Расчет мощности радиаторов: Как рассчитать радиаторы отопления

Содержание

как рассчитать мощность самостоятельно, фото и видео подсказки

Содержание:

Каждого владельца квартиры или дома интересует, какое минимальное количество секций радиатора требуется для полноценного обогрева жилых и подсобных помещений, исходя из их площади. Чтобы получить ответ на данный вопрос, необходимо знать, как рассчитать мощность батареи отопления. Существуют как простые варианты вычислений, так и сложные формулы расчетов. 


Особенности самостоятельного расчета мощности батарей отопления

Нижеприведенные способы, как рассчитать мощность радиаторов отопления, предназначаются для хозяев частных домовладений и жильцов квартир, а не для специалистов в сфере теплотехники. Поэтому инструкция будет по возможности простой и понятной, чтобы в ней мог разобраться каждый человек, который планирует монтировать отопительную конструкцию своими руками. 

Чем проще расчет мощности батарей, тем большей будет величина погрешности. Но с другой стороны для потребителей главной целью является обеспечение достаточной тепловой мощности. Ничего нет плохого в том, что в сильнейший зимний мороз данный параметр окажется больше, чем требуется. 

В квартирах, жильцы которых платят за отопление в зависимости от площади, тепло не бывает лишним. А в домах, где имеются счетчики потребляемой тепловой энергии, несложно установить регулировочные дроссели и регуляторы температурного режима, приобрести которые можно в любой момент. Читайте также: «Счетчики тепловой энергии для квартиры».
Что касается частных домов, то при наличии собственного котла излишняя мощность не приведет к финансовым потерям, поскольку все современные газовые и электрические теплоагрегаты оснащены термостатами, регулирующими теплоотдачу в соответствии с температурой в помещении (подробнее: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»). 

Даже в том случае, когда при проведении самостоятельных расчетов будет допущена серьезная ошибка, но в большую сторону, владельцу жилья она будет стоить нескольких излишне купленных секций батареи. Согласно последним данным, раз в несколько лет на отечественных просторах зимой сотрудники гидрометцентров фиксируют экстремально низкие температуры. По мнению специалистов, подобные явления в связи с изменением климата на планете будут происходить все чаще. По этой причине, делая расчет мощности батарей отопления, не следует опасаться ошибок в большую сторону. 

Порядок расчета мощности радиаторов

Способ выполнения вычислений, как правило, зависит от того, какое оборудование планируется использовать. Если это электрические отопительные приборы, то у них имеются сопроводительные документы, в которых производители указывают их эффективную тепловую мощность. 

При отсутствии паспорта на продукцию соответствующая информация имеется на сайте изготовителя. Нередко там же может находиться калькулятор, с помощью которого можно сделать расчет батарей отопления для конкретного объема помещения, а также определить основные параметры будущей отопительной конструкции.

Но при этом следует учитывать такой нюанс: практически всегда производители закладывают в компьютерную программу по вычислению величины теплоотдачи радиатора (конвектора или батареи) определенную разницу температур между помещением и теплоносителем — обычно на уровне 70 градусов Цельсия. К сожалению, для российских систем теплообеспечения такой параметр пока является недосягаемым. 


В конце концов, потребители могут воспользоваться простым, правда, не очень точным расчетом, позволяющим узнать мощность батарей отопления с учетом количества секций. 

 

Биметаллические отопительные радиаторы

В качестве примера взяты данные, имеющиеся на сайте завода «Большевик»: 

  • для секций, у которых межосевое расстояние составляет 500 миллиметров, теплоотдача находится на уровне 165 ватт;
  • для 400-миллиметровых секций — 143 ватта;
  • для 300-миллиметровых секций — 120 ватт;
  • для 250-миллиметровых секций — 102 ватта. 

Алюминиевые отопительные радиаторы

Чтобы ознакомиться с величиной мощности алюминиевых отопительных радиаторов, взяты данные для изделий ТМ Calidor и Solar от итальянских производителей:

  • секция, имеющая межосевое расстояние 500 миллиметров, отдает максимум 182 ватта;
  • 350-миллиметровые секции имеют теплоотдачу 145-150 ватт. 

Стальные пластинчатые отопительные радиаторы

Как узнать мощность батареи отопления, если это стальные радиаторы пластинчатого типа, ведь у них отсутствуют секции? В данном случае при проведении расчетов учитывают длину стального пластинчатого радиатора отопления и межосевое расстояние. Помимо этого, производители рекомендуют обращать внимание на способ подключения батареи. Дело в том, что вариант врезки в отопительную систему влияет на тепловую мощность в процессе эксплуатации радиатора. 

Все, кого интересует величина теплоотдачи стальных пластинчатых батарей, могут посмотреть таблицу модельного ряда продукции ТМ Korad, изображенную на фото.

Чугунные отопительные радиаторы

С данными отопительными приборами все гораздо проще, поскольку у всех отечественных (российских) чугунных радиаторов межосевое расстояние подводок стандартно и составляет 500 миллиметров. Мощность чугунных радиаторов отопления при стандартной разнице температур, равной 70 градусам, равна 180 ватт на одну секцию. 

 

Порядок расчета тепловой мощности

Знание тепловой мощности одной секции позволит узнать необходимое их количество, но как вычислить этот параметр.

В данной статье будут рассмотрено несколько вариантов, как сделать необходимые расчеты в зависимости от разных переменных:

Расчет мощности по площади

В его основе лежат санитарные нормы, согласно которым на 10 «квадратов» помещения должен приходиться 1 киловатт тепловой энергии (100 ватт на м²). При проведении расчета необходимо учитывать поправочный коэффициент, соответствующий определенному региону России. Например, для Якутии и Чукотки он равен 2, для Дальнего Востока составляет 1,6, а для южных областей и республик находится в пределе от 0,7 до 0,9 (прочитайте также: «Как рассчитать батареи отопления — количество и размер»). 

Разумеется, что подобный метод не может обеспечить абсолютную точность, поскольку:

  • панорамный способ остекления в одну нитку значительно увеличивает потерю тепла по сравнению с тем, когда стена сплошная;
  • несмотря на то, что расположение квартир внутри здания не учитывают, при наличии теплых стен при одинаковом количестве батарей в них будет намного теплее, чем в угловом помещении, имеющем стену, соприкасающуюся с улицей;
  • расчет верен только в том случае, когда высота потолков не превышает 2,5 — 2,7 метра (стандартный параметр для квартир, построенных в советское время). Уточненных вычислений требуют помещения в сталинках, у которых трехметровые потолки. Кроме этого, в начале 20-го века во многих строящихся домах высота потолков достигала 4 — 4,5 метра. 

В качестве примера будет приведен расчет количества секций чугунных батарей для комнаты размером 3 на 5 метров, которая расположена в доме, находящемся в Краснодарском крае.

Порядок действий следующий:

  • сначала определяют площадь 3х5=15м²;
  • потом вычисляют требуемую тепловую мощность отопления — 15м² х100Вт х0,7= 1050 ватт. 0,7 – региональный коэффициент;
  • если мощность каждой секции составляет 180 ватт, тогда потребуется 1050: 180 = 5,83 секции. После округления до целых значений получается 6 секций. 

Простые вычисления мощности по объему

Поскольку расчет мощности батареи отопления в зависимости от объема воздуха в помещении учитывает высоту потолка, он является более точным. На один кубометр требуется 40 ватт мощности отопительного оборудования.

Расчет производится для той же комнаты в Краснодарском крае при том, что ее построили с высотой потолков, равной 3,1 метра:

  • прежде всего, вычисляют объем помещения 3х5х 3,1 = 46,5 кубометра;
  • радиаторы должны обладать мощностью 46,5х 40 = 1860 ватт, а с учетом регионального коэффициента 1860х0,7 = 1302 ватта или 8 чугунных секций (1302: 180 =7,23). 

 

Уточненные вычисления мощности по объему

Более точный расчет мощности батарей отопления производят c учетом разных переменных:

  • количества окон и дверей. В среднем теплопотери по причине наличия одного окна стандартного размера составляют 100 ватт, а одной двери – 200 ватт;
  • если помещение располагается в углу здания или в его торце, используют коэффициент 1,1 – 1,3, который зависит от толщины стен и материала их изготовления;
  • для частных домовладений применяют коэффициент 1,5, так как в них отмечаются повышенные теплопотери через крышу и пол, поскольку снизу и сверху нет теплых квартир. 

Теперь расчет мощности тепла для радиаторов отопления будет выполнен для помещения аналогичного по площади (как в Краснодарском крае), но находящегося в углу частного домовладения в Оймяконе, где средняя температура в январе опускается до — 54 градусов, а температурный минимум за все время наблюдений достигал 82 градусов мороза. Особо неприятный момент заключается в том, что дверь выходит на улицу и имеется окно.

Последовательность вычислений такая:

  • поскольку известна базовая мощность, равная 1860 ватт, к ней прибавляют 300 ватт (окно плюс дверь) и получают 2160 ватт;
  • так как дом частный, происходит потеря тепла за счет холодного пола и крыши — 2160х1,5 = 3240 ватт;
  • угол дома вынуждает использовать коэффициент 1,3 и в итоге получится – 3240х1,3 = 4212 ватт;
  • Оймяконский климат требует применения регионального коэффициента, равного 2 — 4212х2 = 8424 ватта. 

