Расчет пускового и рабочего конденсатора для трехфазного двигателя: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Расчет конденсаторы рабочие для электродвигателей

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой.

В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано.

Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель.

Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т. к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т. е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Расчет пускового конденсатора для трехфазного двигателя

Расчет конденсатора для двигателя

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Соединение конденсаторов

В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.

Последовательное соединение

Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.

Последовательное соединение конденсаторных элементов

Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:

а для всей батареи последовательных элементов:

то q/С = q/С1 + q/С2 + q/С3.

Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.

Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов.

Параллельное соединение

Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:

Параллельное соединение конденсаторных элементов

Количество электричества на каждом конденсаторе составит:

q1 = V x C1, q2 = V x C2, q3 = V x C3.

Общий заряд конденсаторной батареи:

q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.

Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется.

В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.

Расчет конденсатора для электродвигателя

Трехфазный электромотор можно подключить к однофазной линии, которая позволит управлять им с помощью конденсатора. При этом надо произвести расчет емкости конденсатора.

Чтобы узнать значение в микрофарадах, которое нужно получить от конденсаторного элемента, и найти оптимальный пусковой момент в однофазной линии, надо знать технические характеристики мотора.

Схемы включения электромотора с конденсатором

  1. Активная мощность определяется:

Р = √3 x V x I x соsφ.

Она может быть указана на таблице, прикрепленной к мотору. Напряжение – 220 В в однофазном режиме. Величина соsφ также указывается производителем (обычно для электродвигателей соsφ = 0,8-0,85).

  1. Отсюда можно найти силу тока:

I = P/(√3 x V x соsφ).

  1. Емкость конденсатора для соединенных звездой двигательных обмоток Сраб = 4800 x I /V, для соединенных в Δ – Сраб = 2800 x I/V;
  2. Для пускового конденсаторного элемента Спуск = 2,5 С.

Сетевой калькулятор онлайн производит и такой тип расчетов. Для этого вводятся параметры электромотора и питающей сети, в результате получается емкостное значение.

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик. Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю. Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя.

Это стало возможно с созданием бота Система единиц измерения онлайн

Подбор конденсатора для трехфазного двигателя

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Расчет конденсатора для двигателя

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Соединение конденсаторов

В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.

Последовательное соединение

Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.

Последовательное соединение конденсаторных элементов

Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:

а для всей батареи последовательных элементов:

то q/С = q/С1 + q/С2 + q/С3.

Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.

Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов.

Параллельное соединение

Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:

Параллельное соединение конденсаторных элементов

Количество электричества на каждом конденсаторе составит:

q1 = V x C1, q2 = V x C2, q3 = V x C3.

Общий заряд конденсаторной батареи:

q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.

Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется.

В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.

Расчет конденсатора для электродвигателя

Трехфазный электромотор можно подключить к однофазной линии, которая позволит управлять им с помощью конденсатора. При этом надо произвести расчет емкости конденсатора.

Чтобы узнать значение в микрофарадах, которое нужно получить от конденсаторного элемента, и найти оптимальный пусковой момент в однофазной линии, надо знать технические характеристики мотора.

Схемы включения электромотора с конденсатором

  1. Активная мощность определяется:

Р = √3 x V x I x соsφ.

Она может быть указана на таблице, прикрепленной к мотору. Напряжение – 220 В в однофазном режиме. Величина соsφ также указывается производителем (обычно для электродвигателей соsφ = 0,8-0,85).

  1. Отсюда можно найти силу тока:

I = P/(√3 x V x соsφ).

  1. Емкость конденсатора для соединенных звездой двигательных обмоток Сраб = 4800 x I /V, для соединенных в Δ – Сраб = 2800 x I/V;
  2. Для пускового конденсаторного элемента Спуск = 2,5 С.

Сетевой калькулятор онлайн производит и такой тип расчетов. Для этого вводятся параметры электромотора и питающей сети, в результате получается емкостное значение.

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик. Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя.

Это стало возможно с созданием бота Система единиц измерения онлайн

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут:

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Двигатель АПН 212, 220380, 2,471,43А, КПД-0.7, cos-0.7, 400W.
Ср = 4800 * 2,47 А 220 В = 54 МF. (полная формула)
Ср = 400Вт * 7 = 28 МF (сокращенная формула)
Почему разница Ср больше чем в 2 раза?
Расчет тока по формуле I = P (400) 1.73 * U (220) * cos (0.7) * КПД (0.7) = 2.15 А, а на шильдике 2.47А. Опять отличие. В чем дело?
Поставил конденсатор рабочий 30 MF запускается плохо – рукой, работает нормально – точило. Круг на 150 мм.

Распространенная ошибка: путают местами формулы для расчета фазосдвигающей емкости. Ошибка в коэффициентах, не учли, что для схемы включения «звезда» он ниже, чем для «треугольника». А дальше все точно рассчитывается.
Вы же знаете, что фазосдвигающий конденсатор нужен только при включении в сеть 220 В. В трехфазной сети 380 В уже есть сдвигающее воздействие от реактивной (индуктивной) составляющей энергии, заданное еще генератором на такой далекой электростанции.
Поэтому расчеты рабочего фазосдвигающего конденсатора понадобиться проводить только для напряжения 220 В. Когда не действует индуктивная реактивная составляющая от генератора на электростанции, тогда приходится прибегать к местной емкостной реактивной составляющей.
Это напряжение можно подать на электродвижок соединенный как «звездой», так и «треугольником». Вы поняли, что если оставить электродвигатель со схемой «звезда», то через две последовательно соединенный обмотки пойдет меньший из указанных на шильдике токов — 1.43 А. Ну а в случае с изменением схемы расключения начала обмоток электродвигателя на «треугольник», то при подаче отдельно на каждую обмотку по 220 В, через них пойдет наверняка больший ток — 2.47 А.
Значит, Ваш двигатель при соединении «звездой» имеет такие параметры:
220 В,
1.43 А,
расчет рабочего фазосдвигающего конденсатора следующий:
Сф = 4800*I/U = 4800*1.43/220 = 31.2 мкФ;
Для соединения «треугольником» параметры будут такими:
220 В,
2.47 А,
расчет рабочего фазосдвигающего конденсатора такой:
Сф = 2800*I/U = 2800*2.47/220 = 31.4 мкФ.
Ну, приблизительно то же самое значение фазосдвигающей ёмкости получается при приблизительном расчете на каждые 100 ватт по 7 мкФ:
400*7 = 28 мкФ.

Формула для расчета номинального тока наиболее точна для больших электродвигателей циркулярок, тельферов, насосов, у которых мощность превышает 3 кВт.
Плохо пускается точильное от рассчитанного конденсатора уже понятно почему: потому что конденсатор рабочий. Конечно, если заморочиться, то не помешает, таки, поставить пусковой конденсатор. А можно и рукой дернуть! Да и пустить в нужную сторону.

Как подобрать и подключить конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Конденсатор для пуска электродвигателя

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Трёхфазный двигатель в однофазной сети

Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.

Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.

Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок  разгонится  его отсоединяют и остаётся только рабочий (рис.1).

Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают.  SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:

С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:

где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности

Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.

Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.

Реверсировать электромотор нужно  с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.

На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на  холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.

Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.

Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.

В случае если  ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).

Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.

Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти  без потерь мощности.

В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо  заземлить.

Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о  воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:

С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P

где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.

Включение трехфазного электродвигателя в однофазную сеть

Много уже писано-переписано в различных изданиях о включении трехфазного электродвигателя в однофазную сеть. И, тем не менее, иногда проблемы при решении такой задачи возникают у многих. Так как я за свою жизнь решил такую задачу не один десяток раз, думаю, что имею право поделится своим опытом и уверен, что многие найдут что-то новое и неожиданное в этом набившем оскомину вопросе.

Итак, в однофазную сеть напряжением 220 В электро двигатели 660/380 В я никогда не включал и вообще не знаю, возможно ли такое включение.

С решением такой же задачи для электродвигателя 380/220 В проблем не существует. Обычно, применяемые в промышленности и сельском хозяйстве электродвигатели соединены в «звезду». Необходимо открыть борно электродвигателя. Если есть в наличии все 6 проводов (выводов обмоток), надо рассоединить 3 провода, соединенны вместе, и принять их, например, за «начала» обмоток. Три других провода будут «концами».

Если в борне находятся отдельные 3 провода, а соединенных вместе 3-х проводов нет, значит — стопроцентная гарантия того, что электродвигатель подвергался перемотке. В этом случае необходимо вскрыть переднюю и заднюю крышки электродвигателя, снять ротор, найти соединение 3-х проводов на статоре, рассоединить их, припаять к ним удлиняющие провода, заизолировать места пайки и вывести эти провода в борно, приняв их, например, за «начала».

Далее необходимо вызвонить все 3 обмотки, не забывая, где «начало», а где «конец» обмотки (лучше их промаркировать). Потом надо соединить в борне обмотки в «треугольник» и вывести провода из борна электродвигателя. Вышеперечисленные операции изображены на рис.1.

Особенно важно не ошибаться с «началами» и «концами» обмоток (иначе электродвигатель работать не будет).

Рис 2:  Схема с пускателем ПНВС

На рис.2 изображена всем известная схема с пускателем ПНВС, применяемым в стиральных машинах. Остановимся лишь на «мелочах». При неимении ПНВС, можно легко обойтись и без него, применив автомат, рубильник… и обычную кнопку с нормально разомкнутыми контактами. При включении электродвигателя в работу сначала необходимо нажать кнопку и, не отпуская ее, включить автомат (рубильник). Когда вал электродвигателя наберет обороты, кнопку надо отпустить. Можно обойтись и без автомата (рубильника). В этом случае сначала нажать кнопку, а затем включить в сетевую розетку вилку со шнуром, идущим к электродвигателю.

А теперь о самом интересном — о пусковом и рабочем конденсаторах. Сразу отмечу, что всем известный расчет номиналов емкости пускового и рабочего конденсаторов, указанный и в [1], я давно воспринимаю, как очень и очень ориентировочный. Не согласен я и с тем. что конденсаторы, используемые в качестве фазосдвигающих элементов при включении 3-фазных электродвигателей в однофазную сеть, — слабое звено в пусковом устройстве. Я включил десятки 3-фазных электродвигателей в однофазную сеть, причем в качестве пусковых практически всегда использовал электролитические конденсаторы без каких-либо «прибамбасов» на рабочее напряжение 350…450 В. Работают они как миленькие, многие годы.

Электролитов у каждого валом со старых телевизоров, их габариты сравнительно небольшие.
Не согласен я и с «литературной фразой» [1] о том, что предельной мощностью конденсаторного электродвигателя общего назначения принимается номинальная мощность 1,5 кВт. Не так давно я включил в однофазную сеть 3-фазный электродвигатель мощностью более 4кВт/1500 об./мин. (шильдик на электродвигателе отсутствовал, но габариты электродвигателя 4 кВт/1500 об./ мин. я прекрасно себе представляю, ведь включал я такие электродвигатели в однофазную сеть не единожды и, кстати, без проблем). Данный электродвигатель установлен на пилораме. Так вот, без нагрузки данный электродвигатель легко запускался при применении пускового электролитического конденсатора (вернее, батареи конденсаторов) емкостью 600 мкФ. Но когда на шкив электродвигателя был надет ремень, электродвигатель разгоняться не захотел. Когда я добавил батарею конденсаторов емкостью еще 600 мкФ (общая емкость пускового конденсатора стала равняться 1200 мкФ), электродвигатель стал нормально включаться и набирать обороты при накинутом на шкив ремне.

Здесь следует немного остановиться. Очень часто бывает, что применение рабочего конденсатора совсем не обязательно, так как мощности на валу переделанного электродвигателя вполне хватает. Если это не так. без рабочего конденсатора не обойтись. Хорошо, если есть под рукой неполярные конденсаторы требуемой емкости и на нужное рабочее напряжение. Но очень часто их нет. Вот здесь и поможет схема включения двух электролитических конденсаторов, как одного неполярного, изображенная на рис. 1 в статье [1] или на рис.1 в моей статье [2] (в данной статье такое включение показано на рис.3). Не стоит сомневаться в работоспособности и надежности этой схемы. Проверено на практике неоднократно. Кстати, повышение мощности электродвигателя при применении рабочего конденсатора видно «на глаз» при работе на все той же пилораме.

Рис 3: Схема включения двух электролитических конденсаторов.

Дам еще один очень простой и эффективный совет, позволяющий максимально точно подобрать емкость рабочего конденсатора, о котором я нигде не читал в литературе. Вот здесь уже точно репутация всем известной формулы Ср=66хРном пострадает.

Итак, способ подбора емкости рабочего конденсатора следующий. При работе электродвигателя, который включен по схеме, изображенной на рис.1, необходимо измерить напряжение на обмотке, к которой подключен рабочий конденсатор, а затем на двух других обмотках. Если напряжение на рабочем конденсаторе будет больше, чем на обмотках, необходимо уменьшить емкость рабочего конденсатора, если будет меньше — увеличить.
Асинхронный электродвигатель 220/127 В в однофазную сеть 220 В можно включить на «звезду» (рис.3).

Если понадобится изменить направление вращения вала электродвигателя, необходимо поменять местами два любых провода, идущих к «треугольнику» (рис.2) или на «звезду» (рис.3).
Если необходим реверсивный электродвигатель, необходимо применить переключатель, как это, например, показано на рис.4.

Рис 4: Схема реверсивного подключение трехфазного двигателя к однофазной цепи.

Хочу отметить, что высокооборотистые 3-фазные электродвигатели включить в однофазной сети сложнее, чем низкооборотистые. Электродвигатель 2,2 кВт/3000 об./мин. я включал легко, а вот электродвигатель 3 кВт/3000 об./мин., фазосдвигающими конденсаторами мне включить не удалось Правда, это было давно. Сейчас, когда на голове довольно много седых волос, может быть и включил бы.

