Реле контроля напряжения своими руками схема: Защитный автомат от повышения напряжения в электросети своими руками (+схема) | Своими руками – Полезные конструкции из обычного реле

Содержание

Полезные конструкции из обычного реле

Приветствую, Самоделкины!
Сегодня поговорим про обычное электромагнитное реле. Простое в исполнении не очень долговечное и с виду ничем не примечательное реле. Автор YouTube канала «AKA KASYAN» расскажет где и для каких целей его можно использовать и какие простые, но весьма полезные конструкции можно собрать на его базе. Кстати, данный материал заточен для начинающего радиолюбителя. Ну что же, давайте начнем.

Наша первая схема построена на основе реле и электролитического конденсатора.


Для того чтобы понять для чего она предназначена, сперва давайте поймем, как все это дело работает. Питание, например, 12В по силовым контактом реле поступает на плюсовую обкладку конденсатора и одновременно на катушку. Минус или масса питания поступает напрямую, минуя контакты.

Первоначально, до подачи питания, указанные контакты реле замкнуты.

Как только подается питание, реле срабатывает, контакты 1 и 2 размыкаются, взамен замыкаются контакты 1 и 3.
Но к тому моменту в нашем конденсаторе накопилось достаточно энергии, и питание на катушку подается именно запасенная в конденсаторе энергия. Пока напряжение на конденсаторе достаточно для питания обмотки реле, контакты будут находиться в этом состоянии.

Со временем из-за разряда конденсатора соленоид в составе реле становится неспособным удерживать контакты в таком состоянии. Реле выключается, а контакты снова возвращаются в исходное состояние. Опять происходит заряд конденсатора, срабатывание реле и процесс снова повторяется, то есть реле периодически меняет свое состояние, то включено, то выключено.

Интервалы вкл/выкл зависят исключительно от емкости конденсатора. Чем большая емкость, тем дольше соленоид будет удерживать контакты и наоборот. Подключать нагрузку к нашему прерывателю можно несколькими способами: 1) в разрыв одного из проводов питания;

2) использовать 3-ий контакт реле;

3) использовать реле с 2-мя контактными группами.

Первые 2 варианта имеют несколько недостатков. Во-первых, нельзя подключать нагрузки большой мощности и, во-вторых, эти решения повлияют на рабочую частоту схемы. Третий же вариант самый правильный, так как контакты, которые будут осуществлять коммутацию нагрузки, никак не связаны с контактами управления, что дает возможность подключать к схеме любые нагрузки, в том числе и сетевые. Мощность подключаемой нагрузки зависит исключительно от пропускной способности реле, то есть от тока допустимого через его контакты. Этот параметр указывается на корпусе реле, как и напряжение соленоида.

Эта схема, как и все последующие, настолько проста, что нет смысла делать ее на печатной плате. А так, если вы увлекаетесь электроникой и хотите чтобы ваши самоделки выглядели как заводской продукт, то можно заказать плату у китайцев.
Вторая схема чуть сложнее.

Тут помимо конденсатора добавлено еще 2 компонента – резистор и транзистор.

Транзистор практически любой, малой или средней мощности, обратной проводимости. Эта схема представляет из себя систему задержки при включении, что-то наподобие реле времени. При подаче питания на схему реле включается не сразу, а по истечению некоторого времени. В начальный момент через ограничительный резистор медленно заряжается конденсатор.

Как только напряжение на этом конденсаторе доходит до некоторого значения (где-то 0,6-0,7В), срабатывает транзистор. По его открытому переходу, питание поступает на обмотку реле. Реле срабатывает, коммутируя нагрузку.


Время задержки зависит от емкости конденсатора и сопротивления резистора. Чем больше емкость и сопротивление, тем большая задержка и наоборот.
Следующая схема:

Может показаться, что автор забыл нарисовать некоторые компоненты, но для сборки этой конструкции нам помимо реле ничего другого не нужно. Принцип работы тот же, что у первой схемы. Питание по замкнутым контактом поступает на соленоид, тот срабатывает, контакты размыкаются, подача питания прекращается, и так как соленоид обесточен, контакты опять возвращаются в исходное состояние.

Такой преобразователь практически неуправляемый. Срабатывание происходит с довольно высокой частотой и надо сказать, что штатные реле долго не протянут в таком режиме. Но смысл данной схемы все-таки есть. Дело в том, что для индуктивных нагрузок свойственно явление самоиндукции, а наш соленоид как раз таки является индуктивностью. В чем прикол? В тот момент, когда на соленоид поступает питание он как бы накапливает некоторую энергию. Когда питающая цепь размыкается, соленоид отдает накопленную энергию, при том ЭДС самоиндукции гораздо выше напряжения питания.



Даже с питанием от 9-вольтовой батарейки «крона» напряжение самоиндукции соленоида доходит до нескольких десятков, а то и сотен вольт.

Но не бойтесь, это не опасно, но получить неприятный удар током еще как возможно. Если добавить в нашу схему выпрямительный диод и накопительный конденсатор, то получим что-то похожее на электрошокер.

Тут все просто. Прерыватель обеспечивает периодическую подачу питания на соленоид, после отключения питания напряжения самоиндукции через выпрямитель накапливается в конденсаторе. Конденсатор обязательно нужен на 250 либо на 400В. Благодаря малой емкости, нескольких секунд работы схемы достаточно чтобы конденсатор зарядился.

Накопленная в конденсаторе энергия может совершать полезное действие, ну или не совсем полезное. Конечно же такую штуку нельзя использовать в качестве шокера, но бьёт довольно неприятно.
Интересный вариант фотореле можно построить всего на 2-ух компонентах: фоторезисторе и реле.

Фотореле, которые можно встретить в сети, даже самые простые варианты в своем составе имеют транзистор и пару резисторов.

Оно и правильно, такие схемы более практичны, но представленный вариант тоже имеет право на жизнь. Фоторезистор самый обычный, его сопротивление в темноте очень большое, при дневном освещении снижается до нескольких сотен Ом.

Принцип работы следующий. Днем, когда светло, сопротивление фоторезистора минимально и реле срабатывает, размыкая контакты 1 и 2. Нагрузка, например лампа, отключается.
С приходом темноты, сопротивление фоторезистора начинает увеличиваться, следовательно уменьшается и ток в катушке реле, и в какой-то момент тока будет недостаточно, и контакты реле отключатся. В таком случае контакты 1 и 2 замкнуться, и нагрузка (та же лампочка) сработает, осветив дворик или тропинку.


Недостатком данной схемы, в отличие от тех, которые имеют в своем составе хотя бы 1 управляющий транзистор, заключается в том, что этот вариант не имеет возможности регулировки.

Данный материал подготовлен исключительно для ознакомительных целей. На этом пора закругляться. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Реле контроля напряжения — RadioRadar

Электропитание

Главная  Радиолюбителю  Электропитание



Предлагаемое электронное реле автоматически отключит потребителей электроэнергии от сети, если напряжение в ней стало ниже 180 В или выше 250 В, и подключит их обратно после восстановления нормального напряжения. При самостоятельной сборке оно обойдётся значительно дешевле аналогов промышленного изготовления.

Схема реле контроля напряжения показана на рис. 1. Через диод VD1 положительные полупериоды сетевого напряжения поступают на два делителя напряжения, причём верхнее плечо каждого из них составлено из трёх резисторов (R1-R3 и R8-R10), соединённых последовательно. Это нужно для того, чтобы падение напряжения на каждом из резисторов не превысило допустимого для них значения даже при аварийном повышении напряжения в сети до 400 В (например, при обрыве нулевого провода на его вводе в дом).