Если радиаторы будут чугунными, то количество секций должно быть равным 8424: 180 = 46,8, а с округлением – 47. Поскольку длина секции составляет 93 миллиметра, то батарея растянется на 4,4 метра.

Видео о стандартах расчетов мощности батарей отопления:


Расчет мощности радиаторов отопления

При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.

Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.

Расчет мощности радиаторов отопления

  • Чтобы узнать необходимую мощность умножьте площадь комнаты на 100 Вт
  • Если в комнате радиатор расположен в глубокой открытой нише, то мощьность надо увеличить на 5%
  • Если в комнате окно выходит на север и северо-восток, то мощьность надо увеличить на 10%
  • Если в комнате батарея закрыта спложной панелью с горизонтальными щелами, то мощьность надо увеличить на 15%
  • Если в комнате 1 окно и 2 наружные стены, то мощьность надо увеличить на 20%
  • Если в комнате 2 окна и 2 наружные стены, то мощьность надо увеличить на 30%

Согласно строительным нормами и другими правилами необходимо затрачивать 100 Вт мощности вашего радиатора на 1 м2 жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:

K = \frac {C * 100} {P}

P — Мощность (Вт)
К — Мощность одной секции радиаторной батареи (Вт)
С — Площадь помещения (м2)

Пример

Комната имеет 4 метра в длину и 3.5 в ширину. В таком случае площадь комнаты равна: 4 * 3.5 = 14 м2.

Мощность одной секции батареи заявлена производителем в 160 Вт.

Получаем: 14 * 100 / 160 = 8.75.

Полученную цифру необходимо округлить и получается, что для такого помещения потребуется 9 секций радиатора отопления.

Если же это угловая комната, то 9 * 1.2 = 10.8, округляется до 11. Если система теплоснабжения недостаточно эффективна, то добавляем 20% от первоначального числа: 9 * 20 / 100 = 1.8 округляется до 2.

Итого: 11 + 2 = 13. Для угловой комнаты площадью 14 м2, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.

Точный тепловой расчет производится специалистам по специальным методикам, однако приближенный расчет необходимой тепловой мощности для средней полосы России, можно расчитать по приведенной ниже фотмуле:

P = (\frac {L_h*L_l*H_h} {2.7})/10

P — Мощность (кВт)
Lh — Длина помещения (метры)
Ll — Ширина помещения (метры)
Hh — Высота потолков помещения (метры)
1 кВт = 1000 Вт

Подбор размера радиатора можно производить в помощью приведенной ниже таблицы (см. колонку с желаемой температурой в комнате):

700С (750С / 650С) Теплоотдача на 1 погонный мерт радиатора (Вт)
Температура комнаты
Тип радиатораВысота радиатора100С120С150С180С200С220С240С
РК 11300660636593549521497466
5001005968901835793755709
РКР 21300963927864801761725679
5001457140413081212115110971028
РККР 223001234118911081027975929870
5001861179316701548147014001312
РККРКР 333001748168415691454138113151233
5002637254032672192208319831860
Расшифровка обозначения радиаторов

Например 333C/300-500 или 33V/300-500
Где: 33 — тип радиатора в миллиметрах; С — боковое подключение; V — нижнее подключение;
300 — высота радиатора в миллиметрах; 500 — длинна радиатора в миллиметрах.

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К=О*41, где:

К- необходимое количество секций радиатора,

О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.

Примерный растчет количества секций радиаторов для типового помещения:

N = \frac {S} {P} * 100

N — Количество секций
S — Площадь комнаты (м2)
P — Теплоотача (Вт)

— дробная часть округляется по правилам математического окруления

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Обновлено:

Расчет реальной мощности радиатора отопления для дома

Информация о материале

1294

    Каждый прибор отопления (радиатор, конвектор) обладает теплоотдачей – основным свойством, которое определяет возможность его использования для обогрева помещения (комнаты) в доме или квартире. Характеристика теплоотдачи зависит от конструкции и габаритов прибора, а указывается в технической документации (паспорте устройства) в Ваттах (Вт).
     Например, для стального панельного радиатора Kermi FTV 22/500/1400 (тип 22, высотой 500мм, длиной 1400мм) указана паспортная теплоотдача 2702 Вт. Можно ли этот показатель использовать для подбора радиатора для обогрева помещения, у которого теплопотери 2700 Вт? По паспортным показателям – вроде бы подходит, бери и ставь. Так часто поступают продавцы техники для отопления, подбирающие покупателю радиаторы отопления по средним теплопотерям, бытовое значение которых принимается 100 Вт/м.кв. Т.е., для комнаты площадью 27 м.кв., покупателю порекомендуют радиатор отопления мощностью 2700 Вт, например, тот же рассмотренный Kermi FTV 22/500/1400. Насколько корректен такой подход с точки зрения современных методик расчета отопления? Ответу на этот вопрос и посвящена данная статья.
     Прежде всего, нужно знать, что теплоотдача прибора отопления (кроме конструкции и габаритов) зависит от 3-х температур – подачи, обратки (для современных двухтрубных систем отопления) и температуре воздуха в помещении. Для расчета теплоотдачи радиатора отопления существуют специальные формулы, которые использовать в «прямом» виде уже нет необходимости, поскольку они уже учтены в современных автоматизированных программах тепловых расчетов. Поэтому, для упрощения рассмотрения, будем использовать данные одной из таких программ — Oventrop OZC, которой пользуются наши специалисты при выполнении проектов отопления для частных домов.

     Паспортная теплоотдача большинства радиаторов и конвекторов отопления указывается для следующих параметров системы отопления:
     — температура теплоносителя подающей линии (подача) +90 град.С;
     — температура теплоносителя обратной линии (обратка) +70 град.С;
     — температура в помещении +20 град.С.
     Кратко эти параметры обозначаются 90/70/20. Т.е., для рассматриваемого радиатора Kermi FTV 22/500/1400, теплоотдача 2702 Вт указана для параметров 90/70/20 (не путать с 90/60/90 :).

     Если в системе отопления, в которой будет работать этот радиатор, параметры такие, как указано, то его можно использовать в «чистом» виде, без термовентиля (об этом – ниже).

     Для частных домов такие параметры теплоносителя не могут быть установлены, поскольку современные теплогенераторы (котлы отопления) – все низкотемпературные, с температурой подачи максимум +80 град.С (обратка +60 град.С). Расчетная температура в помещении обычно принимается более комфортная для человека — от +22 град.С до +24 град.С (по опыту запросов наших клиентов).

     Т.е., теплоотдача радиатора отопления для комнаты в частном доме должна быть определена на параметры 80/60/22. Кроме того, на радиаторы обычно устанавливаются терморегуляторы (термоголовки) для поддержания постоянной температуры в помещении. Терморегуляторы ставятся на термовентиль, который может быть установлен отдельно или встроен в радиатор (обычно встраиваются в радиаторы с нижним подключением). Все эти условия, очевидно, повлияют на характеристики теплоотдачи радиатора, рассмотрим характеристики этого влияния на примере теплотехнического расчета в программе Oventrop OZC.
     Параметры теплоносителя устанавливаются в общих данных рассчитываемой системы отопления:

    На этой же вкладке программы устанавливается величина увеличения мощности отопительного прибора с терморегулирующим вентилем (в процентах), по умолчанию – это 15%. Т.е., при использовании комнатного регулятора отопления, мощность прибора отопления должна подбираться на 15% выше полученного номинального значения (далее программа делает это автоматически).
     Расчетная температура воздуха в помещении указывается в соответствующей вкладке для каждого помещения отдельно:

     После расчета теплопотерь для помещения (по введенным параметрам ограждающих конструкций – стен/полов/кровли/окон/дверей) программой подбираются приборы отопления (с заданными ограничениями по габаритам, чтобы помещались в габариты окон или других мест установки):

     Как видно из примера, для помещения с теплопотерями 1650 Вт, подобран прибор отопления – стальной панельный радиатор Kermi FTV 22/500/1400, расчетная теплоотдача (по простому – мощность) которого указана 1662 Вт.
     Таким образом, от паспортной теплоотдачи радиатора 2702 Вт осталось всего 1662 Вт – для помещения условно стандартного частного дома с параметрами теплоносителя 80/60, расчетной температуре в помещении +22 град.С и с «термоголовкой» на радиаторе. Разница между паспортной и реальной теплоотдачей составила 38%, что весьма существенная величина.
     Приведенная расчетная теплоотдача радиатора получена при размещении его на наружной стене, под окном, открыто (без экрана, которым иногда декорируют радиаторы). При проведении расчетов, программа также позволяет учесть степень конвекции при размещении радиатора за экраном, под глубоким подоконником, как показано на вкладке.

     При размещении радиатора в нише, уже понадобится Kermi FTV 22/500/1800 с той же теплоотдачей, а по паспорту у этого радиатора — 3474 Вт. Разница – больше половины – 52%.

