Схема частотника для электродвигателя: Самодельный частотник. Разрабатываем преобразователь вместе

Содержание

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотник для трехфазного электродвигателя-принцип работы

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.

Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.

Принцип работы частотного преобразователя

Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.

Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.

Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:

  1. Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
  2. Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
  3. Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.

Как правильно подобрать преобразователь частот

Наиболее значимо при покупке частотника — не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.

Также следует обратить внимание на тип управления преобразователя:

Высокоточная установка величины тока.

Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.

Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.

Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.

Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.

Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.

Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.

Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Самодельный частотный преобразователь 220-380V собственной сборки


Watch this video on YouTube

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Схема частотного преобразователя. Описание структуры преобразователей частоты для асинхронных электродвигателей.

Об асинхронных двигателях переменного тока, работой которых управляют частотные преобразователи, часто говорят, как о лучшей альтернативе электрическим приводам постоянного тока. Хотя система, регулирующая скорость, с которой вращается электродвигатель, в последних не отличается сложностью, высокая стоимость и не очень высокая надежность делают их невыгодными. Есть и иные проблемы: щетки чрезмерно искрят, из-за чего повышена электроэрозия и изнашивается коллектор. Поэтому такие электродвигатели нельзя применять в сильно запыленных местах и там, где велика потенциальная опасность взрыва.

Схему преобразователя частоты придумали в далеких 1930-х годах. Однако внедрить ее в жизнь удалось только когда появились полупроводники и транзисторные элементы. Основным недостатком, свойственным асинхронным двигателям, является сложность организации системы, регулирующей скорость, с которой вращается двигатель. Вот почему понадобились частотники.

Конструктивные особенности преобразователей частоты

Схема частотного преобразователя асинхронного двигателя имеет следующую ключевую задачу: изменить характеристики, которые имеет проходящий через нее ток. Задача решается транзисторным выпрямлением электротока, который затем преобразовывается до требуемых определенных значений. Схема преобразователя частоты включает в себя три основных части. Она оснащена основанной на микропроцессорах управляющей системой, звеном постоянного тока, импульсным инвертором.

Задачи, которые выполняет первая из вышеперечисленных частей, следующие: управлять работой систем преобразования, защищать частотник. В составе второй части используются устройства фильтрации и выпрямитель. Ими осуществляются прием сигнала на входе и перенаправление того к инвертору. Ну а третьей частью (импульсным инвертором) производится преобразование тока таким образом, что тот приобретает определенную амплитуду и частоту. Затем преобразованный ток подается на статор. Обычно в конструкции используются 6 транзисторов-ключей либо построенная на тиристорах схема.

Схема частотного преобразователя способна обеспечить четкость синусоиды, которую имеет сигнал на выходе, если она собрана с использованием не устаревших тиристоров, а IGBT-транзисторов (они работают как инверторные ключи).

Принцип функционирования частотника

Вообще, полноценный частотник комплектуется следующими устройствами: системой управления, инвертором, управляющим широтно-импульсной модуляцией модулем, диодным силовым выпрямителем, конденсатором фильтра и дросселем. Это его основные структурные элементы. Регуляцию напряжения и частоты на выходе схема преобразователя осуществляет с помощью высокочастотного широтно-импульсного управления. Последнее же имеет зависимость от того, какая периодичность у модуляции.

Модуляцию определяют как отрезок времени, на протяжении которого статором получаются поочередные сигналы посылаемые то отрицательным, то положительным полюсом. Продолжительность данного отрезка модулируется в согласии с законом гармонических частот, который называют синусоидальным. А в обмотках электродвигателя ток подвергается дополнительному преобразованию, и после прохождения фильтра ему присуща четко синусоидальная форма. И, как уже было сказано выше, крайне желательно, чтобы схема частотного преобразователя подключаемого в асинхронные электродвигатели была собрана на IGBT-транзисторах.

Кривую, которую имеет выходное напряжение (а по сути она является ничем иным, как двуполярной последовательностью высокой частоты), создают импульсы, имеющие прямоугольную конфигурацию. Их тоже регулирует широтно-импульсная модуляция. Модулирование ширины, которую имеют импульсы, производится в соответствии с синусоидальным законом. Есть два способа, используя которые схема преобразователя частоты изменяет параметры напряжения на выходе.

Один из этих способов заключается в регуляции значения, которое имеет напряжение на входе, дающей результат в виде изменения амплитуды. Второй способ такой: значение, которое имеет напряжение на входе не изменяется, но делаются корректировки в программе, контролирующей, с какой периодичностью переключаются переключатели (6 транзисторных ключей). Производимые сегодня IGBT-транзисторы делают применение второго из вышеописанных способов более предпочтительным. Соответственно, он очень широко используется. Сегодня уже не так часто встречается схема частотного преобразователя, собранная не на IGBT-транзисторах. ШИМ, конечно, тоже способна выдавать кривую тока, по форме близкую к синусоиде. Однако только потому, что обмотки электродвигателя играют роль фильтра.

Зачем двигателю переменного тока преобразователь частоты?

Что такое преобразователь частоты?


Проще говоря, преобразователь частоты — это устройство преобразования энергии. Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.

Зачем нужен преобразователь частоты?


Основная функция преобразователя частоты в водной среде — экономия энергии.За счет управления скоростью насоса вместо регулирования потока с помощью дроссельных клапанов можно значительно сэкономить энергию. Например, снижение скорости на 20% может дать экономию энергии на 50%. Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.

Преобразователи частоты


Преобразователи частоты, доступные во многих различных типах, предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы.Чаще всего используется преобразователь частоты. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, применяемая к двигателю переменного тока, определяет скорость двигателя. Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые могут быть подключены к сети переменного тока. За счет включения байпасных пускателей работа может поддерживаться даже в случае выхода инвертора из строя. Преобразователи частоты

также обладают дополнительным преимуществом — увеличенным сроком службы подшипников и уплотнений насоса. Поддерживая в насосе только давление, необходимое для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо.Следовательно, компоненты служат дольше.
Те же преимущества, но в меньшей степени, применимы и к вентиляторам, работающим от преобразователей частоты.

Для достижения оптимальной эффективности и надежности многие специалисты по спецификациям получают от производителей подробную информацию об эффективности преобразователя частоты, требуемом техническом обслуживании, диагностических возможностях преобразователя частоты и общих рабочих характеристиках. Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.

Дополнительные преимущества преобразователей частоты


Помимо экономии энергии и лучшего управления технологическим процессом преобразователи частоты могут обеспечить и другие преимущества:
  • Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера. Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
  • Затраты на техническое обслуживание могут быть снижены, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
  • Устранение дроссельных клапанов и заслонок также устраняет необходимость обслуживания этих устройств и всех связанных с ними элементов управления.
  • Устройство плавного пуска для двигателя больше не требуется.
  • Контролируемая скорость нарастания в жидкостной системе может устранить проблемы гидравлического удара.
  • Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.

Анализировать систему в целом
Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы. Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы. Для обеспечения экономии энергии требуется детальное знание работы оборудования и требований к технологическим процессам. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.

Внутренняя конфигурация преобразователя частоты
Преобразователь частоты состоит из трех основных частей:

  • Схема выпрямителя — состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
  • Шина постоянного тока — состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
  • Инвертор — состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.

Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.

Основы преобразователя частоты

Для достижения высокой эффективности, отличной управляемости и энергосбережения в приложениях, связанных с промышленными асинхронными двигателями, необходимо использовать системы регулируемых преобразователей частоты.Система преобразователя частоты в настоящее время представляет собой двигатель переменного тока, питаемый от статического преобразователя частоты. Современный преобразователь частоты отлично подходит для двигателей переменного тока и прост в установке. Однако одна важная проблема связана с несинусоидальным выходным напряжением. Этот фактор вызвал массу нежелательных проблем. Повышенные потери в асинхронном двигателе, шум и вибрация, пагубное воздействие на систему индукционной изоляции и выход из строя подшипников являются примерами проблем систем, связанных с преобразователями частоты.Повышенные индукционные потери означают снижение выходной мощности индукции для предотвращения перегрева. Лабораторные измерения показывают, что повышение температуры может быть на 40% выше при использовании преобразователя частоты по сравнению с обычными источниками питания. Постоянные исследования и совершенствование преобразователей частоты помогли решить многие из этих проблем. К сожалению, кажется, что решение одной проблемы акцентировало внимание на другой. Снижение потерь в индукции и преобразователе частоты ведет к увеличению вредного воздействия на изоляцию.Производители индукционных устройств, конечно, знают об этом. На рынке начинают появляться новые индукционные конструкции (инверторно-резистивные двигатели). Лучшая изоляция обмотки статора и другие конструктивные улучшения гарантируют, что асинхронные двигатели будут лучше адаптированы для применений с преобразователями частоты.