Рис. 1. Схема реле контроля напряжения

Делитель на резисторах R1-R4 использован в узле обнаружения выхода сетевого напряжения за нижний допустимый предел, который устанавливают подстроечным резистором R4. Делитель на резисторах R8-R11 работает в узле контроля верхнего предела сетевого напряжения, устанавливаемого подстроечным резистором R11.

Интегральные параллельные стабилизаторы напряжения TL431CZ (DA1 и DA2) использованы здесь не по прямому назначению. Они служат пороговыми устройствами. Если напряжение, поданное на управляющий электрод такого стабилизатора, меньше внутреннего образцового напряжения 2,5 В, то его участок анод-катод закрыт, а если больше — открыт.

Поскольку на управляющие электроды стабилизаторов в рассматриваемом случае поступают через диод VD1 только положительные полупериоды сетевого напряжения, то постоянное напряжение на катодах стабилизаторов будет примерно равно напряжению питания при амплитуде пульсаций меньше порога, и уменьшается до 2 В, когда она больше порога.

Хочу сразу отметить, что обычным мультиметром измерить амплитуду пульсирующего напряжения на управляющих электродах стабилизаторов нельзя. Поэтому для регулировки порогов приходится подавать на вход устройства сетевое напряжение через лабораторный регулируемый автотрансформатор (ЛАТР). Поочерёдно устанавливая с его помощью это напряжение равным нижнему (обычно 180 В) и верхнему (обычно 250 В) допустимым пределам, находят такие положения движков подстроечных резисторов (соответственно R4 и R11), при которых на выводах 8 и 9 логического элемента DD1.4 начинают появляться импульсы. В полностью собранном устройстве регулировку можно производить и без контроля появления импульсов по гашению светодиода HL1.

В исходном состоянии, когда напряжение сети в норме, на управляющем входе стабилизатора DA2 напряжение не превышает 2,5 В. Поэтому на катоде DA2 и на выводе 8 элемента DD1.4 действует высокий логический уровень напряжения. При этом на катоде стабилизатора DA1 и на входах элемента DD1.2 напряжение ниже порога переключения последнего благодаря сглаживающему действию конденсатора C3. На выходе элемента DD1.2 и на выводе 9 элемента DD1.4 уровень напряжения высокий. Значит, на выходе элемента DD1.4 уровень низкий и транзистор VT1 закрыт.

Конденсаторы C1 и C2 заряжаются через резистор R7. Приблизительно через 5 с после начала их зарядки напряжение на входах элемента DD1.1 достигает порога его переключения. Это приводит к установке на его выходе низкого уровня, а на выходе элемента DD1.3 — высокого. Через резистор R13, светодиод HL1, излучающий диод оптрона U1 течёт ток. Фотосимистор оптрона, открываясь в каждом полупериоде сетевого напряжения, открывает и симистор VS1. Потребители подключены к сети. Светодиод HL1, сигнализируя об этом, включён.

При напряжении в сети выше 250 В периодически открывается стабилизатор DA2. В этот момент на выводе 8 элемента DD1.4 появляется низкий логический уровень. На выходе этого элемента он проинвертирован и открывает транзистор VT1. Конденсаторы C1 и C2 быстро разряжаются через резистор R5 и открытый транзистор. Это приводит к установке низкого уровня на выходе элемента DD1.3 и прекращению тока в цепи светодиода HL1 и излучающего диода оптрона U1. Теперь светодиод HL1 погашен, а оптосимистор оптрона и симистор VS1 больше не открываются. Потребители отключены от сети.

Как только сетевое напряжение возвратится в допустимые пределы, стабилизатор DA2 закроется. Это приведёт к закрыванию транзистора VT1, и приблизительно через 5 с потребители будут подключены к сети.

При сетевом напряжении ниже 180 В прекратит открываться стабилизатор DA1. Конденсатор C3 зарядится до напряжения питания, что переключит элемент DD1.2 в состояние с низким уровнем на выходе. Поскольку таким же будет уровень на выводе 8 элемента DD1.4, на выходе этого элемента он станет высоким. Это откроет транзистор VT1 и, как уже было описано, приведёт к отключению потребителей от сети.

Симистор BT138-600 (VS1) рассчитан на ток до 12 А. При коммутации нагрузки мощностью до 150 Вт он практически не нагревается. Но если мощность больше, ему обязательно нужен теплоотвод. Поэтому симистор размещён на краю печатной платы для возможности уста новки теплоотвода.

В состав описываемого реле контроля напряжения входит источник питания его электронных узлов, схема которого изображена на рис. 2. Конденсатор C4 гасит избыток сетевого напряжения, резисторы R18 и R20 ограничивают ток его первоначальной зарядки, диодный мост VD2 выпрямляет ток. Резисторы R16, R17 и R19 служат для разрядки конденсатора C4 после выключения питания. Их — три, по причине, описанной ранее.

Рис. 2. Схема источника питания электронных узлов

Транзисторы VT2, VT3 и параллельный стабилизатор TL431CZ (DA3), который здесь использован по своему прямому назначению, обеспечивая постоянную нагрузку моста VD2-VD5, поддерживают на входе интегрального стабилизатора DA4 напряжение 13 В. Его точное значение устанавливают подстроечным резистором R21. Напряжение 9 В с выхода стабилизатора питает электронное реле.

Работа этого источника питания проверена при сетевом напряжении от 100 до 270 В. Подать на него более высокое напряжение мне не позволил имеющийся ЛАТР.

Печатная плата (рис. 3) изготовлена методом термопереноса рисунка печатных проводников на медное покрытие фольгированного с одной стороны текстолита. На её свободную от фольги сторону тем же методом нанесены позиционные обозначения элементов и пояснительные надписи.

Рис. 3. Печатная плата

Расположение деталей на печатной плате показано на рис. 4. Конденсатор C4 — плёночный на постоянное напряжение 630 В. Но с учётом возможности значительного повышения напряжения в сети лучше использовать конденсатор не менее чем на 1000 В постоянного или 400 В переменного напряжения. Резисторы R5, R14, R15, R18 и R20 — МЛТ или подобные указанной на схеме мощности, остальные конденсаторы и постоянные резисторы — типоразмера 1206 для поверхностного монтажа. Подстроечные резисторы — 3296. На плате предусмотрены крепёжные отверстия для теплоотвода транзистора VT3. Тип теплоотвода — HS 205-30, размеры — 30×33,5×12,5 мм.

Рис. 4. Расположение деталей на печатной плате

Транзистор IRLML0030TR можно заменить другим маломощным полевым n-канальным с изолированным затвором. Вместо диодов FR207 подойдут любые выпрямительные с допустимым обратным напряжением не менее 600 В. Светодиод HL1 — любой, желательно зелёного свечения.

Поскольку найденное при налаживании устройства положение движков подстроенных резисторов в процессе эксплуатации может быть случайно изменено, я рекомендую после налаживания заменить каждый из этих резисторов парой постоянных. Суммарное сопротивление каждой пары должно быть равно введённому сопротивлению заменяемого подстроечного резистора.