     

     Методика расчета учитывает размещение радиатора в других местах – на внутренней стене или под перекрытием. Так, при размещении на внутренней стене, понадобится радиатор Kermi FTV 22/500/1600 (при размещении его открыто), теплоотдача которого по паспорту 3088 Вт, т.е., больше расчетной на 44%.

     1. Паспортной теплоотдачей для целей подбора радиатора отопления можно пользоваться для многоквартирного жилья, с параметрами теплоносителя 90/70 и планируемой температуре в помещении +20 град.С, а если планируется установка комнатного регулятора, то мощность радиатора должна подбираться на 15% выше требуемой.
     2. Для частного дома паспортные параметры радиаторов отопления неприменимы в принципе, поскольку параметры теплоносителя 90/70 недостижимы. Наилучшим способом подбора радиаторов для помещений частного дома является выполнение проектных расчетов (т.е., выполнение проекта отопления). Если подбирать «на глаз», то нужно выбирать радиаторы с теплоотдачей, выше требуемой, минимум, на треть. Т.е., если для помещения нужен радиатор 2500 Вт, то подбирать нужно с паспортной теплоотдачей от 3325 Вт.
     3. При размещении радиатора отопления открыто на стене, реальная теплоотдача радиатора для стандартного частного дома – на 38% ниже паспортной, при размещении на внутренней стене – на 44% ниже паспортной, если закрыть радиатор «экраном» — его теплоотдача будет вдвое ниже паспортной.     

ВЫПОЛНИТЬ РАСЧЕТ РЕАЛЬНОЙ МОЩНОСТИ РАДИАТОРА В КАЛЬКУЛЯТОРЕ

Как расчитать мощность радиатора — budmagazin.com.ua

Практически любое жилище не обходиться без радиаторов отопления. Они могут быть: чугунными, стальными алюминиевыми, биметаллическими. Их выбор зависит от нескольких факторов: техническая возможность отопительной системы, качество теплоносителя, а также индивидуальный выбор хозяина с учетом его представления о качестве данного товара. Главным предназначением радиатора отопления является обеспечение комфортного микроклимата в отапливаемом помещении.

В наше время радиаторы отопления биметаллические, чугунные, стальные пользуются достаточно большим спросом и практически каждый покупатель, который желает заменить или установить радиаторы отопления своими силами, сталкивается с вопросом касаемо количества (размера) радиаторов. Давайте более подробно рассмотрим этот вопрос.

Каталог радиаторов:

Общепринятые правила расчета радиаторов 

Первое, что мы должны знать – это то, что при расчете вид радиатора не имеет значения, будь он стальным, алюминиевым, чугунным или биметаллическим. Нас интересует только один показатель – это мощность радиатора. Каждый производитель в обязательном порядке указывает его. В крайнем случае, зная модель, Вы всегда найдете эти данные в интернете. Возьмите на заметку себе и то, что некоторые производители могут преувеличивать этот показатель.

Второе, нам необходимо знать площадь отапливаемого помещения. Важно знать, что расчет производить надо не для общей площади квартиры (дома), а для каждой комнаты в отдельности.

Третье, формула для расчета мощности радиатора на диво проста, и ее может применить любой обыватель. По СНиПу на 1 кв. м помещения со средней высотой потолка (2,7 м) приходится 100 Вт тепловой мощности. Из этого следует:

K= S х 100/P

K– количество секций

S– площадь

Р – мощность радиатора.

Например: расчет мощности радиатора для комнаты 25 кв.м со стандартной высотой потолка 2,7 м. Средняя мощность одной секции составляет 180 Вт. (пример, мощность  биметаллического радиатора Mirado составляет 185 Вт) 

Применяем:

K= 25 х 100/180

K= 13,8 шт

Округляем до 14, то есть необходимо 14 секций. Этот расчет с легкостью можно отнести к секционным радиаторам, а также чугунным (60 см) из расчета 1 ребро = 1 секция.

Рисунок 1. Мощность радиатора отопления

Расчет мощности панельного радиатора

Возмем для расчета мощности стальные радиаторы Demrad, или же в случае, если высота помещения не является стандартной (высокие или очень низкие потолки), удобнее использовать другую формулу:

P(радиатора)= V х 41

Р – мощность радиатора

V– объем помещения (длина х ширина х высота)

41 – это 41 Вт тепловой мощности необходимой для обогрева 1 куб.м стандартной постройки (без применения энергосберегающих технологий: энергосберегающие окна, утепление пенопластом и др.). Данная цифра применима для Украины, Белоруссии, Молдавии и европейской части России.

Например: комната 4м х 5м, с высотой потолка 3м

Применяем:

V= 4 х 5 х 3 = 60

 P(радиатора)= 60 х 41 = 2460 Вт

Полученная цифра – это то количество тепла, которое необходимо отдать радиатору, чтобы нагреть данную комнату. Панельный радиатор может быть один мощностью 2500 Вт, или же можно распределить эту мощность на два радиатора, например 1000 Вт и 1500 Вт.

Узнать количество секций также не составит особого труда, разделив полученую мощность на мощность одной секции.

Примечание:

  • Количество радиаторов, зависит от количества оконных проемов в помещении.
  • Если комната является угловой или торцевой, или же возникают частые сбои в теплосети, а именно снижение температуры теплоносителя – к любому полученному показателю (будь то количество секций или мощность радиатора) добавляйте 20%.

Метки по теме: для устройства отопительной системы в частном доме — котел газовый vailiant, универсальные биметаллические радиаторы биметалл Алтермо Рио. В нашем магазине Вы найдете: газовая колонка electrolux, компактный водонагревательный бойлер ferroli, а также переносной газовый конвектор газовый demrad и популярные в наше время алюминиевые радиаторы Nova Florida.

 

 

Самые низкие цены на радиаторы у нас. Звоните и убедитесь сами!

(044) 331-75-21

 

 

как рассчитать тепловой потенциал батарей

На стартовом этапе проектирования нового здания или проведения с нуля ремонта в помещении обязательно требуется рассчитать необходимую мощность батарей.

В соответствии с полученным результатом определяется точное число радиаторов для полноценного обеспечения теплом дома или квартиры даже при максимальных зимних колебаниях температуры.

Существует несколько методов расчета.

Прямая взаимосвязь типа радиатора отопления и метода расчёта

При монтаже стандартных источников обогрева секционного типа не возникает сложностей, так как их мощность заранее указана среди остальных технических параметров.

При положении, когда фирма-изготовитель прописывает в характеристиках значение расхода теплоносителя, принято считать, что трата 1 литра этой жидкости в минуту равна 1 кВт мощности.

Важно! При рассмотрении различных вариантов батарей стоит помнить, что при одинаковых габаритах они имеют несовпадающие показатели мощности, так как исходный материал, варьируется от биметаллического до чугунного.

Для расчёта каждого типа радиаторов существует свой средний показатель мощности. Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

  • Чугун —145 Вт.
  • Биметалл —185 Вт.
  • Алюминий — 190 Вт.

Зачастую этот показатель отличается от вышеуказанных в силу того, что по высоте батареи отопления встречаются от 0,2 м до 0,6 м.

При нестандартных параметрах радиаторов отопления в методы расчёта теплового излучения вносятся корректировки.

Фото 1. Стальной радиатор для отопления модели Tesi 2 , дина секции 45 мм, производитель — «Irsap», Италия.

Чем ниже значение высоты источника обогрева (и, соответственно, его площадь), тем меньше показатель излучения тепла.

Внести корректировку в результат можно с помощью установленного коэффициента, полученного из пропорции существующей высоты радиатора к стандартному значению.

Как рассчитать тепловую мощность батарей

В зависимости от количества учтённых показателей они подразделяются на 2 типа.

Упрощённый метод

Он является обобщённым и широко применяется для самостоятельных непрофессиональных подсчётов.

Главный критерий, принимаемый во внимание при упрощенном способе расчета — это площадь. Устанавливается, что 100 Вт излучаемой энергии хватает на 1 кв. м.

Для полноценного обогрева всего помещения требуется произвести подсчёт по формуле: Q=S*100, где Q — искомая тепловая мощность, S — площадь комнаты (м2).

Подробная формула

Это обобщённый метод расчёта отопления для помещения, но уже с учётом всех возможных факторов, оказывающих влияние на окончательный результат. Вид итоговой формулы такой:

Q=(S*100)*a*b*c*d*e*f*g*h*i*j, где дополнительные составляющие элементы — это коэффициенты, определяемые в соответствии с точной степенью отдельного фактора:

  • a — число внешних стен в интересующем помещении.
  • b — ориентация комнаты относительно сторон света.
  • c —условия климата.
  • d —уровень утепления внешних стен.

  • e —высота потолков в помещении.
  • f —конструкционные особенности потолка и пола.
  • h —качество рам.
  • i —размер окон.
  • j —степень закрытости источника обогрева.
  • k —схема подключения батарей.

Факторы, влияющие на расчёт

На расчет мощности радиаторов отопления влияют следующие факторы.

Ориентация комнат по сторонам света

Принято считать, что если окна помещения выходят на юг или запад, то оно в достаточном количестве имеет солнечный свет, поэтому в эти двух случаях коэффициент «b» будет равен 1,0.

