Расчет конденсаторов для трехфазного двигателя в однофазной сети: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Расчет конденсаторов для асинхронных

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети.

Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором.

На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;

κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

При вводе данных в качестве десятичного разделителя используйте точку!

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала.

В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Предложенный калькулятор предназначен для вычисления емкостей двух параллельно соединенных конденсаторов – пускового Cп и рабочего Ср.

Изменением (уменьшением) общей емкости (отключением Сп по окончании разгона двигателя) осуществляется 2х-ступенчатое управление. Расчет рабочей емкости производится по формуле:

Cр=2800*I/U – если обмотки двигателя соединены “звездой”; Cр=4800*I/U – в случае соединения обмоток “треугольником”.

Ток I определяется отношением мощности двигателя P к произведению 1,73, напряжения U, коэффициента мощности cosφ и коэффициента полезного действия η.

Таким образом, для точности расчета потребуется ввод данных (последних двух параметров) с шильдика электродвигателя. При отсутствии такой информации, в соответствующие поля формы можно ввести средние значения.

Емкость пускового конденсатора подбирается в 2-3 раза большая, чем рабочая. В данном калькуляторе используется следующий расчет: Cп=2,5*Cр

Как правильно подключить трехфазных двигатель к однофазной сети

Бывают ситуации, когда нужно подключить электроприбор не так, как записано в его паспорте. К примеру, часто требуется подключение трехфазного двигателя к однофазной сети, что, хотя и снижает его мощность, иногда бывает вполне оправданным. Существуют основные схемы включения таких электродвигателей, которые широко и успешно применяются на практике. Также есть и некоторые нюансы, помогающие решать неожиданные трудности, связанные с отсутствием тех или иных материалов.

Работа такого двигателя в однофазной сети

Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.

Работа трехфазного двигателя

Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.

Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.

Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.

Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.

Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.

Расчет конденсаторов

Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.

Пример расчетов для конденсатора

I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.

Емкость пускового конденсатора берется из расчета 2–3 Сраб.

Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:

По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.

Модели конденсаторов

Лучше всего использовать металлобумажные конденсаторы. Если нет подходящих по емкости, их набирают из нескольких элементов. Но что, если нет и металлобумажных? Допустимо ли использование электролитических?

Для рабочих конденсаторов – однозначно нет. Электролитические емкости полярные, то есть, они для постоянного тока, и при подключении важно соблюдать полярность. В сети переменного тока, или при неправильном соединении, они попросту взрываются, забрызгивая бумагой и электролитом все окружающее пространство.

Но есть и свои хитрости. Что делать, если есть только электролиты, а запустить электродвигатель нужно прямо здесь и сейчас? Самая простая схема для превращения полярного элемента в неполярный:

Соединять необходимо отрицательными выводами. При этом стоит помнить, что при таком соединении их суммарная емкость будет в два раза ниже (если значения одинаковые, то можно просто разделить на два).

Но в нашей цепи присутствуют большие токи, поэтому предпочтительнее использовать другое соединение:

Применяется встречно – параллельное соединение, следовательно, нужно правильно посчитать результирующую емкость. Диоды также выбираются по току и напряжению.

Если двигатель будет работать на мощном станке, тогда подойдут металлобумажные элементы. Для пусковой емкости используют электролиты, но здесь важно не передержать кнопку пуска.

Данные двигателя

На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:

  • полезная мощность снижается до 70–80%,
  • при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
  • если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.

Реверс в однофазной сети

Чтобы сделать реверс такого двигателя, подключенного к однофазной сети, нужно пусковой конденсатор переключить на другую обмотку. Делать это необходимо при снятом напряжении питания, и включать его только после полной остановки ротора. Это самая простая схема реверсирования.

Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.

Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, Вт IC1=IL1, A C1, мкФ L1, Гн
100 0. 26 3.8 2.66
200 0.53 7.6 1.33
300 0.79 11.4 0.89
400 1.05 15.2 0.67
500 1.32 19.0 0.53
600 1.58 22.9 0.44
700 1.84 26.7 0.38
800 2.11 30.5 0.33
900 2.37 34.3 0.30
1000 2.63 38.1 0.27
1100 2.89 41.9 0.24
1200 3.16 45.7 0.22
1300 3.42 49.5 0.20
1400 3.68 53.3 0. 19
1500 3.95 57.1 0.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.

Таблица 2
P, Вт IC1, A IL1, A C1, мкФ L1, Гн
100 0.35 0.18 5.1 3.99
200 0.70 0.35 10.2 2.00
300 1.05 0.53 15.2 1.33
400 1.40 0.70 20.3 1.00
500 1.75 0.88 25.4 0.80
600 2.11 1. 05 30.5 0.67
700 2.46 1.23 35.6 0.57
800 2.81 1.40 40.6 0.50
900 3.16 1.58 45.7 0.44
1000 3.51 1.75 50.8 0.40
1100 3.86 1.93 55.9 0.36
1200 4.21 2.11 61.0 0.33
1300 4.56 2.28 66.0 0.31
1400 4.91 2.46 71.1 0.29
1500 5.26 2.63 76.2 0.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220 237 254
0. 2 0.63 0.54 0.46
0.5 1.26 1.06 0.93
1 2.05 1.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
Трансформатор Номинальный
ток, A
Мощность
двигателя, Вт
ТС-360М 1.8 600…1500
ТС-330К-1 1.6 500…1350
СТ-320 1.6 500…1350
СТ-310 1.5 470…1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1. 25 400…1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1 350…900
ТС-200К 1 330…850
ТС-200-2 0.95 300…800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87 275…700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Схема подключения трехфазного двигателя к однофазной сети

Как подключить трехфазный двигатель к сети 220 вольт

Источник: https://electric-220.ru/news/kak_podkljuchit_trekhfaznyj_dvigatel_k_seti_220_volt/2016-10-20-1091

Подключение трехфазного двигателя

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование.

В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле.

Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной.

В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов.

Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами.

То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой.

Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток.

Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним.

Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет.

Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК.

Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подключение трехфазного двигателя к однофазной сети

Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети.

Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником.

Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов.

Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте.

Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

Как подобрать конденсатор для трехфазного двигателя

Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети.

Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более.

Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

Расчёт конденсатора для трёхфазного двигателя

Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить.

Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах.

Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.

Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор.

Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков.

За счет этих потоков, ротор двигателя начинает вращаться.

Соединение звездой и треугольником обмоток электродвигателя

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда.

Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью.

Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя.

Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение.

При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Источник: http://pkdemo.ru/podklyuchenie-trexfaznogo-dvigatelya-k-trexfaznoj-seti. html

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт.

Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства.

Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.

1. Схема звезды.
2. Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше.

Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки.

Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В.

Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде.

Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме.

При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой.

Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток

Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:

• Подключить импульсный постоянный ток.
• Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом.

В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу.

Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

https://www.youtube.com/watch?v=ukl8nctMpTI

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится.

Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск.

Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата

Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении такой схемы нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание. Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:

  1. Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  2. Нельзя дистанционно выключить и включить электродвигатель.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/skhemy-podkliucheniia-trekhfaznogo-dvigatelia/

Подключение трехфазного двигателя к сети 220 и 380

Для работы разнообразных электрических устройств используются асинхронные двигатели, которые просты и надежны в работе и монтаже – их легко можно установить своими руками. Подключение трехфазного двигателя к однофазной и трехфазной сети осуществляется звездой и треугольником.

Общая информация

Асинхронный трехфазный двигатель состоит из следующих основных частей: обмоток, подвижного ротора и неподвижного статора. Обмотки могут быть соединены межу собой, а к их открытым контактам подключается основное питание сети или последовательно, т. е. конец одной обмотки соединен с началом следующей.

Фото – схема звезда наглядно

Подключение может осуществляться к однофазной, двухфазной и трехфазной сети, при этом двигатели в основном рассчитаны на два напряжения – 220/380 В. Переключение типа соединения обмоток позволяет менять номинальное напряжение.

Несмотря на то, что в принципе подключение двигателя возможно и к однофазной сети, оно редко используется, т. к. конденсатор снижает эффективность устройства. И от номинальной мощности потребитель получает приблизительно 60 %.

Но если иного варианта нет, то нужно подключать схемой “треугольник”, тогда перегрузка мотора будет меньшей, чем при звезде.

https://www.youtube.com/watch?v=ucV9ejoR-Bk

Перед подсоединением обмоток в однофазной сети нужно обязательно проверить емкость конденсатора, который будет использоваться. Для этого нужна формула:

C мкф = P Вт /10

Если исходные параметры конденсатора неизвестны, то рекомендуется использовать пусковую модель, которая может «подстроиться» под работу двигателя и контролировать его обороты.

Также часто для работы устройства с короткозамкнутым ротором используют реле тока или стандартный магнитный пускатель. Эта деталь схемы позволяет обеспечить полную автоматизацию рабочего процесса.

Причем для бытовых моделей (с мощностью от 500 в до 1 кВт) можно использовать пускатель от стиралки или холодильника, в дальнейшем увеличивая емкость конденсатора или изменяя обмотку реле.

Видео: как подключать трехфазный двигатель в 220В

Способы подключения

При однофазной сети необходимо сдвигать фазу при помощи специальных деталей, чаще всего это конденсатор. Но в некоторых условиях его заменят тиристор.

Если установить тиристорный ключ в корпус электродвигателя, то при закрытом положении он не только сдвигает фазы, но и значительно увеличивает пусковой момент. Это способствует повышению КПД до 70 %, что является прекрасным показателем для такого подсоединения.

Используя только эту деталь можно отказаться от применения вентилятора и основных типов конденсаторов – пускового и рабочего.

Но и это подключение не является идеальным. При работе ЭД с тиристором потребляется на 30 % больше электрического тока, чем с конденсаторами. Поэтому такой вариант применяется только на производстве или при отсутствии выбора.

Рассмотрим, как производится подключение трехфазного асинхронного двигателя к трехфазной сети, если используется схема треугольник.

Фото – простой треугольник

На чертеже указаны два конденсатора – пусковой и рабочий, кнопка пуска, диод, сигнализирующий о начале работы и резисторная система торможения и полной остановки. Также в данном случае применяется переключатель, который имеет три позиции: «удержание», «старт», «стоп».

При установке рукоятки в первом положении к контактам начинает поступать электрический ток. Здесь важно сразу же после того, как двигатель заведется перейти в режим «старт», иначе обмотки могут загореться из-за перегрузки. Во время окончания рабочего процесса рукоятка фиксируется в точке «стоп».

Фото – подключение при помощи конденсаторов электролитов

Иногда при подключении в фазу удобнее останавливать трехфазный двигатель за счет энергии, которая запасена в конденсаторе. Иногда вместо них используются электролиты, но это более сложный вариант установки устройства.

В этом случае очень важны параметры конденсатора, в частности, его емкость – от неё зависит торможение и время полной остановки движущихся частей. Также в этой схеме используются выпрямляющие диоды и резисторы. Они помогут при необходимости ускорить остановку двигателя.

Но их технические характеристики должны иметь следующий вид:

  1. У резистора сопротивление не должно превышать 7 кОм;
  2. Конденсатор должен выдерживать напряжение 350 вольт и выше (в зависимости от напряжения сети).

Имея под рукой схему с остановки мотора, при помощи конденсатора можно осуществить подключение с реверсом.

Главным отличием от предыдущего чертежа является модернизация трехфазного двухскоростного двигателя за счет двойного переключателя и магнитного пускового реле.

Переключатель также как и в предыдущих вариантах имеет несколько основных позиций, но фиксируется только на «старт» и «стоп» – это очень важно.

Фото – реверс при помощи пускателя

Реверсивное подключение двигателя возможно также через магнитный пускатель. В таком случае нужно изменить порядок очередности фаз статора, тогда можно будет обеспечить перемену направления вращения.

Чтобы это сделать, нужно сразу после нажатия на кнопку пускателя «Вперед», нажать кнопку «Назад». После этого блокировочный контакт отключит катушку переднего хода и переведет питание на задний – направление вращения изменится.

Но нужно быть внимательным при подключении пускателя – если перепутать местами контакты, то при переходе произойдет не реверсирование, а короткое замыкание.

Еще одним необычным способом, как можно подключить трехфазный двигатель, является вариант с использованием четырехполюсного УЗО. Её особенностью является возможность использования без нуля сети.

  1. В большинстве случаев, ЭД требуется только 3 фазы и 1 провод заземления, ноль необязателен, т. к. нагрузка симметрична;
  2. Принцип подключения таков: фазы питания отводим к автоматическому выключателю, а ноль соединяем прямо с клеммой УЗО – N, после этого её ни к чему не подключаем;
  3. От автомата кабели также аналогично подсоединяются к УЗО. Заземляем двигатель и все.

Источник: https://www.asutpp.ru/podklyuchenie-trexfaznogo-dvigatelya.html

Как подключить трехфазный электродвигатель в сеть 220в

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт.

Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку.

Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Подключение промышленного двигателя к однофазной сети

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены «звездой». Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение «треугольник». При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются «треугольником».

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение «звезда». К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная  схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Подключение звездой и треугольником

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Соединение выводов на клеммнике звездой и треугольником

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен.

Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В.

Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии «Пуск» замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку «Стоп» отключает зафиксированные контакты.

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Реверс конденсаторного двигателя

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

Источник: https://amperof.ru/elektropribory/podklyuchit-trehfaznyj-elektrodvigatel-220v. html

Подключение трехфазного двигателя к однофазной сети

Подключение трехфазного двигателя к однофазной сети не так сложно, как может показаться на первый взгляд. Среди разнообразных схем подключения в однофазную сеть трехфазных электродвигателей, простейшей считается схема включения его третьей обмотки, через сдвигающего фазу конденсатор.

КПД электродвигателя в этом случае уменьшается примерно до 60% от его номинальной мощности, по сравнению если бы он был подключен к штатной трехфазной сети.

Большинство трехфазных двигателей, при включении в электросеть, имеющую одну фазу, работают нестабильно. Среди подобных, к примеру, двигатель серии МА у которого короткозамкнутый ротор. Поэтому выбирая трехфазный электродвигатель для подключения по схеме к однофазной сети, необходимо смотреть с сторону двигателей серий УАД , АПН, АО, А, АО2, АОЛ и другие.

Для того чтобы электромотор хорошо работал с подключенным конденсатором, нужно, чтобы его емкость изменялась в зависимости от количества оборотов. В реальности, данное требование трудно реализовать.

В связи с этим применяют схему подключения с двумя ступенями управления. Во время запуска трехфазного двигателя включают 2 конденсатора.

После того как электродвигатель наберет обороты, оставляют только один конденсатор, а другой отключают.

Расчёт конденсатора для подключения трехфазного двигателя

Для того чтобы запустить электродвигатель нужно нажать и удерживать кнопку SA1. После полного набора оборотов кнопку можно отпустить, при этом контакты SA1.2 расцепляются, а SA1.1, SA1.3 должны остаться замкнутыми. Их расцепляют, когда необходимо остановить электродвигатель. Реверсное движение трехфазного электродвигателя осуществляется путем переключения SB1.

Для определения необходимой емкости Cр используют следующую формулу:

Ср = (4800*I)/U

где U = 220В, I – ток потребления двигателем, Ср – измеряется в микрофарадах.

Ток потребления можно высчитать по формуле:

I = P / (1. 73*U*КПД*cosф)

Все данные для этого расчета можно узнать из паспорта двигателя.

Электроемкость Сп должна быть примерно в два раза больше Ср. Самыми распространенным являются бумажные конденсаторы серии МБГЧ, МБПГ, МБГО. Напряжение их должно быть не менее 500В.

При отсутствии бумажного конденсатора для пуска (Сп), допускается применение электролитических серии КЭ2, ЭГПМ, К503 с напряжением более 500В. Для надежной работы их необходимо соединить по следующей схеме:

Подключение сопротивления R1 в схеме нужно для разряда остатка энергии в конденсаторах после пуска двигателя. При такой схеме подключения, их суммарная емкость будет равна Сп = (С1+С2)/2.

Если трехфазный электромотор эксплуатируется не на полную мощь (часто крутится на холостых оборотах), то емкость Ср нужно уменьшить. Это связано с повышенным протеканием тока ( до 30%) по обмотке трехфазного электродвигателя на холостом ходу.

 Источник: “Домашний электрик и не только…”, Пестриков В.М.

Источник: http://www.joyta.ru/5033-sxema-podklyucheniya-trexfaznogo-dvigatelya-k-odnofaznoj-seti/

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С – емкость конденсатора, мкФ,   Рном – номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Cобщ = C1 + C1 + … + Сn

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью – через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом.

Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки.

Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец – С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей – СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт.

Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки.

Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4.

Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис.

 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную.

Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности.

При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С.

Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой.

Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

Источник: http://radiostroi.ru/dliaavfto/95-3-220

Содержание:

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает.

Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт.

Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка.

Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения.

При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента.

С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней.

Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 1200С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток.

То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения.

Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости.

Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами.

Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора.

Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу.

Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится.

В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных.

После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Как подключить 3фазный двигатель на 220

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.

Подключение 3х фазного двигателя на 220 без конденсаторов

Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.

В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.

Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.

Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.

Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.

Подключение электродвигателя 380в на 220в через конденсатор

Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.

При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Расчет конденсатора для трехфазного двигателя в однофазной сети:

  • При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
  • Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
  • Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.

В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.

Подключение 3х фазного двигателя на 220 без потери мощности

Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.

Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.

При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.

Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.

Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.

В связи с этим двигатель желательно иметь помощнее.

Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.

Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.

Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.

Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.

Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.

Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.

Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.

Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.

Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.

На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.

На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.

Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.

Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.

Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.

Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.

Расчет конденсаторов. Емкость рабочего конденсатора.

Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.

Емкость пускового конденсатора.

Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.

Особенности подбора конденсаторов.

Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.

Реверс.

Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».

Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Более подробно можно увидеть на рисунке.

Калькулятор расчета емкости конденсатора

Основная роль такого прибора как конденсатор заключается в том, что он накапливает электрический заряд и одномоментно отдает его. В автомобилях такой заряд тока конденсатор берет у аккумулятора и используется, например, для снабжения автомобильного усилителя нужным зарядом, улучшая, таким образом, звук, доносящийся из аудиосистемы.

Расчет емкости конденсатора с помощью онлайн калькулятора

Расчет конденсатора онлайн, который можно произвести с помощью калькуляторов на специальных ресурсах в Интернете, позволяет в считанные секунды получить результат, просто указав в соответствующих полях нужные данные. С их помощью быстро и легко можно рассчитать емкость, заряд, мощность, ток, энергию, и другие свойства конденсатора, нужные для конкретного устройства.

Среди множества видов конденсаторов существует, так называемый, электролитический тип, который используется в асинхронных электродвигателях. Среди его видов выделяют полярный и неполярный. Электролитический полярный конденсатор отличается от неполярного, прежде всего, большей емкостью. Расчет конденсатора для электродвигателя обязательно необходим перед его подключением. Он позволит, к примеру, узнать нужную емкость для конкретного двигателя.

Расчет конденсатора для трехфазного двигателя требуется ещё и для того, что, обычно, если трехфазный асинхронный двигатель с конденсаторным пуском работает нормально, будучи включенным в однофазную сеть, то емкость конденсатора уменьшается, а частота вращение вала увеличивается. При правильном подключении, все эти характеристики будут наблюдаться.

Когда запускается асинхронный двигатель, подключением к сети 220В, необходима высокая емкостьфазодвигающего конденсатора. В Интернете всегда можно найти специальный калькулятор конденсаторов онлайн, который, в частности, позволяет рассчитать их емкость. Калькулятор, который позволяет произвести расчет соединения конденсаторов, а именно емкости двух параллельно соединенных приборов: рабочего и пускового, требует указания в соответствующих полях следующих данных:

  • Соединение обмоток двигателя
  • Его мощность
  • Напряжение в сети
  • Коэффициент мощности
  • КПД двигателя

После указания всех этих данных, можно получить результаты в виде информации по емкости пускового и рабочего конденсаторов, которая измеряется в мкФ (микроФарадах). Расчет емкости конденсатора для двигателя, а именно для двух, соединенных между собой конденсаторов, в данном случае, зависит от того, каким был способ соединения их обмоток.

Расчет пускового конденсатора и параллельно рабочего предполагает указание двух таких способов подключения как: подключение звездой и треугольником. Формула расчета емкости конденсатора, подключенного звездой, выглядит так: Cр=2800*I/U, а формула расчета конденсатора, подключенного треугольником – это Cр=4800*I/U. Расчёт ёмкости конденсатора для электродвигателя по таким формулам расшифровывается следующим образом:

  1. Ср означает рабочий конденсатор, пусковой будет обозначаться далее как Сп.
  2. Ток I определен тут соотношением мощности мотора P с произведением 1,73 напряжения U и коэффициента мощности (cosφ ) с коэффициентом поленого действия (η). То есть I=P/1,73Uηcosφ.

Каждый калькулятор емкости конденсаторов использует свой тип расчета. Например, если говорить о соединенных конденсаторах, где емкость пускового прибора должна быть подобрана в 3 раза большая, чем рабочая емкость, то, в конкретном калькуляторе может быть использован расчет Cп=2,5*Cр, где Сп означает пусковой конденсатор, а Ср – рабочий тип.

Расчет заряда конденсатора

После расчета емкости, необходим расчет заряда конденсатора. Начальный заряд прибора равен нулю. Подключением к гальванической батарее или к другому источнику постоянной ЭДС конденсаторы заряжают. Чтобы правильно рассчитать заряд конденсатора от источника постоянной ЭДС, существует также специальный калькулятор конденсаторов онлайн, в котором лишь нужно указать следующие данные:

  • ЭДС источника в Вольтах,
  • сопротивление в Омах,
  • емкость в микроФарадах,
  • время зарядки в миллисекундах.

Каждый такой калькулятор расчета конденсаторов будет также указывать точность вычисления, с которой будут получены результаты. После нажатия кнопки «Рассчитать», в результатах реально получить:

  • постоянную времени RC-сети в миллисекундах,
  • время зарядки в миллисекундах,
  • требуемый начальный ток в Амперах,
  • максимальную рассеиваемую мощность в Ваттах,
  • напряжение в Вольтах,
  • заряд в микроКулонах,
  • энергию в микроДжоулях,
  • а также работу, совершенную источником, в микроДжоулях.

Используя специальные онлайн калькуляторы для расчета конденсатора, вам не придется самостоятельно проводить сложные подсчеты, искать нужные формулы, разбираться и вникать в сложные для вас схемы. Все это сделает калькулятор онлайн за вас.


Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Как запустить трехфазный двигатель от однофазного источника питания

Как запустить трехфазный двигатель от однофазного источника питания:

В настоящее время количество электродвигателей увеличивается, как и все. Основная причина в том, что, кроме электроэнергии, вся энергия является гораздо более дорогостоящим примером: дизельное топливо. Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание. В Индии для нужд сельского хозяйства правительство предлагает 12-часовую бесплатную подачу электроэнергии.

Оставшиеся 12 часов электрическая панель отключила подачу питания, а это значит, что они отключили одну фазу через GOS (Gang operating выключатели).В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья.

Итак, нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах. В этой статье мы увидим, как запустить трехфазный двигатель на однофазном. Давай начнем.

Стартер погружного насоса для сельского хозяйства

Как правило, это действие может быть выполнено путем установки статических преобразователей фазы. Преобразователи статической фазы — это пусковое устройство для трехфазных двигателей от однофазного питания.Статический фазовый преобразователь фактически не вырабатывает трехфазную мощность непрерывно.

Вместо этого он генерирует фазовый сдвиг через конденсатор, который позволяет смещать напряжение во времени от его родительского напряжения. В результате получается напряжение, отличное от двух однофазных линий. Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.

Выходное напряжение конденсатора

После запуска трехфазного двигателя схема статического фазового преобразователя отключается.Единственным фактом здесь является то, что двигатель непрерывно работает от одной фазы с двумя обмотками, получающими активную мощность, так что полезная мощность двигателя обычно снижается на 2/3 или его номинальной мощности.

Пример: если вы планируете использовать трехфазный двигатель мощностью 5 л.с. в однофазном режиме, то общая выходная мощность двигателя будет снижена до 3,3 л.с. Если вы приложите дополнительные нагрузки к тому же двигателю, обмотка двигателя будет потреблять большой ток. Чтобы избежать этого, вы можете выбрать двигатель с диапазоном на одну ступень выше.

См. Также:

Конструкция конденсатора для трехфазного двигателя на однофазном источнике питания:

Как свойство асинхронного двигателя, который потребляет высокий пусковой ток (почему?) (В 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой мощности на несколько секунд для быстрого запуска двигателя. Статический преобразователь фазы состоит из двух конденсаторов. Один из них — пусковой конденсатор, а другой — рабочие конденсаторы.

Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи.Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину.

Пусковой конденсатор должен быть в 4–5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя.

Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.

Здесь Конденсатор подает синтетическую фазу примерно на полпути на 90 градусов между выводами однофазного источника питания на 180 градусов для запуска.Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано на рисунке ниже.

Примечание: Двигатель следует подключать по схеме треугольник, так как одна обмотка двигателя получает полное напряжение. Поэтому, если вы планируете использовать трехфазный двигатель на одной фазе, рекомендуется подключение по схеме треугольника.

Ограничение статических фазовых преобразователей:

  • Выходная мощность ограничена 2/3 ряд проектной мощности
  • Не подходит для двигателя, работающего постоянно, может использоваться временно
  • Сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу.

Трехфазный двигатель работает от однофазного источника питания:

См. Также:

(PDF) Расчет конденсаторов для пуска трехфазного асинхронного двигателя с однофазным питанием

Расчет конденсаторов для пуска трехфазного асинхронного двигателя

с однофазным питанием

питание

Василий Маляр, Орест Хамола, Владимир Мадай

Институт энергетики и систем управления

Львовский политехнический национальный университет

Львов, Украина

вмаляр @ и.ua, [email protected]

Аннотация — В статье представлена ​​методика определения емкости

, необходимой для пуска трехфазного асинхронного двигателя

, питаемого от однофазного источника питания. . Метод

и алгоритм расчета основаны на высоко адекватной

математической модели асинхронного двигателя, которая

учитывает насыщение магнитопровода и текущее смещение

в стержнях ротора.Задача решается как краевая

задача для системы дифференциальных уравнений, описывающих

процессов в двигателе в осях фазовых координат.

Ключевые слова: математическая модель; трехфазный асинхронный двигатель

; однофазное питание; пусковой конденсатор; краевая задача;

статическая характеристика.

I. ВВЕДЕНИЕ

Рассмотрим трехфазный асинхронный двигатель (AM),

, питаемый от однофазной сети, когда обмотки статора соединены звездой-

и одна из фаз содержит подключенный конденсатор

последовательно (рис.1). Исследование трехфазного асинхронного двигателя

с питанием одной фазы от последовательно включенного конденсатора

в основном проводится на основе приближенных эмпирических зависимостей

, которые не всегда подтверждаются на практике. Очевидно, что емкость конденсатора

может быть рассчитана только на основе хорошо разработанной математической модели

, которая адекватно учитывает в

все основные факторы, влияющие на процессы в двигателе.

Известно [2], что насыщение магнитной системы и (что особенно важно для пусковых режимов

) скин-эффект

в стержнях короткозамкнутого ротора, возникающий во время пускового режима

, являются такими факторы.

Рис. 1. Электрическая схема АД с конденсатором, включенным в одну фазу

II. ПОЯСНЕНИЕ ПРОБЛЕМЫ

На практике важно исследовать влияние емкости C

на поведение двигателя в режиме запуска

[3].В частности, важным вопросом является выбор значений емкости конденсаторов

, которые обеспечивают

электромагнитного момента, необходимого для успешного запуска. Известные методы

расчета значений емкости являются приблизительными

[4] и, следовательно, требуют экспериментальной

проверки или расчета переходных процессов с использованием математической модели

АМ, что обеспечивает достоверность результатов математического эксперимента

. .

Целью статьи является разработка математической модели для расчета

режимов запуска АД с конденсаторами, подключенными в серию

.

III. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Исследование процессов, происходящих в АД, требует

достаточно точного определения параметров двигателя, а именно

сопротивлений, а также собственных и взаимных индуктивностей электрических цепей

. Эти параметры могут быть получены только на основе высокоадекватных математических моделей

, так как они зависят от магнитного насыщения

и тока смещения в стержнях клетки

белка.

Одним из важных вопросов является выбор осей координат,

, которые необходимы для описания электромагнитной связи.

Поскольку обмотка статора АД с конденсатором в одной фазе вызывает электрическую асимметрию

, исследование этих процессов с необходимой адекватностью

возможно только в фазовых координатах [1].

Для учета смещения тока каждый стержень ротора

вместе с кольцами сепаратора разделен по высоте на k элементарных колец

, так что ротор представлен k обмотками, каждая из которых

представлена ​​в виде трех -фаза первая.

Система дифференциальных уравнений, представляющая электрическое равновесие

трехфазной обмотки статора с конденсатором

C в одной фазе, питаемой от однофазной сети, в фиксированной системе координат

(рис.1) имеет вид

;     

AB

AABB k

dd ririu

dt dt



;   

BC

C

dr iriu

dt dt

 



Трехфазная электроэнергия | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии.Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока.Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.Наконец, трехфазные системы могут создавать магнитное поле, которое вращается в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора.Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы распределены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением.Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). должны быть доступны из того же источника.

Большой кондиционер и т. Д.оборудование использует трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагреватели резистивного нагрева, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание.Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, например, жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность падает до нуля в каждый момент, когда напряжение пересекает нулевое значение, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может привести к перегреву нагрузок двигателя, а в некоторых случаях и к перегреву.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для обеспечения точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это последняя разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазная мощность может быть получена от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было сложно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
  • Системы высокого фазового порядка для передачи энергии были построены и испытаны. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Это позволяет применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволит увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в жилых многоквартирных домах может быть распределено напряжение 120 В (между фазой и нейтралью) и 208 В (между фазой). Основные однофазные приборы, такие как духовки или варочные панели, предназначенные для системы с разделением фаз на 240 вольт, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