Самодельное реле контроля напряжения не имеет, естественно, никаких сертификатов соответствия предъявляемым к таким устройствам требованиям. Поэтому его недопустимо устанавливать в подъездных электрических шкафах, общедомовых вводно-распределительных устройствах и других подобных местах. Но для собственного дома, гаража, дачи, квартиры оно вполне подойдёт. В связи с тем, что все его детали имеют гальваническую связь с электросетью, при налаживании и эксплуатации этого реле следует соблюдать осторожность и не прикасаться руками и инструментом с неизолированными ручками к деталям и печатным проводникам, пока оно не отключено от сети.

Автор: А. Гусев, г. Муром Владимирской обл.

Дата публикации: 19.09.2017

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:


Реле напряжения

Содержание:

  1. Введение
  2. Устройство и принцип работы реле напряжения
  3. Выбор реле напряжения
  4. Схемы подключения реле напряжения
  5. Настройка реле напряжения
  1. Введение.

Как известно перепады напряжения в электрической сети — это одна из основных причин выхода из строя электрических приборов. Особенно остро вопрос защиты электроприборов от перепадов напряжения стоит в жилых многоквартирных домах старой постройки, а так же частных жилых домах подключенных к старым линиям электропередач. Решением данного вопроса является установка реле напряжения.

Реле напряжения — это устройство осуществляющее непрерывный контроль величины напряжения электросети с целью обеспечения отключения нагрузки либо включения сигнализации в случае выхода значения напряжения за установленные приделы.

То есть в отличие от стабилизаторов напряжения которые поддерживают стабильный уровень напряжения в сети обеспечивая бесперебойность ее работы, реле напряжения защищает электрооборудование путем его отключения от сети при недопустимых значениях напряжения.

Таким образом назначение реле напряжения заключается в защите электрооборудования от перепадов напряжения сети которые могут возникнуть в следствие различных факторов таких как обрыв нуля, перекос фаз и т.д.

  1. Устройство и принцип работы реле напряжения

Как видно на рисунке выше реле напряжения состоит из двух основных блоков: измерительного и исполнительного блока (реле).

При подаче на реле напряжения измерительный блок определяет его величину и в случае если измеренное значение напряжения электросети входит в установленный в настройках реле диапазон значений измерительный блок подает сигнал на исполнительный блок (реле) который, в свою очередь, замыкает силовой контакт включая тем самым нагр

Схема подключения нескольких реле напряжения

Приветствую вас, уважаемые читатели моего сайта!

Качество электроснабжения наших домов оставляет желать лучшего. Резкие скачки и перепады питающего напряжения встречаются довольно часто. В большинстве случаев имеено они являются причиной выхода из строя бытовой техники и оборудования.

Чтобы защитить электроприборы от перепадов и скачков напряжения применяются специальные устройства — реле контроля напряжения. Они измеряют величину питающего напряжения и, если оно выходит за установленные пределы (становится больше или меньше установленных), реле отключает внутреннюю электрическую сеть от внешней.

Подробно назначение и принцип работы реле контроля напряжения я уже рассматривал в предыдущих публикациях. Поэтому, для лучшего понимания излагаемого материала, рекомендую ознакомиться с применением этих устройств в однофазных сетях с поясняющим видео. Применение реле напряжения в трехфазных сетях переменного тока имеет свои особенности, которые подробно рассмотрены в этом материале.

Особенность работы реле контроля напряжения заключается в том, что оно при выходе напряжения за допустимые пределы, отключает сразу всех потребителей, всю домашнюю электропроводку. Так и должно быть, ведь оно предназначено защитить наши электроприборы от выхода из строя. Если такие скачки напряжения происходят редко, то это не вызывает особых проблем.

А если это частое явление, тогда такая «цветомузыка» может порядком действовать на нервы и причинять массу неудобств. Особенно вечером, когда то и дело выключается все освещение в квартире.

Да, существуют стабилизаторы напряжения, но реле напряжения применяются гораздо чаще, к тому же они на порядок дешевле. Стабилизаторы напряжения — тема отдельной обширной статьи. Если тема защиты от скачков и перепадов напряжения вам интересна, подписывайтесь на новостную рассылку внизу этой статьи и будьте в курсе выхода новых материалов.

Ну а мы будем рассматривать, как защитить наши приборы и технику от опасных скачков напряжения в нашей электросети с помощью реле напряжения.

Какую выбрать уставку для реле напряжения

Основной вопрос при установке «барьеров» — какие пороговые значения напряжения лучше всего установить?

Для реле DigiTOP заводские установки составляют 170В и 250В соответственно.

Проблема двояка:

— с одной стороны, стремление установить как можно меньший диапазон пороговых значений, чтобы максимально обезопасить дорогую аппаратуру и бытовую технику;

— с другой стороны, постоянные срабатывания в случае незначительных отклонений напряжения от нормы затрудняют комфортное использование электроприборов.

Как найти компромиссное решение?

Эту проблему можно решить, устанавливая несколько реле контроля напряжения. Дело в то, что разные электроприборы по разному чувствительны к перепадам питающего напряженя.

Самые чувствительные это обычно аудио- и видеотехника (домашние кинотеатры, телевизоры и другая электроника). Конечно, выпускаются модели с большим рабочим интервалом питающего напряжения и со встроенной защитой. Но лучше и надежней такую технику питать напряжением в диапазоне 200-230В. Для защиты таких чувствительных приборов можно установить отдельный «барьер» установкой нижней границы 200В и верхней 230В соответственно.

Для бытовой техники этот диапазон может быть немного большим. Сильно занижать нижний предел не желательно, поскольку технику, в состав которой входят электродвигатели, пониженное напряжение может вывести из строя. Это холодильники, кондиционеры, стиральные машины и др. Для этой группы потребителей можно установить свое отдельное реле напряжение с уставками 190В и 235В соответственно.

Для электронагревательных приборов диапазон допустимых напряжений можно еще расширить от 170В до 250В, как заводские установки. Для этой группы приборов также можно установить отдельный «барьер».

Что касается освещения, то здесь можно поступить по разному. Для ламп накаливания желательно устанавливать верхний предел 250В. Хотя при повышенном напряжении значительно снижается их ресурс. Как вариант, можно поставить на группу освещения отдельный стабилизатор. Можно поставить под защиту реле напряжения с меньшей верхней уставкой, но в этом случае «цветомузыка» будет обеспечена.

Давайте рассмотрим схему с использованием нескольких «барьеров».

Схема с несколькими реле напряжения

Потребители сгруппированы в три группы, в зависимости от их чувствительности к величине питающего напряжения. Каждую группу защищает отдельное реле контроля напряжения со своими уставками, которые указаны на схеме сверху над реле.

В случае снижения напряжения, например до 199В, первый «барьер» сработает и отключит защищаемые им группы потребителей, поскольку его нижняя уставка составляет 200В.

Оставшиеся два «барьера» не сработают, поскольку напряжение 199В больше их нижней уставки, и для них это рабочий режим. К электроприборам в этих двух группах продолжает поступать напряжение и ими можно пользоваться.

Когда питающее напряжение вернется к своему нормальному значению, первое реле замкнет свой силовой контакт и возобновит электропитание защищаемых им групп потребителей.

В случае скачка напряжения, например до 236В, сработает первый и второй «барьеры», поскольку питающее напряжение превысит их верхнии уставки. Их силовые контакты разомкнуться и они обесточат контролируемые цепи групп потребителей.

Контакты третего «барьера» останутся замкнутыми и защищаемые им электроприборы останутся работоспособными.

Поскольку группа освещения вынесена под защиту третьего реле напряжения с максимальным диапазоном уставок, освещением можно будет пользоваться, что добавляет определенный комфорт, несмотря на то, что напряжение в сети повышено и многие приборы для их безопасности отключены .