Добавление к нему в 10% требуется, если окна комнаты ориентированы на восток или север, так как солнце здесь практически не успевает обогреть помещение.

Справка! Для северных районов такой показатель берётся в размере 1,15.

Если комната выходит на наветренную сторону, то коэффициент для расчета увеличивается до b=1,20, при параллельном расположении относительно потоков ветра — 1,10.

Вам также будет интересно:

Влияние внешних стен

Их число напрямую определяется показателем «а». Так, если помещение имеет одну внешнюю стену, то он принимается равным 1,0, две — 1,2. Добавление каждой следующей стены ведёт к увеличению коэффициента тепловой отдачи на 10%.

Зависимость радиаторов от теплоизоляции

Сократить расходы на обогрев квартиры или дома позволит проведение грамотного утепления стен. Значение коэффициента «d» способствует увеличению или снижению тепловой мощности батарей отопления.

В зависимости от степени утепления внешней стены показатель бывает следующий:

  • Стандартное, d=1,0. Они нормальной или малой толщины и либо оштукатурены снаружи, либо имеют небольшой слой теплоизоляции.
  • При особом способе утепления d=0,85.
  • При недостаточной устойчивости к холодам —1,27.

При позволяющем пространстве допускается фиксировать слой теплоизоляции к внешней стене изнутри.

Климатические зоны

Этот фактор определяется низкими уровнями температур для различных регионов. Так c=1,0 при погоде до —20 °C.

Для областей с холодным климатом показатель будет следующим:

  • с=1,1 при температурном режиме до —25 °C.
  • с=1,3: до —35 °C.
  • с=1,5: ниже 35 °C.

Своя градация показателей и для тёплых регионов:

  • с=0,7: температура до —10 °C.
  • с=0,9: лёгкий мороз до —15 °C.

Высота помещения

Чем выше в строении уровень перекрытия, тем больше этой комнате требуется тепла.

В зависимости от показателя расстояния от потолка до пола определяется поправочный коэффициент:

  • е=1,0 при высоте до 2,7 м.
  • е=1,05 от 2,7 м до 3 м.
  • е=1,1 от 3 м до 3,5 м.
  • е=1,15 от 3,5 м до 4 м.
  • е=1,2 свыше 4 м.

Роль потолка и пола

Сохранению тепла в помещении также способствует его соприкосновение с потолочным перекрытием:

  • Коэффициент f=1,0 если есть чердак без утепления и отопления.
  • f=0,9 для чердака без обогрева, но с теплоизоляционным слоем.
  • f=0,8, если комната выше отапливаемая.

Пол без утепления определяет показатель f=1,4, с утеплением f=1,2.

Качество рам

Для расчёта мощности отопительных приборов важно учесть и этот фактор. Для оконной рамы с однокамерным стеклопакетом h=1,0, соответственно для двух— и трёхкамерного — h=0,85. Для старой рамы из дерева в расчёт принято брать h=1,27.

Размер окон

Показатель определяется соотношением площади оконных проёмов с квадратными метрами помещения. Обычно он равен от 0,2 до 0,3. Так коэффициент i= 1,0.

При полученном результате от 0,1 до 0,2 i=0,9 до 0,1 i=0,8.

Если размер окон выше стандарта (соотношение от 0,3 до 0,4), то i=1,1, а от 0,4 до 0,5 i=1,2.

Если окна панорамные, то целесообразно при каждом увеличении соотношения на 0,1 повышать i на 10%.

Для комнаты, в которой зимой регулярно используется балконная дверь, автоматически повышает i ещё на 30%.

Закрытость батареи

Минимальное ограждение радиатора отопления способствует более быстрому прогреву комнаты.

В стандартном случае, когда батарея отопления расположена под подоконником, коэффициент j=1,0.

В других случаях:

  • Полностью открытый прибор обогрева, j=0,9.
  • Источник отопления прикрыт настенным выступом горизонтального типа, j=1,07.
  • Батарея отопления закрыта кожухом, j=1,12.
  • Полностью закрытый радиатор отопления, j=1,2.

Способ подключения

Способов подключения радиаторов отопления несколько и каждый из них определяется показателем k:

  • Метод подключения радиаторов «по диагонали». Является стандартным, и k=1,0.
  • Подключение «с боковой стороны». Способ популярен из-за небольшой длины подводки, k=1,03.
  • Использование пластиковых труб по методу «снизу с двух сторон», k=1,13.
  • Решение «снизу, с одной стороны» является готовым, происходит подключение к 1 точке подающей трубы и обратки, k=1,28.

Важно! Иногда для повышения точности результатов применяют дополнительные поправочные коэффициенты.

Полезное видео

Ознакомьтесь с видео, в котором рассказывается, как рассчитать мощность радиатора отопления.

Важность учёта всех факторов

Сокращённая формула расчёта отопительной мощности проста в применении, но не учитывает определённые особенности помещения. Для получения точного результата при расчете мощности радиаторов отопления важно принимать во внимание все имеющиеся факторы.

Расчет радиаторов отопления

Наиболее простой способ обеспечить теплом жилые помещения квартиры или дома предполагает установку дополнительных радиаторов отопления или батарей. Идея неплохая, но бесконтрольное наращивание секций обогрева может превратить жилье в сауну, а любые попытки сэкономить на радиаторах приведут к переохлаждению и отсыреванию помещения. Чтобы угадать золотую середину, нужно просто выполнить оценочный расчет радиаторов отопления, определить теплопроизводительность одной секции и потребное количество для квартиры.

Варианты конструкций радиаторов отопления

Перед тем как рассчитать количество секций радиатора, необходимо получить теплотехнические характеристики отопительной поверхности. В первую очередь они зависят от размеров и материала корпуса. В современных системах отопления частных домов и квартир используется несколько типов радиаторов:

  • Чугунные батареи, набранные из литых секций. Обладают высокой тепловой инерцией и хорошей стойкостью к окислению воздухом и теплоносителем. Средняя теплоотдача составляет около 160 Вт на секцию;
  • Стальные радиаторы обеспечивают наихудшую теплоотдачу, всего около 80-85 Вт на условную секцию, но проще, дешевле и надежнее чугунных систем;
  • Алюминиевые секции обеспечивают самую высокую теплоотдачу, более 200 Вт на одну ячейку или секцию. Алюминиевые сплавы подвержены сильной электрохимической и газовой коррозии, поэтому используются ограниченно;
  • В биметаллических или сталь-алюминиевых радиаторах высокий уровень теплоотдачи, составляющий до 200 Вт на секцию, сочетается с прочностью и долговечностью батареи, даже при повышенной температуре теплоносителя.

Из-за небольших размеров, высокой теплоотдачи и приятного внешнего вида более всего используются для построения систем отопления биметаллические радиаторы. Поэтому большинство рекомендаций и методик подбора отопительных приборов направлены на то, чтобы рассчитать биметаллические радиаторы отопления. Но, по сути, методика и способ расчета секций биметаллических радиаторов отопления при необходимости может быть перенесен на алюминиевые и даже чугунные батареи, с поправкой на линейные размеры и коэффициент теплопередачи от разогретой металлической поверхности в более холодный воздух.

Общая методика расчета радиаторов отопления

Чтобы не перегружать методику расчета ненужными подробностями и деталями, специалистами был предложен простейший расчет радиатора отопления по площади помещения. Для обеспечения нормального теплового баланса в зимнее время расчет по площади подразумевает обеспечение тепловой мощности из нормы в 100 Вт на квадратный метр помещения.

Зная общую площадь конкретного помещения, потребность в определенном количестве секций рассчитываем следующим образом:

  • Умножаем площадь комнаты на потребную мощность для одного квадратного метра. Расчет дает общую тепловую мощность для системы обогрева одной комнаты. Например, для помещения в 15 м2 потребуется 15∙0,1=1,5 кВт тепловой энергии;
  • Выбираем из паспортных данных на изделие значение теплоотдачи или отдаваемую мощность для 1 секции биметаллического радиатора, например, 190 Вт на секцию;
  • Выполняем расчет радиатора отопления по площади 1500:190=7,89, с округлением получаем, что по расчету для отопления комнаты требуется 8 секций.

Важно! На самом деле методика расчета по площадям дает достоверный результат только для стандартных потолков в 270 см.

При подсчете потребной мощности для более высоких помещений используется расчет мощности нагревателя и определение потребного количества секций, исходя из объемной тепловой нагрузки. Например, для кирпичных и пенобетонных построек радиаторы отопления должны отдавать в воздух не менее 34 Вт/м3, для жилья из бетонных панелей используется норматив в 41 Вт/м3.

Таким образом, комната в 15 м2 с высотой потолков 2,7 м имеет объем 40,5-41 м3. Для расчета отопления кирпичной постройки будет достаточно 1360 Вт/ч или 7 секций радиатора. Но данный расчет радиаторов отопления является предварительным или теоретическим, не учитывающим множество практических факторов, влияющих на качество отопления.

Определение поправок к расчету радиатора

Чтобы получить максимально приближенный к реальности результат расчета потребной мощности радиаторов отопления и количества секций, потребуется учесть целый ряд поправочных коэффициентов.