И, наконец, последнее. Когда я был совсем молодым и красивым, увидел старинную книгу «Справочник сельского электрика». В данном справочнике предлагалось вместо пускового конденсатора использовать активное сопротивление (отрезок высокоомно-го нихрома со спирали электрической печки). Предоставлялся даже расчет сопротивления данного резистора в зависимости от мощности электродвигателя. Я попробовал и «О, чудо!», включил в однофазную сеть напряжением 220 В 3-фазный электродвигатель 380/ 220 В мощностью 3 кВт на 3000 об./мин., который не мог включить фазосдвигающими конденсаторами. Буквально через 2 года после армии все мои попытки повторить это чудо закончились безрезультатно.

Литература
1 Коломойцев К.В. Еще раз о надежном запуске асинхронного электродвигателя. — Электрик, №9-10, 2006 г.
2. Маньковский А Н. О включении электродвигателей в однофазную сеть. — Электрик, №1, 2004 г.

 

Статьи

Включение трехфазного двигателя в однофазную сеть

Включение трехфазного двигателя в однофазную сеть

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1

Схема включения трехфазного электродвигателя в сеть 220В:

Ср – рабочий конденсатор;

Сп – пусковой конденсатор;
П1 – пакетный выключатель

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после чего необходимо сразу же нажать кнопку “Разгон”. После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в ТРЕУГОЛЬНИК определяется по формуле:

, где
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток, А;
U — напряжение в сети, В

А в случае соединения обмоток двигателя в ЗВЕЗДУ определяется по формуле:

, где
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток в А;
U -напряжение в сети, В

Как видно, гораздо эффективнее соединение в ТРЕУГОЛЬНИК. При соединении в ЗВЕЗДУ мощность двигателя падает в разы.

Потребляемый электродвигателем ток при известной мощности электродвигателя можно вычислить из следующего выражения:

, где
Р – мощность двигателя в Вт, указанная в его паспорте;
h – КПД;
cos j – коэффициент мощности;
U — напряжение в сети, В

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя (см. таблицу)

 

Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220В

 

Мощность трехфазного
двигателя, кВт

Минимальная емкость  рабочего
конденсатора Ср, мкФ

Минимальная емкость пускового
конденсатора Ср, мкФ

0,4

40

80

0,6

60

120

0,8

80

160

1,1

100

200

1,5

150

250

2,2

230

300

 

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20-30 % превышающий номинальный. Если двигатель часто используется в недогруженном режиме или вхолостую, то емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.
Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

 

Немного о РЕЗИСТОРАХ…

Резистор – это самый распространенный электронный компонент, название которого произошло от английского слова «resistor» и от латинского «resisto» — сопротивляюсь. Основным параметром резистора считается сопротивление, которое характеризуется его способностью в препятствии протекания электрического тока. Единицами сопротивления у резисторов являются – Омы (?), Килоомы (1000 Ом или 1К?) и Мегаомы (1000000 Ом или 1М?).

Основные типы резисторов

По физическому устройству резисторы бывают следующих типов:

• углеродные пленочные;

• углеродные композиционные;

• металлооксидные;

• пленочные металлические;

• проволочные

04.02.2014 Подробнее…

Трехфазный двигатель в однофазной сети

Двигатели с тремя фазами необходимы для различных самоделок: циркулярок, деревообрабатывающих, заточных и сверлильных станков. Проблемы с ним могут возникнуть, если сеть однофазная. В таком случае, существует несколько способов подключения двигателя к сети.

Способ 1. Подключение третьей обмотки через фазосдвигающий конденсатор

Среди различных способов запуска трехфазных двигателей в однофазных сетях, самый простой и эффективный — с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90°С, а между первой и второй фазами сдвиг незначителен, электромотор теряет мощность примерно на 40…50% при включении обмоток по схеме треугольника.

Чтобы электромотор с конденсаторным пуском работал нормально, емкость конденсатора должна меняться в зависимости от числа оборотов. На практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис.1).

При нажатии па кнопку SB1 (можно использовать кнопку от стиральной машины — пускатель ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда он наберет обороты, кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются замкнутыми. Их размыкают для остановки электродвигателя. Если SB 1.2 в кнопке не отходит, под него следует подложить шайбу так, чтобы он отходил. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:

С2=4800 I/U
где I —ток, потребляемый мотором, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:

где Р — мощность двигателя, Вт;
U — напряжение сети, В;
n— КПД;
cosψ — коэффициент мощности. Емкость пускового конденсатора С1 выбирают в 2…2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего применять конденсаторы марки МГБО, МБГП, МБГЧ с рабочим на­пряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который «стекает» оставшийся электрический заряд.

Реверсирование электромотора осуществляется путем переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1…4 и т.п.

При работе в режиме холостого хода по питаемой через конденсаторы обмотке протекает ток, па 20…40% превышающий поминальный. Поэтому если электромотор будет часто использоваться в недогруженном режиме или вхолостую, емкость конденсатора С2 следует уменьшить. Например, для включения двигателя мощностью 1,5 кВт можно использовать в качестве рабочего конденсатор емкостью 100 мкФ, пускового — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.

Способ 2. Запуск двигателя с использованием оксидных конденсаторов

Если нет возможности приобрести бумажные конденсаторы, можно использовать оксидные (электролитические) в качестве пусковых» На рис.2 приведена схема замены бумажных конденсаторов на электролитические. Положительная полуволна переменного тока проходит через цепочку VD1C1, а отрицательная — через VD2C2, поэтому электролиты можно использовать с меньшим допустимым напряжением, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов необходимо напряжение 400 В и выше, то для электролита достаточно 300…350 В, потому что он пропускает только одну полуволну переменного тока, и следовательно, к нему прикладывается лишь половина действующего напряжения, а для надежности он должен выдержать амплитудное напряжение однофазной сети, т.е. примерно 300 В. Их расчет аналогичен расчету бумажных.

Схема включения такого двигателя с помощью электролитических конденсаторов приведена на рис.3. Подобрать нужное значение емкости бумажных и оксидных конденсаторов проще всего измерив, ток в точках а, в, с — токи должны быть равны при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 выбираются с обратным напряжением не менее 300 В и 1пр. мах=10А. При большей мощности двигателя диоды устанавливаются на теплоотводы по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор потечет переменный ток, в результате чего спустя некоторое время электролит может нагреться и разорваться. Электролитические конденсаторы в качестве рабочих применять нежелательно, поскольку длительное протекание через них больших токов приводит к их разогреванию и взрыву. Их лучше всего использовать в качестве пусковых.

Способ 3. Подключение пусковых конденсаторов с помощью токового реле

Если трехфазный электродвигатель используется при динамических (больших) нагрузках на вал, можно использовать схему подключения пусковых конденсаторов с помощью токового реле, которое позволяет в момент больших нагрузок на вал автоматически подключать и отключать пусковые конденсаторы (рис.3).

При подключении обмоток по схеме, приведенной на рис.4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют примерно 25%, поскольку обмотки А и В включены противофазно на полное напряжение 220 В, а напряжение вращения определяется включением обмотки С. Фазирование обмоток показано точками.