Введение
Одной из наиболее серьезных проблем асинхронного двигателя была сложность его адаптации к регулировке скорости. Синхронная скорость двигателя переменного тока определяется следующим уравнением.

n s = 120 * f / p
n с = синхронная скорость
f = частота электросети
p = номер полюса

Единственный способ отрегулировать скорость для данного количества полюсов — это изменить частоту.

Основной принцип
Теоретически основная идея проста, процесс преобразования стабильной частоты линии электропередачи в переменную частоту в основном выполняется в два этапа:

  1. Источник переменного тока преобразуется в постоянное напряжение.
  2. Постоянное напряжение преобразуется в переменное напряжение желаемой частоты.
Преобразователь частоты в основном состоит из трех блоков: выпрямителя, звена постоянного тока и инвертора.

Различные типы преобразователей частоты
Инвертор источника напряжения PWM (VSI)
ШИМ (широтно-импульсная модуляция) широко применяется в промышленности преобразователей частоты. Они доступны от нескольких сотен ватт до мегаватт.

ШИМ-преобразователь не обязательно должен точно соответствовать нагрузке, ему нужно только убедиться, что нагрузка не потребляет ток, превышающий номинальный ток ШИМ-преобразователя. Вполне возможно запустить индукцию 20 кВт с преобразователем PWM на 100 кВт. Это большое преимущество, которое упрощает работу приложения.

В настоящее время преобразователь частоты ШИМ использует биполярный транслятор с изолированным затвором (IGBT). Современные преобразователи частоты с ШИМ работают очень хорошо и не сильно отстают от конструкций, использующих синусоидальный источник питания — по крайней мере, не в диапазоне мощностей до 100 кВт или около того.

Инвертор источника тока (CSI)
Инвертор источника тока представляет собой грубую и довольно простую конструкцию по сравнению с ШИМ. Он использует простые тиристоры или тиристоры в цепях питания, что делает его намного дешевле. Кроме того, он очень надежен. Конструкция обеспечивает защиту от короткого замыкания из-за больших индукторов в звене постоянного тока. Он крупнее ШИМ.

Раньше инвертор источника тока был лучшим выбором для больших нагрузок. Недостатком инвертора источника тока является необходимость согласования с нагрузкой.Преобразователь частоты должен быть рассчитан на используемый асинхронный двигатель. Фактически, сама индукция является частью перевернутой цепи.

Инвертор источника тока подает на асинхронный двигатель ток прямоугольной формы. На низких скоростях индукция создает зубцовый момент. Этот тип преобразователя частоты будет создавать больше шума на источнике питания по сравнению с преобразователем PWM. Нужна фильтрация.

Сильные переходные процессы выходного напряжения являются дополнительным недостатком инвертора источника тока.В худших случаях переходные процессы могут почти в два раза превышать номинальное напряжение. Также существует риск преждевременного износа изоляции обмотки при использовании этого преобразователя частоты. Этот эффект наиболее серьезен, когда нагрузка не соответствует преобразователю частоты должным образом. Это может произойти при работе с частичной нагрузкой. Такой преобразователь частоты все больше теряет свою популярность.

Векторное управление потоком (FVC)
Управление вектором магнитного потока — это более сложный тип преобразователя частоты, который используется в приложениях, требующих экстремального управления.Например, на бумажных фабриках необходимо очень точно контролировать скорость и силу растяжения.

Преобразователь частоты FVC всегда имеет какую-то петлю обратной связи. Такой тип преобразователя частоты обычно не представляет особого интереса для насосов. Это дорого, и его преимуществами нельзя воспользоваться.

Влияние на двигатель
Индукция лучше всего работает при питании от источника чистого синусоидального напряжения. Чаще всего это происходит при подключении к надежному источнику питания от электросети.

Когда индукция подключена к преобразователю частоты, на него будет подаваться несинусоидальное напряжение — больше похоже на напряжение срезаемой прямоугольной формы. Если мы подаем 3-фазную индукцию с симметричным 3-фазным квадратичным напряжением, все гармоники, кратные трем, а также четные числа будут исключены из-за симметрии. Но остались цифры 5, 7 и 11, 13 и 17, 19 и 23, 25 и так далее. Для каждой пары гармоник меньшее число вращается в обратном направлении, а большее число — в прямом.

Скорость асинхронного двигателя определяется основным числом, или числом 1, из-за его сильного доминирования. Что теперь происходит с гармониками?

С точки зрения гармоник кажется, что индукция заблокировала ротор, что означает, что скольжение для гармоник составляет приблизительно 1. Это не дает никакой полезной работы. В результате в основном возникают потери в роторе и дополнительный нагрев. В частности, в нашем приложении это серьезный исход. Однако с помощью современных технологий можно устранить большую часть гармоник в индукционном токе, тем самым уменьшив дополнительные потери.

Преобразователь частоты до
Самые ранние преобразователи частоты часто использовали простое прямоугольное напряжение для питания асинхронного двигателя. Они вызвали проблемы с нагревом, и индукция работала с типичным шумом, вызванным пульсацией крутящего момента. Намного лучшая производительность была достигнута, если просто исключить пятый и седьмой. Это было сделано за счет дополнительного переключения сигнала напряжения.

Преобразователь частоты сегодня
В наши дни эта техника стала более сложной, и большинство недостатков остались в прошлом.Разработка быстродействующих силовых полупроводников и микропроцессора позволила адаптировать схему переключения таким образом, чтобы исключить большинство вредных гармоник.

Для преобразователей частоты среднего диапазона мощности (до нескольких десятков кВт) доступны частоты переключения до 20 кГц. Индукционный ток с этим типом преобразователя частоты будет почти синусоидальным.

При высокой частоте коммутации индукционные потери остаются низкими, но потери в преобразователе частоты увеличиваются.Общие потери увеличиваются при чрезмерно высоких частотах переключения.

Немного теории двигателя
Производство крутящего момента в асинхронном двигателе может быть выражено как

T = V * τ * B [Нм]
V = Активный объем ротора [м 3 ]
τ = ток на метр окружности отверстия статора
B = Плотность потока в воздушном зазоре
B = пропорционально (E / ω) = E / (2 * π * f)
ω = угловая частота напряжения статора
E = индуцированное напряжение статора

Чтобы получить наилучшие характеристики на различных скоростях, становится необходимым поддерживать соответствующий уровень намагничивания для индукции для каждой скорости.

Диапазон различных характеристик крутящего момента показан на следующем рисунке. Для нагрузки с постоянным крутящим моментом соотношение V / F должно быть постоянным. Для нагрузки с квадратичным крутящим моментом постоянное отношение V / F приведет к чрезмерно высокой намагниченности при более низкой скорости. Это приведет к излишне высоким потерям в стали и потерям сопротивления (I 2 R).

Лучше использовать квадратное отношение V / F. Таким образом, потери в стали и потери I 2 R снижаются до уровня, более приемлемого для фактического момента нагрузки.

Если мы посмотрим на рисунок, мы обнаружим, что напряжение достигло своего максимума и не может быть увеличено выше базовой частоты 50 Гц. Диапазон выше базовой частоты называется диапазоном ослабления поля. Следствием этого является невозможность поддерживать необходимый крутящий момент без увеличения тока. Это приведет к проблемам с нагревом того же типа, что и при нормальном пониженном напряжении от синусоидальной электросети. Скорее всего, будет превышен номинальный ток преобразователя частоты.

Работа в диапазоне ослабления поля
Иногда возникает соблазн запустить насос на частотах выше частоты промышленной сети, чтобы достичь рабочей точки, которая в противном случае была бы невозможна. Это требует дополнительной осознанности. Мощность на валу насоса будет увеличиваться в кубе скорости. Превышение скорости на 10% потребует на 33% больше выходной мощности. Грубо говоря, можно ожидать, что повышение температуры увеличится примерно на 75%.

Тем не менее, есть предел тому, что мы можем выжать из индукции при превышении скорости.Максимальный крутящий момент индукции будет падать как функция 1 / F в диапазоне ослабления поля.

Очевидно, что индукция пропадет, если преобразователь частоты не сможет поддерживать ее с напряжением, которое соответствует необходимому крутящему моменту.