Наиболее важные из поправок:

  • Наличие внешних факторов, таких как расположение комнаты в здании, количество в помещении внешних стен, качество утепления;
  • Внутренние факторы – высота потолков, площадь остекления, схема подключения радиаторов;
  • Тепловая эффективность для жидкостных систем отопления.

Все перечисленные факторы, в зависимости от положительного или отрицательного влияния, учитываются в виде значений больше, равному или меньше единицы.

Тепловая мощность нагревателя будет рассчитываться по формуле:

P=Pтеор∙Кэф∙Красп∙ Ку∙Кклим∙Кокон∙Кокон2∙Крад∙Крад_эк

где Pтеор – теоретическая мощность согласно расчета по действующим нормам, Кэф — коэффициент эффективности радиатора, Красп, Ку, Кклим – поправки на расположение помещения в здании и климатический пояс, Кокон, Кокон2 – поправки на параметры остекления комнаты, Крад1, Крад_эк – коэффициенты, учитывающие особенности расположения радиаторов.

Прежде всего, необходимо уточнить тепловую эффективность системы радиаторов. Эта поправка из таблицы учета теплового напора радиатора. Расчет теплового напора выполняется по формуле:

Р=(Твхвых)/2-Тпом

где Р— численное значение напора, Твх, Твых, – температура горячей воды на входе и выходе из радиатора, Тпом – температура воздуха в комнате. Выполнив расчет напора из таблицы, можно выбрать поправочный коэффициент Кэф.

Таким способом в расчете радиатора пытаются самым примитивным образом, без сложнейших формул теплопередачи учесть два важных фактора – энергоемкость теплоносителя и эффективность отдачи тепла в воздух.

Определение поправок для учета внешних факторов

Наибольшее влияние на теплопотери оказывает расположение комнаты в здании. Для учета в расчете используем поправку Красп. Для одной комнаты с одной наружной стеной Красп=1, для двух, трех или всех четырех стен для расчета мощности радиатора принимают значения 1,2-1,4 соответственно.

Поправкой Ку учитывается качество утепления наружных стен, Ку=1 для кирпичной кладки в 50 см, Ку=0.85 для утепленной стены и Ку =1,27 при отсутствии утепления.

Буквой Кклим обозначают поправочный коэффициент для учета в расчете различных климатических поясов. В качестве определяющей температуры выбирают наиболее низкую температуру воздуха на местности. Для Т=-30оС поправка Кклим равна 1,5, для мороза от 20 до 30 градусов Кклим=1,3, для остальных случаев в расчете радиаторов отопления принимают Кклим=1,0-1,2.

Учет конструктивных особенностей комнаты

Известно, что чем больше площадь остекления, тем больше тепловые потери на отопление. Для учета данного фактора применяется два критерия: Кокон – тип оконных рам и Н — площадь остекления. Для старого варианта остекления двойным стеклом в деревянной раме Кокон=1,27, для однокамерного и двухкамерного стеклопакета принимают Кокон =1 и Кокон=0,85, соответственно.

Площадь остекления учитывается в расчете по так называемому приведенному коэффициенту, равному соотношению площади пола к площади окон. Для десятипроцентного остекления Кокон2=0,8, для сорокапроцентного остекления Кокон2=1,2.

Огромное влияние на качество отопления оказывает правильное расположение радиаторов. Существует шесть наиболее распространенных схем подключения батареи из 7-10 биметаллических секций.

В первом случае подвод и отвод горячей воды выполняется с разных сторон отопителя, горячая вода подается с верхней доли, остывшая вода с нижней части батареи. Расчет отопления и практические измерения показывают, что эффективность использования подвода тепла в данном случае максимальна, поэтому Крад=1. Если подвод и обратку установить с одной стороны, эффективность передачи тепла немного снижается, но еще достаточно высока, Крад=1,03.

Значительно ухудшается теплопередача при организации подвода горячей воды снизу для следующих четырех схем:

  • Наиболее неэффективная схема — подвод и отвод теплоносителя с одной стороны при подаче горячей воды с нижней доли радиатора. Неважно, будет ли остывшая вода отводиться сверху или снизу, в этом случае для расчета отопления принимают Крад=1,28;
  • Подвод кипятка в радиатор с нижней части одной стороны, отвод остывшей воды с верхней доли противоположной стороны, для расчета мощности радиатора Крад=1,25;
  • Трубы с горячей и остывшей водой находятся в нижней части радиатора на одной линии с противоположных сторон, Крад=1,13.

Как видно из приведенных данных, неудачный расчет и проектирование расположения подводов к батарее может уменьшить эффективность работы батареи на 25-28%.

Кроме правильного расположения подводов, большое значение имеет степень экранирования теплоотдачи. Например, для полностью открытого обогревателя Крад_эк=0,9, что говорит о полном использовании возможности теплообмена. Для остальных случаев – перекрытия подоконником, нахождения в стеновой нише и установлении фронтальных декоративных экранов для расчета отопления Крад_эк принимают значения 1-1,2.

Заключение

Остается выбрать необходимые значения поправок и перемножить по вышеприведенной формуле. Если ручной способ показался вам сложным и трудоемким, подсчитать мощность отопителя можно по одному из онлайн калькуляторов или специализированных программ, которые могут учитывать огромное количество дополнительных факторов, таких как место расположения батарей, толщину краски и даже характеристики системы вентиляции комнаты.

Расчет тепловой мощности радиаторов отопления

Расчет тепловой мощности радиаторов отопления

Для того, чтобы установленная система отопления оправдала все возложенные на нее ожидания, необходимо, прежде всего, правильно подобрать все ее элементы. Важное значение, наряду с подбором котла, имеет правильный расчет мощности радиаторов отопления. И если на котел возлагается миссия вырабатывать количество тепла, которое здание теряет в максимальные морозы, то задача радиаторов именно в том, чтоб передать это же тепло от котла непосредственно в помещение.

Теплоотдача радиатора- это то количество тепла, которое он способен отдать за определенный промежуток времени (обычно при расчетах это 1 час). На теплоотдачу влияют: материал из которого он изготовлен, его площадь и температура (если быть точнее, то не сама температура радиатора, а разница между температурой радиатора и температурой воздуха в помещении. Чем разница больше, тем легче будет сниматься тепло с радиатора). Для увеличения теплоотдачи радиаторы изготавливают из металлов, которые хорошо проводят тепло, а в самой конструкции радиатора делают специальные конвекционные пластины.

Важно понимать, что чем больше площадь радиатора, тем при меньшей температуре он будет способен передать нужное количество тепла помещению. Поэтому чем больше запас вы возьмете, тем больше тепловой энергии он будет способен передать, а это уже влияет на эффективность, экономичность и долговечность вашего отопительного котла.

Стандартным температурным диапазоном при расчете является работа системы отопления при температуре 70/50 градусов Цельсия — 70 на «подаче» и 50 на «обратке».

Данные для расчета

При проектировании системы проектные организации опираются на:

  1. теплопотери здания
  2. мощность радиаторов, по данным завода-производителя
  3. разницу температур радиаторов и воздуха в помещении
  4. желаемую температуру в помещении

Расчет теплопотерь

Если делать все по-научному, то теплопотери здания вычисляются с учетом каждого слоя стены, потолка, пола, окон и дверей, будь то слой штукатурки, кирпича или утеплителя. Также учитывается направление стен относительно сторон света, ветра и многие другие факторы.

Мы с вами не проектная организация, поэтому вникать в такие скрупулезные расчеты, копаться в СНИПах, ДБНах и прочих нормативных документах не будем. Гораздо проще воспользоваться другим методом, который имеет немного большую погрешность, но взять небольшой запас и тем самым перекрыть возможные неточности.

Многие вычисляют теплопотери из расчета 1 кВт на 10 квадратных метров, однако этот метод имеет довольно большую погрешность, т.к. не учитывает ни тип объекта (частный дом или квартира) высоту потолка, ни наличие и размеры окон, наружных дверей.

Более точно можно посчитать по формуле:

V * 40 Вт + Теплопотери через окна + Теплопотери через наружные двери.

где:

V- объем комнаты (высоту умножим на длину и умножим на ширину)
40 Вт — это теплопотери здания на 1 кубический метр, при которых утепленность здания считается нормальной. Если теплопотери больше, то увеличивать количество радиаторов экономически нецелесообразно, нужно дополнительно утепляться. Кстати, из этого показателя появилось суждение, что на 1 м. кв. нужно 100 Вт (при средней высоте потолка 2,5 м: 40*2,5= 100 Вт). Однако, повторюсь, это не учитывая окон и наружных дверей.

  • Теплопотери через окна (в среднем 100 Вт на окно) 
  • Теплопотери через наружную дверь (в среднем 150 — 200 Вт)

Приведем к длине радиаторов

Для расчета стальных радиаторов воспользуемся формулой:

Теплопотери разделим на 1,5 и умножим на Коэффициент запаса

Где:

  1. Теплопотери — полученное значение из предыдущего раздела.
  2. 1,5- коэффициент приведение к длине радиатора. Значение приведено как среднее мощности  10-ти см длинны стального радиатора при работе в режиме 70/50 градусов Цельсия.
  3. Коэффициент запаса- т.к. погрешность в расчете все же сеть, то возможные неточности нужно перекрыть. Для квартир рекомендую коэффициент принимать минимум 1,15 (15 % запаса), для домов минимум 1,3 (30% запаса). А вообще, чем больше возьмете запас, тем лучше для котла, тем меньше будет расход газа.