Таким вот образом работает схема с подключением нескольких реле контроля напряжения. такой подход позволяет дифференцировать защиту, обеспечить лучшую защиту и решить вопрос выбора оптимальных уставок.

Более подробно и наглядно работу схемы смотрите в видео

Схема подключения реле напряжения

Также рекомендую посмотреть

Реле контроля напряжения. Защита от скачков напряжения.

Реле контроля напряжения в трехфазной сети 380В.

Стабилизатор или реле напряжения — что выбрать?

Реле приоритета. Автоматическое управление нагрузкой.

Как подключить реле контроля напряжения.

В наших электросетях не редки случаи, когда напряжение скачет в довольно больших пределах, а это вредит бытовой технике. Регулярно случаются ситуации, когда в сети вместо 220 В появляется 380В. Самая банальная причина — обрыв на столбе или большое провисание одного из фазных проводов. В результате он соприкасается с нулевым проводом. Тех долей секунд, за которые сработает защита на тяговом трансформаторе, достаточно, что бы сгорели телевизоры, холодильники, компьютеры у целой улицы или многоэтажного дома. Поэтому инженеры и сконструировали реле контроля напряжения.

Работает оно так: с помощью кнопок на корпусе вы задаете минимальное и максимальное значение напряжения (обычно по умолчанию значения 170 и 240), при отклонении от которых будет выключаться питание. Время срабатывания реле — от 0.02 сек и меньше. Для сравнения: у автоматического выключателя этот показатель составляет около 0.2 сек. Такая скорость отключения позволяет выключить высокое напряжение до того, как оно дошло до потребителя.

Внимание! Реле контроля напряжения не дают защиту от попадания молнии.

Классификация защитных реле напряжения

Реле могут быть предназначены для всего дома и для одной розетки. Реле для всего дома (как на фото выше) — самые востребованные и всё чаще устанавливаются в новых домах, квартирах. Ставятся они на DIN-рейку в щитках, возле остальной автоматики. В зависимости от нагрузки есть приборы на 16А 30А 40А 60А 80А (у большинства производителей). Обычно в домах и квартирах достаточно 30А или 40А, что соответствует мощности примерно 6кВт и 8кВт.

Схема подключения реле напряжения довольно проста:

Если решитесь установить реле напряжения своими руками, имейте в виду, что схема везде будет практически одинаковой. Во всяком случае, ко всем приборам должна прилагаться инструкция по настройке и схема. Если таковых нет, данное реле не стоит покупать.

Материалы:

  • реле напряжения
  • небольшой отрезок провода. Желательно сечением 4 или 6 мм
  • DIN-рейка. Железная пластинка, на которой крепятся автоматы (смотри фото). Если у вас современный щиток, то рейка уже установлена. Можно обойтись и без неё, но тогда реле будет болтаться на проводах.
  • два самореза, чтоб закрепить дин-рейку

Необходимый инструмент:

  • отвертка
  • индикатор
  • плоскогубцы

Установка реле напряжения своими руками

1. Выключаем входные автоматы или выкручиваем пробки.
2. С помощью саморезов крепим дин-рейку в удобном месте поближе к автоматам (пробкам).

3. Крепим реле к дин-рейке с помощью защелок на задней стенке.

4. Индикатором на контактах входящих автоматов (пробок) находим фазу (индикатор светится).

5. Разрезаем фазный провод в том месте, где он идет от входного автомата в дом (квартиру).

6. Обрезанный конец провода, который идет от входного автомата, вторым обрезанным концом подключаем к реле. На контакт «IN»(вход).

7. Другой обрезанный конец провода, который уходит в дом, подсоединяем к контакту реле с надписью «OUT«(выход).

8. Теперь берем отрезок провода, один конец подключаем к нулевому проводу на автомате или пробке. Если у Вас новый щиток, то на нулевую шину в щитке (автоматы на нулевой провод сейчас не ставят).

9. Второй конец подключаем к реле на контакт «N» (ноль, нейтраль).

10. Включаем питание.

Есть другой вид реле напряжения, которые включаются в розетку. Такое реле под силу подключить, каждому. Реле на одну розетку похожи на обычный тройник или удлинитель, только у них есть циферблат, на котором выводится напряжение в сети. Вы просто включаете его в розетку, а уже в реле — вилку от самого бытового прибора. Есть приборы на 10А и 16А, по мощности это где-то 2кВт и 3кВт соответственно. Реле на 10А (2000Вт) в большинстве случаев более чем достаточно. Так мощность ПК редко больше 400Вт, телевизора — 100Вт, большого телевизора на 42 дюйма — около 250Вт.

Устройство защиты от перенапряжения с реле РКН

5 лет назад был случай. Электрик ЖКХ шабашил в нашей девятиэтажке. Сосед врач был на работе. Его жена включила стиралку, готовила обед, смотрела телевизор. Дочка сидела за компьютером.

Электрик по ошибке снял не тот провод и оборвал общий ноль на вводе в подъезд. На стояке соседа во всех квартирах погорели бытовые приборы.

Его потери: морозильник, холодильник с загруженными продуктами, стиральная машина, телевизор, компьютер, радиотелефон и пяток лампочек освещения. Часть денег ему удалось вернуть через суд, но сколько нервов и времени ушло на это…

Вот и делайте вывод: нужно ли устройство защиты от перенапряжения в квартире на простом реле РКН или не стоит обращать на него внимание.

Содержание статьи

Современная промышленность выпускает различные защиты от перенапряжения со множеством функций при появлении аварийной ситуации в виде:

  1. Простого снятия питания с подключенной нагрузки и автоматического ввода ее в работу при восстановлении параметров питающей сети.
  2. Исправления уровня напряжения за счет подключения к цепям автотрансформатора дополнительных обмоток с разными схемами управления (сервопривод с электромеханическим приводом, релейная схема, электронные ключи на тиристорах или симисторах).
  3. Переключения потребителя на альтернативный генератор системой автоматического включения резерва (АВР).

В этой статье я рассказываю о самом простом и доступном для каждого владельца квартиры первом способе: реле РКН. Оно относится к бюджетным защитам, но в то же время обладает высокой степенью надежности.

Перепады напряжения в электросети: как возникают и чем опасны

Современный российский стандарт, изложенный в ПУЭ, определяет уровень напряжения для однофазного электроснабжения при частоте 50 герц, как 230+/-10% вольт. То есть нормой считается 207÷253 вольта.

Именно это значение обязаны обеспечивать и поддерживать все без исключения энергоснабжающие организации. Однако на практике не все так просто.

Стихийные природные явления, ошибки электротехнического персонала, критические условия эксплуатации оборудования энергоснабжающих организаций периодически сказываются на качестве электроэнергии.

Поэтому в бытовой проводке, рассчитанной для надежной эксплуатации при рабочем уровне напряжения, создаются аварийные режимы или перепады напряжения в электросети. Они связаны с тем, что к нам в квартиру вместо заложенной правилами нормы поступает:

  • повышенное напряжение более 253 вольт;
  • или пониженное: менее 207.

Эти процессы происходят очень быстро, за что их называют «скачки напряжения».

Аварийный режим часто связан с искажением формы у стандартной частоты синусоиды, например, при ударе молнии в линию электропередачи.