Снижение номиналов
Во многих случаях индукция работает на максимальной мощности от синусоидальной электросети, и любой дополнительный нагрев недопустим. Если такая индукция питается от преобразователя частоты какого-либо типа, то, скорее всего, она должна работать с меньшей выходной мощностью, чтобы избежать перегрева.

Нет ничего необычного в том, что преобразователь частоты для больших насосов мощностью более 300 кВт добавляет дополнительные индукционные потери в размере 25–30%. В верхнем диапазоне мощности только некоторые преобразователи частоты имеют высокую частоту переключения: от 500 до 1000 Гц обычно для преобразователей частоты предыдущего поколения.

Для компенсации лишних потерь необходимо уменьшить выходную мощность. Мы рекомендуем общее снижение номинальных характеристик на 10–15% для больших насосов.

Поскольку преобразователь частоты загрязняет питающую сеть гармониками, энергокомпания иногда предписывает входной фильтр.Этот фильтр снижает доступное напряжение обычно на 5–10%. Следовательно, индукция будет работать при 90–95% номинального напряжения. Следствие — дополнительный обогрев. Может потребоваться снижение номинальных характеристик.

Пример
Предположим, что выходная мощность фактического двигателя насоса составляет 300 кВт при 50 Гц, а повышение температуры составляет 80 ° C при использовании синусоидальной электросети. Дополнительные потери в 30% приведут к нагреву на 30%. Консервативное предположение состоит в том, что повышение температуры зависит от квадрата мощности на валу.

Чтобы не превышать 80 ° C, мы должны уменьшить мощность на валу до

P пониженный = √ (1 / 1,3) * 300 = 263 кВт
Уменьшение может быть достигнуто либо уменьшением диаметра рабочего колеса, либо снижением скорости.

Преобразователь частоты Потери
Когда определяется общий КПД системы преобразователя частоты, необходимо учитывать внутренние потери преобразователей частоты. Эти потери преобразователя частоты непостоянны, и их нелегко определить.Они состоят из постоянной части и части, зависящей от нагрузки.

Постоянные потери:
Потери на охлаждение (вентилятор охлаждения) — потери в электронных схемах и так далее.

Потери, зависящие от нагрузки:
Коммутационные потери и свинцовые потери в силовых полупроводниках.

На следующем рисунке показан КПД преобразователя частоты как функция частоты при кубической нагрузке для блоков мощностью 45, 90 и 260 кВт. Кривые характерны для преобразователей частоты в диапазоне мощностей 50–300 кВт; с частотой коммутации около 3 кГц и с IGBT второго поколения.

Влияние на изоляцию двигателя
Выходные напряжения современных преобразователей частоты имеют очень короткое время нарастания напряжения.

dU / dT = 5000 В / мкс — обычное значение.
Такой крутой скачок напряжения вызовет чрезмерное напряжение в изоляционных материалах индукционной обмотки. При малом времени нарастания напряжение в обмотке статора распределяется неравномерно. При синусоидальном источнике питания напряжение между витками индукционной обмотки обычно равномерно распределяется.С другой стороны, с преобразователем частоты до 80% напряжения будет падать на первом и втором витках. Поскольку изоляция между проводами является слабым местом, это может быть опасным для индукции. Короткое время нарастания также вызывает отражение напряжения в индукционном кабеле. В худшем случае это явление удвоит напряжение на индукционных клеммах. Индукция, подаваемая от преобразователя частоты на 690 вольт, может подвергаться воздействию напряжения до 1900 вольт между фазами.

Амплитуда напряжения зависит от длины индукционного кабеля и времени нарастания. При очень коротком времени нарастания полное отражение происходит в кабеле длиной от 10 до 20 метров.

Для обеспечения работоспособности и длительного срока службы двигателя абсолютно необходимо, чтобы обмотка была адаптирована для использования с преобразователем частоты. Индукторы для напряжений выше 500 вольт должны иметь усиленную изоляцию. Обмотка статора должна быть пропитана смолой, обеспечивающей изоляцию без пузырьков или полостей.Тлеющие разряды часто начинаются вокруг полостей. Это явление в конечном итоге приведет к разрушению изоляции.

Есть способы защитить мотор. Помимо усиленной системы изоляции, может потребоваться установка фильтра между преобразователем частоты и индукцией. Такие фильтры можно приобрести у большинства известных поставщиков преобразователей частоты.

Фильтр обычно замедляет время нарастания напряжения с

dU / dT = 5000 В / мкс до 500-600 В / мкс
Выход из строя подшипника
Поломка вращающегося оборудования часто может быть связана с выходом из строя подшипников.Помимо чрезмерного нагрева, недостаточной смазки или усталости металла, электрический ток через подшипники может быть причиной многих загадочных поломок подшипников, особенно при больших индукциях. Это явление обычно вызвано несимметрией в магнитной цепи, которая индуцирует небольшое напряжение в структуре статора, или током нулевой последовательности. Если потенциал между конструкцией статора и валом становится достаточно высоким, через подшипник будет происходить разряд.Небольшие электрические разряды между телами качения и дорожкой качения подшипника в конечном итоге могут повредить подшипник.

Использование преобразователей частоты увеличивает вероятность отказа подшипников такого типа. Технология переключения современного преобразователя частоты вызывает ток нулевой последовательности, который при определенных обстоятельствах проходит через подшипники.

Самый простой способ вылечить эту проблему — поставить преграду для тока. Обычный метод заключается в использовании подшипника с изолирующим покрытием на наружном кольце.

Выводы
Использование преобразователя частоты не означает беспроблемного использования. Множество вопросов, на которые необходимо обратить внимание при проектировании. Будет ли необходимо, например, ограничивать доступную мощность на валу для предотвращения чрезмерного нагрева? Во избежание этой проблемы может потребоваться работа с более низкой выходной мощностью.

Будет ли изоляция асинхронного двигателя сопротивляться воздействию инвертора? Нужна ли фильтрация? Современные эффективные инверторы оказывают пагубное влияние на изоляцию из-за высокой частоты переключения и короткого времени нарастания напряжения.

Какую максимальную длину кабеля можно использовать без полного отражения напряжения? Амплитуда напряжения зависит как от длины кабеля, так и от времени нарастания. При очень коротком времени нарастания полное отражение будет происходить в кабелях длиной от 10 до 20 метров.

Может быть необходимо использовать изолированные подшипники, чтобы предотвратить попадание тока нулевой последовательности в подшипники?

Только когда мы решим все эти вопросы, мы сможем принимать правильные решения относительно использования преобразователя частоты.

Что такое статический преобразователь частоты

Статический преобразователь частоты означает, что внутри него нет вращающихся частей — также называемый твердотельным — определение относится к вращающемуся преобразователю частоты, который использует электродвигатель для вывода регулируемой частоты.

Статический преобразователь частоты преобразует фиксированную мощность сети через переменный ток в постоянный в переменный с помощью внутренних электронных частей и компонентов, многофункциональный инвертор преобразует сеть (50 Гц или 60 Гц, 120 В, 240 В, 400 В) через схему преобразования и преобразует в требуемое напряжение и частотный источник питания, выходной источник питания может имитировать международные стандарты энергосистемы.Введите одно- или трехфазное питание переменного тока, преобразуйте переменный ток в постоянный, постоянный в переменный, на выходе будет стабильная чистая синусоида, а также можно выдавать 400 Гц в авиационной промышленности.

Для того, чтобы адаптироваться к тенденции эпохи экологической защиты окружающей среды, статический преобразователь частоты использует передовую технологию ШИМ (широтно-импульсной модуляции), а в качестве привода используется усовершенствованный силовой модуль IGBT международного известного бренда, имеющий небольшой объем, высокая надежность, низкие шумовые характеристики. Статический преобразователь частоты, использующий технологию цифровой обработки сигналов, может обеспечивать напряжение, частоту, ток, коэффициент мощности и т. Д.точные данные; Конструкция модуля IGBT большой емкости и специальная схема управления для IGBT могут эффективно снизить сложность схемы и повысить надежность и стабильность статического преобразователя частоты; Вход и выход электрические полностью изолированы, защита от заклинивания и безопасности двигателя. Преобразователь может обеспечивать однофазное напряжение 0 ~ 300 В, трехфазное (0 ~ 520 В) и частоту 40 ~ 499,9 Гц, при этом программируемая частота относится к набору.