Пример

Давайте посчитаем на примере, объединив обе формулы в одну.

Исходные данные:

Частный дом, площадь комнаты 15 м.кв. Высота потолка 2,5 м. Количество окон в комнате -2
15м.кв. * 2,5 м * 40Вт + (2 * 100 Вт — окна)/1,5 * 1,3 = 1473 мм.

Округляем в большую сторону до ближайшего размера, получается радиатор 1500 мм. Так как у нас в комнате 2 окна, то желательно разделить эту длину радиатора на 2. Получится 700 мм + 800 мм, либо лучше 2 радиатора по 800 мм.

Еще один момент, о котором не было упомянуто — это углы. В угловых помещения теплопотери повышаются, т.к. глубина промерзания в таких местах увеличивается. Для угловых помещений следует взять 10-15% дополнительного запаса.

Вот и все, как видите — ничего сложного. Помните об основном правиле — лучше больше, чем меньше и все у вас получится!

Тепла Вам и Уюта!


Понравилась статья?
Расскажите об этом друзьям!

Tweet Выходная мощность радиатора

— SimplifyDIY

Измерьте ширину и высоту своего радиатора, затем используйте соответствующую таблицу ниже, чтобы определить выходную мощность в ваттах.

  • 1 киловатт (кВт) = 1000 Вт.
  • 1 Вт составляет прибл. 3,4 БТЕ / час или
  • 1000 БТЕ / час = 293 Вт.


Одиночная панель

Одиночная панель 900

1800

Длина

мм

600

900

1200

1500

футов

2

3

4

5

6

20 Высота
9020

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

260

390

520

650

780

380

760

760

900

490

735

980

1125

1470

580

870132

580

8701 9325 900 9325 900 900

1740


Одиночная панель с ребрами

Одиночная панель с ребрами
Длина

мм

600

900

1200

1500

1800

футов

2

3

0

4

0

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

24 дюйма)

750 мм (30 дюймов)

370

555

740

925

925

5 60

840

1120

1400

1680

720

1080

1440

1440

900 900

860

1290

1720

2150

2580


Двойная панель

Длина

мм

600

900

1200

1500

1800

футов 90 004

2

3

4

5

6

Высота
ins )

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

400

400

800

1000

1200

560

840

1120

1400

1680

1050

1400

1750

2100

860

1290

1720

2150

9329 9323 900 900 900 900

Двойная панель с ребрами

Двойная панель с ребрами 9008 7
Длина

мм

600

900

1200

1500

1800

футов

2

3

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм 30ins)

580

870

1160

1450

1740

0

890

1720

2150

2580

1100

1650

2200

2750

3330

1 5 900

900

1920

2560

3200

3840


Двойная панель с двойными ребрами

Двойная панель с двойными ребрами
Длина

мм

600

900

1200

1500

1800

футов

900

3

4

5

6

Высота 9 0102

450 мм (18 дюймов)

300 мм (12 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

901 901

760

3

1140 9000

05

1900

2280

1040

1560

2080

2600

3120

3120

2680

3350

4020

1600

2400

3200

4000

4800 900


Дополнительная информация и полезные ссылки




Как рассчитать «дельту Т» для радиатора | AEL Heating Solutions Ltd

После того, как вы определили потребность в тепле для вашей комнаты (простой в использовании калькулятор БТЕ от AEL поможет вам в этом), как вы можете проверить, что выбранный вами радиатор обеспечивает достаточную тепловую мощность?

Существует простой расчет, чтобы проверить, будет ли радиатор обеспечивать достаточную тепловую мощность.Вы должны проверить «дельту Т».

Что такое «дельта Т»?

В каталоге радиаторов AEL для каждого радиатора указана тепловая мощность, а также указаны его размеры. Показатель тепловой мощности указан для определенной «дельты Т». Дельта T — это разница между заданной комнатной температурой и средней температурой воды в радиаторе. Средняя температура радиатора зависит от температуры воды на входе и выходе из радиатора, которая может отличаться в вашей системе отопления.

дельта T = (Комнатная температура) — (Средняя температура воды в радиаторе)

Если дельта T вашей системы отличается от той, которая указана в каталоге, вам необходимо будет рассчитать новую тепловую мощность. Это легко сделать, умножив выходную цифру в каталоге на поправочный коэффициент.

Таблица поправочных коэффициентов

Дельта T (° C) Поправочный коэффициент
5 0.050
10 0,123
15 0,209
20 0,304
25 0,406
30 0,515
35 0,629
40 0,748
45 0,872
50 1.000
55 1,132
60 1,267
65 1.406
70 1,549
75 1.694

На приведенной ниже диаграмме показан случай, когда желаемая температура в помещении составляет 20 ° C, а средняя температура воды в радиаторе составляет 70 ° C. Разница, «Дельта Т», составляет 50 ° C.

Если «Delta T» в каталоге составляет 50 ° C, лучше всего просто использовать результаты, указанные в каталоге (поправочный коэффициент для этой системы будет равен 1).

Для системы с «Delta T», отличной от 50 ° C, вычислить новую мощность радиатора просто:

  • В «Таблице поправочных коэффициентов» найдите фактическую дельту T для вашей системы и соответствующий поправочный коэффициент
  • .
  • Умножьте результат в каталоге на поправочный коэффициент

Пример расчета

Выход радиатора в каталоге AEL (на основе дельты T = 50 ° C) = 194 Вт
Дельта T вашей системы = 35 ° C
Из таблицы поправочный коэффициент = 0.629
Следовательно, мощность вашего радиатора = 194 Вт * 0,629 = 122 Вт


После того, как вы определили потребность в тепле для вашей комнаты (простой в использовании калькулятор БТЕ от AEL поможет вам в этом), как вы можете проверить, что выбранный вами радиатор обеспечивает достаточную тепловую мощность?

Существует простой расчет, чтобы проверить, будет ли радиатор обеспечивать достаточную тепловую мощность. Вы должны проверить «дельту Т».

Что такое «дельта Т»?

В каталоге радиаторов AEL для каждого радиатора указана тепловая мощность, а также указаны его размеры.Показатель тепловой мощности указан для определенной «дельты Т». Дельта T — это разница между заданной комнатной температурой и средней температурой воды в радиаторе. Средняя температура радиатора зависит от температуры воды на входе и выходе из радиатора, которая может отличаться в вашей системе отопления.

дельта T = (Комнатная температура) — (Средняя температура воды в радиаторе)

Если дельта T вашей системы отличается от той, которая указана в каталоге, вам необходимо будет рассчитать новую тепловую мощность.Это легко сделать, умножив выходную цифру в каталоге на поправочный коэффициент.

Таблица поправочных коэффициентов

Дельта T (° C) Поправочный коэффициент
5 0,050
10 0,123
15 0,209
20 0,304
25 0.406
30 0,515
35 0,629
40 0,748
45 0,872
50 1.000
55 1,132
60 1,267
65 1.406
70 1,549
75 1.694

На приведенной ниже диаграмме показан случай, когда желаемая температура в помещении составляет 20 ° C, а средняя температура воды в радиаторе составляет 70 ° C. Разница, «Дельта Т», составляет 50 ° C.

Если «Delta T» в каталоге составляет 50 ° C, лучше всего просто использовать результаты, указанные в каталоге (поправочный коэффициент для этой системы будет равен 1).

Для системы с «Delta T», отличной от 50 ° C, вычислить новую мощность радиатора просто:

  • В «Таблице поправочных коэффициентов» найдите фактическую дельту T для вашей системы и соответствующий поправочный коэффициент
  • .
  • Умножьте результат в каталоге на поправочный коэффициент

Пример расчета

Выход радиатора в каталоге AEL (на основе дельты T = 50 ° C) = 194 Вт
Дельта T вашей системы = 35 ° C
Из таблицы поправочный коэффициент = 0.629
Следовательно, мощность вашего радиатора = 194 Вт * 0,629 = 122 Вт


Мощность — правильный радиатор

Нашли нужный радиатор, но не знаете, какая мощность? Нашли обогреватель, который является энергоэффективным и отлично смотрится в вашем доме, но не знаете, какой размер выбрать? «Электрический обогреватель какого размера я должен купить?» это вопрос, который нам задают все время.

Каждый электронагреватель в нашем ассортименте имеет широкий выбор размеров, часто до 6 различных размеров.Каждый размер имеет разную мощность. Это может сбивать с толку. Но не волнуйтесь, мы здесь, чтобы помочь вам выбрать подходящий радиатор для вашей комнаты.

Расчет необходимой мощности — простой способ

Мы создали удобный калькулятор мощности, который поможет вам выбрать правильные варианты отопления для вашей комнаты. Просто измерьте ширину и длину своей комнаты, ответьте на несколько дополнительных вопросов, и будет рассчитана мощность, необходимая для вашей комнаты.