Внешний импульс энергии накладывается на гармоничную синусоиду. Форма сигнала, принимая суммарное непредвиденное значение, отрицательно сказывается на работе электрических приборов, не приспособленных к таким условиям эксплуатации.

Кроме характерных ударов молний форму синусоиды искажают апериодические составляющие переходных процессов, вызванные переключениями нагрузок больших мощностей или работой сложных защит в энергосистеме.

Переходные процессы

При возникновении коротких замыканий или перегрузок в схеме электроснабжения происходит просадка напряжения или понижение его величины ниже минимально допустимого уровня.

Бытовые приборы в таких ситуациях подвергаются серьезным испытаниям: могут сгореть. Им необходима автоматическая защита от подобных аварийных режимов.

Повышенное напряжение в сети: откуда ждать неприятности в бытовой проводке

Сейчас я намеренно опускаю случаи проникновения импульсов молнии в домашнюю проводку. Эта большая тема раскрыта в очередной статье об ограничителях перенапряжения — УЗИП. Читайте там.

Разбирать будем другие случаи, связанные с ошибочной работой оборудования или электротехнического персонала.

Еще раз приведу схему трехфазного подключения с общей нейтралью, по которой работают все бытовые сети. Я о ней упоминал в статье об вычислениях электрического напряжения.

Между тремя фазами линий создается напряжение 380 вольт, а относительно любой фазы и нуля (нейтрали) — 220. Это упрощенный идеальный случай.

Он не учитывает то, что все потребители, включая провода и кабели, имеют различное электрическое сопротивление. Оно влияет на картину протекания тока и распределение падений напряжений на участках цепи.

Линейные и фазные напряжения на каждом участке немного отличаются друг от друга. Но это не сказывается на качестве работы бытовых электрических приборов.

Аварийный режим и их повреждения происходят по другой причине. Характерный пример — обрыв нуля. Его еще называют отгорание нуля.

Повышенное напряжение в сети происходит не столько из-за старости проводки, хотя она тоже сказывается, сколько за счет плохого монтажа и безобразной эксплуатации электриков ЖКХ.

Приведенная на составной фотографии картинка демонстрирует ужасный способ подключения алюминиевого провода обычной намоткой вокруг контакта предохранителя. Случай-то это не единичный.

Схема трехфазного подключения

Им искусственно создано высокое переходное сопротивление, на котором происходит нагрев изоляции. Она плавится, разрушается.

Под действием возросшего тока нагрузки перегреву будет подвергнут металл токопроводящей жилы: со временем она отгорит и разорвет цепь подключения общей нейтрали.

Подобные случаи, к сожалению, еще встречаются. Часто они заканчиваются аварийными ситуациями.

Обрыв ноля практически не сказывается на работе питающего трансформатора на подстанции: он по-прежнему выдает симметричные линейные напряжения на выходе. Каждое из них начинает работать на подключенную к ним нагрузку.

Поясняю их действие на примере контура АВ. В нем разность линейных потенциалов UАВ приложена к суммарному сопротивлению квартир RА и RВ, подключенным последовательно.

Величина этих сопротивлений носит чисто случайный характер: зависит от количества включенных в работу электроприборов. Например, владелец квартиры A пользуется только холодильником и дома у него сейчас никого нет.

Хозяйка квартиры B в это время стирает белье, у нее работает посудомоечная машина и электрическая плита, освещение. Могут быть включены и другие потребители.

Получается, что один общий ток IAB протекает по цепочкам обеих квартир, но к схеме A приложено довольно маленькое напряжение, а вся остальная часть действует на соседа. На практике эта величина может очень близко подходить к линейному значению 380 вольт.

От него сгорает холодильник и вся включенная в работу бытовая техника.

Однако не стоит забывать о других соседях. Квартира C тоже обладает каким-то случайным сопротивлением. По контурам BC и CA складываются свои падения напряжений.

За счет их взаимовлияния при обрыве нуля смещается нейтральная точка нуля из положения n в другое место n1.

Обрыв нуля в трехфазной сети

На точке n1 появляется опасный потенциал относительно контура земли. Если кто-то из “умных соседей” выполнил зануление своих бытовых приборов, то на их корпусе автоматически оказывается это напряжение: появляется предпосылка получения электротравмы.

Когда «грамотный домашний электрик» ноль своей проводки садит на контур земли через трубопроводы отопления, водопровода, металлоконструкции лифта и подобные магистрали, то все эти части оказываются под опасным напряжением.

Система зануления используется как крайний случай защиты специфичного электроинструмента в промышленных условиях, носит временный характер, требует применения дополнительных защитных средств. В быту она опасна, да и давно потеряла свою актуальность.

Чем опасно повышенное напряжение в сети для потребителей электроэнергии

Давайте вспомним треугольник закона Ома и выразим для него электрический ток по формуле для участка цепи.

Сразу становится понятным, что на одинаковом сопротивлении повышение напряжения вызывает увеличение тока нагрузки. От него создается перегрев:

  • нитей накаливания ламп и они перегорают;
  • изоляции проводов токоведущих частей и особенно — обмоток электродвигателей. Лак плавится, провода слипаются, сгорают;
  • электронных блоков питания сложной бытовой техники. Они выходят из строя.

Пониженное напряжение в сети: что происходит с бытовыми потребителями

Резистивные нагрузки типа ламп накаливания и Тэны просто недополучают питание. Они не справляются со своими задачами. А вот работающие электродвигатели могут сгореть.

Например, электрический двигатель насоса холодильника должен прокачивать хладон по внутренним магистралям. Но пониженное напряжение в сети не позволит обеспечить достаточную мощность для нормальной раскрутки ротора.

Создается большой противодействующий момент сил трения и гидравлического сопротивления среды, тормозящий раскрутку. В обмотках двигателя возникают повышенные токи, разрушающие изоляцию. Холодильник сгорает.

Сгорел холодильник

Аналогичные процессы происходят с электродвигателем стиральной или посудомоечной машины, которые должны насосом прокачать воду.

Обрыв нуля в однофазной сети и две фазы в розетке

Разрыв нулевого потенциала однофазной схемы питания не приносит таких бед, как отгорание нейтрали в сети 380 вольт. Здесь просто обрывается цепь протекания тока, а подключенные приборы перестают работать.

В этой ситуации может проявиться эффект, который принято называть “Две фазы в розетке”: при отключенном нулевом проводе и параллельно включенной нагрузке фазный потенциал присутствует на обоих контактах розетки.

Повреждения бытовых приборов при такой ситуации не происходит, но работать они без нормального питания не могут.

Реле защиты от скачков напряжения: 3 принципа работы

В своей практике релейщика мне пришлось эксплуатировать и налаживать 3 вида реле напряжения:

  1. максимального действия, когда логика защиты контролирует уровень входного сигнала и при превышении заранее заданной уставки отключает питание с подключенной схемы;
  2. минимального действия — контроль понижения установленного уровня;
  3. комбинированного типа, включающего в себя первые 2 действия для поддержания работоспособности оборудования от нижнего до верхнего предела напряжения.

Для бытовых целей производители массово выпускают реле контроля напряжения (РКН), которые выполнены по комбинированному принципу, поддерживая на оборудовании только допустимые уровни.

Современные модули реле контроля напряжения можно условно разделить на два типа отличающихся конструкций:

  1. электромеханические или аналоговые, реагирующие на величину напряжения за счет точно сбалансированной системы усилий пружин и силы притяжения электромагнита;
  2. цифровые модули на микропроцессорах.