Как выбрать статический преобразователь частоты?
Статический преобразователь частоты GoHz может преобразовывать 60 Гц в 50 Гц, а также может повышать напряжение с 110 В до 220 В с помощью встроенного повышающего трансформатора, и наоборот.Перед покупкой статического преобразователя частоты лучше понять, с какими нагрузками он будет связан. Существует пять распространенных форм нагрузки: 1, резистивная нагрузка; 2, индуктивная нагрузка; 3, емкостная нагрузка: 4, выпрямительная нагрузка; 5 — регенеративная нагрузка; 6, смешанные загрузки. Выбирать мощность статического преобразователя следует в зависимости от грузоподъемности и типа.

Типоразмер статического преобразователя частоты
Твердотельные преобразователи частоты GoHz не предъявляют особых требований к типам нагрузки, они могут использоваться для резистивных, индуктивных, емкостных, выпрямительных и смешанных нагрузок.Технические параметры проверены на основе стандартных условий номинальной резистивной нагрузки, эти статические преобразователи частоты могут длительно работать в этих условиях. Но с учетом колебаний напряжения в электросети, пускового тока и факторов кратковременных перегрузок следует сохранить соответствующий запас при выборе мощности преобразователя. Вот несколько рекомендаций производителя:

Резистивная нагрузка : Мощность = 1,1 × мощность нагрузки.

RC нагрузка : мощность = 1.1 × полная мощность нагрузки.

Нагрузка двигателя : Пусковой ток двигателя составляет прибл. В случае жесткого пуска (прямого пуска) в 5-7 раз больше номинального тока, время пуска обычно в пределах 2 секунд. Статическая перегрузочная способность преобразователя частоты обычно составляет 200% в течение 2 секунд до срабатывания защиты от перегрузки. Поэтому, учитывая пусковую мощность, рекомендуется выбирать мощность твердотельного преобразователя, в 3 раза превышающую мощность двигателя, если двигатель жестко запускается, в противном случае лучше установить на двигатель устройство плавного пуска или преобразователь частоты.

Нагрузка выпрямителя : входная цепь включает выпрямительный диод (или тиристор) и конденсаторы фильтра, если входная цепь не имеет устройства плавного пуска, нагрузка может рассматриваться как короткое замыкание во время замыкания входного переключателя, которое будет генерировать сильный ударный ток для срабатывания защиты от перегрузки по току статического преобразователя. Если часто возникает большой пусковой пусковой ток, это также повлияет на цепь нагрузки. Следовательно, входная цепь нагрузки выпрямителя должна принимать меры плавного пуска для ограничения пускового тока.

Поскольку ток нагрузки выпрямителя является импульсным, пик-фактор тока составляет до 3–3,5 раз, поэтому он будет влиять на форму выходного напряжения в долгосрочной перспективе, влияние зависит от пик-фактора тока нагрузки. Обычно, когда пик-фактор тока> 2:00, выбирайте мощность твердотельного преобразователя частоты по следующей формуле: Мощность = = пик-фактор тока нагрузки / 2 × полная мощность нагрузки.

Рекуперативная нагрузка : например, реверсивный электродвигатель, нагрузка электродвигателя с регулируемой скоростью, во время реверсирования электродвигателя будет высокая обратная ЭДС, что может легко повредить статический преобразователь, пожалуйста, укажите это перед заказом преобразователя частоты для таких нагрузок.

Смешанная нагрузка : при выборе подходящего статического преобразователя частоты учитывайте долю мощности каждой нагрузки.

Примечание: Заводское входное напряжение по умолчанию составляет 220 В для однофазного, 380 В для трехфазного, 60 Гц или 50 Гц. Если вам необходимо изменить входное напряжение или у вас есть особые требования, укажите это при оформлении заказа.

База знаний преобразователя частоты — Мотор-генератор

Обзор двигателя-генератора

Мотор-генераторы (комплекты MG)

используют электромеханические средства для преобразования напряжения и частоты.Установки MG состоят из двигателя переменного тока, который работает непосредственно от линии электропередачи 60 Гц на вашем предприятии, его вал соединен с валом синхронного генератора. Генератор выдает новые уровни частоты и напряжения.

Стабилизация выходного напряжения генератора

Выходное напряжение генератора регулируется твердотельным регулятором напряжения, который непрерывно измеряет напряжение на выходных клеммах генератора и выполняет необходимую регулировку для поддержания выходного напряжения в пределах технических характеристик.Типичное регулирование выходного напряжения составляет +/- 1% или лучше в условиях установившейся нагрузки от 0% до 100%.

Выходное напряжение генератора

может быть отрегулировано пользователем в диапазоне приблизительно +/- 8% от номинального выходного напряжения (более широкий диапазон на некоторых моделях), и это облегчается с помощью элемента управления Volts Adjust, расположенного на панели управления оператора.

Регулировка выходной частоты генератора

Выходная частота синхронного генератора прямо пропорциональна частоте вращения вала генератора.В зависимости от типа двигателя, приводящего в движение вал генератора, выходная частота может оставаться точной или иметь допуск регулирования до +/- 2,5% от номинальной номинальной выходной частоты в условиях нагрузки от 0% до 100%.

Прецизионная работа синхронного двигателя

MG Set, работающий от электросети вашего объекта 60 Гц с номинальной выходной частотой 50 Гц и использующий синхронный двигатель переменного тока, будет обеспечивать точные 50,0 Гц при любых условиях выходной нагрузки от 0% до 100% номинальной нагрузки.Такое точное регулирование частоты возможно благодаря присущей синхронному двигателю способности поддерживать одно и то же число оборотов в минуту при любой величине нагрузки, вплоть до 100% номинальной нагрузки.

Работа асинхронного двигателя

В некоторых наборах MG используются стандартные асинхронные двигатели переменного тока (асинхронные двигатели) для привода вала синхронного генератора. Рабочие характеристики асинхронного двигателя переменного тока позволяют уменьшать частоту вращения генератора по мере увеличения нагрузки на вал. Если MG работает от сети 60 Гц вашего предприятия и имеет номинальную выходную частоту 50 Гц, выходная частота не будет точной и обычно будет в диапазоне от 50.От 5 Гц или выше до 49,5 Гц или ниже в зависимости от конструкции MG, уровня входного напряжения и количества нагрузки, подключенной к выходу генератора.

Влияние нестабильной частоты на нагрузку

В большинстве случаев нестабильная частота нежелательна. Например, в тестовой среде использование преобразователя частоты с нестабильной частотой может привести к сбою в работе тестируемого устройства (UUT) или к ошибочным данным тестирования. При простом управлении оборудованием 50 Гц на нестабильной частоте может возникнуть колебательное или резонансное взаимодействие между нагрузкой и MG Set, что может привести к неправильной работе оборудования в нагрузке.

Практически все комплекты MG, которые можно взять напрокат, в нашем парке аренды включают в себя настоящий синхронный двигатель переменного тока, который обеспечивает стабильную частоту источника питания для нагрузки. Если комплект MG, включающий асинхронный двигатель переменного тока, предлагается любому арендатору AP&C, наш инженер-разработчик поможет обеспечить его совместимость с нагрузкой клиента.

Влияние нагрузочного оборудования на выход MG

Типы нагрузок, подключенных к выходу преобразователя частоты, играют важную роль при выборе преобразователя частоты.Каждый тип нагрузочного оборудования или цепи демонстрирует характеристики, которые необходимо учитывать, чтобы гарантировать правильную работу оборудования или приемлемые результаты. Ниже приведены лишь некоторые из вариантов нагрузки, которые могут повлиять на производительность выхода преобразователя частоты.

Влияние пусковых токовых нагрузок

Определенные типы нагрузочного оборудования или цепей потребляют значительно больший ток при первом включении, чем во время работы. Нагрузки, содержащие двигатели, трансформаторы, электронные источники питания или преобразователи с входными конденсаторами, имеют характеристику потребления мгновенного пикового тока в течение первых 3-5 циклов, в 5-60 раз или больше, чем их номинальный ток полной нагрузки.

Когда к выходу MG подключена нагрузка пускового тока, уровень напряжения генератора на мгновение упадет пропорционально пиковому току нагрузки и интервалу. Это мгновенное напряжение может быть на 30% или более ниже номинального выходного напряжения. По истечении периода времени пускового тока регулятор напряжения будет регулировать выходное напряжение в пределах номинальных характеристик регулирования напряжения, обычно +/- 1% или меньше. Промышленность приняла 30% -ное падение максимально допустимого снижения напряжения, которое должно произойти, чтобы обеспечить нормальную работу большинства нагрузочного оборудования.Максимально допустимое падение напряжения 10% рекомендуется для более чувствительного нагрузочного оборудования, такого как некоторые медицинские или научные устройства. Наши опытные инженеры по применению помогут определить оборудование в вашей нагрузке, которое считается нагрузкой пускового тока.