Затем вы просто выбираете электрические обогреватели, которые вместе дают необходимую мощность.Например, если для вашей комнаты требуется 1200 Вт, вы можете использовать два радиатора мощностью 600 Вт для ее обогрева.

Используйте калькулятор тепловой мощности

Дополнительная информация о мощности

Это относится к тепловой мощности электрического радиатора. Ценность каждого из наших радиаторов — это максимальное количество тепла, которое он будет выводить.

Расчет стоимости электронагревателей

Каждый радиатор, который вы можете купить у нас, имеет определенную мощность. Вы можете использовать это значение мощности для расчета стоимости эксплуатации каждого радиатора, используя пенсы за кВтч, предоставленные вашим поставщиком энергии.

Советы по максимальной мощности

  1. Не недооценивайте необходимую мощность

    У вас может возникнуть соблазн купить радиаторы меньшего размера, чем рекомендует ваша мощность, однако на самом деле это может быть менее эффективным, так как вы, возможно, заставите свои радиаторы работать больше, чтобы обогреть вашу комнату. Это, конечно, обеспечит более высокие эксплуатационные расходы.

  2. Наивысшее значение не обязательно является правильным выбором

    Больше не всегда лучше. Если вы выберете радиатор высокой мощности для небольшой комнаты, вы можете повредить радиатор.Покупка радиатора на 1800 ватт, который продается на распродаже, для комнаты, в которой нужен только радиатор на 800 ватт, может в конечном итоге обойтись вам дороже, чем вы сэкономили бы.

  3. Изоляция — важный фактор

    Ваша комната не сможет эффективно удерживать тепло, производимое радиатором, без хорошей теплоизоляции стен и потолка. Поэтому важно сначала отсортировать изоляцию, если это возможно. В противном случае вам нужно будет выбрать радиатор, который немного больше обычного для вашего размера комнаты.

  4. Много окон? Старые окна? Окна с одним стеклом?

    Количество и состояние ваших окон будут иметь большое влияние на то, насколько легко (или сложно) эффективно отапливать вашу комнату. Например, можно выбрать обогреватель меньшего размера для комнаты с современными стеклопакетами. Если в комнате того же размера есть более старые окна с одинарным стеклом или дополнительное окно, вы можете выбрать обогреватель на размер больше.

  5. Насколько высоки ваши потолки

    В некоторых старых домах высокие потолки.Это больше места для обогрева, поэтому в помещениях с высокими потолками требуется радиатор большего размера, чем считается нормальным для помещения такого размера.

  6. Расположение, местонахождение, местонахождение

    Место вашего проживания имеет огромное влияние на количество ватт, необходимое для обогрева ваших комнат. Например, если ваш дом находится в Северной Шотландии, вам потребуется больше тепла, чем тем, кто живет на юге Шотландии, поскольку температура постоянно ниже.

  7. Замена старого электронагревателя?

    Если вы заменяете старый электрический обогреватель новым блестящим электрическим радиатором, вы должны стремиться к тому, чтобы его мощность соответствовала мощности.Установка нового радиатора с более высокой мощностью может повредить ваши схемы и проводку. В случае сомнений, пожалуйста, свяжитесь с нашей полезной командой экспертов по электричеству.

  8. Используете другой источник тепла?

    Если в вашей комнате уже есть существующий источник тепла, например, система центрального отопления, вы должны принять это во внимание при выборе электрического радиатора, который вам нужен. Здесь вам может пригодиться наша команда экспертов по отоплению!

В случае сомнений обращайтесь в нашу дружную команду

Мы будем рады дать вам первый совет по телефону.Но мы можем быть очень полезны, если сможем лично оценить ваши потребности в обогреве помещения. Просто позвоните в нашу команду, чтобы назначить встречу в удобное для вас время.

Свяжитесь с нашей командой

Сообщение навигации

(PDF) Расчет и улучшение характеристик автомобильных радиаторов на основе моделирования многомасштабных моделей

Отправляйте заказы на перепечатку по адресу [email protected]

636 The Open Mechanical Engineering Journal, 2014, 8, 636-642

1874-155X / 14 2014 Bentham Open

Open Access

Расчет и улучшение характеристик автомобильных радиаторов на основе

Объединение многомасштабных моделей моделирования

Liu Shui-Chang

1,2

, Li Li -Fu

1

и Zhang Yong

*, 2

1

Школа машиностроения и автомобилестроения, Южно-Китайский технологический университет, Гуанчжоу 510641, Китай

2

Школа машиностроения, Университет Хунань Technology, Чжучжоу 412007, Китай

Аннотация: При моделировании теплопередачи между радиатором и полем воздушного потока внедрение полноразмерной модели радиатора

, содержащей его внутреннюю структуру корпуса с небольшими размерами элементов, потребует огромного пространства для хранения и будет неэкономичным.

В связи с этим вопросом, основанный на объединении моделирования многомасштабных моделей, в данной статье предлагается метод расчета характеристик радиатора

, надежность которого проверена экспериментальным тестом. Затем анализируется влияние на тепловые характеристики радиаторов

расположения деталей перед радиаторами. Наконец, изменена компоновка передних

деталей для улучшения тепловых характеристик радиаторов.Результаты исследования показывают, что: Метод расчета тепловых характеристик радиатора

, основанный на моделировании многомасштабных моделей радиаторов, учитывает влияние

распределения поля потока на воздушной стороне и деталей основной конструкции корпуса; погрешность расчета значений по методу

менее 5%, метод надежен; когда части источника тепла перед радиаторами расположены справа

перед задним каналом вентилятора, тепловые характеристики радиаторов лучше; мощность охлаждения радиаторов увеличивается 19.3кВт

после изменения компоновки передних теплоресурсных частей.

Ключевые слова: Масштабные модели, компоновка деталей, расчет радиаторов.

1. ВВЕДЕНИЕ

Радиатор важен для обеспечения мощности и безопасности автомобиля. В реальных технических условиях поля потока воздуха

вокруг радиаторов часто бывают неоднородными, что может отрицательно сказаться на отводе тепла.Чтобы сделать радиаторы

более надежными и экономичными, было проведено множество исследований

. Чиу исследовал две схемы

конденсатора и радиатора в контуре охлаждающего воздуха автомобиля

, и результат показал, что для расположения бок о бок

требуется меньший объем сердечника теплообменника и на

меньше мощности воздушного вентилятора [1]. General Motors Corporation

предложила конденсатор, вентилятор, радиатор охлаждения силовой передачи Модуль

(CFRM), и способность рассеивания тепла для конфигурации

CFRM больше, чем у CRFM

(конденсатор, радиатор, модуль охлаждения силовой передачи вентилятора ) [2].

Хак Джун и Чарн-Юнг с помощью инструментов CFD проанализировали влияние

частичного смещения вентилятора и размера радиатора на производительность охлаждающего модуля

[3]. Хуан смоделировал теплообменник

как пористую среду с помощью программного обеспечения CFD Fluent,

и проанализировал влияние передней части и компонентов системы охлаждения

на поле потока вокруг теплообменника, но передача тепла

не упоминалась [4].Ларссон и др. обнаружили, что при более высокой скорости на

воздухозаборник должен быть перепроектирован, чтобы получить более равномерный поток воздуха через теплообменники на

, а также на

для получения более высокой охлаждающей способности [5]. Heinzelmann et al.,

,

, др. исследовали закрывающиеся модели впускных прорезей

теплообменника и выяснили, что закрытие верхнего впускного отверстия вызывает переписку с адресом

* этого автора в Институте автомобильной инженерии,

Хунаньский технологический университет, No.88, Taishan West Road, Zhu-Zhou,

Хунань, 412007, Китай; Тел: +8615292200781;

E-mail: [email protected]

более значительное повышение температуры жидкости ниже по потоку

, чем закрытие нижней впускной щели [6]. Saab et al.

проанализировал влияние области подкапотного отверстия на скорость охлаждающего воздуха

[7], а Mao et al. сравнил теплообменник

теплообменника различной скорости распределения воздуха

[8].

Тяжелый карьерный самосвал обладает такими достоинствами, как большая грузоподъемность

, высокая эффективность и низкие эксплуатационные расходы,

и т. Д. Он берет на себя 40% угля и 80% железной руды. мир [9, 10]. И охлаждающая нагрузка

радиаторов тяжелого карьерного самосвала на

намного больше, чем у обычного автомобиля, но скорость движения карьерного самосвала

намного ниже, чем у обычного автомобиля.Эффективные радиаторы

особенно важны для безопасной и устойчивой работы карьерного самосвала

. Целью данной статьи является расчет

и улучшение тепловых характеристик радиаторов

, расположенных в отдельном воздушном канале карьерного самосвала

, как показано на рис. (1, 2). Учитывая влияние распределения поля потока воздуха

, необходимо моделирование 3-х мерного (3D) поля потока воздуха вокруг радиаторов

для расчета характеристик радиаторов.Размер элемента

сердечника радиатора примерно на два

меньше, чем у контура радиатора, поэтому при моделировании полноразмерная модель радиатора

требует огромного места для хранения, которое трудно удовлетворить. Чтобы ответить на этот вопрос, созданы модели радиаторов с многомасштабными уровнями

, и на основе объединения имитаций

многомасштабных моделей выполняется расчет рабочих характеристик радиаторов

.Надежность метода расчета производительности

подтверждена экспериментальным испытанием карьерного самосвала

. Затем анализируется влияние

на тепловые характеристики радиаторов расположения

частей источника тепла перед радиаторами.