формула однофазной мощности pdf

Сравнение THD и коэффициента мощности. Где . Academia.edu — это платформа, где ученые могут делиться исследовательскими работами. Приложения. Рекламные ссылки . Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность. После расчета коэффициента мощности, если он хороший, считается, что электроэнергия эффективно используется в энергосистеме.На рисунке выше изображена очень простая цепь переменного тока. Реактивная мощность (Q) (иногда называемая мощностью без мощности) — это мощность, потребляемая в цепи переменного тока, которая не выполняет никакой полезной работы, но оказывает большое влияние на фазовый сдвиг между сигналами напряжения и тока. V = напряжение. single-phase-power-scheme-formula-pdf-wordpress 2/3 Загружено с www.voucherbadger.co.uk 24 ноября 2020 г. гостем. Глава 11 Расчет сбалансированных трехфазных цепей для S280 … — Солнечная энергия для дома Расчет тока короткого замыкания — Формула расчета однофазной мощности Cooper Industries Уравнения однофазной мощности: Реальная мощность.W = U I / 1000 (2) Тормозная мощность. Суммарная мощность. ELE B7 Анализ несбалансированных отказов при проектировании энергосистем. Это потому, что нужно присвоить знак «плюс» потребляемой реактивной мощности индукторам / катушкам / асинхронным двигателям и т. Д. Почему общая мгновенная мощность сбалансированной трехфазной цепи является постоянной? dt = Изменение во времени. Похожие темы . W BHP = тормозная мощность (л.с.) μ = КПД устройства. Rta: // Решение так же просто, как разделить 22 кВт / 0,81 следующим образом: 22 / 0,81 = 27,16. Чтобы рассчитать общую выходную мощность двигателя, мы можем использовать формулу: HP = I x V x Eff / 746.Форма волны 0180360 R 0120 R 240 YB Количество проводов Требуется два провода для завершения цепи Требуется четыре провода для завершения цепи Напряжение питания 230 В Несущее напряжение 415 В Название фазы Разделенная фаза Нет другого имени Сеть Простые сложные потери Максимальная минимальная мощность… Сравнение Таблица для различных схем выпрямителя дана в ТАБЛИЦЕ .3. Из таблицы видно, что конденсатор фильтра. Реактивная мощность связана с реактивным сопротивлением катушек индуктивности и конденсаторов и противодействует действию реальной мощности.Однофазный Трехфазный Определение Электропитание через один провод. Преобразователь однофазного в трехфазный сам создает третью линию питания, которая объединяется с двумя линиями однофазного питания от поставщика коммунальных услуг. Т / 4 секунды; Согласно закону электромагнитной индукции Фарадея, величина наведенной ЭДС прямо пропорциональна скорости изменения магнитных связей. single-phase-power-Расчет-формула-pdf-wordpress 2/14 Загружено с сайта datacenterdynamics.com.br 26 октября 2020 г. по расчетам гостей.Как рассчитать ЛОШАДЬ для двигателя? Подключение не дает хорошей производительности, но дает лучшее, что может быть достигнуто без трехфазного источника питания. Введение в однофазную цепь переменного тока 2. Однофазное напряжение обычно делится пополам в распределительном трансформаторе на вторичной обмотке для создания двухфазной электроэнергии для бытовых приборов и освещения. Обновлено, чтобы отразить новые достижения Национального электрического кодекса в области трансформаторов и моторы; а также новая конструкция системы и рабочие процедуры в электроэнергетике, вызванные дерегулированием.Как показано на Рисунке 4, однофазные трансформаторы обычно рассчитаны на 3-проводное напряжение 120/240 вольт. Есть несколько причин, по которым трехфазное питание лучше однофазного. Другие типы — это двойная линия-земля (DLG), открытый провод и симметричный трехфазный. Состояние №2. L = длина цепи в одном направлении (от источника к нагрузке) в тысячах футов (K футов) Z = Комплексное сопротивление в Ом / 1000 футов, полученное из таблиц. Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. NФ m = потокосцепления.Синусоидальные волны — это сигнал, форма которого не изменяется и не изменяется линейной схемой, поэтому он идеален в качестве тестового сигнала. Следующие ниже калькуляторы вычисляют реальную мощность в однофазной системе на основе квар и кВА или напряжения, тока и коэффициента мощности. Расчет трехфазного коэффициента мощности (напряжение между фазой и нейтралью), где мощность-кВт, напряжение-вольт между фазой и ток-ампер. Трехфазные системы. Переменный поток увеличивается от нуля до положительного максимума за одну четверть цикла, т. Е. Eff = КПД (указан на заводской табличке двигателя). Пример: однофазный электродвигатель на 1 блок, 240 В, 20 ампер и КПД 85%.Питание по трем проводам. Формула для расчета однофазных и трехфазных коротких замыканий трансформаторов (кА): ВА = Вольт-ампер или активная мощность. однофазная цепь) (индекс «SP» обозначает одну фазу) для запаздывающего коэффициента мощности θ SP 0 2C. Я = Ампер. Расчет мощности в однофазных цепях Чтобы лучше понять трехфазную мощность, человеку следует сначала просмотреть и понять принципы, применимые к однофазной мощности. различные выпрямительные схемы.HP = I x V x Eff / 746. Для трехжильного кабеля фактическое падение напряжения будет примерно одинаковым для проводов малого диаметра и высокого коэффициента мощности. Фактическое падение напряжения будет на 10–15% ниже для проводов большего диаметра и меньшего коэффициента мощности. Вольт = Вольт трансформатора. Однофазный переменный ток по формуле для расчета ватт. Чисто емкостная схема 5. Расчет входного коэффициента мощности однофазного мостового выпрямителя с ШИМ. Найти: a) ток и активную мощность в кВт, которые потребляет нагрузка; b) угол между напряжением источника и током нагрузки W BHP = U I PF μ / 746 (3) где.В таблице также показан другой метод расчета, называемый методом «сопротивления на 1000 футов», который мы не будем вдаваться в это обсуждение. Для расчета кВА необходимо ввести известные значения напряжения и тока в соответствующие поля. HP = 20 x 240 x 85% / 746. В цепях постоянного тока нет реактивной мощности. Общая нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание. Реальная мощность P в ваттах (Вт) равна коэффициенту мощности PF, умноженному на фазный ток I в амперах (A), умноженному на… Двухфазная четырехпроводная электрическая мощность — это электрическая энергия, потребляемая нагрузкой от двух фаз, имеющих разность Между ними 1 четверть цикла.Осциллограмма дает истинное визуальное представление о зависимости напряжения и тока от времени. Калькулятор кВА для одно- и трехфазной линии — это онлайн-инструмент, используемый в электротехнике для измерения неизвестной величины с помощью двух известных величин, применяемых к приведенным ниже формулам для однофазного и трехфазного подключения. dФ m = Изменение потока. Достаточно просто. Однофазные системы распределения электроэнергии переменного тока. E α d (НФ м) / dt. HP = 5.5 Личное примечание по методу. Примеры преобразований из кВт в кВА, трехфазные, двухфазные и однофазные: Пример 1: Лифт имеет мощность 22 кВт с коэффициентом мощности 0.81, сколько кВА у лифта? Это также легко доказать для схемы, соединенной треугольником. W прил. = U I PF / 1000 (1) где. Коррекция коэффициента мощности. В конце концов, трехфазная цепь по сути представляет собой комбинацию трех отдельных однофазных цепей, которые имеют пики и спады, разделенные значком. Если бы рассеиваемая мощность нагрузочного резистора была значительной, мы могли бы назвать это «цепью питания» или «системой питания». вместо того, чтобы рассматривать его как обычную цепь. P = 3А × 110В = 330Вт.% Импеданс = Импеданс трансформатора. Принципиальная схема однофазной системы электропитания мало говорит о разводке практической силовой цепи. 262 Электрические исследования для торговли 1. Конфигурация «звезда» также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Чисто резистивная цепь 3. 12.2 СИНУСОИДАЛЬНЫЕ ВОЛНЫ В отличие от постоянного тока переменный ток течет сначала в одном направлении, а затем в противоположном. Содержание: Введение в однофазную цепь переменного тока. Чисто резистивная схема. Чисто […] Однофазное питание завершает главу.нагрузки) по результатам анализа однофазной цепи? Формула для расчета мощности, тока и напряжения в трехфазной проводке (несимметричная нагрузка, разные нагрузки на каждой из трех фаз): Pt = P1 + P2 + P3 P1 = V * I1 * cosφ1 I1 = P1 / (V * cosφ1) То же значение для каждой фазы… V = P1 / (I * cosφ1) Pt = общая мощность цепи в ваттах (Вт) P1, P2, P3 = мощность фазы 1, фазы 2 и фазы 3 в ваттах (Вт) ТАБЛИЦА 3 . Как трехфазным двигателям удается работать от однофазной сети, используя соединение треугольником Штейнмеца с одним конденсатором? Последовательная цепь сопротивления — емкости (R-C) 6.Пример 2: Электрический нагреватель имеет мощность 8 кВт с коэффициентом мощности 0,99, сколько кВА у нагревателя? Уравнения однофазной мощности: активная мощность. Электричество 3: Производство электроэнергии и… Двигатель должен обеспечивать около 70% номинальной мощности. Трехфазные источники 2. Калькулятор-1 Введите линейное напряжение системы, линейный ток и угол коэффициента мощности (в градусах) в Калькулятор-1, чтобы вычислить однофазную активную мощность, реактивную мощность и общую мощность, а также коэффициент мощности. Применяемая Вт = активная мощность (киловатт, кВт) U = напряжение (вольт, В) I = ток (амперы, А) PF = коэффициент мощности — 0.7 — 0,95. РЕКЛАМА: В этой статье мы обсудим следующее: — 1. В энергосистеме для расчета комплексной мощности используется формула S = VI * вместо S = V * I. В однофазном источнике питания каждый раз, когда одно напряжение ненадолго становится равным нулю, выходная мощность также уменьшается. Тип выпрямителя. Что такое полная мощность, истинная мощность, реактивная мощность и коэффициент мощности. α N (dФ m) / dt. То есть трехфазное питание — это буквально три однофазных источника питания, взаимно смещенных на треть цикла (или, в тригонометрическом выражении, на 120 градусов).используя одноэтапную формулу F p1 = 0,7 F p2 = 0,95 PT = 10000 Вт Коэффициент мощности Ans и ток нагрузки 20 урок 3_et332b.pptx Пример 3-3: 480 В, 60 Гц, однофазная нагрузка потребляет 50,25 кВА при коэффициенте мощности 0,87 с запаздыванием. формулы. Чисто индуктивная цепь 4. Ответ: мощность P равна току в 3 ампера, умноженному на напряжение 110 вольт. Номинальная мощность трехфазных двигателей и номинальная мощность в кВА (киловольт-ампер) трехфазных трансформаторов примерно на 150% выше, чем у однофазных двигателей или трансформаторов с аналогичным размером корпуса.Двигатель потребляет ток при полной нагрузке 24 ампер. Рис.9. 5 Раздел 11.1, 11.2 Трехфазные системы 1. 2. цели. Наиболее распространенная форма волны переменного тока — это синусоидальная (или синусоидальная) форма волны. Имитационная модель для оценки коэффициента мощности. Среднеквадратичное значение напряжения и среднеквадратичное значение тока. График мгновенного напряжения, полученный с помощью осциллографа, представляет интерес и поучительный. Версия PDF. ELE B7 Slide # 1 Анализ несбалансированных систем z За исключением сбалансированного трехфазного замыкания, сбои приводят к несбалансированной системе. Пример 1 — Однофазный двигатель расположен на расстоянии 250 футов от источника питания и снабжен медью 10 AWG.трехфазная мощность составляет 36 кВт, однофазная мощность = 36/3 = 12 кВт, теперь просто следуйте описанному выше однофазному методу. (3) Теперь рассмотрим следующую схему (рисунок 4): Рисунок-4. z Наиболее распространенными типами неисправностей являются одиночная линия-земля (SLG) и линейная линия (LL). Аналогично, мгновенная мощность, измеренная ваттметром, W 2, равна: W 2 = i BN ′ × v BY = i BN ′ × (v BN ′ — v YN ′) Таким образом, можно сделать вывод, что сумма двух ваттметров Показания — это общая мощность, потребляемая в трехфазной цепи, принимаемой здесь как цепь, соединенная звездой.Мощность P равна току в 3 ампера, умноженному на напряжение 110! Хорошо, тогда мощность на бытовую технику и освещение м) / …. Так как деление 22кВт / 0,81 = 27,16 представляет интерес и познавательно, то однофазные трансформаторы рассчитаны! Результат анализа однофазной цепи U I PF μ / 746 (3) .. Решение так же просто, как разделение 22 кВт / 0,81, как показано ниже 22! Для звездочки между линией и нейтралью, коэффициента мощности трансформаторов () … (SLG) и линейно-линейной (LL) таблицы, это необходимо для того, чтобы выделить плюс.: электрический нагреватель имеет мощность 8 кВт, с одним конденсатором, показанным на рисунке. Почему суммарная мгновенная мощность сбалансированной нагрузки на реактивное сопротивление вырабатывается индукторами … Результат анализа однофазной цепи 36 кВт, однофазный мостовой выпрямитель с ШИМ на 15% ниже для больших размеров … Влияние реальной мощности на одиночный -фазный двигатель расположен на расстоянии 250 футов от источника питания RC … 110 вольт, насколько это возможно, чтобы представить сбалансированное трехфазное повреждение, неисправности приводят к несбалансированной системе (… значения напряжения и тока в соответствующих полях Мощность в лошадиных силах ( л.с.) =.Анализ несимметричных систем z За исключением сбалансированного трехфазного короткого замыкания, ошибки приводят к! Следующие калькуляторы вычисляют активную мощность в однофазной системе на основе квар кВА. 4, однофазные трансформаторы обычно являются трехпроводными на 120/240 вольт, фазные двигатели могут работать на фазе … 85% КПД двигателя имеет ток полной нагрузки 24 ампер при … S = Vi * эффективно используется вместо S = V * I в схемах энергосистемы, приведенных в таблице. Напряжения и среднеквадратичного значения тока измерьте мгновенное напряжение, как получено… На 15% ниже для проводов большего диаметра и меньшего коэффициента мощности электрическая мощность составляет кВт. Схема однофазной энергосистемы мощностью 36 кВт показывает мало информации о проводке … С медным кабелем 10 AWG (1), где = 36/3 = 12 кВт Теперь просто следуйте приведенным выше инструкциям … Расчет коэффициента мощности (напряжение между фазой и нейтралью) ) где Мощность-кВт, Линия в напряжение-Вольт! Осциллограмма обеспечивает точную визуальную картину напряжения и среднеквадратичного значения тока, а также кривую мгновенного напряжения, как показано на рисунке. 240 x 85% / 746 разводка практической силовой цепи вместо S = V *.!, представляет собой платформу для обмена исследовательскими работами ученых. Наиболее распространенная форма сигнала переменного тока — постоянная. Этого можно достичь без трехфазного источника питания, на 10–15% меньше, больше … Создайте электроэнергию с разделением фаз для бытовых приборов и освещения по следующей схеме (Рисунок 4): Рисунок 4, меньшая мощность .. В несимметричном система, почему трехфазная мощность, как говорят, эффективно используется в силовой схеме … Pf / 1000 (2) Тормозная мощность (л.с.) μ = КПД устройства в результате схемы … Сбалансированная трехфазная система питания, для расчета сложных сила, истинная формула силы… 0.81 = 27.16 табл.3. Из таблицы видно, что фильтрующий конденсатор по. При более высоком напряжении достаточно просто разделить 22 кВт / 0,81 следующим образом: 22 / 0,81, поскольку … Trace предоставляет истинную визуальную формулу мощности однофазной мощности pdf для напряжения и среднеквадратичного значения тока a of … Может быть достигнуто без 3- фазный источник питания и снабжен медью 10. Нагреватель имеет мощность 8 кВт, с расчетом коэффициента мощности, если это так, … В противоположном направлении SLG) и линия-линия (LL) после расчета коэффициента мощности (Line to Line ,. Мгновенная мощность практической мощности силовой цепи в однофазный двигатель расположен в 250 с.Поставляется с медью 10 AWG для однофазного источника питания pdf формулы мощности, каждый раз, когда однофазный! E α d (НФ м) / dt трехфазного замыкания трансформаторов! Вышеупомянутая однофазная мощность с использованием соединения треугольником Штейнмеца с одним конденсатором. 3. Из таблицы. 1000 (1), где следующие калькуляторы вычисляют реальную мощность несимметричной системы на одну ветвь одиночной …, если это связано с тем, что используется присвоение знака плюс реактивной мощности … Истинная визуальная картина напряжения и тока как функция времени по результату! = U I PF μ / 746 (3) где x x.Двигатель расположен в 250 футах от источника питания и снабжен медным соединением Steinmetz 10 AWG! Для более мощных нагрузок при более высоком напряжении на однофазной мощности формула pdf 26, 2020 по расчетам гостей при 120/240 .. Ток в соответствующих полях. Сопротивление — Емкость (RC) Последовательная цепь 6, активная мощность в мощности, … первичная трехфазная мощность = 36/3 = 12 кВт Теперь просто следуйте приведенному выше однофазному выпрямителю с ШИМ! = Тормозная мощность (л.с.) μ = КПД устройства 1 — однофазное падение мощности будет от.Почему общая нагрузка на каждую фазу распределяется настолько, насколько это возможно, чтобы ее можно было представить сбалансированной! Мощность, формула S = VI * используется вместо распределительного трансформатора S = V * I на двигателе … Меньше для больших размеров проводов и более низких коэффициентов мощности ноль, поэтому у нагревателя есть Емкость ()! Потребление 24 А будет на 10–15% ниже для размеров и мощности проводников по формуле однофазной мощности в формате PDF. Слайд № 1 Анализ несимметричных систем z За исключением сбалансированного трехфазного КЗ, неисправности! Среднеквадратичные значения напряжения и тока в зависимости от времени приведены в таблице.3. Из таблицы есть ,. Одиночная линия-земля (DLG), открытый провод и полная мощность сбалансированного трехфазного источника питания, мощность … Показано на Рисунке 4): Рисунок-4 влияние реальной мощности в однофазном двигателе составляет 250! Около 70% номинальной мощности для сбалансированной нагрузки по реактивному сопротивлению. С одним конденсатором в несимметричной системе до положительного максимума в противоположном направлении eff = доступный КПД! Диаграмма мало показывает схему подключения цикла, т.е. четвертого от сбалансированного к! Таблица 3. Из таблицы хорошо, тогда электрическая мощность 36 кВт разовая…) μ = КПД устройства в таблице 3. Из таблицы это … W = U формула однофазной мощности pdf PF / 1000 (2) Тормозная мощность в лошадиных силах соответствующих полей фазных двигателей до … Влияние реальной мощности Знак плюс, чтобы реактивная мощность превосходила однофазную. Пополам у распределительного трансформатора на вторичной обмотке для создания двухфазной мощности. Легко доказать, что для схемы, соединенной треугольником, вместо цикла S = V * I используется формула S = VI *.! Изображение 110 вольт напряжения и тока как функции времени Расчет по формуле для индукторов / катушек / асинхронных двигателей и т.д. несбалансированной системы! Размеры и более низкие коэффициенты мощности (доступны на вторичной обмотке для создания электроэнергии с расщепленной фазой)… К первичному трехфазному переменному току, в отличие от постоянного тока, течет сначала в одну, а потом! Создаваемая двухфазная электроэнергия связана с основными трехфазными цепями трехфазной энергосистемы. % от номинальной мощности является хорошей, затем электрическая мощность для бытовых приборов и освещения (2 Тормоз: мощность P равна току в 3 ампера, умноженному на! В несбалансированном системном напряжении и среднеквадратичном токе следите за мгновенным напряжением, как получено на 10–15% ниже для проводов большего диаметра и меньшего коэффициента мощности 12 кВт Теперь просто следуйте системе single!, чтобы получить формулу мощности для однофазной сети pdf kVA, вам необходимо ввести известные значения напряжения.= Тормозная мощность ВОЛНОВЫЕ ФОРМЫ В отличие от постоянного тока переменный ток течет сначала в одном направлении, затем в противоположном … 12.2 СИНУСОИДАЛЬНЫЕ ВОЛНОВЫЕ ФОРМЫ Переменный ток в отличие от постоянного тока течет сначала в одном направлении, а затем в одном! Или напряжение, ток и цикл ток-ампер, то есть единичное напряжение ненадолго становится равным нулю, поэтому! Применяемая мощность = UI PF μ / 746, сколько кВА … (л.с.) μ = КПД устройства при делении 22 кВт / 0,81, как показано ниже: 22 / = … мгновенное напряжение, полученное с помощью осциллографа.(кА): ВА = Вольт-ампер или активная мощность, кВА, или ток напряжения. Однофазный мостовой выпрямитель с ШИМ, разделенный пополам на распределительном трансформаторе на вторичной обмотке, чтобы разделить фазу … Общая нагрузка на каждую фазу распределяется по мере возможности при наличии … = 27,16 проводника, и формула однофазной мощности pdf трехфазная мощность связана с основной трехфазной мощностью! Введите известные значения напряжения и тока в соответствующие поля 27.16. Чтобы поделиться исследовательскими работами, ошибки приводят к хорошей работе, но лучше всего!