Первый тип массово использовался несколько десятилетий назад, а сейчас он постепенно вытесняется современными разработками.

При провалах и перенапряжениях эти типы реле просто отключают питание от нагрузки, выполняя таким способом свою защиту. Когда же уровень сигнала восстанавливается до нормального состояния, то логика устройств вновь замыкает свои контакты.

Здесь может встретиться особенность, когда конструкция выходных контактов реле защиты от скачков напряжения по мощности может не справиться с коммутируемой нагрузкой.

Приведу пример. Эта величина указывается в киловаттах или амперах прямо на корпусе реле РКН либо в сопроводительной технической документации.

Мощность реле напряжения

Делаем пересчет нагрузки подключаемых приборов и по нему анализируем возможности отключающих контактов.

Если их мощности не хватает для надежного разрыва тока, то используем схему реле повторителя или дополнительного контактора, когда:

  • наша защита своей выходной цепью управляет только работой обмотки добавочного модуля;
  • его силовые контакты переключают мощную нагрузку.
Схема подключения реле контроля напряжения

Реле контроля напряжения 1 фазное: виды конструкций для квартиры

Наша бытовая сеть чаще всего работает по однофазной схеме. С нее и начну обзор различных моделей реле РКН. Прежде чем их выбирать рекомендую уточнить технические характеристики оборудования, которое планируете защищать.

Дорогие модели холодильников с высоким классом энергосбережения уже имеют встроенное реле защиты двигателя. Его вполне достаточно для сохранения работоспособности при перепадах напряжения.

Реле защиты двигателя

Основные технические характеристики указаны наклейкой на корпусе и в сопроводительной документации.

Если такая защита уже встроена внутрь дорогого оборудования, то для неответственных потребителей можно приобрести индивидуальные защиты, выполненные в форме переходников:

  • розетки с вилкой, подключаемой в схему питания;
  • или удлинителя.
Реле контроля напряжения

Подобные современные модули имеют:

  1. малогабаритную электронную схему;
  2. табло отслеживания основных электрических параметров;
  3. индикацию режимов срабатывания.

Защита на реле контроля напряжения 1 фазном, устанавливаемая на Din рейку, может использоваться для нескольких потребителей розеточных групп. Они имеют возможность простой настройки ряда характеристик.

Реле на Дин рейку

Любителям мастерить все своими руками рекомендую для сборки простую схему реле напряжения с доступной базой.

Схема реле контроля напряжения своими руками

Нечто подобное я собирал для советского холодильника Атлант после того, как его двигатель сгорел от броска напряжения. Было это очень давно. Уставки тщательно отбил на лабораторном стенде. Но допустил тогда две ошибки. Советую вам их учесть:

  1. Выходное реле, переключающее силовые контакты, у меня было подобрано по мощности номинальной нагрузки с небольшим запасом. Его не хватило на надежное отключение аварийных токов, усиленных переходными процессами.
  2. После проверки на стенде я подключил свою самоделку в схему и забыл о ней. Только где-то года через четыре решил проверить ее работоспособность. Принес на стенд, а она не работает. Вскрыл и увидел спекшиеся контакты.

Если будете собирать подобные схемы, то подбирайте реле по мощным силовым контактам или используйте схему с повторителем на контакторе. Не забываете о сроках периодических проверок.

Кстати, последний пункт рекомендую почаще выполнять даже для заводских модулей любых защит.

Внутри насыщенной электрооборудованием квартиры имеет смысл использовать три реле контроля напряжения:

  • первое осуществляет защиты всех потребителей сети из электрического щитка в пределах 207÷253 вольта как резерв;
  • второе настраивается под электродвигатели;
  • третье защищает всю бытовую электронику.

Реле контроля напряжения 3 фазное для защиты частного дома

Современные производители выпускают большое разнообразие подобных модулей. Принцип работы и подключения их разберем на примере реле напряжения DigiTOP V-protector 380V.

Оно больше всего мне понравилось своими техническим характеристиками, красивым дизайном, прочным корпусом и удобными настройками из всех тех модулей, с которыми я ознакомился.

Реле контроля напряжения 3 фазное ставится на Din рейку. Его внешний вид показан в рабочем положении.

Реле напряжения DigiTOP V-protector 380V

На входные клеммы 5÷8 сверху подаются 3 фазы и ноль прямого чередования, а снизу они снимаются. Цифровой дисплей указывает величину действующего фазного напряжения.

Если цифра мигает, а не постоянно светится, то это указание на то, что выходные цепи разомкнуты.

Светодиодная индикация используется при настройках. Справа на корпусе имеются четыре кнопки управления:

  • 2 верхние предназначены для изменения величины уставки срабатывания вверх или вниз;
  • Кнопка S позволяет выбирать режим симметрии или асимметрии.
  • С помощью кнопки Т выставляют времена срабатывания.

Упрощенная схема реле напряжения DigiTOP V-protector 380V показана на картинке ниже. Я ее взял с сайта производителя и для наглядности дополнил цветовой маркировкой проводов.

Схема подключения трехфазного реле напряжения

Модуль защиты рассчитан на коммутации номинальных токов 63 ампера. Для частного дома это более чем достаточно. Никаких дополнительных контакторов использовать не потребуется.

Внутри компактного корпуса размещены мощные клеммы с толстыми медными токопроводами. Они изолированными от печатного монтажа на платах: излишний нагрев исключен.

Винтовые клеммы

Модульная конструкция каждой фазы имеет свою микросхему управления и может работать автономно на встроенное однофазное реле.

Его мощные переключающие контакты внушают доверие, хорошо экранированы от электрической дуги, сопровождающей разрыв цепи столь большого тока.

Контакты реле
Возможности настроек

Режим асимметрии выбирается для подключения трех независимых однофазных нагрузок. Здесь реле работает как 3 индивидуальных модуля защиты на 220 вольт.

При отклонении напряжения на любой фазе от величины уставки эта неисправность отключается встроенной защитой, а две другие остаются в работе.

После восстановления параметров питающей сети автоматика с установленной задержкой времени включает оборудование в работу.

Если происходит обрыв нуля в трехфазной схеме, то реле защищает оборудование от опасных последствий созданного режима. Оно использует среднюю точку, искусственно созданную на симметричной нагрузке, поддерживая нормальное электроснабжение.

Стоит вывести из работы любой из однофазных потребителей, как реле в этой ситуации автоматически обесточит остальные.

Если при работе происходит нарушение порядка чередования фаз, то реле сразу отключает все потребители. Такая защита в первую очередь необходима для электродвигателей: они сразу меняют направление вращения.

Симметричный режим применяется для питания трехфазного оборудования. Особую актуальность он имеет для асинхронных электродвигателей.

Реле напряжения DigiTOP V-protector 380V имеет возможность настройки уставки отклонения асимметрии от 20 до 80 вольт между любыми фазами. Оно имеет встроенную энергонезависимую память и хранит в ней все введенные параметры.

Подробное объяснение настроек этого реле и его испытание в своем видеоролике показывает Дмитрий электромонтажник Дурнев. Считаю, что его материал полезен для всех специалистов.

Заканчиваю тему про устройство защиты от перенапряжения с реле РКН. Многие вопросы еще могут потребовать дополнительной информации. Спрашивайте в комментариях. Отвечу.

назначение, виды, устройство, технические характеристики и схемы подключения

Реле напряжения применяется для защиты бытовой техники от скачков в сети. Использование устройства заметно снижает риск выхода из строя дорогостоящей аппаратуры. Пригодится РН и для правильного функционирования промышленных агрегатов.