Space Calc (калькуляторы) — Ян Маллетт

Есть два эффекта, которые следует учитывать, когда мы работаем с капельными излучателями вместо обычных панельных излучателей: взаимное поглощение и взаимное отражение.В первом случае свет поглощается, преобразуется в тепло и переизлучается в виде теплового излучения. Во втором случае свет просто отражается прямо.

Уже сейчас это сложно, но проблема дополнительно усложняется тем фактом, что, когда происходит поглощение, энергия направляется по закону Стефана – Больцмана (см. Выше), который вводит четвертую степень температуры в геометрическую сумму, которую иначе можно понять. .

Чтобы решить эту проблему, мы используем симметрию в радиометрической величине яркости: поскольку каждая капля является «средней» и поскольку яркость не зависит от расстояния, приходящее излучение к данной капле от других капель должно быть таким же, как яркость, которая эта же капля испускает другие капли.


По определению, излучаемая яркость (\ (L_o \), «o» для «out») должна быть равна сумме излучаемого света (\ (L_e \), «e» для «испускаемого») и отраженного света. (\ (L_r \), «r» означает «отраженный»):

\ [ L_o = L_e + L_r \]

Между тем, \ (L_r \) сам по себе является всего лишь долей (\ (1- \ epsilon \)) входящего излучения (\ (L_i \), «i» для «входящего»), которое отражает:

\ [ L_r = (1- \ epsilon) L_i \]

Но теперь самое умное: в то время как наша капля может излучать в другую каплю, эта другая капля также излучается обратно.Поскольку каждая капля является «средней», обе капли имеют одинаковую температуру, яркость и т. Д. В частности, входящее излучение от закрывающей капли равно и исходящему излучению, которое наша капля посылает обратно, то есть когда входящая яркость направление — от закрывающей капли, \ (L_i = L_o \). Когда это не так, мы используем окружающее сияние пространства (\ (L_i = L_s \), «s» для «пространства»).

Назовите долю закрытых направлений «\ (f \)». В \ (f \) направлений наша капля перекрывается другой каплей, испускающей \ (L_o \).В \ ((1-f) \) направлений мы видим \ (L_s \). Следовательно, падающая на нашу каплю яркость в среднем составляет:

\ [ L_i = f \ cdot L_o + (1-f) L_s \]

Мы можем заменить все это вместе и решить \ (L_o \):

\ begin {align} L_o & = L_e + L_r \\ & = L_e + (1- \ epsilon) L_i \\ & = L_e + (1- \ epsilon) (f \ cdot L_o + (1-f) L_s) \\ (1 — (1- \ epsilon) f) L_o & = L_e + (1- \ epsilon) (1-f) L_s \\ L_o & = \ left (\ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \ end {align}

Однако, что нас на самом деле будет интересовать, так это net radiance (\ (L_n \), «n» для «net»), разница между входящим и исходящим сиянием:

\ begin {align} L_n & = L_i — L_o \\ & = f \ cdot L_o + (1-f) L_s — L_o \\ & = (1-е) (Л_с — Л_о) \\ & = (1-f) \ left (L_s — \ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \\ & = \ frac {1-f} {1- (1- \ epsilon) f} (\ epsilon L_s — L_e) \ end {align}

Вспомните вышеупомянутый закон Стефана – Больцмана сверху (с \ (A_d \) и \ (r \) площадью поверхности и радиусом капли):

\ begin {align} \ Phi_e & = A_d \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ & = 4 \ pi r ^ 2 \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ \ end {align}

Нам также нужно связать силу излучения капли с ее сиянием.3 \]

Поскольку мощность является производной энергии по времени, теперь мы можем объединить это уравнение с формулой из предыдущего раздела и проинтегрировать, чтобы получить энергию (или температуру) за время.

К сожалению, интеграция оказывается ужасной из-за члена \ (L_s \). Хотя это можно сделать в закрытой форме, результат плохой: все логарифмы и арктангенсы — и даже не определены в важных местах. Тогда это должно быть , перевернутое для \ (J (t) \).2} \]

Поскольку полная энергия, излучаемая единственной каплей за один проход за время \ (\ Delta t \), равна \ (J (0) -J (\ Delta t) \), полная энергия, излучаемая всеми каплями за то же время \ (\ Delta t \) — это просто произведение уменьшения энергии капли и количества капель. (Если это не очевидно, попробуйте представить себе одну каплю в одной линии тока. Ее соседние капли не летают для всего \ (\ Delta t \), а капельки, которые будут выбрасываться во время \ (\ Delta t \) точно заполнит ту часть, для которой они не испускали.{-4/3} \]


Эффективность излучателя в случае отсутствия окклюзии может быть рассчитана при \ (t = 0 \) как:

\ [ \ text {Эффективность} = \ frac {\ Phi_ {n, f> 0} (0)} {\ Phi_ {n, f = 0} (0)} = \ frac {1-f} {1- (1- \ epsilon) f} \]

Примечание: исходная, менее полная и менее правильная версия этого анализа была размещена здесь.

Калькулятор размеров радиатора

БТЕ и кВт Калькулятор размеров радиатора

— Радиатор какого размера мне нужен

Этот калькулятор размера радиатора поможет рассчитать тепловую мощность радиатора правильного размера (в БТЕ и кВт) при проектировании новой системы центрального отопления или добавлении комнат к существующей системе

Этот инструмент для расчета радиаторов поможет вам получить правильную тепловую мощность для ваших радиаторов

Введите размеры помещения для размера радиатора

Высота помещения (м)

Ширина помещения (м)

Длина помещения (м)

Наверху / внизу

Наверх

Использование комнаты

ГостинаяСпальняКухня / ХоллВанная

На север?

Нет Да

В комнате есть французские двери?

Нет Да

Остекление?

ОдноместныйДвойной

Этот сайт поддерживается за счет рекламы, или небольшое пожертвование через PayPal будет принято с благодарностью

Какая идеальная температура для комнаты

Обычно предпочтительная температура ниже, но, очевидно, она варьируется в зависимости от личных предпочтений

  • Зал — 21 C (70 F)
  • Спальня — 18 С (64.4 F)

Ограничения онлайн-калькуляторов размеров радиаторов

Большинство онлайн-калькуляторов радиаторов, включая этот, используют различные коэффициенты для оценки тепловой мощности радиатора требуемого размера (кВт и БТЕ). Они обеспечивают хорошую оценку требуемого выхода BTU и полезную проверку цифр, которые ваш инженер-теплотехник может указать в расценке.

Они ограничены учитываемыми факторами

Расчет радиатора

— один большой горячий радиатор

Выше показана формула для определения мощности (в ваттах) теплового излучения, которое может излучать радиатор с площадью поверхности A (в квадратных метрах) и температурой T (в градусах Кельвина).Обратите внимание, что излучаемая мощность возрастает с увеличением температуры в 4 степени. Таким образом, по мере того, как радиатор в данной области нагревается, он становится намного лучше в отводе отработанного тепла. К сожалению, мы не можем просто позволить температуре подняться до тех пор, пока небольшой радиатор не станет всем, что нужно для избавления от отработанного тепла Gen1 Enterprise. Это связано с тем, что по мере приближения температуры радиатора к температуре активной зоны ядерного реактора вся ядерная энергетическая система становится намного менее эффективной. Фактически, если температура радиатора достигнет около 800 градусов К, эффективность ядерной энергетической системы упадет до нуля.2 = 158 962 квадратных метра

Теперь давайте включим эту область в формулу и посмотрим, сколько энергии радиатор отправляет в космос. Имейте в виду, что ядерной энергетической системе предприятия необходимо избавляться от большого количества отработанного тепла. Для этого поста предположим, что отходящее тепло составляет 5 гигаватт. И чтобы сохранить разумную эффективность ядерной энергетической системы, предположим, что целевая температура радиатора составляет 500 градусов К (то же самое, что 228 градусов Цельсия). Итак, теперь мы можем произвести расчеты:

Используйте константы: постоянная Стефана-Больцмана = 5.4 = 0,50 гигаватт

Ой, нам на порядок меньше мощности, от которой должен избавиться радиатор. Итак, теперь вы можете более четко увидеть проблему радиатора для предприятия. Поскольку мы не можем сильно повысить температуру радиатора (что действительно очень плохо), все, что мы можем сделать, это увеличить площадь радиатора. Итак, давайте теперь предположим, что радиатор с плоскими ребрами. Предположим, что общая площадь верхнего бокового ребра составляет 350 000 квадратных метров. Но также имейте в виду, что нижняя сторона тоже может быть излучающей поверхностью.4 = 5,0 гигаватт !!!

Итак, мы подошли к тому диапазону, который необходим. Суть в том, что вам нужен радиатор, который будет одновременно огромным по площади и очень горячим по температуре.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*

© 2011-2025 Компания "Кондиционеры"