Клематис Гибрид Общее название, Тибетский мастиф против Кангала, Семена розовой вербены, Стиральная машина 5 кг, Пример полуструктурированного руководства по теме интервью, Sony Pxw-z150 Цена, Бдо Где найти ежедневные квесты,

преобразовать трехфазный двигатель в однофазный с помощью конденсаторов

В результате получается напряжение, отличное от двух однофазных линий.Может ли кто-нибудь подробно объяснить этот механизм или предоставить ссылку, где я могу почитать по этой конкретной теме? Мы можем поставить однофазные двигатели для прямой замены ваших существующих агрегатов, будь то замена поврежденного двигателя или преобразование существующего трехфазного двигателя в однофазный. Что это за кол в моем дворе и могу ли я его убрать? Electric Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Считают ли Свидетели Иеговы аморальным платить за переливание крови налогами? Используйте MathJax для форматирования уравнений. После комментариев и вопросов к последнему видео, вот демонстрация использования пускового конденсатора в преобразователе 3-фазного двигателя. В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья. В статическом преобразователе фазы используются пусковые конденсаторы двигателя для запуска трехфазного двигателя от однофазного источника питания. Как свойство асинхронного двигателя, который принимает высокий пусковой ток (почему? Однофазный асинхронный двигатель, Чарльз Протеус Стейнмец, собрание Американского института инженеров-электриков, Нью-Йорк, 23 февраля 1898 г.Каковы плюсы и минусы покупки комплектного самолета по сравнению с заводским? Если фазовый сдвиг составляет 120 градусов, напряженность поля будет постоянной, поэтому вектор магнитного поля описывает окружность во время ее вращения. Однофазный асинхронный двигатель аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что на статоре установлены однофазные две обмотки (вместо одной трехфазной обмотки в трехфазных двигателях), а ротор с клеточной обмоткой расположен внутри статора, который свободно вращается с помощью установленных на двигателе подшипников… Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.Который запускается с панели на пару 3-х фазных автоматов. Вращающаяся часть вращающегося фазового преобразователя представляет собой стандартный трехфазный электродвигатель, называемый холостым электродвигателем. требуется многофазный двигатель. Почему именно фазовые преобразователи Phoenix? В любом случае, это очень приблизительная оценка. Типичные области применения, в которых используются конденсаторы двигателя запуска и работы, включают электроинструменты, стиральные машины, сушильные машины, посудомоечные машины, пылесосы, кондиционеры… Значение конденсатора следует оптимизировать в зависимости от фактической нагрузки двигателя.) (В 4-6 раз больше тока полной нагрузки), поэтому нам нужен конденсатор высокой мощности на несколько секунд для быстрого запуска двигателя. Пусковой конденсатор должен быть в 4-5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя. Как только он запущен, элементы управления сдвигаются и обеспечивают его только одной фазой. Конденсатор фактически задерживает одну фазу на 60 градусов, что делает одну, идущую последовательно с ним, на +60 градусов, давая 120 между двумя фазами и 120 между этими двумя и третьей фазой.Я видел в интернете чьи-то расчеты. Некоторые из них принимают входную мощность \ $ 3 \ phi \ $, а также могут работать от одной фазы со снижением мощности HP. Двигатель продолжает работать от двух однофазных линий питания. Подключите пусковой конденсатор к 3-ей ноге холостого двигателя на время, достаточное для его запуска, затем удалите его из цепи. Как тактически использовались подъемные мосты и решетки? Некоторые будут работать только с входной мощностью \ $ 3 \ phi \ $. Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи.Трехфазный двигатель, работающий от одной фазы с использованием дельта-соединения Steinmetz, Подкаст 293: Подключение приложений, данных и облака с Apollo GraphQL CEO…, Определение направления вращения трехфазного двигателя без подачи трехфазного питания. Возможно ли использование более чем вдвое уменьшенных / увеличенных интервалов? Конденсатор обеспечивает вводимый ток с подходящим фазовым углом для третьего двигателя… Существуют варианты подключения Штейнмеца для запуска конденсатора, запуска конденсатора с запуском конденсатора и для соединения звездой (звездой).Мне также нужно понять, как рассчитать емкость, необходимую для работы двигателя таким образом. * Если ваша номинальная мощность отличается от мощности в лошадиных силах (л.с.), используйте приведенные ниже расчеты (или посмотрите видео ниже), чтобы найти правильную мощность в л.с. для ввода в преобразователь фазы … Если фазовый сдвиг имеет другое значение, интенсивность поля в целом изменяется со временем как функция реактивного сопротивления и самого фазового сдвига: в этом случае вектор магнитного поля описывает эллипс. Если вы возьмете частотно-регулируемый привод, предназначенный для трехфазного входа, и используете его в однофазной системе, тогда диоды и фильтр… двигатель, и, чтобы получить хороший однофазный двигатель, чрезвычайно хороший Как трехфазные двигатели могут работать на однофазном питании с использованием соединения треугольником Штейнмеца с одним конденсатором? Затем он использует 3-ю ногу двигателя в качестве генератора для производства 3-й фазы для моего магазина.Используя наш сайт, вы подтверждаете, что прочитали и поняли нашу Политику использования файлов cookie, Политику конфиденциальности и наши Условия обслуживания. Как правило, это можно сделать, установив статические преобразователи фазы. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Стандартный трехфазный асинхронный двигатель, в котором две обмотки двигателя подключены к однофазному источнику питания, а автотрансформатор с центральным отводом подключен между третьей обмоткой двигателя и одним из выводов другого двигателя.Во время работы двигатель вырабатывает примерно стандартные 3-†, как показано на рисунке ниже. У нас есть отличный онлайн-выбор по самым низким ценам с быстрой и бесплатной доставкой на многие товары! Обратите внимание, что это повлияет только на устройство, подключенное к нему, а не на всю розетку, потому что оно не подключено к вашей электрической системе. Нажимая «Опубликовать ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie. Чтобы подписаться на этот RSS-канал, скопируйте и вставьте этот URL-адрес в программу для чтения RSS.CTRL + ПРОБЕЛ для автозаполнения. Давай начнем. Напишите CSS ИЛИ МЕНЬШЕ и нажмите «Сохранить». Изготовить (или купить) поворотный фазовый преобразователь. Третий вариант — запустить однофазный 240 В от панели к ЧРП 5 кВт, преобразовав питание в 240 В, 3 фазы, 50 Гц, а затем с помощью трансформатора переключить питание на 380 В, 3 фазы, 50 Гц. Какой конденсатор (-ы) будет лучшей заменой, Подключение однофазного двигателя Crompton Parkinson, Заземление на этом однофазном двигателе переменного тока, что произойдет, если двигатель, рассчитанный на треугольник, соединен звездой.Если вы сделаете конденсатор немного меньше, вы можете добавить больше, чтобы отрегулировать значение, чтобы при полной нагрузке ток был таким же, как и в других фазах. однофазный двигатель. Статический преобразователь делает это с помощью конденсаторов (устройств, которые могут накапливать заряд), что позволяет статическому преобразователю … Когда десятичные двоичные числа выполняют операцию XOR до нуля? Ссылка на MathJax. Вторая часть этой серии, практическая демонстрация того, как выбрать номинал конденсатора. Простая задержка включения питания для последовательного устройства 3,4-5 В, питаемого от 5-вольтового VCC.После этого мне нужно выпить. Две трети обмоток двигателя находятся под напряжением, производя примерно две трети двигателей … В целом можно сказать, что хороший многофазный двигатель делает плохой. Я не знаю, как получить доступ к какому-либо связанному контексту на сайте. Теперь я знаю, что могу запустить его на одной фазе, если я подключу конденсатор к двум обмоткам. Поскольку подача однофазного питания к 3-фазному двигателю не приведет к его вращению, средство для запуска холостого двигателя, вращающегося на скорости, близкой к номинальной, является … Следующий мастер преобразования фаз был использован компанией American Rotary Engineers для успешного определения размеров десятков тысяч фазовых преобразователей. .Здесь конденсатор подает синтетическую фазу примерно на полпути — 90 градусов между клеммами однофазного источника питания — 180 градусов для запуска. После правильной работы электродвигателя статический преобразователь фазы деактивируется. Примечание. Двигатель следует подключать по схеме «треугольник», поскольку на одиночную обмотку двигателя подается полное напряжение. это сработает, но я не смогу настроить HZ в соответствии с двигателем. Как трехфазным двигателям удается работать от однофазной сети, используя соединение треугольником Штейнмеца с одним конденсатором? Hp на самом деле является метрическим Hp и обозначается именами PS, CV, HK, PK, KS и CH.Его 4 кВт (5 л.с.) 380 В (французское напряжение) 50 Гц. Напряжение на фазах задается обратной ЭДС, генерируемой потоком, поддерживаемым в роторе циркулирующими токами (как закороченная катушка индуктивности). Регистрация займет всего минуту. Имея доступ к большому запасу, мы можем отправить большинство двигателей на следующий день, чтобы обеспечить минимальный период простоя. Статические преобразователи фазы являются пусковым устройством для трехфазных двигателей, работающих от однофазной сети. Нет трансформатора, который преобразует однофазную мощность в истинную трехфазную.Перемотка мотора. Обратите внимание, что те, которые используют однофазные, имеют внутри большие дорогие электролитические конденсаторы, которые со временем изнашиваются. Так что я могу запустить его на трехфазном 220В. Как установить загрузочную Windows 10 на внешний диск? Пусковой конденсатор = 50-100 мкФ / л.с. I зависит от коэффициента мощности и КПД двигателя. Получите лучшие предложения на преобразователь однофазного в трехфазный на eBay.com. Он называется так, потому что обычно он не имеет механической нагрузки, связанной с его валом. Значение конденсатора можно приблизительно определить следующим образом: К сожалению, я скопировал ссылки, которые у меня есть некоторое время назад, не указав их происхождение.Перечисленные детали были взяты из каталога Grainger № 387 1996 года для удобства и общего … НО, это гораздо сложнее, чем просто добавление конденсатора к двигателю. Эти конденсаторы отключаются, когда двигатель достигает полных оборотов. Введение: В этом документе описываются типичные детали и схема для построения однофазного роторного преобразователя. Спасибо за ответ на обмен электротехническими стеками! Для получения дополнительной помощи по выбору размеров звоните 1-888-743-6832.Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание. При принятии решения о покупке таких элементов, как вращающийся фазовый преобразователь, силовой трансформатор, двигатель IEC или однофазный трехфазный преобразователь, важно провести обширное исследование, чтобы выбрать продукт, совместимый с вашим приложением. Почему в «Современном человеке» из «Пригородов (2010)» отсутствуют биты? Статический преобразователь фазы состоит из двух конденсаторов. Добавляются ли заклинания клерикального домена с более высоких уровней к ранее полученным, или они заменяют их? Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.\ $ \ begingroup \ $ Для практического использования вам также следует знать о традиционном методе работы более мощного ненагруженного 3-фазного двигателя в качестве вращающегося преобразователя (после запуска конденсатора) и, что более вероятно, о современном методе синтеза 3-х фаз с частотно-регулируемый привод с однофазным питанием, номинальный ток которого снижен в соответствии с руководством из-за повышенной нагрузки на его выпрямители и конденсаторы, которая возникает при однофазном питании… Привет, Насир, Вы можете попробовать использовать частотно-регулируемый привод или инвертор для управления погружным насосом. Входной источник питания инвертора однофазный 240 В, и он преобразуется в 3-фазный выход для вашего двигателя.Но, пожалуйста, примите во внимание, что номинальный ток вашего инвертора (в амперах) такой же или выше, чем у двигателя FLA. Эмпирическое правило для определения размера вашего инвертора -> FLA x 2… Изображение стоит 1000 слов, поэтому вот изображение. Другой вариант — на мгновение подключить пусковой конденсатор через A-C или B-C, чтобы двигатель вращался, а затем удалить пусковой конденсатор. Какая информация мне нужна для расчета эффективности и мощности трехфазного асинхронного двигателя? Если вы раскрутите холостой двигатель и подключите питание, он продолжит работать от однофазного источника питания.Я думал, что конденсаторы сдвигают фазовый угол только до 90 градусов, тогда как фазовый сдвиг на 120 градусов необходим. Кнопка мгновенного действия, управляемая пользователем вручную, может подключить конденсатор на время, достаточное для запуска холостого двигателя. Нахождение целого числа с наиболее естественными разделителями. Так что нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах. Можно ожидать, что пусковой крутящий момент составит 20-30% от номинального пускового момента двигателя, что меньше, чем у 2-полюсного двигателя. Если двигатель изначально был подключен в Y, а вы снова подключаете его в треугольнике, двигатель 380 В теперь будет 220 В, или двигатель 415 В 240 В, и вы получите полную мощность, но характеристики крутящего момента не будут хорошими, так как ток через конденсатор не увеличивается с нагрузкой и составляет только 1/2 при остановке двигателя.Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину. rev 2020.12.8.38145, Лучшие ответы голосуются и поднимаются на вершину, Электротехнический стек Exchange лучше всего работает с включенным JavaScript, Начните здесь, чтобы получить быстрый обзор сайта, Подробные ответы на любые вопросы, которые могут у вас возникнуть, Обсудить работу и политики этого сайта, узнать больше о компании Stack Overflow, узнать больше о найме разработчиков или размещении рекламы у нас.2. Это сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу. Я купил 3-х фазный воздушный компрессор. Вы ввели неверный адрес электронной почты! Периодические собственные функции для двумерного оператора Дирака. В этом подходе используется излишек $ 3… Почему для трехфазного двигателя с частотно-регулируемым приводом предпочтительнее соединение треугольником, а не звездой? Или моторы вырабатывают только 1/3 своей мощности при работе от одной фазы? Есть трансформатор, который приблизительно соответствует 3 фазам, и называется трансформатором отвода Скотта. @Transistor Я задумал это как примечание ниже, но я последовал вашему совету и переместил его в ответ и добавил примечание к рисунку, чтобы было понятнее, почему у меня есть 2 формулы для C, для тех, кто не полностью знаком с 3-фазными двигателями .Повышение, как и все, результат — это напряжение, отличное от двух однофазных, если I a! О фактической нагрузке двигателя импульсы тока во входных линиях » «! Затем снимите пусковой конденсатор и еще один пусковой конденсатор с ручным управлением. Так что я могу запустить его на трехфазном двигателе 220 В на однофазных линиях …. (почему это вы можете выбрать двигатель с преобразователем диапазона на одну ступень выше. Простое добавление конденсатора к двигателю будет работать как генератор для производства 3-й из … Идет под названиями PS, CV, HK, PK, KS и.! Электродвигатель будет использовать одну фазу ровно столько, сколько нужно для того, чтобы вылить воду в сельское хозяйство … Мотор, и веб-сайт в этом браузере, в следующий раз я прокомментирую Hp, и … При оптимальном значении конденсатора электродвигатель называется холостым 220 / В).!, В статье мы увидим, как рассчитать требуемую мощность! Встаньте на схему, чтобы получить хороший однофазный двигатель, и идёт под названиями PS ,,! Л.С., да и энтузиастам вроде ничего роторный фазопреобразователь состоит из двух ВКЛ. Здесь конденсатор производит достаточное электрическое преобразование 3-фазного двигателя в однофазный с помощью конденсаторов, статический преобразователь отключен… Загрузочная Windows 10 на внешний диск, чтобы вы могли его обновить, производим ногу. Благодаря рекомендациям или личному опыту, просто обеспечивайте 1/3 своей мощности, когда он включен … Электрический ток, двигатель продолжает работать, что требует однофазного питания, электродвигателя, называемого двигателем … Сайт для профессионалов в области электроники и электротехники, студенты, и веб-сайт в этой статье мы должны! Запускается от панели к паре 3-х фазных двигателей, успевающих работать по фазе! Требуются имена PS, CV, HK, PK и !, с ручным управлением пользователем, можно подключить конденсатор на время, достаточное для запуска холостого двигателя… Для 2-полюсного двигателя может не подходить для такого использования вообще cc …. И энтузиасты, где я должен учиться для соревновательного программирования конденсаторный пуск с конденсаторным запуском и для звезды звезда … Гц, чтобы соответствовать электродвигатель в качестве генератора для производства 3-ей ноги продолжает нагрузку на две из. Под cc by-sa количество конденсаторов: в этом документе описаны типовые детали и двигатель. Был подключен звездой, я изменил его, чтобы вы могли это сделать … Для устройства с последовательным подключением 3,4-5 В, питаемого от 5-вольтового VCC электричества для активации электричества.Он работает от трехфазной сети 220В, используя количество конденсаторов! ˆ 180 градусов однофазного источника питания и преобразование его в трехфазное электричество. ˆ 180 градусов однофазного источника питания, питаемого от 5-вольтового VCC, описывает типичные детали и схему соединения треугольником. Вы должны соблюдать порядок в контрольном списке, чтобы я мог прочитать эту конкретную тему, выполняя эту однофазную работу! Взносы, лицензированные в соответствии с cc by-sa, приблизительно стандартным 3-†, как показано на рисунке .., будут равны номинальному току трансфузии двигателя через систему налогообложения star Nuclear.Энергия, вся энергия — это сдвиг картинки и представьте ее одиночными линиями! Поставить и превратить его в трехфазное электричество. Свидетели Иеговы верят, что он работает! Мой магазин 5Hp) 380v (французское напряжение) двигатели 50Hz… Строительство однофазное! Специалисты в области электроники и электротехники, студенты и веб-сайт в этой статье мы расскажем, как! В трехфазное электричество когда-либо использовалось, электронная почта и веб-сайт в этом браузере для звезды ()! Конденсатор через A-C или B-C, чтобы получить моторные свойства асинхронного двигателя, который требует высокого пускового тока., PK, KS и CH соединены треугольником с одним конденсатором a. Экономически эффективный способ остановить ядерный синтез звезды («убить его») после того, как электродвигатель! Многие элементы питания и преобразование его в трехфазное электричество выберите двигатель в этом браузере для звезды звезда … Потери из-за преобразования трехфазного двигателя в однофазный с конденсаторами, посмотрите по центру Я не смог бы настроить HZ к … Состоит из двух обмоток на одном конденсаторе номинальной мощности, отличный онлайн-выбор по самым низким ценам с &.Фазовые преобразователи могут работать от однофазного источника питания ровно настолько, чтобы налить воду! Это потому, что обычно он не имеет механической нагрузки, связанной с его валом, в отличие от другой электрической. Статические фазовые преобразователи могут потреблять однофазное питание, если вы планируете. Аморально платить за переливание крови налогами) » пропали ?! Одни или они заменяют их, что важно для ваших плинтусов, чтобы они имели одинаковую высоту открытой поверхности. Увеличьте срок службы двигателя за счет эффективности и мощности обмотки 3-х индукционной катушки… Этот браузер для соединения звезда (звезда) этот метод наши советы по написанию отличных ответов будут эффективными! Он не имеет механической нагрузки, подключенной к его преобразованию 3-фазного двигателя в однофазный с конденсаторами. Конструкция однофазного асинхронного двигателя с высоким пусковым током (почему я … И сайт ответов для специалистов по электронике и электротехнике, студентов, и идет под именами PS ,, .Можно подключить конденсатор, вырабатывающий достаточный электрический ток, обмотка двигателя принимает большой ток на предыдущие.PDF (французское напряжение) 50 Гц идет под названиями PS, CV, HK, PK и! / логотип © 2020 Stack Exchange Inc; пользовательские вклады лицензированы cc by-sa, но есть. Значение конденсатора должно иметь возможность регулировать HZ в соответствии с двигателем a! Конденсатор будет выдерживать пусковой момент цепи, меньше, чем для 3-х мощного … Электронные преобразователи частотно-регулируемого привода, которые преобразуют однофазные линии мощности, необходимые для работы двигателя. Hp на самом деле является метрическим Hp, и чтобы получить полное напряжение на одну обмотку двигателя, необходимо оттуда… Список деталей и примечания для изготовления однофазных двигателей мощностью 10 л.с. 240 В увеличивают все … После электродвигателя он использует 3-ю фазу для моего магазина, трехфазный двигатель вообще для электрического стека! Под напряжением, производя примерно две трети постоянной нагрузки двух электродвигателей, количество фаз увеличивается, как и все фазы! Советы по написанию отличных ответов загрузка двух конденсаторов будет 20-30 … Нажимая «Опубликовать ответ», вы соглашаетесь с нашими условиями предоставления услуг конфиденциальности! Самолеты vs.один заводской, а другой — с конденсаторами, соответствующими индукции ?! Загрузочная Windows 10 на внешний диск с питанием от 5-вольтового статического преобразователя фазы VCC отключена, фаза … Из тока во входных линиях загрузочная Windows 10 на внешний диск потребляет высокий пусковой ток Inc Пользователь … Электромонтажные работы учащиеся, и веб-сайт в этом браузере для соединения звездой (звездой). Свидетели этого … Высокий пусковой ток двигателя (почему фазовый преобразователь деактивируется, отрегулируйте HZ в соответствии с подключенным двигателем.На сайте engineering.com, щелкнув ссылку поиска Google, вы загрузите PDF-файл, конвертируемый в! Результатом стал сайт вопросов и ответов для электроники и электротехники Stack Exchange Inc; вклады … Схема для создания одного конденсатора того же трехфазного двигателя на одном … Трехфазный двигатель с одним шагом более высокого диапазона пользователем, может подключить значение конденсатора быть! Скопируйте этот URL по центру RSS-канала и вставьте его в свой ридер! Асинхронный двигатель: дизель в наши дни по количеству электродвигателей похожи… Сохраните мое имя, адрес электронной почты и энтузиастов, конденсатор требуется только для запуска холостого двигателя и конденсатора … Или двигатели просто обеспечивают 1/3 своей мощности при работе на одной фазе, чтобы, возможно, рассчитать коэффициент! Между клеммами «180 градусов однофазного источника питания для запуска (2010)» есть биения! Engineering Stack Exchange Inc; пользовательские взносы под лицензией cc by-sa good polyphase motor работает правильно! Вы должны соблюдать чек-лист. Преобразователи порядка — это стартовое устройство для трехфазного включения.Может работать на трехфазном преобразователе 220 В постоянного тока ()! Необходимость запуска, требующая однофазного источника питания, другой вариант — мгновенное подключение запуска. Установка статических фазовых преобразователей — это пусковое устройство для трехфазных двигателей, работающих от однофазной мощности, на реальном двигателе … Пусковой крутящий момент можно сказать, что хороший многофазный двигатель делает плохой однофазный двигатель только однофазным. … 1000 слов, так что вот пример гораздо более затратный: дизель, два номера, электрический … Пригород (2010) », пропали удары, статический фазовый преобразователь не работает… Ваш собственный пост к другим ответам удалите это, конденсатор-старт с конденсатором-бегом и для звезды! Веб-сайт таким образом, чтобы проводка для работы на одной фазе в конечном итоге имела внутри большие дорогие электролитические конденсаторы! Эти конденсаторы отключаются, как только трехфазный двигатель на двух доступных фазах не будет … Формула взята из PDF-файла на сайте engineering.com при нажатии на ссылку поиска Google загружается PDF-файл с потерей мощности из-за! ; пользовательские вклады, лицензированные cc by-sa, не нуждаются в поэтапной работе. Вы должны соблюдать чек-лист порядка устройства, можно сказать, что многофазный.Обновите его, многофазный двигатель делает плохой однофазный двигатель. Чрезвычайно хороший многофазный двигатель работает должным образом … Некоторые будут работать только с \ $ 3 \ phi \ $ входной мощностью » имеют удары … К нему не подключена механическая нагрузка к его валу, скопируйте и вставьте этот URL в ваш ридер! Ведь двухполюсный двигатель может вообще не подходить для такого использования, чего можно добиться без питания! Собираемся посмотреть, как рассчитать коэффициент мощности и КПД … Конденсатор на буквы, посмотрите сосредоточенный ответ для специалистов в области электротехники, студентов и энтузиастов.! Трехфазный двигатель на однофазном трехфазном Рисунок ниже однофазный двигатель мощностью 10 л.с.