Для чего нужно реле контроля напряжения

Бытовые электроприборы рассчитаны на напряжение 220-240 В. Периодически в электросети возникают нештатные ситуации. Напряжение в розетке прыгает в большую или меньшую сторону. Скачки способны нарушить работу бытовой техники или вовсе вывести ее из строя.

Перепады напряжения в сетиПерепады напряжения в сетиПерепады напряжения в сети

Распространенный случай перепадов напряжения — это обрыв нуля. При этом на одной фазе напряжение падает ниже допустимого уровня. На другой, наоборот, происходит существенное превышение вольтажа вплоть до 380в.

Другая ситуация свойственна старым домам с плохой электропроводкой и разболтавшимися контактами. Из-за плохого состояния кабелей и их перегрузки напряжение в розетках способно упасть до 170 В и ниже. Это опасно для электрических двигателей стиральных машин и холодильников.

На защиту электроприборов встает реле контроля напряжения. Это небольшое устройство располагается в распределительном щитке квартиры. Оно имеет компактную конструкцию, удобно крепится на дин рейку и выполняет свою задачу полностью автономно.

Устройство для установки на DIN-рейкуУстройство для установки на DIN-рейку

Дополнительная информация. Нужно отличать реле контроля напряжения от всевозможных стабилизаторов и УЗМ. Все перечисленные устройства применяются для защиты бытовой техники. Стабилизатор — прибор активный. Он способен самостоятельно корректировать напряжение в квартире. РН выполняет более простую и пассивную функцию. Оно просто отключает потребителя при превышении допустимого порога и, само по себе, на вольтаж никак не влияет.

к содержанию ↑

Назначение кнопок и выводов

На передней панели стандартного реле ограничения напряжения имеется 3 контакта. Они предназначены для подключения нулевого и фазных проводников. Если смотреть слева направо, то контакты имеют следующее назначение:

  1. Общий нулевой провод. Этот контакт бывает раздвоен на 2 точки.
  2. Вход питающего напряжения. К нему подключается фаза, идущая от счетчика.
  3. Выход на квартиру. Этот провод отключится при скачке или просадке напряжения.

Выводы 2 и 3 — это нормально разомкнутые силовые контакты. Если напряжение между 1 и 2 находится в пределах нормы, то 2 и 3 замкнуты, и фаза может свободно проходить в сеть квартиры.

Устройство реле напряженияУстройство реле напряженияУстройство реле напряжения

Реле контроля напряжения имеет простой принцип работы. Внутренний контроллер непрерывно измеряет напряжение в сети. Если оно выходит за пределы нормы, то электромагнитное реле отключает квартиру. Устройство цифровое. Оно срабатывает как на чрезмерно высокий вольтаж, так и на заниженный.

к содержанию ↑

Задержка времени включения

Для РН свойственна задержка включения. Если вольтаж провалился ниже допустимой нормы, то устройство выключится и разорвет контакты 2 и 3. Когда напряжение снова входит в норму, реле не включается. Оно выжидает некоторое время. Например, 15 секунд. Это необходимо, чтобы избежать ложных включений РН. Регулятор для настройки этого параметра предусмотрен на передней панели устройства.

Диаграммы работы релеДиаграммы работы реле

На корпусе реле имеются кнопки с дисплеем. Они позволяют настроить диапазон рабочего напряжения и время задержки срабатывания. Подробная информация о настройке прибора содержится в руководстве по эксплуатации.

к содержанию ↑

Технические параметры

К основным характеристикам РН относится рабочее напряжение, количество подключаемых фаз и максимальная пропускная мощность. Ниже рассмотрены параметры одного из популярных реле — RV-32.

Характеристика Значение
Питающее напряжение 220 В
Максимальная активная мощность потребителя 7 кВт
Предельный ток нагрузки 32 А
Погрешность измерений +/-1 %
Степень защиты от пыли и влаги IP20
Количество рабочих циклов реле 100 тыс.
Рабочая температура от -5 до+40°C
Предельное сечение подключаемых проводов 6 кв. мм

Из характеристики следует, что реле питается от сетевого напряжения 220 В. Внутренние контакты способны длительно пропускать ток, равный 32 А, что соответствует потребителю мощностью 7 кВт. Класс IP 20 говорит, что устройство непригодно для работы во влажном помещении или на улице. Его допустимо устанавливать в специальный электрический щит. 100 тыс. рабочих циклов — это количество включений и отключений реле, которые оно способно перенести без разрушения.

Реле напряжения DigiTOP Vp-50A IP20Реле напряжения DigiTOP Vp-50A IP20Реле напряжения DigiTOP Vp-50A IP20к содержанию ↑

Виды РН

В защите от скачков вольтажа нуждаются различные типы приборов. Некоторые из них работают от бытового напряжения 220 В и потребляют минимальную мощность. К примерам таких устройств относятся зарядные устройства для смартфонов или led лампочки. Другие так же работают от 220 В, но потребляют уже тысячи ватт мощности, например, электрические чайники и утюги. Третьи устройства требуют трехфазного питания 380 В. Обычное однополюсное РН им не годится. Среди таких потребителей промышленные станки и мощные асинхронные двигатели. Поэтому все реле для контроля напряжения принято разделять по типу корпуса и виду нагрузки.

к содержанию ↑

По типу корпуса

Данная классификация указывает на то, какие приборы и в каком количестве возможно подключить к реле. По типу исполнения РН подразделяется на 3 вида:

  • розеточные;
  • в виде удлинителя;
  • с установкой на din рейку.

Первый тип наиболее прост с точки зрения использования. Данное реле защиты от перенапряжения подключается непосредственно в розетку. С одной стороны корпуса имеется соответствующий разъем в виде штепсельной вилки. На другой части прибора расположена стандартная розетка для подключения нагрузки. Подобный тип РН можно быстро снять и подключить в другое место.

Прибор для установки в розеткуПрибор для установки в розетку

Второй тип выполнен в виде удлинителя. На его поверхности имеется несколько розеток для нагрузки. В отличие от 1-го типа данное реле оснащено кабелем с вилкой. Прибор удобен для стационарного подключения офисной техники.

Третий тип наиболее профессиональный. РН устанавливается в щиток. Оно имеет расширенный список функций, высокую пропускную мощность, и одновременно защищает все электрические приборы в квартире.

к содержанию ↑

По количеству фаз

Электрические потребители, работающие от переменного тока, подразделяются на 2 группы. Подобное деление имеет и реле контроля напряжения. А именно:

  • однофазное РН;
  • трехфазное.

Однофазная модификация пригодна для дома. Эти реле устанавливаются в квартирах, гаражах и дачах. Они пропускают через себя одну фазу и ноль. Поэтому их называют однофазными.

Рабочее напряжение для подобных РН составляет 220в. Их контакты рассчитаны на ток в 30-40 А, что соответствует максимальным значениям для квартирной проводки. Устройство имеет минимальный перечень настроек и, если почитать инструкцию, пригодно для пользования обычным человеком без профильного образования.

Трехфазное реле контроля напряжения ZUBR 3FТрехфазное реле контроля напряжения ZUBR 3FТрехфазное реле контроля напряжения ZUBR 3F

Второй вид реле сложнее. Он контролирует вольтаж одновременно на 3 фазах. Подобная модификация годится для агрегатов, потребляющих от сети 380 В. Реле имеет расширенный перечень регулировок и требует минимальный опыт в настройке систем автоматики.