Способ 4. Резисторно-индуктивноемкостные преобразователи сети

Более практичны и удобны в работе с такими двигателями резисторно-индуктивноемкостные преобразователи сети с одной фазой 220 В в трехфазную, с токами в фазах до 4А и сдвигом напряжений в фазах около 120°. Такие устройства универсальны, монтируются в жес­тяном корпусе и позволяют под­ключать трехфазные электродвигатели мощностью до 2,5 кВт в однофазную сеть 220 В практически без потери мощности.

В преобразователе используется дроссель с воздушным зазором. Устройство дросселя показано на рис.6. При правильном подборе R, С и соотношения витков в секциях обмотки дросселя такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и степени нагрузки на вал. Вместо индуктивности дано индуктивное сопротивление XL, так как его проще измерить: обмотка дросселя крайними выводами через амперметр подключается к напряжению 100…220 В частотой 50 Гц параллельно с вольтметром. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен выдержи­вать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при включении в цепь переменного тока должны иметь примерно двукратный запас по напряжению. Резистор R1 должен быть рассчитан на ток до ЗА, т.е. на мощность около 700 Вт (наматывается никелево-хромовой проволокой диаметром 1,3…1,5 мм на фарфоровой трубке с передвигающейся скобой, позволяющей получать нужное сопротивление для разных мощностей двигателя). Резистор должен быть защищен от перегрева, огражден от других элементов, токоведущих частей, от прикосновения людей. Металлическое шасси корпуса необходимо заземлить.

Сечение магнитопровода дросселя S=16…18cm2, диаметр провода d=l,3…1,5 мм, общее число витков W=600…700. Форма магнитопровода и марка стали — любые, главное — предусмотреть воздушный зазор (а следовательно, возможность менять индуктивное сопротивление), которое устанавливается винтами (рис.6). Для устранения сильного дребезжания дросселя между Ш-об-разными половинами магнитопровода прокладывается деревянный брусок и зажимается винтами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270…450 Вт. Вся обмотка дросселя выполняется в виде одной катушки с тремя секциями и четырьмя выводами. Если использовать сердечник с постоянным воздушным зазором, придется изготовить пробную катушку без промежуточных отводов, собрать дроссель с примерным зазором, включить в сеть и измерить XL. Затем для подгонки полученного значения к требуемому. XL нужно отмотать или домотать несколько витков. Выяснив необходимое число витков, мотают необходимую катушку, разделив каркас на секции в отношении W1:W2:W3=1:1:2. Так, если общее число витков равно 600, то Wl =W2= 150, a W3=300. Чтобы увеличить выходную мощность преобразователя и избежать при этом несимметрии напряжений, нужно изменить значения XL, Rl, Cl, С2, которые рассчитываются из тех соображений, что токи в фазах А, В и С должны быть равны при номинальной нагрузке на вал двигателя. В режимах недогрузки двигателя несимметрия напряжений фаз не опасна, если наибольший из токов фаз не превышает номинальный ток двигателя. Пересчет параметров преобразователя на другую мощность производится по формулам:

С1=80Р;
С2=40Р;
Rl = 140/P;
XL = 110/P,
W=600/ Р,
S=16P,
d=1,4P;

где P — мощность преобразователя в киловаттах, в то время как паспортная мощность двигателя — это его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно брать в среднем 75…80%.

Источник: Радиолюбитель 3’1996

Трехфазный двигатель в однофазной сети

4.1/5 — Оценок: 85

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта небольшая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазной сети поставлять.

Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?

1) Подключение конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

2) Подключение конденсатора для ОБРАТНОГО вращения

— Для ОБРАТНОГО вращения, мы должны установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Мощность двигателя

Мы должны учитывать мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны рассчитать, и это так сложно. можете оценить приблизительное значение мощности двигателя в процентах (%) ниже: —

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать в отношении размера конденсатора при планировании работы трехфазного двигателя в однофазном источнике питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.

Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме звезды, обычно без внешнего подключения к нейтральной точке, либо по схеме треугольник. Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычном виде эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Encyclopædia Britannica, Inc.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести моментов цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки.В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е. одна шестая цикла позже) ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный.В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены друг с другом на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.Картина токов ротора за мгновение t 1 рисунка показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Исходные токи статора, показанные на рисунке, достаточны только для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для двигателей большой мощности и до около 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которые должны быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

1,8 Как мне рассчитать конденсатор для цепи Штейнмеца? | 1. Алюминиевые электродвигатели переменного тока | Часто задаваемые вопросы

Схема Штейнмеца — это метод использования трехфазных двигателей, соединенных звездой или треугольником, с однофазным переменным током; это соединение должно соответствовать сетевому напряжению, например, в Европе обычно 230 В. Рабочий конденсатор может быть металлическим бумажным конденсатором согласно DIN EN 60252-1 (VDE 0560-8: 2011-10), который подключается к третьему выводу двигателя и к фазному проводу или к нейтральному проводу в зависимости от направления вращения. желанный.Если конденсатор подключен к фазному проводу, двигатель будет вращаться по часовой стрелке; подключение конденсатора к нейтральному проводу заставит двигатель вращаться против часовой стрелки. В различных профессиональных учебниках и форумах, ссылающихся на стандарт DIN 48501, который был отменен несколько лет назад, рекомендуется использовать емкость примерно 70 мФ на кВт номинальной выходной мощности двигателя при рабочем напряжении 230 В. Формула для расчета рабочего конденсатора выглядит следующим образом: где C — емкость, P — номинальная мощность, U — номинальное напряжение двигателя, где — угловая частота, а

— угловая частота.

    • Соединение треугольником — направление вращения реверсивное

    • Конденсатор запуска двигателя третий

    • 0

      0

      0 Мощность генератора фаза. Однако это даст фазовый сдвиг менее 90 ° вместо 120 ° на второй обмотке двигателя.Это означает, что конденсатор создает только эллиптическое вращающееся магнитное поле, которого, однако, достаточно для создания пускового момента, чтобы двигатель мог запускаться самостоятельно. [2] Недостатком является то, что двигатель работает в эллиптическом режиме. В схеме Штейнмеца двигатель может быть подключен по схеме треугольник или Y, в зависимости от напряжения на клеммах катушки. Соединение треугольником предпочтительно используется в цепи Штейнмеца. Конденсатор и катушка вместе образуют последовательный резонансный контур.Во время работы на конденсаторе создается пиковое напряжение до 330 В, когда линейное напряжение составляет 230 В. Чтобы предотвратить разрушение конденсатора, он должен быть рассчитан на максимальное пиковое напряжение. Поскольку конденсаторы из металлической бумаги со временем стареют, добавляется запас прочности от 70 до 80 В. Следовательно, когда напряжение в сети составляет 230 В, используется конденсатор с выдерживаемым диэлектрическим напряжением не менее 400 В. Из-за конденсатора сила тока в каждой катушке будет разной.Пусковой ток зависит от требуемого крутящего момента и во много раз превышает номинальный ток. Поскольку при работе мощных двигателей, подключенных к однофазной сети, существует высокая однофазная нагрузка, максимально допустимая мощность подключенного двигателя Steinmetz составляет от 1,5 кВт до 2 кВт в зависимости от энергокомпании.