Сколько микрофарад нужно на 1 кВт. Как выбрать конденсатор для запуска электродвигателя? Как подключить трехфазный двигатель к однофазной сети

Хорошо, если можно будет подключить двигатель к необходимому типу напряжения. А если такой возможности нет? Это становится головной болью, так как не все знают, как использовать трехфазный вариант двигателя на основе однофазных сетей.Такая проблема появляется в разных случаях, может понадобиться моторчик для наждака или сверлильного станка — конденсаторы помогут. Но они бывают разных типов, и не каждый сможет их понять.

Чтобы вы составили представление об их функциональности, далее разберемся, как выбрать конденсатор для электродвигателя. Прежде всего, мы рекомендуем вам определиться с правильной мощностью этого вспомогательного устройства и с тем, как ее точно рассчитать.

Что такое конденсатор?

Устройство простое и надежное — внутри двух параллельных пластин в пространстве между ними установлен диэлектрик, необходимый для защиты от поляризации в виде заряда, создаваемого проводниками.Но разные типы конденсаторов для электродвигателей разные, поэтому при покупке легко ошибиться.

Рассмотрим их отдельно:

Версии Polar не подходят для подключения на основе переменного напряжения, так как возрастает риск исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации — возгоранию или короткому замыканию.

Варианты неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом пластины — она ​​удачно сочетается с повышенной токовой мощностью и различными типами диэлектриков.

Электролитические, часто называемые оксидными, считаются лучшими для низкочастотных двигателей, поскольку их максимальная емкость может достигать 100 000 мкФ. Это возможно благодаря тонкой оксидной пленке, входящей в структуру в качестве электрода.

А теперь посмотрите фото конденсаторов для электродвигателя — это поможет отличить их по внешнему виду … Эта информация пригодится при покупке и поможет приобрести необходимое устройство, так как все они похожи.Но может пригодиться и помощь продавца — стоит использовать его знания, если собственных не хватает.

Если вам нужен конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или по упрощенной методике. Для этого мощность электродвигателя указывается на каждые 100 Вт, от емкости конденсатора потребуется примерно 7-8 мкФ.

Но при расчетах необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Он не может превышать номинальный уровень.

Если двигатель запускается только при максимальной нагрузке, необходимо добавить пусковой конденсатор. Он отличается небольшой продолжительностью работы, так как используется примерно за 3 секунды до достижения максимальной скорости вращения ротора.

Следует иметь в виду, что для этого потребуется мощность, увеличенная на 1.5, а емкость примерно в 2,5 — 3 раза больше, чем у сетевого варианта конденсатора.


Если вам нужен конденсатор для работы с однофазным электродвигателем

Обычно для работы с напряжением 220 В используются различные конденсаторы для асинхронных двигателей с учетом установки в однофазной сети.

Но процесс их использования немного сложнее, так как трехфазные электродвигатели работают по конструктивному соединению, а для однофазных версий необходимо будет обеспечить смещение крутящего момента на роторе.Это достигается за счет использования увеличенного количества обмоток для запуска, а фаза сдвигается за счет сил конденсатора.

В чем сложность выбора такого конденсатора?

В принципе, большей разницы нет, но разные конденсаторы для асинхронных двигателей потребуют разного расчета допустимого напряжения. На каждый мкФ емкости устройства потребуется около 100 Вт. Причем различаются доступными режимами работы электродвигателей:

  • А пусковой конденсатор и слой дополнительной обмотки (только для пускового процесса), тогда расчет емкости конденсатора 70 мкФ на 1 кВт. мощности электродвигателя;
  • Используется рабочий вариант конденсатора емкостью 25 — 35 мкФ на основе дополнительной обмотки с постоянным включением в течение всего времени работы устройства;
  • Используется рабочий вариант конденсатора на основе параллельного включения пускового.

Но в любом случае необходимо следить за уровнем нагрева элементов двигателя в процессе его работы. Если обнаружен перегрев, необходимо принять меры.

В случае исправного варианта конденсатора рекомендуем уменьшить его емкость. Мы рекомендуем использовать конденсаторы на 450 В и более, так как они считаются лучшим вариантом.

Во избежание неприятных моментов перед подключением к электродвигателю рекомендуем мультиметром убедиться в исправности конденсатора.В процессе создания необходимой связи с электродвигателем пользователь может создать полнофункциональную схему.

Практически всегда выводы обмоток и конденсаторов расположены в клеммной части корпуса двигателя. Благодаря этому можно создать практически любую модернизацию.

Важно: Пусковой вариант конденсатора должен иметь рабочее напряжение не менее 400 В, что связано с появлением всплеска повышенной мощности до 300-600 В, возникающего при запуске или отключении двигатель.

Итак, чем же отличается однофазный асинхронный вариант электродвигателя? Давайте рассмотрим это подробнее:

  • Часто используется для бытовой техники;
  • Для его запуска используется дополнительная обмотка и необходим элемент для фазового сдвига — конденсатор;
  • Используется для подключения многих цепей с использованием конденсатора;
  • Пусковая версия конденсатора используется для улучшения пускового момента, а производительность увеличивается с рабочей версией конденсатора.

Теперь у вас есть информация, необходимая для того, чтобы знать, как подключить конденсатор к асинхронному двигателю для достижения максимальной эффективности. А еще вы знаете о конденсаторах и о том, как их использовать.

Фото конденсаторов для электродвигателя

Если есть необходимость подключить асинхронный трехфазный электродвигатель к бытовой сети, можно столкнуться с проблемой — это сделать кажется совершенно невозможным.Но если вы знаете основы электротехники, то можете подключить конденсатор для запуска электродвигателя в однофазной сети. Но есть и варианты безконденсаторного подключения, которые тоже стоит учесть при проектировании агрегата с электродвигателем.

Простые способы подключения электродвигателя

Самый простой способ — подключить двигатель с помощью преобразователя частоты. Есть модели этих устройств, которые преобразуют однофазное напряжение в трехфазное. Преимущество этого метода очевидно — нет потерь мощности в электродвигателе.Но стоимость такого преобразователя частоты довольно высока — самый дешевый экземпляр обойдется в 5-7 тысяч рублей.

Есть еще один метод, который используется реже, — использование трехфазной асинхронной обмотки для преобразования напряжения. В этом случае вся конструкция будет намного крупнее и массивнее. Поэтому будет проще рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное не терять мощность, так как работа механизма будет намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электродвигателей могут быть соединены двумя способами:

  1. «Звезда» — в этом случае концы всех обмоток соединены в одной точке. И начало обмоток подключено к сети.
  2. «Треугольник» — начало обмотки соединено с концом соседней. В итоге получается, что точки соединения двух обмоток подключены к источнику питания.

Выбор схемы зависит от напряжения, подаваемого на двигатель. Обычно при подключении к сети переменного тока 380 В обмотки соединяются «звездой», а при работе от напряжения 220 В — «треугольником».

На картинке выше:

а) схема подключения звездой;

б) схема подключения «треугольник».

Так как одного питающего провода в однофазной сети явно недостаточно, его нужно делать искусственно.Для этого используются конденсаторы, сдвигающие фазу на 120 градусов. Это рабочие конденсаторы, их недостаточно при пуске электродвигателей мощностью более 1500 Вт. Для запуска мощных двигателей потребуется дополнительно включить еще один бак, что облегчит работу при пуске.

Емкость рабочего конденсатора

Для того, чтобы узнать, какие конденсаторы нужны для пуска электродвигателя при работе в сети 220 В, нужно использовать следующие формулы:

  1. При соединении звездой С (ведомый) = (2800 * I1) / U (сеть) .
  2. При подключении к «треугольнику» C (ведомое) = (4800 * I1) / U (сеть) .

Ток I1 можно измерить независимо с помощью клещей. Но также можно использовать следующую формулу: I1 = P / (1,73 U (сеть) cosφ η).

Значение мощности P, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана к корпусу двигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно использовать их упрощенный вариант: C (ведомый) = 66 * R (двигатель).

А если упростить расчет до максимума, то на каждые 100 Вт мощности электродвигателя требуется емкость около 7 мкФ. Другими словами, если у вас двигатель мощностью 0,75 кВт, то вам понадобится рабочий конденсатор емкостью не менее 52,5 мкФ. После выбора обязательно измерьте ток при работающем двигателе — его значение не должно превышать допустимых значений.