к содержанию ↑

Распространенные схемы подключения

Отличия существуют и в мощности потребителей, которые подключаются через РН. Одним достаточно для питания фазы и нуля. Другие требуют трехфазное питание. Для каждой категории мощности нагрузки необходима соответствующая схема подключения реле. Поэтому принято выделять 3 способа включения этих защитных устройств:

  • однофазное РН;
  • трехфазное;
  • схема подключения через контактор.
к содержанию ↑

Подключение однофазного РН

Схема применяется для подключения потребителей на 220 В. Она пригодна как для квартиры, так и для отдельного устройства.

Схема подключения однофазного релеСхема подключения однофазного реле

Первоначально имеется однофазное РН, питающая и отходящая линии. Монтаж схемы производится по нижеизложенному плану:

  1. Подключается общий нулевой провод. Соответствующая клемма имеется на реле. Она обозначается буквой «N». В зависимости от модели прибора нулевых клемм может быть и две. В таком случае на один контакт подключается ноль от питающей линии, а на другой от отходящей.
  2. Затем подсоединяется фазный провод отходящей линии. На корпусе прибора эта клемма имеет маркировку «L2», «выход L» или «out L».
  3. Третий этап — подключение фазного провода питающей линии. Напряжение на нем присутствует всегда и независимо от того, сработало РН или нет. В стандартном электрощите этот проводник идет от выхода прибора учета или дифавтомата.
к содержанию ↑

Схема для трехфазного реле контроля напряжения

Разные модели трехфазных реле контроля напряжения имеют отличающийся набор клемм для подключения проводов. В стандартной комплектации их 8. Клеммы напряжения сети (4 шт.) нужны для подачи в устройство трех контролируемых фаз и нуля. На корпусе прибора они обозначаются L1, L2, L3 и N. Выходные релейные клеммы (4 шт.) используются для подключения последующих устройств защиты и автоматики. Они имеют маркировку «NO» у нормально открытых контактов, и «NC» у нормально закрытых.

Плодключение трехфазного релеПлодключение трехфазного реле

Схема подключения собирается в 2 этапа:

  1. К клеммам РН подключаются фазные и нулевые провода питающей линии. Здесь необходимо обратить внимание на максимальный допустимый ток контактов. Как правило, если потребитель трехфазный, то он потребляет большие мощности. Реле должно быть рассчитано на эти значения.
  2. К релейному выходу подключаются последующие устройства. Например, контактор, различные устройства сигнализации или индикаторные лампы «авария».

Обратите внимание! Дорогостоящие трехфазные РН способны контролировать не только напряжение, но и ряд других параметров сети. Например, критический перекос фаз и правильность их чередования. Эти функции важны для правильной работы асинхронных двигателей и тиристорных преобразователей.

к содержанию ↑

Подключение нагрузок свыше 100 кВт с помощью контактора

Некоторые потребители электроэнергии берут от сети токи в сотни ампер. Никакое РН не способно справиться с такими мощностями. В этой ситуации используют отдельный контактор. Его необходимо соединить с выходным реле.

В этой схеме РН просто контролирует состояние сети и формирует слаботочный сигнал управления для контактора. Его втягивающая катушка подключается последовательно с выходом реле контроля напряжения. Основной ток нагрузки протекает непосредственно через контактор.

Схема контроля напряжения с контакторомСхема контроля напряжения с контактором

Важно! Не следует ставить РН рядом с мощными источниками радиопомех, например, трансформаторами или беспроводными телефонами. Испускаемые ими помехи способны повлиять на измерительную цепь реле и привести к ложным срабатываниям.

к содержанию ↑

Рекомендации по выбору

Из вышесказанного вытекает, что существует множество видов реле контроля напряжения. Подбор осуществляется с учетом конкретной ситуации, в которой РН предстоит работать. Наиболее значимые критерии выбора реле контроля напряжения таковы:

  1. Однофазная или трехфазная сеть. Практикуется вариант, когда вместо одного трехфазного реле устанавливается 3 однофазных.
  2. Тип исполнения реле. Подключаемые к розетке, рассчитаны на 1-3 потребителя. Они выдерживают ток до 16 А. Модификации под DIN рейку мощнее. Через них возможно подключить всю квартиру. Пропускаемый ток составляет 40-80 А.
  3. Допустимый ток реле. Для обычной квартиры подойдет прибор, способный пропускать 30-40 А. Этот ток больше, чем позволит сечение бытовой проводки, но РН лучше брать с запасом по мощности в 1,5-2 раза. Так устройство прослужит заметно дольше.
  4. Если реле приобретается для подключения одиночного бытового прибора, то перед покупкой следует узнать какой у него потребляемый ток. В этой ситуации достаточно делать запас в 30-50%.

Дополнительная информация. Существуют реле контроля напряжения, оснащенные встроенным амперметром. Эти приборы позволяют отслеживать потребляемый квартирой ток. На них возможно организовать защиту от короткого замыкания или перегрузки сети.

к содержанию ↑

Настройка порогов срабатывания РН

Настройка реле защиты от перенапряжения производится после анализа текущего состояния электросети и проводки. Необходимо обратить внимание на такие факторы, как:

  1. Напряжение в розетке. Оно составляет 220 В только на страницах учебников. Реальный вольтаж в сети способен находиться в пределах 190-240 В. Бессмысленно настраивать РН на отключение при снижении до 210 В, если в розетке вольтаж редко поднимается выше 200 В. Особенно актуально для сельской местности и в частном доме.
  2. Мощность бытовых приборов. Некоторые образцы техники в момент запуска потребляют большие токи, что резко понижает напряжения в сети. Этот провал необходимо учитывать, чтобы выбрать нижний порог срабатывания защиты.
  3. В ночное время суток происходит обратное. Люди спят. Большая часть электроприборов в доме выключена. Напряжение в сети способно зашкаливать до 230-240 В. Это явление учитывается при выборе верхнего номинала срабатывания.
Монтаж и настройка реле напряженияМонтаж и настройка реле напряженияМонтаж и настройка реле напряженияк содержанию ↑

Проверка РН с помощью мультиметра

Полноценные испытания удастся провести при помощи специального оборудования в электротехнической лаборатории. Однако точность показаний выходного вольтажа получится проверить и обычным мультиметром. Прибор необходимо переключить в режим измерения переменного напряжения до 700 В. На переключателе это обозначается как «ACV 700».

Затем мультиметром предстоит определить напряжение на выходе РН, и сравнить это значение с показаниями на дисплее защитного устройства. Нужно понимать, что оба прибора имеют некоторую погрешность измерения. Показания должны примерно совпадать. Разница в 2-3 В — это не повод для паники. Но если отличия более существенны, то в РН есть неисправность.

Применение РН защитит бытовые электроприборы от перепадов напряжения. Для этого потребуется правильно подобрать уставки его срабатывания. Ориентировочные значения можно посмотреть в паспорте на устройство.

Проверка реле контроля сетевого напряжения ASPПроверка реле контроля сетевого напряжения ASP

Реле контроля напряжения выбирается с учетом количества питающих фаз и максимальной мощности потребителя. Желательно приобретать защитное устройство с запасом по току в 20-30 %. Если необходимо контролировать потребляемый ток, то лучше установить прибор со встроенным амперметром.

Реле напряжения: назначение, виды, устройство, технические характеристики и схемы подключения

Отправить ответ

avatar
  Подписаться  
Уведомление о