      Пуск двигателя — обзор

      Теперь необходимо составить таблицу 11.2 для всех реле и выбрать предохранители на пути, определяя высокие уставки мгновенного реле, как описано в предыдущем разделе.Порядок действий следующий:

      ТАБЛИЦА 11.2. Определение настроек защиты системы

      Тип реле 11,46 / 3.3 кВ, секция
      Столбец (см. Примечания) 1 2 3 4 5 6 7 8
      тип Уставка МВА Отключение реле, МВА Сбой МВА для градации Уставка тока, кратная в точке градации Реле времени срабатывания спереди, с Реле времени срабатывания, подлежащее оценке, с Множитель времени настройка
      Реле 1 Реле 2
      (1) Предохранитель 415 В 630 A 24.09
      (2) Трансформатор 1,6 МВА XIDMT 2,04 (120%) 36,14 24,09 11,81 11,81 0,432 ) Секция шины, 3,3 кВ IDMT 11,43 (100%) 125,00 36,14 17,72 3,17 0,17 0,46 0,125
      IDMT 17,15 (150%) 187,90 125,00 10,94 7,29 0,33 0,66 0,200
      0,200
      57,16 (100%) 323,00 187,90 10,96 3,29 0,54 0,94 0,175
      (6) 60 МВА трансформатор, 23,5 / 11 кВ (6) 60 МВА, 23,5 / 11 кВ32 (125%) 484,00 323,0 5,65 4,23 0,70 1,13 0,250

      Примечания:

      • предыдущее значение столбца
      для столбца 3

      Столбец 5, Реле 1: равно значению столбца 2 для предыдущего этапа

      Столбец 6: из кривых реле определите время по ближайшей кривой с настройками, указанными в столбце 5.Затем рассчитайте время по фактическому TMS / кривой TMS × (время по выбранной кривой). Если TMS = 0,125, возьмите кривую для 0,2 и время при 0,125 = 0,125 / 0,2 × (время при 0,2)

      Столбец 8: столбец 7, разделенный на время работы реле 2 с CSM (столбец 5) при ближайшая ТМС, чтобы дать время в столбце 7 × ТМС для выбранной кривой. Если столбец 7 = 0,46 и время работы в CSM (3,17 столбец 5) составляет 0,81 для TMS = 0,2, тогда столбец 8 = 0,46 / 0,81 × 0,2 = 0,114, что дает 0,125 в качестве практического реле TMS

      Столбец 1 не требует пояснений.

      Столбец 2 определен в разделе 12.9.6 данной главы, например, для трансформатора 1,6 МВА максимальный ток уставки составляет 1,3 × ток полной нагрузки трансформатора, то есть 2,08 МВА. Следовательно, 125% (2,06) ближайшей уставки реле подходит для этого реле.

      Столбцы 3 и 4 также взяты из Раздела 12.9.6; в столбце 3 указано ближайшее максимальное значение уставки реле максимального тока или, если реле нет, максимальный ток повреждения через реле IDMT.Например, номинальный ток предохранителя и отсечка МВА — это максимальное значение МВА повреждения из таблицы 11.2, т.е. 24,09 МВА.

      Столбец 5 представляет собой текущее кратное значение параметра в точке профилирования. Например, при градации секции шины с трансформатором 1,6 МВА градуированный ток (МВА) (столбец 4) представляет собой настройку максимального значения, установленного на трансформаторе 1,6 МВА (36,14 МВА). Это в 17,72 раза больше уставки трансформаторного реле 1,6 МВА и в 3,17 раз больше уставки реле секции шины.

      Столбец 6 получен непосредственно из столбца 5 с использованием характеристической кривой для крайне инверсного реле с множителем установки времени 0,45, уже определенным при оценке с помощью предохранителя.

      В столбце 7 используется уравнение градуировки, т. Е. 1,25 × 0,17 = 0,46 с.

      Столбец 8 получен путем использования значения для реле 2 в столбце 5 и характеристических кривых для реле с обратнозависимой выдержкой времени для получения времени в столбце 7.Завершенные результаты показаны в Таблице 11.2 с дополнительными пояснениями для получения значений в столбцах.

      Все точки классификации проверены на наличие замыканий между фазами. Никаких изменений в настройках производить не пришлось, так как были выбраны ближайший множитель времени и текущий множитель уставки в увеличенном направлении. На рис. 11.53 и в таблице 11.3 представлены кривые компьютерной оценки. Если множители времени округлены до ближайшего шага, 0,025, значения множителей срабатывания и установки времени точно соответствуют столбцам 2 и 8 в таблице 11.2.

      ТАБЛИЦА 11.3. Расчетные параметры реле

      3 234 234 234 903 400,0
      Этап Срабатывание, MVA Классификация тока Граница градации, с Номинал предохранителя, A Настройка штекера,% Настройка множителя времени Температурная настройка,% Ток полной нагрузки двигателя, МВА 6 x Время срабатывания перегрузки, с
      1 0,4528 630,0
      0577 4,54389 0,24320 120,00 0,43594
      3 11,4315 5,55556 0,33632 1,50000 0,34091 150,00 0,19325
      5 57,1577 3.33333 0,43799 100,00 0,17914
      6 76,3184 1,33523 0,44536 125352 125352
      8 2,4006 105,00 2,28631 4.64571

      Коэффициент мощности — индуктивная нагрузка

      Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где

      • Активная (действительная) или True) Мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
      • Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение в системе переменного тока, умноженной на весь ток, который в ней протекает.Это векторная сумма активной и реактивной мощности
      • Реактивная мощность измеряется в вольт-амперах реактивной ( VAR ). Реактивная мощность — это мощность, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.

      Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая индуктивным нагрузкам, увеличивает объем полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.

      Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

      Коэффициент мощности

      Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:

      PF = cos φ

      где

      PF = коэффициент мощности

      φ = фазовый угол между напряжением и током

      Коэффициент мощности, определенный IEEE и IEC, является соотношением между приложенной активной (истинной) мощностью — и полная мощность , и в общем случае может быть выражена как:

      PF = P / S (1)

      где

      PF = коэффициент мощности

      P = активная (истинная или действительная) мощность (Вт)

      S = полная мощность (ВА, вольт-амперы)

      Низкий коэффициент мощности — это результат lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.

      Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что

      • общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен предоставить больше генерирующей мощности, чем фактически требуется
      • искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем

      Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.

      Пример — коэффициент мощности

      Промышленное предприятие потребляет 200 A при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .

      Если коэффициент мощности — PF — нагрузки составляет 0,7 — только

      80 кВА × 0,7

      = 56 кВт

      Система потребляет

      реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.

      • Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем тот, который был бы необходим при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
      Зависимость поперечного сечения проводника от коэффициента мощности

      Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:

      902
      Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3
      Поперечное сечение 1 1,2 1,6 2,033 4,0 11 2,033 4,0 11

      Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные компании могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит пропускную способность электрической системы, увеличивая ток и вызывая падение напряжения.

      «Опережающий» или «запаздывающий» коэффициенты мощности

      Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.

      • При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет равен 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
      • Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
      • Емкостные нагрузки — батареи конденсаторов или проложенные кабели — генерируют реактивную мощность с фазой тока, опережающей напряжение.

      Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время отдельных циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания.

      В системах с преимущественно индуктивной нагрузкой — обычно на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.

      Коэффициент мощности трехфазного двигателя

      Полная мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из

      • Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
      • Реактивная мощность — Нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)

      Коэффициент мощности трехфазного электродвигателя может быть выражен как:

      PF = P / [(3) 1/2 UI] (2)

      , где

      PF = коэффициент мощности

      P = приложенная мощность (Вт, Вт)

      U = напряжение (В)

      I = ток (А, амперы)

      — или альтернативно:

      P = (3) 1/2 UI PF

      = (3) 1/2 U I cos φ (2b)

      U, l и cos φ обычно указаны на паспортной табличке двигателя.

      Типичный коэффициент мощности двигателя

      — 20
      Мощность
      (л.с.)
      Скорость
      (об / мин)
      Коэффициент мощности (cos φ )
      Без нагрузки Нагрузка 1/4 1/2 нагрузки 3/4 нагрузки полная нагрузка
      0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,833 0,84 1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86
      20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 0,8206 902 100-300 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91

      Коэффициент мощности по отраслям

      Типичные неулучшенные коэффициенты мощности:433 Коэффициент мощности Пивоваренный завод 75-80 Цемент 75-80 Химический 65-75 65234 Электро-химический Литейный 75-80 Ковка 70-80 Hospi tal 75-80 Производство, машины 60-65 Производство, краска 65-70 Металлообработка 65-70 шахта, уголь — 80 Кабинет 80-90 Масляный насос 40-60 Производство пластмасс 75-80 Штамповка 9020-703 902 65-80 Текстиль 35-60

      Преимущества коррекции коэффициента мощности

      • снижение счетов за электроэнергию — предотвращение штрафа за низкий коэффициент мощности от энергокомпании
      • увеличение производительности системы — дополнительные нагрузки можно добавлять без перегрузки системы
      • улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
      • улучшенные рабочие характеристики системы за счет увеличения напряжения — предотвращение чрезмерных падений напряжения

      Коррекция коэффициента мощности с помощью конденсатора

      1,16 1,19 902 902 0,61 9033 9022 902 902 902 902 902 902 902 902 903 902 902
      Поправочный коэффициент конденсатора
      Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ)
      1.0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90 9033 903 9034 9033 903 9034 903 903 903 903 903 903 9034
      1,44 1,40 1,37 1,34 1,30 1,28 1,25
      0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04
      1,04
      0,60 903 902 1,03 903 0,60 9034 1,03 1,01 0,97 0,94 0,91 0,88 0,85
      0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69
      0,70 1,02 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 0,66 0,62 0,59 0,56 0,54
      0,75 0,88 0,74 0,67 0.63 0,58 0,55 0,52 0,49 0,45 0,43 0,40
      0,80 0,75 0,61 902 0,54 902 0,35 0,32 0,29 0,27
      0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14
      0,90 0,48 0,14 0,28 0,12 902 902 903 0,06 0,02
      0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02
      0,92 0,43 0,28 0,22 0,18 0,13 0,10 0,06 902 902 0,10 0,06 0,25 0,19 0,15 0,10 0,07 0,03
      0,94 0.36 0,22 0,16 0,11 0,07 0,04
      0,95 0,33 0,18 0,96 0,29 0,15 0,09 0,04
      0.97 0,25 0,11 0,05
      0,98 0,20 0,062
      Пример — Повышение коэффициента мощности с помощью конденсатора

      Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .

      Для необходимого коэффициента мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора составляет 0,58 .

      Требуемая мощность KVAR может быть рассчитана как

      C = (150 кВт) 0,58

      = 87 KVAR

      Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B

      Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.

      1234 902 902 902
      Номинальная мощность асинхронного двигателя
      (л.с.)
      Номинальная скорость двигателя (об / мин)
      3600 1800 1200
      Номинальная мощность конденсатора
      9018AR 906 Ток
      (%)
      Номинал конденсатора
      (кВАр)
      Снижение линейного тока
      (%)
      Номинал конденсатора
      (кВАр)
      Снижение линейного тока
      (%)
      3 1.5 14 1,5 23 2,5 28
      5 2 14 2,5 22 3 7,5 3 20 4 21
      10 4 14 4 18 5 21
      21
      18 6 20
      20 6 12 6 17 7.5 19
      25 7,5 12 7,5 17 8 19
      30 8 11 8 11 8 11
      40 12 12 13 15 16 19
      50 15 12 18 12 18 15 60 18 12 21 14 22.5 17
      75 20 12 23 14 25 15
      100 22,5 11 22,5 11
      125 25 10 36 12 35 12
      150 30 10 42 42 12 200 35 10 50 11 50 10
      250 40 11 60 10 62.5 10
      300 45 11 68 10 75 12
      350 833 50 12 50 12
      400 75 10 80 8 100 12
      450 80 8 90 8 90 8 90 902 33 500 100 8 120 9 150 12

      404 WOODWEB ERROR

      5 Новые ресурсы

      4
      Новое
      Видео Библиотека

      Программное обеспечение и мобильные приложения

      Аукционы, Распродажа и специальные предложения
      -Знак оповещения о продаже

      Промышленность Новости

      Деревообработчики Справочник

      Распиловка Справочник по сушке

      Wood Doctor

      Книжный магазин

      Каталог выставок

      Калькуляторы пиломатериалов / пиломатериалов / прочего

      События Календарь

      Медиа Комплект

      Опрос Центр

      О компании WOODWEB

      Что Наши посетители говорят

      Часто задаваемые вопросы

      Связаться с WOODWEB

      Пользовательское соглашение и условия использования

      Политика конфиденциальности

      Ссылка на WOODWEB

      Пригласите друга

      Стать Участник

      Войти
      Продукт Справочник

      Каталог продукции
      (Главная)

      Алфавитный список компаний

      Клеи и Крепеж

      Ассоциации

      Бизнес

      Шкафы

      Компоненты

      Компьютер Программное обеспечение

      Черчение Услуги по дизайну

      Образование

      Электроника

      Отделка и Абразивные материалы

      Лесное хозяйство

      Ручной инструмент

      Оборудование
      -Кабинет Аксессуары
      -Декоративный
      -Ящик Системы
      -Петли
      -Освещение
      -Панель Установка

      Job Возможности и услуги по деревообработке

      Ламинирование и твердые покрытия

      Пиломатериалы и фанера
      -Розничная торговля Пиломатериалы
      & Фанера

      Машины
      -Воздух Компрессоры
      -Акции &
      Оценка
      -Скучный Машины
      -Резьба Машины
      -Зажимное оборудование