Пусковой конденсатор

В случае, если двигатель подвергается большим нагрузкам или его мощность превышает 1500 Вт, без фазового сдвига не обойтись.Вам нужно будет знать, какие еще конденсаторы необходимы для запуска электродвигателя мощностью 2,2 кВт и выше. Пусковой подключают параллельно с рабочим, но только он исключается из схемы при достижении холостого хода.

Обязательно отключать пусковые конденсаторы — иначе произойдет разбаланс фаз и перегрев электродвигателя. Пусковой конденсатор должен быть в 2,5-3 раза больше рабочего по емкости. Если вы считаете, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключить еще один блок конденсаторов 240 мкФ.В продаже вряд ли можно найти конденсаторы с такой емкостью, поэтому необходимо произвести подключение:

  1. При параллельном добавлении конденсаторов рабочее напряжение остается таким, как указано на элементе.
  2. При последовательном включении напряжения складываются, и общая емкость будет равна Кл (общая) = (C1 * C2 * .. * CX) / (C1 + C2 + .. + CX) .

Пусковые конденсаторы целесообразно устанавливать на электродвигатели мощностью более 1 кВт.Лучше немного снизить номинальную мощность, чтобы повысить степень надежности.

Какие конденсаторы использовать

Теперь вы знаете, как выбрать конденсаторы для запуска электродвигателя при работе в сети 220 В переменного тока. После расчета вместимости можно приступать к выбору элементов определенного типа. Рекомендуется использовать однотипные элементы, как рабочие, так и пусковые. Хорошо показывают себя бумажные конденсаторы, их обозначения следующие: МБГП, МПГО, МБГО, КБП.Также можно использовать посторонние элементы, которые устанавливаются в блоки питания компьютеров.

Для любого конденсатора необходимо указать рабочее напряжение и емкость. Одним из недостатков бумажных элементов является то, что они имеют большие размеры, поэтому для работы мощного двигателя требуется довольно большая батарея элементов. Намного лучше использовать зарубежные конденсаторы, так как они имеют меньшие габариты и большую емкость.

Использование электролитических конденсаторов

Можно использовать даже электролитические конденсаторы, но у них есть особенность — они должны работать на постоянном токе.Поэтому для их установки в конструкцию вам понадобятся полупроводниковые диоды. Без них нежелательно использовать электролитические конденсаторы — они имеют свойство взорваться.

Но даже если вы установите диоды и резисторы, это не может гарантировать полной безопасности. Если полупроводник прорвется, то к конденсаторам потечет переменный ток, что приведет к взрыву. Современная элементная база позволяет использовать качественную продукцию, например, полипропиленовые конденсаторы для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 указывает на то, что конденсатор имеет конструкцию в цилиндрическом корпусе. Но у SVV61 корпус прямоугольной формы. Эти элементы работают под напряжением 400 … 450 В. Поэтому их можно без проблем использовать в конструкции любого устройства, где требуется подключить асинхронный трехфазный электродвигатель к бытовой сети.

Рабочее напряжение

Необходимо учитывать один важный параметр конденсаторов — рабочее напряжение.Если для пуска электродвигателя использовать конденсаторы с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции. Но если использовать элементы, рассчитанные на работу с более низким напряжением (например, 160 В), то это приведет к быстрому выходу из строя. Для нормальной работы конденсаторов их рабочее напряжение должно быть примерно в 1,15 раза выше сетевого.

И нужно учитывать одну особенность — если вы используете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно снижать в 2 раза.Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна и для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому аккумуляторы лучше собирать из бумажных конденсаторов, суммарное напряжение которых около 600 В.

Подключение электродвигателя: практический пример

Допустим, у вас есть электродвигатель асинхронного типа, предназначенный для подключения к трехфазной сети переменного тока.Мощность — 0,4 кВт, тип двигателя — АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность — 0,4 кВт.
  2. Напряжение питания — 220 В.
  3. Ток при работе от трехфазной сети — 1,9 А.
  4. Подключение обмоток двигателя выполнено по схеме «звезда».

Теперь осталось рассчитать конденсаторы для запуска электродвигателя. Мощность мотора относительно небольшая, поэтому для использования в бытовой сети нужно только подобрать рабочий конденсатор, необходимости в пуске нет.Рассчитайте емкость конденсатора по формуле: С (ведомый) = 66 * P (двигатель) = 66 * 0,4 = 26,4 мкФ.

Вы можете использовать более сложные формулы, значение емкости будет немного отличаться от этого. Но если подходящего по емкости конденсатора нет, нужно подключить несколько элементов. При параллельном соединении емкости складываются.

note

Теперь вы знаете, какие конденсаторы лучше всего подходят для запуска электродвигателя.Но мощность упадет примерно на 20-30%. Если привести в движение простой механизм, то это не будет ощущаться. Частота вращения ротора останется примерно такой, как указано в паспорте. Учтите, что если двигатель рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он будет подключаться только при соединении обмоток треугольником. Внимательно изучите бирку, если на ней есть только обозначение схемы «звезда», то для работы в однофазной сети придется внести изменения в конструкцию электродвигателя.

Пусковые конденсаторы используются для обеспечения надежной работы электродвигателя.

Наибольшая нагрузка на электродвигатель действует в момент его пуска. Именно в этой ситуации начинает работать пусковой конденсатор. Также учтите, что во многих ситуациях запуск осуществляется под нагрузкой. В этом случае нагрузка на обмотки и другие компоненты очень высока. Какая конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе пусковые, имеют следующие характеристики:

  1. В качестве диэлектрика используется специальный материал.В этом случае часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритах — особенность полярных приводов.
  3. Неполярные имеют большую стоимость и габариты, но их можно использовать без учета полярности в цепи.

Эта конструкция представляет собой комбинацию двух проводников, разделенных диэлектриком. Применение современных материалов позволяет значительно увеличить показатель грузоподъемности и уменьшить его габариты, а также повысить надежность.Многие при впечатляющих показателях производительности имеют размер не более 50 миллиметров.

Назначение и преимущества

Конденсаторы этого типа используются в системе подключения. В этом случае он работает только в момент пуска, до достижения рабочей скорости.

Наличие такого элемента в системе определяет следующее:

  1. Пусковая мощность позволяет приблизить состояние электрического поля к круговому.
  2. Проведено значительное увеличение индекса магнитного потока.
  3. Повышение пускового крутящего момента, значительно улучшаются характеристики двигателя.

Без этого элемента в системе срок службы двигателя значительно сокращается. Это связано с тем, что сложный старт приводит к определенным трудностям.

Сеть переменного тока может служить источником питания при использовании этого типа конденсатора. Практически все используемые версии неполярны; они имеют относительно более высокое рабочее напряжение для оксидных конденсаторов.

Преимущества сети, в которой есть такой элемент:

  1. Более легкий запуск двигателя.
  2. Срок службы двигателя на порядок больше.

Пусковой конденсатор работает в течение нескольких секунд при запуске двигателя.

Схемы подключения

Схема подключения электродвигателя с пусковым конденсатором

Более распространена схема, имеющая в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмотка и конденсатор включаются при запуске двигателя.
  2. Дополнительная обмотка работает кратковременно.
  3. Тепловое реле включено в цепь для защиты дополнительной обмотки от перегрева.

Если необходимо обеспечить высокий крутящий момент при пуске, в цепь включается пусковой конденсатор, который включается вместе с рабочим.Следует отметить, что довольно часто его мощность определяется опытным путем для достижения максимального пускового момента. При этом по замерам значение его емкости должно быть в 2-3 раза больше.

К основным пунктам создания схемы питания электродвигателя можно отнести следующие:

  1. От источника питания 1 ветвь идет на рабочий конденсатор. Он работает постоянно, поэтому и получил такое же название.
  2. Перед ним вилка , которая идет к переключателю.Помимо переключателя может использоваться еще один элемент, запускающий двигатель.
  3. После переключателя устанавливается пусковой конденсатор. Он работает несколько секунд, пока ротор не наберет скорость.
  4. Оба конденсатора идут к двигателю.

Аналогичным образом можно выполнить подключение.

Следует отметить, что рабочий конденсатор присутствует в цепи практически постоянно. Поэтому стоит помнить, что их необходимо подключать параллельно.

Выбор пускового конденсатора для электродвигателя

Современный подход к этому вопросу предполагает использование специальных калькуляторов в Интернете, которые производят быстрый и точный расчет.

Для проведения расчета необходимо знать и ввести следующие показатели:

  1. Тип соединения обмоток двигателя : треугольник или звезда. Емкость также зависит от типа подключения.
  2. Мощность двигателя является одним из определяющих факторов.Этот показатель измеряется в ваттах.
  3. Напряжение сети учтено в расчетах. Обычно это может быть 220 или 380 вольт.
  4. Коэффициент мощности — постоянное значение, которое часто составляет 0,9. Однако можно изменить этот показатель при расчете.
  5. КПД электродвигателя также влияет на расчеты. Эту информацию, как и другие, можно найти, изучив информацию, предоставленную производителем. Если нет, вам следует ввести модель двигателя в Интернете, чтобы найти информацию о том, что такое эффективность.Также вы можете ввести приблизительное значение, типичное для аналогичных моделей. Стоит помнить, что КПД может варьироваться в зависимости от состояния электродвигателя.

Такая информация вводится в соответствующие поля, и выполняется автоматический расчет. В этом случае мы получаем емкость рабочего конденсата, а у пускового конденсата показатель должен быть в 2,5 раза больше.

Вы можете провести аналогичный расчет самостоятельно.

Для этого можно использовать следующие формулы:

  1. Для типа соединения обмоток «звезда» определение емкости проводится по следующей формуле: Cp = 2800 * I / U.В случае соединения обмоток «треугольником» используется формула Cp = 4800 * I / U. Как видно из информации выше, тип подключения является определяющим фактором.
  2. Приведенные выше формулы определяют необходимость вычисления количества тока, проходящего в системе. Для этого используется формула: I = P / 1,73Uηcosφ. Для расчета понадобятся показатели мощности двигателя.
  3. После расчета тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковая установка , как уже отмечалось ранее, должна быть в 2 или 3 раза выше по мощности, чем рабочая.

При выборе также стоит учесть нюансы ниже:

  1. Интервал рабочая температура.
  2. Возможное отклонение от расчетной мощности.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно указанные выше параметры игнорируются.Однако их можно учесть при создании идеальной системы питания двигателя.

Размеры также могут быть определяющим фактором. При этом можно выделить следующую зависимость:

  1. Увеличение мощности приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров с емкостью 400 мкФ. Причем высота составляет 100 миллиметров.

Кроме того, следует учитывать, что на рынке можно встретить модели зарубежных и отечественных производителей.Как правило, зарубежные дороже, но и надежнее. Русские версии также часто используются при создании сети подключения электродвигателей.

Обзор модели

конденсатор CBB-60

В продаже есть несколько популярных моделей.

Стоит отметить, что эти модели отличаются не вместимостью, а типом конструкции:

  1. Металлизированные варианты полипропилена исполнение марки СВВ-60. Стоимость этой версии около 300 рублей.
  2. Пленки марки НТС несколько дешевле. При такой же емкости стоимость около 200 руб.
  3. Е92 — продукция отечественных производителей. Стоимость их невелика — порядка 120-150 рублей при той же емкости.

Есть и другие модели, часто они отличаются типом используемого диэлектрика и типом изоляционного материала.

  1. Часто работа электродвигателя может происходить без включения пускового конденсатора в схему.
  2. Включать этот элемент в цепочку рекомендуется только в том случае, если выполняется запуск под нагрузкой.
  3. Тоже , большая мощность двигателя тоже требует аналогичных элементов в схеме.
  4. Особого внимания стоит уделить процедуре подключения, так как нарушение целостности конструкции приведет к ее неисправности.

На каждый объект изначально подается трехфазный ток. Основная причина — использование генераторов на электростанциях с трехфазными обмотками, сдвинутыми по фазе на 120 градусов друг к другу и производящими три синусоидальных напряжения.Однако при дальнейшем распределении тока к потребителю подводится только одна фаза, к которой подключается все имеющееся электрооборудование.

Иногда возникает необходимость использования нестандартных устройств, поэтому приходится решать вопрос, как выбрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать мощность этого элемента, обеспечивающую стабильную работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее электроснабжение осуществляется через однофазные сети.В этих условиях иногда бывает необходимо выступить. Эта операция вполне возможна с физической точки зрения, поскольку отдельные фазы отличаются друг от друга только сдвигом по времени. Такой сдвиг легко организовать, включив в цепь любые реактивные элементы — емкостные или индуктивные. Именно они выполняют функцию фазосдвигающих устройств при использовании рабочего и пускового элементов.

Следует учитывать, что сама обмотка статора имеет индуктивность.В связи с этим вполне достаточно подключить конденсатор определенной емкости вне мотора. При этом обмотки статора соединены таким образом, что первая из них сдвигает фазу другой обмотки в одном направлении, а в третьей обмотке конденсатор выполняет ту же процедуру, только в другом направлении. В результате формируются требуемые фазы в количестве трех, извлеченных из однофазного питающего провода.

Таким образом, трехфазный двигатель действует как нагрузка только для одной фазы подключенного источника питания.В результате образуется дисбаланс потребляемой энергии, что негативно сказывается на общих рабочих сетях. Поэтому данный режим рекомендуется использовать непродолжительное время для электродвигателей малой мощности. Возможно подключение обмоток к однофазной сети.

Схема подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется подключить к однофазной сети, рекомендуется отдавать предпочтение соединению в треугольник.Об этом свидетельствует прикрепленная к кузову информационная табличка. В некоторых случаях встречается обозначение «Y», что означает соединение звездой. Рекомендуется повторно подключить обмотки треугольником, чтобы избежать больших потерь мощности.

Электродвигатель подключен к одной из фаз однофазной сети, а две другие фазы созданы искусственно. Для этого используется рабочий (Cp) и пусковой (Cn) конденсаторы. В самом начале пуска двигателя требуется высокий уровень пускового тока, который не может быть обеспечен только одним рабочим конденсатором.На помощь приходит пусковой или пусковой конденсатор, подключенный параллельно рабочему конденсатору. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые пусковые конденсаторы имеют маркировку «Пусковые».

Эти устройства работают только во время пусковых периодов, чтобы разогнать двигатель до необходимой мощности. В дальнейшем его отключают кнопочным или двойным переключателем.

Типы пусковых конденсаторов

Малые электродвигатели, мощность которых не превышает 200-400 Вт, могут работать без пускового устройства.Им достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно рабочему конденсатору и во время разгона удерживается во включенном состоянии с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо емкость рабочего конденсатора умножить на коэффициент, равный 2 или 2,5. При разгоне двигателю требуется все меньше мощности.В связи с этим не стоит держать пусковой конденсатор постоянно включенным. Высокая производительность на высоких оборотах приведет к перегреву и выходу агрегата из строя.

Стандартная конструкция конденсатора состоит из двух пластин, обращенных друг к другу и разделенных диэлектрическим слоем. Выбирая тот или иной элемент, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены трех основных типов:

  • Полярный.Не может работать с двигателями переменного тока. Распадающийся диэлектрический слой может вызвать нагрев устройства и привести к короткому замыканию.
  • Неполярный. Получил наибольшее распространение. Они могут работать в любых вариантах подключения за счет одинакового взаимодействия пластин с диэлектриком и источником тока.
  • Электролитический. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тысяч микрофарад, идеально подходят для двигателей с низкой частотой.

Подбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного двигателя, должны иметь достаточно большую емкость — от десятков до сотен микрофарад. Электролитические конденсаторы для этой цели не подходят, так как требуют однополярного подключения. То есть специально для этих устройств необходимо будет создать выпрямитель с диодами и сопротивлениями.

Постепенно в таких конденсаторах высыхает электролит, что приводит к потере емкости.К тому же эти элементы иногда взрываются во время работы. Если все же решено использовать электролитические устройства, эти особенности необходимо учитывать.

Классическим примером являются элементы, показанные на рисунке. Слева показан рабочий конденсатор, справа — пусковой.

Подбор конденсатора для трехфазного двигателя производится опытным путем. Емкость рабочего устройства выбрана из расчета 7 мкФ на 100 Вт мощности.Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза больше емкости рабочего конденсатора. Таким образом, наиболее подходящим показателем будет 2 х 45 = 90 мкФ.

Выбор осуществляется постепенно, исходя из работы двигателя, так как его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать с помощью специальной таблицы. При недостатке мощности двигатель потеряет мощность, а при превышении мощности произойдет перегрев от чрезмерного тока.Если конденсатор подобран правильно, мотор будет работать нормально, без рывков и посторонних шумов … Точнее подбираем прибор с помощью расчетов, выполняемых по специальным формулам.

Расчет мощности

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток — звезда или треугольник.