Влияние однофазной нагрузки на трехфазный выход MG

Использование однофазного преобразователя частоты на выходе рекомендуется для использования с однофазными нагрузками. Однако иногда нагрузочное оборудование или проверяемое оборудование состоит из однофазных и трехфазных компонентов.

Когда однофазные нагрузки подключены к трехфазному выходу преобразователя частоты с MG, они должны быть распределены между тремя фазами как можно более равномерно. Помимо возможности перегрева генератора и оборудования трехфазной нагрузки, может возникнуть несимметрия напряжения.

Когда однофазная нагрузка подключена к трехфазному выходу MG Set, уровень напряжения на нагруженной фазе будет снижаться, в то время как уровень напряжения на ненагруженных фазах будет увеличиваться.По мере увеличения дисбаланса тока нагрузки на каждой фазе уровни напряжения могут становиться преувеличенными, так что выход MG Set отключается схемами безопасности, либо оборудование нагрузки или проверяемое оборудование срабатывает неправильно или выходит из строя. Превышение примерно 2% несимметрии напряжения может вызвать перегрев генератора или трехфазного нагрузочного оборудования и возможный выход из строя.

Влияние нелинейных нагрузок на выход MG Set

Нелинейные нагрузки — это нагрузки или проверяемое оборудование, которые включают в себя электронные силовые устройства, такие как диоды, тиристоры или силовые транзисторы.Эти устройства используются в таком оборудовании, как преобразователи частоты, источники бесперебойного питания, источники питания переменного / постоянного тока и инверторы.

Нелинейные нагрузки вызывают искажение синусоидального сигнала на выходе преобразователя частоты MG Set, а также дополнительный нагрев обмоток генератора. Если нелинейные нагрузки создают чрезмерное искажение синусоидальной волны на данном выходе MG Set, выходное напряжение может стать нестабильным, что приведет к сбою в работе нагрузочного оборудования или выхода MG Set из строя его схемами безопасности.

Физические характеристики мотор-генераторной установки

Мотор-генераторные установки

многие считают большими, тяжелыми и прочными по сравнению с их электронными аналогами с преобразователями частоты. Комплекты MG подходят для работы в таких средах, как защита от непогоды (не обязательно в помещении), или в помещениях, содержащих другое электрическое оборудование, такое как силовые трансформаторы и воздушные компрессоры.

Звуковой шум, создаваемый наборами MG, обычно зависит от номинальной мощности в кВА и обычно составляет от 70 дБА до 90 дБА при измерении на расстоянии 3 фута от оборудования.

Именно по указанным выше основным причинам при определении размеров и выборе преобразователя частоты на основе двигателя-генератора для данной нагрузки следует проконсультироваться с нашими инженерами по применению.

Заявление об ограничении ответственности: Вся описательная информация представлена ​​в виде общих неспецифических характеристик оборудования и предлагается нашим арендаторам лучше понять преобразователи частоты и их применение. Читателю следует связаться с инженерами по приложениям AP&C для получения подробной или конкретной технической информации о преобразователях частоты и их использовании.


База знаний — Электронные / статические преобразователи

Преобразователь частоты

— преобразователь частоты

ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Преобразователь частоты, также известный как преобразователь частоты сети, представляет собой устройство, которое принимает входящую мощность, обычно 50 или 60 Гц, и преобразует ее в выходную мощность 400 Гц. Существуют разные типы преобразователей частоты сети, в частности, есть как вращательные преобразователи частоты, так и твердотельные преобразователи частоты.Вращающиеся преобразователи частоты используют электрическую энергию для привода двигателя. Твердотельные преобразователи частоты принимают входящий переменный ток (AC) и преобразуют его в постоянный (DC).

Для чего нужен преобразователь промышленной частоты для коммерческого использования?

Стандартным источником питания для коммерческих сетей является переменный ток (AC). Под переменным током понимается количество циклов в секунду («герц» или Гц), при котором мощность колеблется, положительно и отрицательно, вокруг нейтральной точки отсчета.В мире существует два стандарта: 50 и 60 герц. 50 Гц распространен в Европе, Азии и Африке, а 60 Гц является стандартом в большей части Северной Америки и некоторых других странах (Бразилия, Саудовская Аравия, Южная Корея) по всему миру.

Нет неотъемлемого преимущества одной частоты перед другой частотой. Но могут быть и существенные минусы. Проблемы возникают, когда нагрузка, на которую подается питание, чувствительна к входной частоте сети. Например, двигатели вращаются с частотой, кратной частоте сети.Таким образом, двигатель 60 Гц будет вращаться со скоростью 1800 или 3600 об / мин. Однако при подаче питания 50 Гц частота вращения составляет 1500 или 3000 об / мин. Машины, как правило, чувствительны к скорости, поэтому мощность их работы должна соответствовать предполагаемой расчетной скорости вращения. Таким образом, для типичного европейского оборудования требуется входная частота 50 Гц, а если он работает в Соединенных Штатах, требуется преобразователь частоты 60–50 Гц для преобразования имеющейся мощности 60 Гц в 50 Гц. То же самое относится и к преобразованию мощности 50 Гц в 60 Гц. Хотя для преобразователей частоты существуют стандартные номиналы мощности и мощности, наши преобразователи работают в диапазоне напряжений от 100 В до 600 В.Чаще всего указываются напряжения 110 В, 120 В, 200 В, 220 В, 230 В, 240 В, 380 В, 400 В и 480 В. Поскольку наши стандартные и нестандартные конструкции могут удовлетворить ряд требований энергосистем, Georator является вашим поставщиком преобразователей частоты в напряжение.

ПОЧЕМУ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ТАК ДОЛЖЕН?

Многие клиенты испытывают «шок от наклеек», когда смотрят на преобразователь частоты. Не имеет большого значения, является ли преобразователь промышленной частоты вращающимся блоком (мотор-генераторная установка) или твердотельным (электронным) блоком.И на самом деле разброс цен между поставщиками на удивление невелик.

Так что же делает преобразователи частоты такими дорогими? Что ж, это закон. В частности, законы физики.

В отличие от преобразования напряжения, для которого требуется только довольно пассивный трансформатор, преобразователь частоты должен полностью переделывать мощность, чтобы изменить частоту. Во вращающемся преобразователе поступающая электрическая энергия преобразуется в механическую энергию в приводном двигателе. Эта мощность вращения затем питает генератор, где энергия вращения снова преобразуется в электрическую мощность.Много движущихся частей, много оборудования, много затрат.

Аналогичным образом твердотельный преобразователь частоты преобразует поступающую мощность переменного тока в постоянный ток с помощью выпрямителя. Затем энергия постоянного тока снова преобразуется в мощность переменного тока с помощью секции инвертора. Опять же, много запчастей, много затрат.

Одно положительное побочное преимущество любого типа преобразователя частоты заключается в том, что любое желаемое преобразование напряжения происходит «бесплатно» как часть процесса преобразования частоты. К сожалению, это часто не утешает наших клиентов.

Извините, это просто закон.

ДЕЙСТВИТЕЛЬНО НУЖЕН ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Когда потенциальные клиенты сталкиваются с необходимостью покупки преобразователя частоты, нашего или наших конкурентов, они часто считают, что его стоимость является серьезным препятствием. Им действительно нужен преобразователь частоты? Что ж, ответ заключается в том, какой тип нагрузки обслуживается.

Приложения, включающие нагрузки двигателей, часто нуждаются в преобразователе промышленной частоты, поскольку характеристики вращения, в частности число оборотов в минуту (об / мин), являются прямой функцией входной частоты электричества.Двигатель с частотой 60 Гц будет вращаться со скоростью, кратной 60, например, 1800 об / мин. Одновременно двигатель с частотой 50 Гц будет вращаться с частотой, кратной 50, например 1500 об / мин. Таким образом, при работе с нагрузкой двигателя, особенно в машине с несколькими двигателями, может оказаться необходимым использование преобразователя частоты, чтобы двигатели вращались в соответствии с исходной конструкцией вращения.

Однако резистивные нагрузки, такие как резистивные нагреватели и некоторые источники света, не заботятся о частоте входящей мощности. Таким образом, если нагрузка является неустойчивой, преобразование частоты может не потребоваться.Единственное предостережение — напряжение должно быть в нужном диапазоне. Даже если только большая часть нагрузки является резистивной, может оказаться более экономичным разделить нагрузку на части и запитать только частотно-зависимый компонент с преобразователем.