      -CNC
      Машины
      -Комбинация
      Машины
      -Coping
      Машины
      -Countertop
      оборудование
      -Дверь и Window
      оборудование
      -Dovetailing
      Оборудование
      -Кабельное оборудование

      — Станки для изготовления дюбелей

      -Пыль Коллекция
      -Нисходящий поток Столы
      -Рамка
      Оборудование
      -Край Повязки
      -Энергия Производство
      Оборудование
      -Палец Фуганки
      -Финишное
      Снаряжение
      -Напольное покрытие Машины
      -Клей Оборудование
      -Петля Прошивка
      -Соединители
      -Ламинирование
      Оборудование
      -Лазер Механическая обработка
      -Токарные станки
      -Материал
      Обработка
      -Измерение
      Оборудование
      -Разное
      -Разрезное оборудование

      -Формовщики
      -Панель Обрабатывающее
      Оборудование
      -Семейщики
      -Прессы
      -Начальный Обработка
      -Маршрутизаторы
      -Шлифовка Машины
      -Пиление Машины
      -Служба & Ремонт
      -Шаперы
      -Заточка
      Оборудование
      -Запасной Запчасти
      -Лестница
      Производство
      -Тенонеры
      -V-Grooving
      Оборудование
      -Винир Оборудование
      -Дерево Отходы
      Обработка
      Оборудование
      -Нисходящий поток Столы

      Молдинги и столярные изделия
      -Полы
      -Лестница Корпус
      Упаковка и транспорт

      Электроинструменты

      Планы и публикации

      Завод Обслуживание и управление

      Пиление и сушка

      Поставщики

      Оснастка
      -Улучшения и
      Принадлежности

      Шпон
      -Облицовка
      -Инклейки и
      Marquetry

      Токарная обработка дерева

      Галереи
      Проект Галерея

      Лесопильный завод Галерея

      Магазин Галерея

      Shopbuilt Оборудование Галерея

      Недавние изображения Галерея
      Форумы
      Недавние Сообщения со всех форумов

      Клеи

      Архитектура
      Деревообработка

      Бизнес и менеджмент

      Шкаф и установка столярных изделий

      Столярное дело

      CAD

      Коммерческая Сушка в печи

      CNC

      Сбор пыли,
      Безопасность и установка
      Операция

      Профессиональная отделка

      Лесное хозяйство

      Профессиональная мебель
      Изготовление

      Ламинирование и
      Сплошное покрытие

      Распиловка и
      Сушка

      Производство
      Оборудование

      Твердая древесина
      Обработка

      Древесина с добавленной стоимостью Обработка

      Шпон

      WOODnetWORK

      Обмены

      Недавние Сообщения со всех бирж

      Вакансии и обмен услуг
      -Job-Gram

      Пиломатериалы Обмен
      -Пиломатериал-грамм
      -Запрос Пиломатериалы
      Цитата

      Машины Обмен
      -Machinery-Gram
      -Запрос a
      Машины
      Цитата

      Объявления Обмен

      База знаний
      Знания База: поиск или просмотр

      клея, Склеивание и ламинирование


      -Клеи и связующие агенты

      -Клей и
      Зажимные
      Оборудование

      Архитектурное Столярные изделия
      -На заказ Millwork
      -Двери и
      Windows
      -Полы
      -Общие
      -Мельница Установщик
      -Токарный станок Turning
      -Отливки
      -Столярка
      Реставрация
      -Лестница
      -Запас
      Производство

      Бизнес
      -Сотрудник Отношения
      -Оценка —
      Бухгалтерский учет —
      Рентабельность
      -Юридический номер
      -Маркетинг
      -Растение Менеджмент
      -Проект
      Менеджмент
      -Продажа

      Столярное дело
      -Коммерческий
      Мебель
      -Обычай Шкаф
      Строительство
      -Кабинет Дизайн
      -Кабинет Дверь
      Конструкция
      -Генеральный
      -Установка
      -Жилой
      Мебель
      -Магазин Светильники

      Компьютеризация
      -Программное обеспечение
      -CAD и дизайн
      -CNC Машины
      и Техники

      Пыль Сбор, безопасность, эксплуатация завода
      -General
      -Материал Обработка
      -Дерево Отходы
      Утилизация
      -Безопасность Оборудование
      — Опасность
      Связь

      Отделка
      -General
      Дерево Отделка
      -Высокий Скорость
      Производство
      -Ремонт

      Лесное хозяйство
      -Агро-Лесное хозяйство
      -Лес Изделие
      Лаборатория Статьи
      -Дерево
      Вредители и болезни
      -Древесина Заготовка
      -Дерево Посадка
      -Woodlot
      Управление

      Мебель
      -Пользовательский Мебель
      -Мебель Типовой проект
      — Общий
      -Мебель
      Производство
      -На открытом воздухе Мебель
      -Мебель Ремонт
      -Мебель
      Репродукция
      -Восстановление

      Ламинирование и твердое покрытие
      — методы изготовления

      -Материалы
      -Оборудование

      Пиломатериалы и фанера
      -Купить
      -Хранение
      -Дерево
      Идентификация
      -Общая панель

      Обработка
      -Общий
      -Машина Настройка
      и обслуживание

      Первичный Обработка
      -Воздух Сушка
      Пиломатериалы
      -Печь Конструкция
      -Печь Операция
      -Пиломатериалы Сорт
      -Лесопилка
      -Woodlot
      Управление
      -Урожай Формулы

      Твердая древесина Обработка
      -Общая
      -Настраивать и
      Техническое обслуживание
      -Инструмент
      -Инструмент Шлифовка

      Шпон
      -Машины
      -Обработка и
      Производство
      -Техники

      Дерево Машиностроение
      -Общее
      -Дерево Недвижимость

      Деревообработка Разное
      -Аксессуары
      -Гибание Wood
      -Лодка Дом
      -Лодка Ремонт
      -Резьба
      -Музыкальные инструменты

      -Рисунок Рамы
      -Инструмент Обслуживание
      -Деревообработка

      [PDF] 1.Конденсаторы MKP для электродвигателей 2. Однофазные

      Скачать 1. Конденсаторы MKP для двигателей, работающих с двигателями 2. Однофазные …