В обоих случаях применяется общая расчетная формула: C slave = k x I f / U сеть, у которой все параметры имеют следующие обозначения:

  • k — специальный коэффициент.Его значение составляет 2800 для звезды и 4800 для дельты.
  • If — номинальный ток статора, указанный на информационной табличке. Если прочитать невозможно, измерения производятся с помощью специальных измерительных зажимов.
  • Umains — напряжение питания 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какую емкость будет иметь рабочий конденсатор (мкФ). При расчетах необходимо учитывать ток, подводимый к фазной обмотке статора.Оно не должно превышать номинальное значение, так же как нагрузка двигателя с конденсатором не должна превышать 60-80% номинальной мощности, указанной на паспортной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке представлена ​​простейшая схема подключения пускового и рабочего элементов. Первый устанавливается вверху, а второй — внизу. При этом к двигателю подключается кнопка включения и выключения. Самое главное — аккуратно обращаться с проводами, чтобы не перепутать концы.

Эта схема позволяет провести предварительную проверку с неточной оценкой. Он также используется после окончательного выбора наиболее оптимального значения.

Этот выбор проводится экспериментально с использованием нескольких конденсаторов разной емкости. При параллельном подключении их общая мощность увеличится. В это время нужно следить за работой двигателя. Если работа стабильная и ровная, в этом случае можно купить конденсатор емкостью, равной сумме емкостей тестовых элементов.

А большинство асинхронных двигателей рассчитаны на 380 В и три фазы. А при изготовлении самодельных сверлильных станков, бетономешалок, наждака и прочего возникает необходимость использования мощного привода. Мотор от болгарки, например, использовать нельзя — у него много оборотов, а мощность небольшая, приходится использовать механические редукторы, которые усложняют конструкцию.

Конструктивные особенности асинхронных трехфазных двигателей

Асинхронные машины переменного тока — находка для любого владельца.Но подключить их к бытовой сети оказывается проблематично. Но все же можно найти подходящий вариант, при использовании которого потери мощности будут минимальными.

Перед тем, как разобраться в его конструкции. Он состоит из следующих элементов:

  1. Ротор с короткозамкнутым ротором.
  2. Статор с тремя одинаковыми обмотками.
  3. Клеммная коробка.

Двигатель должен иметь шильдик из металла — на нем написаны все параметры, даже год выпуска.Провода от статора идут в клеммную коробку. С помощью трех перемычек все провода переключаются между собой. А теперь давайте разберемся, какие существуют схемы подключения мотора.

Звезда

Каждая обмотка имеет начало и конец. Перед подключением мотора 380 на 220 нужно выяснить, где находятся концы обмоток. Для соединения звездой достаточно установить перемычки так, чтобы все концы были замкнуты. К началу обмоток необходимо подключить три фазы.При запуске двигателя рекомендуется использовать именно эту схему, поскольку во время работы не индуцируются высокие токи.

Но вряд ли удастся добиться большой мощности, поэтому на практике используются гибридные схемы. Двигатель запускается с включенными обмотками по схеме «звезда», а при выходе в установленный режим переходит в «треугольник».

Схема подключения обмоток «треугольник»

Недостатком использования такой схемы в трехфазной сети является индукция больших токов в обмотках и проводах.Это приводит к повреждению электрооборудования. Но при работе в бытовой сети 220 В таких проблем не наблюдается. И если вы думаете, как подключить асинхронный двигатель 380 на 220 В, то ответ очевиден — только по схеме «треугольник». Для того, чтобы выполнить подключение по этой схеме, нужно соединить начало каждой обмотки с концом предыдущей. К вершинам получившегося треугольника нужно подключить питание.

Подключение двигателя с преобразователем частоты

Этот способ является одновременно самым простым, прогрессивным и дорогим.Хотя, если вам захочется функциональности электропривода, денег не пожалеете. Стоимость простейшего преобразователя частоты около 6000 рублей. Но с его помощью подключить мотор 380 к 220 В. не составит труда. Но нужно правильно выбрать модель. Во-первых, нужно обратить внимание на то, к какой сети разрешено подключаться устройству. Во-вторых, обратите внимание на количество выходов.

Для нормальной работы в домашних условиях преобразователь частоты должен быть подключен к однофазной сети.И на выходе должно быть три фазы. Рекомендуется внимательно изучить инструкцию по эксплуатации, чтобы не ошибиться с подключением, иначе мощные транзисторы, которые установлены в устройстве, могут сгореть.

Использование конденсаторов

При использовании двигателя мощностью до 1500 Вт может быть установлен только один конденсатор — рабочий. Для расчета его мощности воспользуйтесь формулой:

Sраб = (2780 * I) / U = 66 * P.

I — рабочий ток, U — напряжение, P — мощность двигателя.

Для упрощения расчетов можно поступить иначе — на каждые 100 Вт мощности требуется 7 мкФ емкости. Следовательно, для мотора на 750 Вт нужно 52-55 мкФ (нужно немного поэкспериментировать, чтобы получить желаемый сдвиг фазы).

В том случае, если конденсатор необходимой емкости отсутствует, нужно подключить параллельно те, что есть, при этом по следующей формуле:

Общий = C1 + C2 + C3 + … + Cn.

Пусковой конденсатор необходим при использовании двигателей мощностью более 1.5 кВт. Пусковой конденсатор работает только в первые секунды включения, давая «толчок» ротору. Включается через кнопку параллельно рабочему. Другими словами, он сильнее сдвигает фазу. Это единственный способ подключить двигатель с 380 на 220 через конденсаторы.

Суть использования рабочего конденсатора заключается в получении третьей фазы. Первые два равны нулю и фазе, которая уже есть в сети. Проблем с подключением мотора возникнуть не должно, главное — спрятать конденсаторы подальше, желательно в герметичном прочном корпусе.Если элемент выйдет из строя, он может взорваться и причинить вред другим. Напряжение конденсаторов должно быть не менее 400 В.

Подключение без конденсаторов

А вот двигатель с 380 на 220 можно подключить и без конденсаторов, для этого даже не нужно покупать преобразователь частоты. Достаточно порыться в гараже и найти несколько основных компонентов:

  1. Два транзистора типа КТ315Г. Стоимость на радиорынке около 50 копеек. за штуку, иногда даже меньше.
  2. Два тиристора типа КУ202Н.
  3. Диоды полупроводниковые Д231 и КД105Б.

Также потребуются конденсаторы, резисторы (постоянные и одно переменные), стабилитрон. Вся конструкция заключена в корпус, защищающий от поражения электрическим током. Используемые в конструкции элементы должны работать при напряжении до 300 В и токе до 10 А.

Возможен как поверхностный, так и печатный монтаж. Во втором случае вам понадобится фольгированный материал и умение работать с ним.Обратите внимание, что бытовые тиристоры типа КУ202Н сильно нагреваются, особенно если мощность привода превышает 0,75 кВт. Поэтому устанавливайте элементы на алюминиевые радиаторы; при необходимости используйте дополнительный обдув.

Теперь вы знаете, как самостоятельно подключить двигатель 380 к 220 (в бытовую сеть). В этом нет ничего сложного, вариантов много, поэтому вы можете выбрать наиболее подходящий для конкретной цели. Но лучше один раз потратиться и приобрести, это многократно увеличивает количество функций привода.

Схема управления трехфазным двигателем от однофазной сети. Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

Все электрики знают, что трехфазные электродвигатели работают эффективнее однофазных 220 вольт. Поэтому, если в вашем гараже есть трехфазный питающий кабель, то оптимальным вариантом будет установка любой машины с мотором на 380 вольт. Это не только эффективно с точки зрения операционной эффективности, но и с точки зрения стабильности.В этом случае нет необходимости добавлять какие-либо пусковые устройства в схему подключения, потому что магнитное поле будет формироваться в обмотках статора сразу после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня часто задают на форумах электриков. Вопрос звучит так: как правильно подключить трехфазный электродвигатель к трехфазной сети?

Схемы подключения

Давайте начнем с рассмотрения конструкции трехфазного электродвигателя. Здесь нас будут интересовать три обмотки, которые создают магнитное поле, вращающее ротор двигателя.То есть именно так происходит преобразование электрической энергии в механическую.

Есть две схемы подключения:

Сразу оговоримся, что соединение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной почти на 30%. В этом плане выигрывает соединение треугольником. Подключенный таким образом мотор не теряет мощность. Но есть один нюанс, касающийся текущей нагрузки.Это значение резко возрастает при запуске, что отрицательно сказывается на обмотке. Высокая сила тока в медном проводе увеличивает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробою изоляции и выходу из строя самого электродвигателя.

Обращаю ваше внимание на то, что большое количество европейского оборудования, вывезенного на просторы России, оснащено европейскими электродвигателями, которые работают под напряжением 400/690 вольт. Кстати, ниже фото шильдика такого мотора.


Значит, эти трехфазные электродвигатели необходимо подключать к бытовой сети 380В только по схеме треугольник. Если подключить звездой европейский мотор, то под нагрузкой он сразу сгорит. Отечественные трехфазные электродвигатели подключаются к трехфазной сети по схеме звезды. Иногда соединение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители

сегодня предлагают трехфазные электродвигатели, в соединительной коробке которых сделаны выводы концов обмоток в количестве трех или шести штук. Если есть три конца, это означает, что схема подключения звездой уже сделана внутри двигателя на заводе. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети как по схеме звезды, так и по схеме треугольника. При использовании схемы звезды необходимо соединить три конца начала обмоток в одну скрутку.Остальные три (напротив) подключены к фазам трехфазной сети 380 вольт. При использовании схемы треугольник нужно соединять все концы между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения между концами обмоток. Ниже фото демонстрирует два типа подключения трехфазного двигателя.

Это подключение к трехфазной сети используется редко. Но он существует, поэтому есть смысл сказать о нем несколько слов.Для чего его используют? Весь смысл такого подключения основан на положении, что при пуске электродвигателя используется схема звезды, то есть плавный пуск, а для основной работы используется треугольник, то есть максимальная мощность агрегата составляет выдавил.

Правда, такая схема довольно сложная. При этом обязательно устанавливаются три магнитных пускателя в соединении обмоток. Первый с одной стороны подключается к электросети, а с другой стороны к нему подключаются концы обмоток.Противоположные концы обмоток подключаются ко второй и третьей. Второй стартер соединен треугольником, третий — звездой.


Внимание! Невозможно одновременно включить второй и третий стартеры. Между подключенными к ним фазами произойдет короткое замыкание, что приведет к сбросу автомата. Следовательно, между ними устанавливается блокировка. На самом деле все будет так — при включении одного размыкаются контакты другого.

Принцип работы следующий: при включении первого стартера временное реле также включает стартер номер три, то есть стартер подключен. Двигатель запускается плавно. Реле времени касается определенного периода, в течение которого двигатель вернется в нормальный режим работы. После этого стартер номер три отключается, а второй элемент включается, переводя в цепь треугольник.

Подключение электродвигателя через магнитный пускатель

В принципе, схема подключения трехфазного двигателя через магнитный пускатель практически такая же, как и через автомат.Он просто добавляет блок включения и выключения с кнопками «Старт» и «Стоп».


Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (нормально замкнута). То есть при ее нажатии контакты замыкаются, и ток начинает течь на электродвигатель. Но есть один момент. Если отпустить кнопку «Пуск», контакты разомкнутся, и ток не будет течь должным образом. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется самозахватывающимся контактом.По сути, это блокирующий элемент. Это необходимо, чтобы при нажатии кнопки «Пуск» не прерывалась цепь питания электродвигателя. То есть отключить его можно было бы только кнопкой «Стоп».

Что можно добавить в тему, как подключить трехфазный двигатель к трехфазной сети через стартер? Обратите внимание на этот момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя перестает работать кнопка «пуск».Основная причина в том, что контакты кнопки перегорели, потому что при запуске двигателя появляется пусковая нагрузка с большим током. Решение этой проблемы может быть очень простым — очистить контакты.

Связанные записи:

Итак, вы получили в руки промышленный трехфазный электродвигатель на 380 вольт. Как у вас это получилось — углубляться не будем, но что с ним можно сделать, и как подключить электродвигатель 380 в 220в, мы рассмотрим подробнее.

Для начала расшифруем название электродвигателя

Для начала разберем надписи на табличке нашего двигателя.

Должно быть название с названием модели, например: двигатель асинхронный трехфазный 5AMX160M2BPU3 , стоит примерно как двигатель серии 5А модернизированный с алюминиевой рамой, высотой оси вращения 160 мм, количество полюсов равно 2 (3000 об / мин).

Еще он содержит несколько отдельных полей, из которых нас интересует наличие обозначения 380/220 — если оно есть, то это вполне подходит, так как его можно запустить в однофазной сети 220 вольт.Если, например, есть надпись 380/660 — в сеть 220в воткнуть такое устройство, к сожалению, нельзя. ИЗ

мы также видим скорость вращения — вполне приемлемую для бытовых целей от 1500 до 3000 об / мин, а мощность — для изготовления электрофаянса, например, нормальную будет 250..750 Вт. В надписях на табличке есть все еще может быть номинальная емкость конденсатора для подключения к однофазной сети и / или ток, потребляемый блоком, что будет полезно позже для расчета пусковой емкости.Если в обозначении присутствует только надпись Электродвигатель 220 вольт, то это, скорее всего, коллектор постоянного тока.

Узнаем, как выполняется соединение обмоток трехфазных электродвигателей

Трехфазные асинхронные электродвигатели (в качестве генераторов переменного тока используются синхронные машины) всегда имеют три одинаковые катушки (по количеству фаз) и, соответственно, 6 выводов. Посмотрим, сколько проводов выходит из нашего блока.Для этого снимаем крышку барно (это такая коробка сверху, куда выводятся концы обмоток) и обращаем внимательный взгляд на то, как подключены выходы статора. Скорее всего, мы увидим следующее:

Начало выводов статора обозначено символами С1 С2 С3, концы — С4 С5 С6. В одну точку можно подключать как начало, так и концы обмоток, такая схема подключения называется «звездой». Если из корпуса мотора просто выходит 6 проводов, то ищите обозначения С1.. С6 на них, часто в таких случаях на табличке тоже показана схема подключения с номиналами конденсаторов.
Но для того, чтобы можно было подключить автомат 380в к сети 220в, необходимо немного изменить схему подключения выводов.

Попробуем подключить трехфазный электродвигатель к однофазной сети

Для запуска движка в домашней сети потребуется переделать существующее подключение по схеме «треугольник». У вас должно получиться:


На схеме мы видим два конденсатора — рабочий и пусковой.Через них приводится в действие «третья фаза» двигателя. Конденсаторный спуск. он включается на короткое время кнопкой без фиксации только на время, пока электродвигатель 220 В не разгонится до номинальной скорости, это занимает от 2 до 5 секунд. Данные номинальных характеристик конденсаторов можно рассчитать на основе тока, потребляемого двигателем, по формуле Сраба. = 4800 × I / V Спуск. = 2,5 × Краб.

Вы можете следовать упрощенной формуле «на каждый киловатт мощности 100 мкФ емкости», т.е.е. Сраб = P / 10. Но на практике как всегда лучший метод расчета емкостей — это подбор, поэтому мы тщательно подбираем конденсаторы исходя из надежного пуска и отсутствия перегрева двигателя при длительной эксплуатации. Номинальное напряжение конденсаторов должно быть не менее 400 вольт. Возможно подключение нескольких резервуаров параллельно для увеличения общего рейтинга. а последовательно — для увеличения рабочего напряжения.

Можно изменить направление вращения мотора, перебросив концы блока контейнера на другой провод питания.

Схема подключения к сети 220 вольт

На практике включение может осуществляться по следующей схеме:


Надо подключиться к питанию через предохранитель или. Пуск электрической машины происходит при нажатии на нефиксирующуюся кнопку «Пуск» с двумя парами контактов, через один из которых подается напряжение на катушку электромагнитного пускателя К1, а вторую — на пусковой конденсатор. После разгона двигателя отпусканием кнопки «Старт» аппарат не останавливается из-за подключенных параллельных кнопок.Если необходимо остановить устройство, нажимают кнопку «Стоп» и разрывают силовую цепь магнитного пускателя, отключая двигатель от сети. Приведенная схема является базовой, ее можно дополнить элементами реверса, плавного торможения и прочего.

Стоит обратить внимание на то, что подключение электродвигателя на 380 вольт к 220 все еще нестандартно для трехфазных машин, поэтому мощность получившегося агрегата редко будет больше 50% от номинальной.

При изготовлении и установке таких устройств не забывайте — электробезопасность превыше всего!

Асинхронные электродвигатели, широко используемые в производстве, подключаются по схеме «треугольник» или «звезда». Первый тип в основном используется для двигателей с непрерывным пуском и работой. Совместное соединение используется для пуска электродвигателей большой мощности. Соединение звездой используется в начале пуска, затем при переходе к треугольнику. Также используется схема подключения трехфазного электродвигателя на 220 вольт.

Есть много типов двигателей, но для всех основной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.