Также разумно рассмотреть возможность замены двигателя (ов) в нагрузке на правильную частоту, так как это может дать менее затратное решение, чем использование преобразователя частоты.

Инженеры по применению

Georator готовы обсудить с вами эти вопросы; свяжитесь с нашей командой для получения помощи.Хотя мы ценим ваш бизнес, мы не хотим продавать вам то, что вам не нужно.

WÄRTSILÄ Энциклопедия морских и энергетических технологий

Преобразователь

Цепь, которая преобразует переменный ток в постоянный или из постоянного в переменный, или действует как преобразователь частоты переменного тока. В современных системах электропривода, в которых требуется регулирование скорости электродвигателя, используются преобразователи питания. Эти преобразователи адаптируют напряжение и частоту источника питания к электродвигателю в соответствии с требуемой скоростью электродвигателя.Основные компоненты преобразователей — диоды, транзисторы и тиристоры.

Циклопреобразователь — Циклопреобразователь представляет собой одноступенчатый (AC-AC) преобразователь, который преобразует переменный ток с постоянной частотой непосредственно в переменный ток с изменяющейся частотой, как это требуется для желаемой скорости двигателя.

Циклопреобразователи

используются для питания и регулирования скорости синхронных двигателей. Скорость двигателя регулируется путем изменения частоты источника питания двигателя и обеспечивает полный крутящий момент в диапазоне скоростей в любом направлении.Поскольку циклоконвертеры производят относительно низкие частоты, они больше связаны с низкоскоростными двигателями с прямым приводом.

Широтно-импульсная модуляция (PWM ) преобразователь — ШИМ-преобразователь имеет процесс двойного преобразования (AC-DC-AC) и использует звено постоянного тока. Преобразователи ШИМ используются для питания и управления скоростью асинхронных двигателей. Широтно-импульсная модуляция (ШИМ) использует выпрямитель для создания постоянного напряжения так же, как и синхронный преобразователь. На стороне инвертора он использует принудительную коммутацию, чтобы дать серию импульсов общего напряжения, как положительного, так и отрицательного.Таким образом, выходное напряжение может быть приближено к переменному току, в то время как изменение количества и ширины импульсов может увеличивать или уменьшать частоту. Что касается морских силовых установок, они находятся в нижней части диапазона мощности (до 8 МВт), и по мере увеличения частоты выходная волна становится все более искаженной.

Синхропреобразователь — Синхропреобразователь представляет собой преобразователь переменного тока в постоянный и переменный ток: он преобразует трехфазный переменный ток с постоянным напряжением и частотой в постоянный ток с переменным напряжением, а затем снова в трехфазный переменный ток с переменным и изменяющимся напряжением. частота.Его можно использовать только в сочетании с синхронным двигателем. Чтобы увеличить скорость двигателя, ток увеличивается, что создает более высокие магнитные силы и крутящий момент. Это, в свою очередь, заставляет ротор двигаться быстрее, что быстрее переключает тиристоры, увеличивая частоту переменного тока до тех пор, пока не будет достигнута требуемая скорость.

Синхропреобразователи могут создавать частоты выше 100 Гц и подходят для высокоскоростных двигателей.

Преобразователь частоты

| Блог Advanced systems ASB-Drives

Преобразователь частоты: вся информация об устройстве

Оглавление

  1. Физические основы преобразователей частоты
  2. Устройство и работа преобразователей частоты
  3. Выпрямитель
  4. Промежуточная цепь
  5. Инвертор
  6. Типы управления преобразователем частоты
  7. Интерфейсы преобразователя частоты
  8. Преимущества использования преобразователей частоты
  9. Недостатки преобразователей частоты
  10. Назначение и применение преобразователей частоты
  11. Как выбрать преобразователь частоты?
  12. Как подключен преобразователь частоты?
  13. Правила техники безопасности при подключении преобразователя частоты
  14. Рекомендации по приобретению преобразователей частоты

Физические основы преобразователей частоты

Теоретические основы работы преобразователей частоты были намечены еще в 1930-х годах, но в то время из-за отсутствия транзисторов и микропроцессоров практическая реализация была невозможна.Только когда США, Европа и Япония разработали недостающие компоненты, начали появляться первые варианты преобразователей частоты. С тех пор они претерпели значительные технологические изменения, но принцип их действия по-прежнему основан на тех же физических законах.
Работа преобразователей частоты основана на следующей формуле:

Из этого выражения сразу видно, что при изменении частоты входного напряжения, которая в формуле обозначена как f1, изменится и угловая скорость магнитного поля статора, определяющая скорость вращения самого статора.Этот эффект может быть достигнут только в том случае, если значение p (количество пар полюсов) остается постоянным.

Так что это нам дает? Во-первых, возможность непрерывно регулировать скорость. Это особенно актуально на пике запуска. Во-вторых, эта зависимость позволяет увеличить скольжение асинхронного двигателя, увеличивая его КПД.
Также стоит отметить, что такие характеристики, как коэффициент мощности, КПД, коэффициент перегрузочной способности, принимают высокие значения именно при одновременном контроле частоты и текущего напряжения.Характер изменения этих параметров напрямую зависит от момента нагрузки, который может принимать следующую характеристику:
  • постоянная. При этом типе момента нагрузки напряжение статора будет прямо пропорционально частоте:

  • вентилятор. В этом случае напряжение будет пропорционально квадрату частоты:

  • обратно пропорционально.В этом случае формула будет выглядеть так:

Приведенные выше расчеты подтверждают, что одновременной регулировкой частоты и напряжения с помощью преобразователя частоты можно добиться плавного и равномерного изменения скорости вала.

Устройство и работа преобразователей частоты

Рассматривая общую конструкцию преобразователей частоты, стоит выделить два основных блока компонентов:

  • менеджмент;
  • электрические преобразования.

Первый блок обычно представляет собой микропроцессор, который принимает команды от внешних систем управления и интерфейсов и передает их непосредственно на элементы электрического преобразователя.

Блок преобразования мощности — это главный рабочий механизм всей системы. Он отвечает за принятие входного тока и преобразование его в желаемые значения, установленные оператором с помощью блока управления. Этот блок состоит из следующих элементов:

  • выпрямитель;
  • Цепь промежуточная
  • ;
  • Инвертор
  • .

Поговорим о каждом подробнее.

Выпрямитель

Этот компонент предназначен для генерации пульсирующих напряжений в одно- или трехфазных сетях переменного тока. Выпрямители обычно строятся либо на диодах, либо на тиристорах. В первом случае они считаются неконтролируемыми, а во втором — контролируемыми.

  • Выпрямители неуправляемые. В них используются две группы диодов, которые подключены к разным клеммам и проводят разное напряжение — положительное и отрицательное.В конечном итоге выходное напряжение равно разнице напряжений на этих группах диодов и математически имеет следующее значение: 1,35 * входное напряжение сети.
  • Управляемые выпрямители
  • . В этих выпрямителях вместо диодов используются тиристоры. На них может подаваться входной сигнал a, который вызывает задержку тока, выраженную в градусах. В случаях, когда значение этого параметра колеблется в пределах 0-90 градусов, тиристоры играют роль выпрямителей, а при 90-300 градусов — инверторов.Выходное значение постоянного напряжения составляет: 1,35 * входное напряжение сети * cos α.

Промежуточная цепь

Промежуточная цепь действует как своего рода накопитель, от которого двигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточный контур может иметь одну из следующих форм:

  1. Блок питания инверторный. В этом случае промежуточная цепь включает мощную индуктивную катушку, которая преобразует напряжение выпрямителя в переменный постоянный ток.Само напряжение двигателя определяется нагрузкой. Этот тип схемы может работать только с управляемыми выпрямителями.
  2. Инверторы являются источниками напряжения. В этом случае в промежуточной цепи используется фильтр, в состав которого входит конденсатор. Он сглаживает напряжение, поступающее с выпрямителя. Эти схемы способны работать с любым типом выпрямителя.
  3. Цепь переменного напряжения постоянного тока. В этом случае перед фильтром устанавливается прерыватель с транзисторами, которые отключают и включают подачу напряжения с выпрямителя.В этом случае фильтр обеспечивает сглаживание прямоугольных напряжений после прерывателя, а также поддерживает постоянное напряжение на заданной частоте.

