубопровода, где возможно скопление воды или масла, желательно установить оборудование для продувки (в месте подсоединённого паропровода обязательно делают две задвижки, между которыми располагается спускное устройство). Места спускных приспособлений, вентили, клапаны и другие детали управления должны находиться в доступных для персонала местах.

Для уплотнения стыков при монтаже полипропиленовых труб для сжатого воздуха нельзя использовать паклю, следует применять тефлоновую ленту или герметик, содержащий тефлон. Каждый отвод к потребителю следует оборудовать запорным вентилем, редуктором, манометром, фильтром-влагоотделителем. Запорные вентили нужно вставить и на участках трубопровода, чтобы обеспечить возможность местного ремонта.

На всём протяжении труба для воздуха высокого давления должна быть огорожена от электрических проводов так, чтобы соприкосновение было исключено даже в случае их обрыва или провисания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*