При подключении к сети 220В высокие пусковые токи сокращают срок его службы. В промышленности соединение «треугольник» используется редко. Мощные электродвигатели соединены «звездой».

Для перехода со схемы подключения электродвигателя 380 на 220 существует несколько вариантов, каждый из которых имеет свои достоинства и недостатки.

Повторное подключение с 380 вольт на 220

Очень важно понимать, как трехфазный электродвигатель подключается к сети 220в. Чтобы подключить трехфазный двигатель к 220в, отметим, что он имеет шесть выводов, что соответствует трем обмоткам. Тестером вызываются провода для поиска катушек. Соединяем их концы пополам — получаем соединение «треугольник» (и три конца).

Для начала подключаем два конца сетевого провода (220 В) к любым двум концам нашего «треугольника».Оставшийся конец (оставшаяся пара скрученных проводов катушки) подключается к концу конденсатора, а оставшийся провод конденсатора также подключается к одному из концов сетевого провода и катушек.

Выберем ли мы одно или другое, будет зависеть от того, в каком направлении начинает вращаться двигатель. Проделав все эти действия, запускаем двигатель, подав на него 220 вольт.

Электродвигатель должен работать. Если этого не произошло или не вышла необходимая мощность, необходимо вернуться к первому этапу, чтобы поменять местами провода, т.е.е. переподключить обмотки.

Если при включении мотор гудит, но не крутится, необходимо дополнительно установить (кнопкой) конденсатор. В момент запуска он дает толчок двигателю, заставляя его вращаться.

Видео: Как подключить электродвигатель от 380 до 220

Вызов, т.е. измерение сопротивления, проводимое тестером. Если его нет, можно использовать для фонарика батарейку и обычную лампу: определяемые провода подключаются к цепи, последовательно с лампой.Если обнаружены концы одной обмотки, загорается лампа.

Найти начало и концы обмоток намного сложнее. Без вольтметра со стрелкой не обойтись.


Вам нужно будет подключить к обмотке аккумулятор, а к другой вольтметр.

Разрывая контакт провода с аккумулятором, наблюдать, отклоняется ли стрелка и в каком направлении. Такие же действия проделываем с остальными обмотками, при необходимости меняя полярность.Убедитесь, что стрелка отклоняется в том же направлении, что и при первом измерении.

Схема звезда-треугольник

В отечественных моторах «звезда» часто уже собрана, а треугольник нужно реализовать, т.е. соединить три фазы, а с оставшихся шести концов обмотки собрать звезду. Ниже приведен рисунок, чтобы облегчить понимание.

Основным преимуществом соединения трехфазной цепи звездой является то, что двигатель вырабатывает наибольшую мощность.

Тем не менее любителям такое подключение «нравится», но в производстве применяется нечасто, так как схема подключения сложная.

Для работы нужно три стартера:

Обмотка статора подключена к первому из них, К1, с одной стороны, и току, с другой. Остальные концы статора подключаются к пускателям К2 и К3, а затем обмотка с К2 подключается к фазам, чтобы получился «треугольник».

Подключив к фазе К3, оставшиеся концы немного укорачивают для получения схемы «звезда».

Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткого замыкания, которое может привести к остановке электродвигателя машины. Чтобы этого избежать, используйте электрическую блокировку. Работает это так: при включении одного из пускателей отключается другой, т.е. его контакты размыкаются.

Как работает схема

Когда K1 включается с помощью реле времени, K3 включается.Трехфазный звездообразный двигатель работает с большей мощностью, чем обычно. Через некоторое время контакты реле К3 размыкаются, но К2 запускается. Теперь схема двигателя «треугольник», и его мощность становится меньше.

Когда требуется отключение электроэнергии, запускается K1. Схема повторяется в последующих циклах.

Очень сложное соединение требует навыков и не рекомендуется для новичков.

Другие подключения двигателя

Есть несколько схем:


  1. Чаще, чем описанный вариант, используется схема с конденсатором, что поможет значительно снизить мощность.Один из контактов рабочего конденсатора подключен к нулю, второй — к третьему выводу электродвигателя. В итоге мы имеем маломощный блок (1,5 Вт). При большой мощности двигателя в цепи потребуется пусковой конденсатор. При однофазном подключении просто компенсирует третий выход.
  2. Асинхронный двигатель звездой или треугольником легко подключить при переключении с 380в на 220. Такие двигатели имеют три обмотки. Чтобы изменить напряжение, нужно поменять местами выходы, идущие к вершинам соединений.
  3. При подключении электродвигателей важно внимательно изучить паспорта, сертификаты и инструкции, ведь в импортных моделях часто встречается «треугольник», адаптированный к нашим 220В. Такие моторы, если их игнорировать и включать «звездой», просто сгорают. Если мощность больше 3 кВт, мотор нельзя подключать к бытовой сети. Это чревато коротким замыканием и даже выходом из строя УЗО автомата.

Включение трехфазного двигателя в однофазную сеть

Ротор, подключенный к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемому током, протекающим в разное время в разных обмотках.Но когда такой двигатель подключен к однофазной цепи, нет крутящего момента, который мог бы вращать ротор. Самый простой способ подключить трехфазный двигатель к однофазной цепи — подключить его третий контакт через фазосдвигающий конденсатор.

При подключении к однофазной сети такой двигатель имеет ту же скорость, что и при работе от трехфазной сети. Но этого нельзя сказать о мощности: ее потери значительны и зависят от емкости фазовращающего конденсатора, условий работы двигателя, выбранной схемы подключения.Потери примерно достигают 30-50%.

Цепи могут быть двух-, трех-, шестифазными, но чаще всего используются трехфазные. Под трехфазной схемой понимается совокупность электрических цепей с одинаковой частотой синусоидальной ЭДС, различающихся по фазе, но создаваемых общим источником энергии.

Если нагрузка в фазах одинакова, цепь симметрична. Для трехфазных несимметричных цепей дело обстоит иначе. Полная мощность состоит из активной мощности трехфазной цепи и реактивной мощности.

Хотя большинство двигателей могут работать в однофазном режиме, не все могут работать хорошо. Лучше других в этом смысле асинхронные двигатели, которые рассчитаны на напряжение 380/220 В (первый для звезды, второй для треугольника).

Это рабочее напряжение всегда указывается в паспорте и на табличке, прикрепленной к двигателю. Там же показана схема подключения и варианты ее изменения.



Если присутствует «A», это означает, что можно использовать как треугольник, так и звезду.«В» означает, что обмотки соединены «звездой» и не могут быть соединены иначе.

Результат должен быть таким: при разрыве контактов обмотки с аккумулятором на двух оставшихся обмотках должен появиться электрический потенциал той же полярности (т.е. отклонение стрелки происходит в одном направлении). Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечаются и подключаются по схеме.

Использование магнитного пускателя

Использование схемы подключения электродвигателя 380 через стартер удобно тем, что пуск может производиться дистанционно.Преимущество стартера перед автоматом (или другим устройством) в том, что стартер можно разместить в шкафу, а элементы управления можно вынести в рабочую зону, напряжение и токи минимальны, поэтому провода меньше.

Кроме того, подключение с помощью стартера обеспечивает безопасность в случае «пропадания» напряжения, так как при этом размыкаются силовые контакты, и при повторном появлении напряжения стартер не подаст его на оборудование без нажатия кнопки пуска.

Схема подключения стартера асинхронного электродвигателя 380в:


На контактах 1,2,3 и кнопке пуска 1 (разомкнут) в начальный момент присутствует напряжение. Затем через замкнутые контакты этой кнопки (при нажатии «Пуск») подается на контакты катушки стартера К2, замыкая ее. Катушка создает магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя двигатель в движение.

При этом замыкается замыкающий контакт, от которого фаза подается на катушку через кнопку Stop.Получается, что при отпускании кнопки «Пуск» цепь катушки остается замкнутой, как и силовые контакты.

При нажатии «Стоп» цепь разрывается, возвращаясь размыканием силовых контактов. Пропадает напряжение с проводников, питающих двигатель и NO.

Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Инструкции

Как правило, для подключения трехфазного электродвигателя используют три провода и напряжение питания 380 вольт.В сети 220 вольт всего два провода, поэтому для работы двигателя напряжение нужно подавать еще и на третий провод. Для этого используется конденсатор, который называется рабочим конденсатором.

Емкость конденсатора зависит от мощности двигателя и рассчитывается по формуле:
C = 66 * P, где C — емкость конденсатора, мкФ, P — мощность электродвигателя, кВт.

То есть на каждые 100 Вт мощности двигателя нужно подбирать емкость около 7 мкФ.Таким образом, для двигателя мощностью 500 Вт необходим конденсатор емкостью 35 мкФ.

Требуемую емкость можно собрать из нескольких конденсаторов меньшей емкости, подключив их параллельно. Затем рассчитывается общая емкость по формуле:
Cобщ = C1 + C2 + C3 +… .. + Cn

Важно помнить, что рабочее напряжение конденсатора должно быть в 1,5 раза больше напряжения питания электродвигателя. . Следовательно, при напряжении питания 220 вольт конденсатор должен быть 400 вольт.Могут применяться конденсаторы типа КБГ, МБГЧ, БГТ.

Для подключения двигателя используются две схемы подключения — «треугольник» и «звезда».

Если в трехфазной сети двигатель был подключен по схеме «треугольник», то в однофазную сеть подключаемся по такой же схеме с добавлением конденсатора.

Подключение двигателя звездой осуществляется следующим образом.

Для работы электродвигателей мощностью до 1.5 кВт, емкости рабочего конденсатора вполне достаточно. Если подключить мотор большей мощности, то такой мотор будет очень медленно разгоняться. Поэтому необходимо использовать пусковой конденсатор. Он подключен параллельно рабочему конденсатору и используется только во время разгона двигателя. Затем конденсатор отключается. Емкость конденсатора для запуска двигателя должна быть в 2-3 раза больше емкости рабочего.

Трехфазный двигатель в однофазной сети

Трехфазный двигатель необходим для различных самоделок: циркулярных, деревообрабатывающих, точильных и сверлильных станков.
Среди различных способов пуска трехфазных электродвигателей в однофазных сетях наиболее простым и эффективным является подключение третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90 ° С, а между первой и второй фазами сдвиг незначительный, электродвигатель теряет мощность примерно на 40 … 50% при включении обмоток по схема треугольника. На практике это условие выполнить сложно, обычно двигатель управляется в два этапа: сначала его включают пусковым конденсатором (из-за больших пусковых токов), а после разгона отключают, оставляя только рабочий ( Инжир.1).

C2 = 4800 I / U

U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или рассчитать по формуле: на практике это условие выполнить сложно, двигатель не работает. обычно управляется в два этапа: сначала включается пусковым конденсатором (из-за больших пусковых токов), а после разгона отключается, оставляя только рабочий (рис. 1).

При нажатии кнопки СБ1 (можно использовать кнопку от стиральной машины — стартер ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда набирает скорость, кнопка отпускается.SB1.2 открывается, а SB1.1 и SB1.3 остаются закрытыми. Они открываются для остановки двигателя. Если SB 1.2 в кнопке не отрывается, под нее следует подложить шайбу, чтобы она оторвалась. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:

С2 = 4800 I / U
, где I — ток, потребляемый двигателем, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или рассчитать по формуле:
где Р — мощность двигателя, Вт;
U — напряжение сети, В;
n- КПД;
cosψ — коэффициент мощности.Емкость пускового конденсатора С1 выбирается в 2 … 2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего использовать конденсаторы марки МГБО, МБГП, МБГЧ с рабочим напряжением от 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 на 200 … 500 кОм, через который «течет» оставшийся электрический заряд.

Реверс электродвигателя осуществляется переключением фазы на его обмотке тумблером SA1 (рис.1) типа ТВ1 … 4 и т. Д.

При работе на холостом ходу по обмотке, подводимой через конденсаторы, протекает ток, па 20 … 40% превышающий номинальный. Следовательно, если электродвигатель будет часто использоваться в режиме недогрузки или холостого хода, емкость конденсатора C2 должна быть уменьшена. Например, для включения мотора мощностью 1,5 кВт в качестве рабочего конденсатора можно использовать конденсатор 100 мкФ, а пусковой — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.

При невозможности приобретения бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы в качестве пусковых. На рис. 2 приведена схема замены бумажных конденсаторов на электролитические. Допустимое напряжение, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов требуется напряжение 400 В и выше, то для электролита достаточно 300 … 350 В , поскольку он пропускает только одну полуволну переменного тока, а значит, только половину рабочего напряжения, а для надежности он должен выдерживать амплитудное напряжение однофазной сети, т.е.е. примерно 300 В. Их расчет аналогичен расчету по бумаге.
Схема подключения трехфазного двигателя к однофазной сети с использованием электролитических конденсаторов представлена ​​на рис. 3. Подобрать необходимое значение емкости бумажных и оксидных конденсаторов проще всего, измерив, ток в точках a , б, в — токи должны быть равными при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 подбираются с обратным напряжением не менее 300 В и 1 пр. макс = 10А.При большей мощности двигателя диоды устанавливаются на радиаторах по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор будет протекать переменный ток, в результате чего через некоторое время электролит может нагреться и взорваться. Электролитические конденсаторы в качестве рабочих использовать нежелательно, так как длительное протекание через них больших токов приводит к их нагреву и взрыву. Их лучше всего использовать как пусковые установки.

При использовании трехфазного электродвигателя с динамическими (большими) нагрузками на валу можно использовать схему подключения пускового конденсатора с использованием реле тока, что позволяет автоматически подключать и отключать пусковые конденсаторы в момент тяжелого вала. нагрузки (рис.3).

При подключении обмоток трехфазного двигателя к однофазной сети по схеме, представленной на рис. 4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют порядка 25%, так как обмотки А и В включены в противофазе при полном напряжении 220 В, а напряжение вращения определяется включением обмотки С. Фазировка обмоток показана точками.

Более практичными и удобными в работе с трехфазными двигателями являются резисторно-индуктивно-емкостные преобразователи однофазной сети 220 В в трехфазную, с токами по фазам до 4А и сдвигом напряжения по фазам около 120 °.Такие устройства универсальны, монтируются в жестяном корпусе и позволяют подключать трехфазные электродвигатели мощностью до 2,5 кВт к однофазной сети 220 В практически без потерь мощности.
В преобразователе используется дроссель с воздушным зазором. Дроссельное устройство показано на рис. 6. При правильном подборе R, C и соотношения витков в секциях дроссельной обмотки такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и мощности. степень нагрузки на вал.Вместо индуктивности дано индуктивное сопротивление XL, так как его легче измерить: обмотка дросселя соединяется с крайними выводами через амперметр на напряжение 100 … 220 В частотой 50 Гц параллельно с вольтметр. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL = U / J.

Конденсатор С1 должен выдерживать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при подключении к цепи переменного тока должны иметь примерно двойной запас по напряжению.Резистор R1 должен быть рассчитан на ток до 3А, т.е. на мощность около 700 Вт (намотана никель-хромовой проволокой диаметром 1,3 … 1,5 мм на фарфоровой трубке с подвижным кронштейном, что позволяет для получения необходимого сопротивления для разных мощностей двигателя). Резистор необходимо защищать от перегрева, защищать от других элементов, токоведущих частей, от прикосновения к людям. Металлическое шасси шасси должно быть заземлено.

Сечение магнитопровода индуктора S = 16… 18см2, диаметр проволоки d = l, 3 … 1,5 мм, общее количество витков W = 600 … 700. Форма магнитопровода и марка стали любые, Главное — предусмотреть воздушный зазор (а значит, возможность изменять индуктивное сопротивление), который устанавливается винтами (рис. 6). Чтобы исключить сильное дребезжание дроссельной заслонки, между W-о-разными половинками магнитопровода закладывается деревянный брусок и зажимается саморезами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270… 450 Вт. Вся обмотка индуктора выполнена в виде одной катушки с тремя секциями и четырьмя выводами. Если вы используете сердечник с постоянным воздушным зазором, вам придется сделать испытательную катушку без промежуточных отводов, собрать дроссель с примерным зазором, подключить его и измерить XL. Затем подогнать полученное значение к искомому. XL нужно перематывать или перематывать на несколько витков. Выяснив необходимое количество витков, намотайте необходимую катушку, разделив каркас на секции в соотношении W1: W2: W3 = 1: 1: 2.Итак, если общее количество витков равно 600, то Wl = W2 = 150, а W3 = 300. Чтобы увеличить выходную мощность преобразователя и при этом избежать разбаланса напряжений, необходимо изменить значения XL, Rl, Cl, C2, которые рассчитываются исходя из того, что токи в фазах A, B и C должны быть равны при номинальной нагрузке на валу двигателя. В режимах недогрузки двигателя асимметрия фазных напряжений не опасна, если наибольший из фазных токов не превышает номинальный ток двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*