Инвертор

Инвертор является последним звеном в преобразователе частоты перед самим двигателем. Это тот, который в конечном итоге преобразует напряжение в форму, необходимую для работы. В результате описанных выше преобразований выпрямитель и промежуточный контур преобразуются:

  • постоянный ток изменчивого характера;
  • переменное или неизменное напряжение постоянного тока.

Фактически сам инвертор обеспечивает напряжение необходимой частоты. Если на него подается переменное напряжение или ток, он генерирует только желаемую частоту. Если он не меняется, он генерирует и желаемую частоту, и желаемое напряжение.

Обычно в конструкциях инверторов используются высокочастотные транзисторы с частотами переключения в диапазоне от 300 до 20 кГц.

Типы управления преобразователем частоты

Существует два основных метода управления электродвигателями с помощью преобразователей частоты:

На сегодняшний день наиболее распространены асинхронные системы управления.Они используются в приводах вентиляторов, насосов, компрессоров и т. Д. Основной принцип скалярного управления заключается в изменении частоты и амплитуды напряжения в соответствии с законом U / fn = const, где n всегда больше 1. Соответственно, изменяя напряжения U, меняем частоту f в степень n. Значение градуса определяется исходя из характеристик самого преобразователя частоты и его назначения.

Сама по себе техника скалярного управления довольно проста с технической точки зрения, но имеет два существенных недостатка.Во-первых, без дополнительного датчика скорости нельзя регулировать скорость вала, потому что она напрямую зависит от нагрузки. Решить эту проблему можно, просто купив датчик.

Но есть еще один недостаток — невозможность регулировки крутящего момента. Казалось бы, эту проблему тоже можно решить, купив датчик крутящего момента. Но это довольно дорого, и контроль будет весьма сомнительным. Кроме того, невозможно управлять скоростью и крутящим моментом вместе со скалярным типом управления.

Векторное управление подразумевает, что сама система содержит математическую модель работы двигателя, которая позволяет рассчитывать как скорость, так и крутящий момент на программном уровне с использованием входных параметров. Требуется только датчик, считывающий фазный ток статора.

Существует два класса систем векторного управления:

  • без датчиков скорости;
  • с датчиками скорости.

Их использование в той или иной области определяется условиями эксплуатации двигателя. Если диапазон частоты вращения вала не превышает 1: 100, а требования к точности менее 0,5%, тогда подойдет система без энкодеров.

Однако если диапазон скоростей составляет 1: 1000, а требования к точности установлены на уровне до 0,02%, то лучше использовать сенсорные системы управления.

Стоит отметить, что векторное управление также имеет свои недостатки.Например, они требуют больших вычислительных мощностей и знания рабочих параметров двигателя. Кроме того, векторное управление нельзя использовать, когда к преобразователю частоты подключено более одного рабочего блока — скалярные системы будут подходящими.

Интерфейсы преобразователя частоты

Большинство современных преобразователей частоты имеют ряд различных интерфейсов, которые можно использовать для подключения оборудования сторонних производителей или синхронизации нескольких преобразователей частоты.Давайте посмотрим на основные входы и выходы, используемые в таких устройствах:

  • аналоговый вход. Этот интерфейс используется для приема стандартного аналогового сигнала в производственном диапазоне от 0 (4) до 20 мА или от 0 до 10 В. Через этот вход можно управлять преобразователем частоты. Например, минимальное значение аналогового сигнала может сигнализировать устройству, что выходная частота двигателя должна иметь минимальное значение, и наоборот, максимальное значение должно соответствовать максимальному значению;
  • аналоговый выход.Этот выход аналогичен по функциям входу. Только в этом случае он передает информацию о частоте на двигатель посредством аналогового сигнала определенного значения, что позволяет контролировать рабочий режим;
  • двоичный вход. Этот вход может принимать прыгающие сигналы. Как и аналоговый вход, он может изменять параметры. Например, минимальный сигнал может соответствовать мгновенной минимальной выходной частоте инвертора, а максимальный сигнал может соответствовать максимальной выходной частоте;
  • дискретный выход.Этот вывод позволяет те же операции, что и ввод, только в обратном порядке;
  • RS-485. Этот интерфейс является полноценным входом, обеспечивающим полную связь с преобразователем частоты, например через компьютер. Его можно использовать для настройки рабочих параметров оборудования, контроля его состояния и т. Д. Интерфейс RS-485 использует специальный дифференциальный сигнал, который позволяет использовать линию длиной до 120 метров. Таким образом, можно установить преобразователь частоты в производственной зоне и управлять им в диспетчерской, удаленно от рабочего места.

Кроме того, в преобразователях частоты можно использовать другие интерфейсы. Все зависит от конкретной модели устройства и производителя.

Преимущества использования преобразователей частоты

Преобразователи частоты нашли широкое применение в самых разных производственных нишах и оборудовании. Высокий спрос на эти устройства обусловлен следующими преимуществами их использования:

  • пониженный пусковой ток.При пуске двигателя прямыми пускателями происходит резкое увеличение тока, со значениями в 7-15 раз превышающими номинальный ток. Это отрицательно сказывается на приводе и может привести к пробою изоляции, выгоранию контактов и ряду других отрицательных эффектов. Кроме того, этот способ запуска влияет на механические компоненты системы. Во время пуска компоненты двигателя подвергаются высоким нагрузкам, что приводит к более быстрому износу. Преобразователи частоты позволяют значительно снизить пусковые нагрузки на двигатель, продлевая срок его службы, не требующей обслуживания;
  • рентабельность.Как правило, двигатели, поддерживающие вентиляционные и насосные системы, всегда работают с одинаковой частотой, а давление и другие рабочие параметры регулируются с помощью клапанов (заслонки, заслонки и т. Д.). Это приводит к неэкономному использованию энергии. Если используются преобразователи частоты, можно регулировать рабочие параметры системы, регулируя мощность двигателя. Это дает возможность более рационально использовать его ресурсы;
  • повышенной технологичности. С помощью преобразователей частоты можно создавать автоматизированные системы, которые будут регулировать работу оборудования в соответствии с заданными алгоритмами.Это снижает трудозатраты производственных процессов и делает их более точными за счет исключения человеческого фактора;
  • ремонтопригодность. Если преобразователь частоты выходит из строя, вы можете отнести его в мастерскую, где техник заменит неисправные детали. Впрочем, это касается только блока электрического преобразователя — блоки управления намного сложнее и требовательнее к ремонту.

Преобразователи частоты — оптимальное решение для широкого спектра производственных процессов и для наладки рабочего оборудования, в котором используются электродвигатели.

Недостатки преобразователей частоты

Преобразователи частоты также имеют свои недостатки. Фактически это:

  • дорого. Преобразователи частоты — самое дорогое инверторное оборудование. Однако этот недостаток очень относительный, учитывая, что такие устройства могут продлить срок службы электродвигателей, а также повысить их необслуживаемую работу;
  • ограничено. Не все старые двигатели могут работать с преобразователем частоты.Даже если это технически возможно, срока службы старых моделей может просто не хватить при постоянной частоте и колебаниях частоты вращения вала;
  • сложно настроить и подключить. Преобразователь частоты сложно установить самостоятельно, поэтому часто приходится отдавать эту работу на аутсорсинг, что, в свою очередь, влечет за собой определенные финансовые затраты.

Если сравнить недостатки и преимущества преобразователей частоты, они все равно выглядят более эффективными даже по сравнению с другими преобразователями.Это делает их особенно популярными в обрабатывающей промышленности, где они используются практически повсеместно.

Назначение и применение преобразователей частоты

Преобразователи частоты уже много лет используются при строительстве электромеханических устройств и агрегатов. Они позволяют модулировать частоту тока, что, в свою очередь, позволяет точно регулировать скорость двигателя. Сегодня преобразователи частоты используются во многих отраслях промышленности.Мы рассмотрим лишь некоторые из них:

  1. Пищевая промышленность. Преобразователи частоты часто используются для регулировки работы линий розлива. Они позволяют регулировать подачу продукта и скорость ленты в соответствии с производительностью самой упаковочной машины. Кроме того, они часто используются в больших смесительных установках, системах вентиляции и т. Д.
  2. Механизация производственного оборудования. Конвейерные ленты, малярные и стиральные машины, прессы, штамповочные машины и т. Д. Нуждаются в преобразователях частоты.Эти устройства позволяют контролировать скорость рабочих процессов, снижая вероятность повреждения продукта и улучшая качество конечного результата.
  3. Медицина. От всего медицинского оборудования всегда ожидаются высочайшие технические стандарты, которые не могут быть выполнены без использования управляемых двигателей в сочетании с преобразователями частоты. Устанавливаются в различных системах жизнеобеспечения, кроватных подъемниках и т. Д.
  4. Подъемно-конвейерная техника. Лифты, краны, подъемники — все они давно используют преобразователи частоты.Они позволяют точно контролировать скорость различных операций, а также продлевают работу оборудования без обслуживания.