      ИНДЕКС КОНДЕНСАТОРЫ РАБОТЫ ДВИГАТЕЛЯ

      1. Конденсаторы MKP для работы двигателей

      2

      2. Однофазные асинхронные двигатели

      2

      3. Работа трехфазных двигателей при однофазном питании

      2

      4. Как рассчитать пусковой конденсатор однофазного двигателя

      3

      5. Выбор емкости конденсаторов двигателя Факты и формулы

      4

      6.Технические характеристики

      5

      7.Таблица рабочего конденсатора однофазного двигателя

      6

      www.krk.com.tr

      КОНДЕНСАТОРЫ MKP ДЛЯ РАБОТЫ ДВИГАТЕЛЯ Конденсаторы двигателя представляют собой рабочие конденсаторы для однофазных асинхронных двигателей со вспомогательной обмоткой и трехфазный двигатель в цепях Штейнмеца. Конденсаторы двигателя постоянно подключены к обмоткам двигателя, поэтому и двигатель, и конденсатор работают в одном и том же режиме. Конденсаторы двигателя — это самовосстанавливающиеся конденсаторы, т.е.е. слабое место в диэлектрике само по себе станет неэффективным, поскольку металлическое покрытие испаряется в слабом месте. Конденсаторы, используемые таким образом, следует тщательно выбирать с точки зрения номинального напряжения, и особое внимание следует уделять способу работы (непрерывный или прерывистый). Напряжение, развиваемое на выводах конденсатора, обычно выше, чем напряжение питания. Конденсаторы двигателя используются в основном в следующих областях: Бытовая техника и бытовая техника Офисное оборудование Отопление и вентиляция Оборудование для сада и отдыха.Однофазные асинхронные двигатели Однофазные двигатели имеют две обмотки. Питание основной обмотки осуществляется непосредственно от сети, а питание вспомогательной обмотки обеспечивается емкостью последовательно соединенного конденсатора / рис.1 /. Емкость выбирается так, чтобы вспомогательная обмотка могла непрерывно принимать ток конденсатора. Для цепи вспомогательной обмотки не требуется никаких переключающих устройств, так что с точки зрения эксплуатационной надежности однофазный конденсаторный двигатель для пуска и работы ни в чем не уступает трехфазному двигателю с ротором с ротором.Двигатель превосходит однофазный двигатель в схеме Штейнмеца, поскольку он может быть в значительной степени адаптирован к требованиям привода с помощью соответствующей схемы обмотки. Также емкость используемого здесь конденсатора меньше по сравнению с идентичной выходной мощностью двигателя. Однофазные конденсаторные двигатели для пуска и работы подходят только для приводных машин, для запуска которых не требуется полная номинальная мощность двигателя. Требования к характеристикам конденсатора зависят от выходной мощности или крутящего момента и конструкции двигателя.Если конденсатор должен работать вместе с однофазным двигателем 220 В, 50 Гц, основная и вспомогательная обмотки которого имеют одинаковое количество витков, то следует использовать емкость приблизительно от 30 до 50 мФ на кВт номинальной выходной мощности двигателя. Работа трехфазных двигателей при однофазном питании Асинхронные двигатели с трехфазной обмоткой статора могут приводиться в действие либо от трехфазного источника питания, либо от однофазного источника питания при соответствующем соединении с конденсатором (схема на рис. 2а и рис.2б). Трехфазный асинхронный двигатель, статор которого соединен звездой для трехфазного источника питания 380 В, имеет фазное напряжение 220 В. Таким образом, двигатель также может работать от трехфазного источника питания 220 В при соединении треугольником. Если двигатель рассчитан на 125/220 В, то его фазное напряжение составляет всего 125 В, и двигатель должен быть подключен звездой для трехфазного питания 220 В. Схема дает аналогичные характеристики для трехфазного режима, но с однофазным питанием. Двигатель работает как трехфазная машина, если напряжение конденсатора вызывает симметричную звезду напряжения на обмотках ротора, как при трехфазном питании.Однако симметричное распределение напряжения может быть получено только с определенным конденсатором при определенной нагрузке. Для всех остальных нагрузок на роторе формируется звезда с несимметричным напряжением, поэтому двигатель больше не может работать в оптимальных условиях. Пусковой крутящий момент уменьшается, и тепловыделение в двигателе может стать выше без нагрузки, чем при полной нагрузке. Опыт показал, что при напряжении питания 220 В, 50 Гц необходима емкость 70 мФ / кВт мощности двигателя, чтобы обеспечить пусковой момент 30% от номинального крутящего момента, а при работе около 80% от номинального трехступенчатого. фазная мощность.Чтобы получить более высокий пусковой крутящий момент, пусковой конденсатор примерно с удвоенной емкостью должен быть подключен параллельно. Он должен быть отключен во время разгона, чтобы избежать перегрузки двигателя. Направление вращения можно изменить, подключив конденсатор к другому разъему питания. Напряжение на выводах конденсатора в цепях «Штейнмеца» при номинальной мощности двигателя примерно равно значению напряжения питания, а при холостом ходе примерно на 15% выше. Если «цепь с разомкнутой звездой» должна использоваться для специального применения, укажите это при заказе, чтобы можно было поставить правильный конденсатор.Эта схема может использоваться, когда трехфазные двигатели 125/220 В работают от однофазной сети 220 В.

      Двигатель с дополнительной обмоткой и конденсатором непрерывного действия Рис. (1) www.krk.com.tr

      2

      a / Соединение звездой Рис. (2)

      b / Соединение треугольником

      Как рассчитать пуск однофазного двигателя конденсатор Как рассчитать пусковой конденсатор однофазного двигателя Как правило, не нужно рассчитывать пусковой конденсатор, который играет только на эффект сдвига фазы, а пусковая катушка с эдс катушки сдвиг фазы Разница между каждым из электрических углов 180 ° к создают вращающееся магнитное поле после того, как двигатель начинает отключать пусковую катушку и конденсатор, поэтому диапазон емкости приложений Широкий общий двигатель 550 Вт-2200 Вт с 450 В 200 мкФ может запускаться.Вращение двигателей переменного тока зависит от вращающегося магнитного поля, создаваемого током. Трехфазный двигатель течет через разность фаз 120 градусов фазного тока, может создавать вращающееся магнитное поле. Однофазный двигатель, протекающий через однофазный ток, не может создавать вращающееся магнитное поле, необходимость использования какого-либо метода, чтобы сделать его вращающимся магнитным полем, с емкостным сопротивлением, является одним из наиболее распространенных методов. Конденсатор используется для разделение фаз, ток около 90 °, разность фаз для создания вращающегося магнитного поля.Трехфазное электричество, каждый ток между двумя фазами, без разделения фаз. Конденсаторный асинхронный двигатель имеет две обмотки, пусковую обмотку и рабочую обмотку. Две обмотки в пространстве, разница 90 градусов. Начало намотки резьбы Конденсатор большей емкости, когда обмотка запуска и запуск обмотки через отдельную роль конденсатора переменного тока в токе запуска обмотки во времени, чем текущий ток обмотки перед углом 90 градусов до достижения максимума. Формирование двух идентичных импульсных магнитных полей, фиксированных во времени и пространстве. Воздушный зазор между ребенком и ротором вращающегося магнитного поля, роль вращающегося магнитного поля, индуцированный ток в роторе двигателя, ток и spin Поверните взаимодействие магнитного поля электромагнитного момента, двигатель раскрутится.Формула конденсатора однофазного двигателя: GC = 1950I / Ucos (микрометод), в которой:? I: ток двигателя, U: однофазное напряжение питания, cos: коэффициент мощности, принять 0,75,1950: постоянный Рассчитать однофазный моторный конденсатор, пусковой конденсатор емкостью работы 1-4 раза.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *

      *

      © 2011-2024 Компания "Кондиционеры"