Список областей применения преобразователей частоты бесконечен, поскольку они могут использоваться в любом оборудовании, в котором используются электродвигатели.

Как выбрать преобразователь частоты?

При выборе преобразователя частоты следует учитывать несколько основных параметров:

  1. Выходная мощность.Этот параметр преобразователя частоты должен соответствовать мощности двигателя, с которым он будет использоваться. Выберите устройство, мощность которого соответствует номинальному току. Покупать преобразователь частоты с очень высокими характеристиками просто бессмысленно, так как он будет стоить намного дороже, и могут возникнуть проблемы с настройкой.
  2. Тип нагрузки. Тип нагрузки зависит от того, как эксплуатируется машина, к которой будет подключен преобразователь частоты. Например, при нагрузках вентилятора не возникает перегрузок, но в случае пресса ток может превышать номинальные значения на 60 процентов и более.Соответственно, это нужно учитывать при выборе и оставлять определенное количество «проездных».
  3. Тип охлаждения двигателя. Двигатели могут быть оборудованы системами принудительного охлаждения или самоохлаждения. Во втором случае к крыльчатке ротора прикреплены специальные лопасти, которые вращаются вместе с ротором и обдувают двигатель. Соответственно, нормальное действие обдува в этом случае напрямую зависит от скорости вращения. Если двигатель работает на пониженной скорости в течение более длительного периода, может произойти перегрев.Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты превышает 10% от номинального значения.
  4. Входное напряжение. Это определяет, при каком напряжении может работать преобразователь частоты. Недостаточно знать, что напряжение в сети обычно составляет около 380 В. Часто случаются скачки напряжения в диапазоне + -30%. Кроме того, скачки напряжения 1 кВ часто возникают в сетях с большим количеством силового оборудования. Соответственно, чем шире диапазон рабочих напряжений преобразователя частоты, тем он надежнее.
  5. Метод торможения. Двигатель может быть остановлен либо инверторным мостом, либо электродинамическим торможением. Первый метод больше подходит для точного и быстрого торможения, а второй подходит для машин с частым торможением или там, где необходима постепенная остановка. На это необходимо обращать внимание.
  6. Окружающая среда и охрана. В паспорте преобразователя частоты обычно указывается среда, в которой будет использоваться устройство. Например, влагозащищенные модели соответствуют стандарту IP 54 — они устойчивы к влаге и могут использоваться в помещениях с паро-паром и повышенной влажностью.
  7. Тип управления и интерфейсы. Важно обратить внимание на наличие подходящих разъемов для подключения, а также на варианты платы — некоторые модели предназначены для установки на месте, а другие — в отдельной кабине управления.

Если вы никогда не работали с преобразователями частоты, лучше проконсультироваться со специалистом.

Как подключен преобразователь частоты?

Если рассматривать монтаж преобразователя частоты схематично, то весь процесс сводится к соединению контактов самого устройства, электродвигателя и предохранителя блока управления.Достаточно подключить провода всех элементов, подключить двигатель к электросети и запустить его.

На первый взгляд ничего сложного в этом нет, но на самом деле процедура установки имеет свои нюансы:

  1. Очень важно, чтобы предохранитель был установлен в цепи между самим преобразователем частоты и источником питания. Это позволит вовремя выключать блоки в случае колебаний напряжения, поддерживая их в исправном рабочем состоянии.Примечательно, что при подключении к трехфазной системе сам предохранитель также должен быть трехфазным, но иметь общий рычаг отключения. Это позволит отключить питание сразу на всех фазах, даже если короткое замыкание или перегрузка только в одной фазе. Если инвертор подключен к однофазной сети, предохранитель также должен быть однофазным. В этом случае при расчете необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что инструкции почти для каждого инвертора определяют требования и правила для его установки.Их следует прочитать перед началом работы.
  2. Фазовые выходы преобразователя частоты подключены к клеммам двигателя. В зависимости от напряжения преобразователя частоты обмотки двигателя могут быть соединены звездой или треугольником. Обычно на корпусе двигателя указано два напряжения. Если преобразователь частоты соответствует более низкому напряжению, обмотки соединяются по схеме звезды, если напряжение выше, они соединяются по схеме треугольника. Вся эта информация обычно напечатана в инструкции.
  3. Почти каждый преобразователь частоты снабжен пультом дистанционного управления. Это не обязательная часть схемы, так как само устройство также имеет свои собственные органы управления, но это значительно упрощает работу с оборудованием. Пульт дистанционного управления можно установить на любом расстоянии от преобразователя частоты. Обычно это делается следующим образом: преобразователи частоты с низкой степенью защиты размещаются вдали от двигателя, а сама панель управления размещается непосредственно на рабочем месте рядом с оборудованием.

Не менее важным этапом установки преобразователя частоты является его пробный запуск. Осуществляется по следующей схеме:

  1. После подключения всех компонентов системы (предохранитель, панель управления, преобразователь частоты, двигатель) необходимо переместить ручку на панели управления в активное положение на несколько градусов.
  2. Переведите тумблеры предохранителей в положение «ON». После этого на преобразователе частоты должны загореться световые индикаторы, указывающие на то, что оборудование подключено правильно, и двигатель должен начать медленно вращаться.
  3. Если вал двигателя начинает вращаться в противоположном направлении, преобразователь частоты должен быть перепрограммирован на реверс. Практически все современные агрегаты поддерживают эту функцию.
  4. Постепенно перемещайте рукоятку управления и наблюдайте за двигателем — частота вращения вала должна увеличиваться по мере перемещения рукоятки.

Если во время тестового запуска проблем не было обнаружено, вы все сделали правильно и систему можно запускать.

Меры предосторожности при подключении преобразователя частоты

При электромонтажных работах на преобразователях частоты следует учитывать несколько основных правил безопасности:

  1. Никогда не прикасайтесь к компонентам цепи, находящимся под напряжением, какими-либо частями тела.Это может навредить вашему здоровью или даже убить вас. Перед началом работ рекомендуется обесточить все оборудование и использовать специальные электромонтажные инструменты с защитой от поражения электрическим током.
  2. Стоит помнить, что напряжение в цепи может оставаться даже после того, как на агрегате погаснут индикаторы. Чтобы избежать поражения электрическим током в системах мощностью до 7 кВт, подождите 5 минут перед началом работы, с устройствами мощностью более 7 кВт — 15 минут. Этого времени должно быть достаточно для разряда всех конденсаторов в цепи.
  3. Заземление является неотъемлемой частью любой электрической цепи, в том числе цепи преобразователь частоты-двигатель. Он должен быть проложен как отдельный кабель и ни в коем случае не должен подключаться к шине нейтрали.
  4. Следует помнить, что отключение преобразователя частоты не гарантирует отсутствия напряжения в других частях сети, поэтому перед ремонтом или обслуживанием цепь должна быть полностью отключена от сети.

Только квалифицированный персонал, прошедший соответствующую подготовку и имеющий разрешение, может выполнять электромонтаж преобразователей частоты.

Рекомендации по приобретению преобразователей частоты

Покупка преобразователя частоты — очень ответственное предложение, так как эти устройства дороги и очень требовательны в эксплуатации, поэтому неисправность может привести не только к финансовым потерям, но и к остановке всего производства или других работ.

Перед покупкой преобразователя частоты необходимо:

  1. Определите параметры, которые подойдут вашему электродвигателю.
  2. Составить план работ по установке и подключению оборудования.
  3. Выберите дополнительные модели для подключения к самому инвертору.
  4. Приобретите все необходимые кабели, крепления и рамы, необходимые для установки.
  5. Подготовьте рабочее место к установке. Может потребоваться установка дополнительных источников питания или реорганизация производственного оборудования, чтобы его можно было подключить к инвертору.

Из-за высокой стоимости преобразователей частоты многие покупают подержанные устройства.Такой подход более рискованный, чем покупка новых продуктов, но он может сэкономить вам немного денег. Если вы тоже решили купить преобразователь б / у, стоит его тщательно проверить не только с точки зрения внешнего вида, но и в эксплуатации. Лучше всего, если продавец не будет демонтировать его со своего участка и сможет продемонстрировать его работоспособность на практике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*