Особенности схем обмоток одно-и двухфазных двигателей
Категория:
Обмотка электрических машин
Публикация:
Особенности схем обмоток одно-и двухфазных двигателей
Читать далее:
Намотка катушек из круглого провода
Особенности схем обмоток одно-и двухфазных двигателей
Однофазные асинхронные двигатели мощностью до 1, редко до 2 кВт, широко применяют в условиях, когда имеется только однофазная сеть, например, для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели будут хуже, чем у трехфазных, а пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не сможет начать работать. Поэтому в статорах однофазных двигателей устанарливают две обмотки, которые часто называют также фазами обмотки.
Рис. 1. Оси обмоток двух- и однофазных двигателей:
а — расположение катушек разных фаз в пазах статора, б — условное изображение фаз обмотки
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают Ср. Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой момент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включают второй — пусковой конденсатор. Суммарная емкость рабочего и пускового конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключают, а рабочий остается включенным. Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.
Рис. 2. Схемы включения однофазных двигателей:
а — с постоянно включенным конденсатором (конденсаторные двигатели), б— с рабочим и пусковым конденсаторами, в — с пусковым элементом
Рис. 3. Схема однослойной концентрической обмотки
В однофазных конденсаторных двигателях обе обмотки, и главная и вспомогательная, выполняются одинаковыми, т. е. с одинаковым числом витков и катушек, из одинакового обмоточного провода. Они располагаются в одинаковом числе пазов, симметрично со сдвигом осей на 90°.
В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками. Они имеют либо четыре выводных конца — начала и концы главной и вспомогательной фаз, либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения — общая точка обмотки.
Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин. Если же число q нечетное, то большие катушки в группах делают «расчесанными», т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону.
Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем сами двигатели. Поэтому большинство однофазных асинхронных двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пустить, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называют двигателями с пусковой фазой.
Рис. 4. Схема однослойной концентрической обмотки
Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем включения последовательно с ней так называемого пускового элемента — конденсатора или резистора (чаще всего используют более дешевый — резистор).
Пусковые обмотки, как празило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают 1/3 всех пазов статора. В оставшихся 2/3 пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы.
Рис. 5. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с 2=24, 2р=4; С1—С2—главная фаза, В1—В2 — пусковая фаза
Рис. 6. Образование бифилярных витков
Рис. 7. Схема обмотки с катушками, имеющими бифилярные витки:
а — изображение катушек с бифилярными витками на схеме обмотки, б — схема обмотки
Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой. При этом длина провода обмотки возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и мдс остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки. Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Бифилярная секция имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначают петле. На рис. 7, б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы на схеме обозначают, что они выполнены с частично бифилярной намоткой.
Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключить от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя. Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках.
Тепловое реле холодильника включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.В небольших, мощностью до нескольких десятков ватт однофазных асинхронных двигателях вращающееся поле и в период пуска и во время работы получают более простым способом. Двигатель делают с явнополюсным статором. Часть площади полюсного наконечника охватывают короткозамкнутым витком, в котором индуктируется эдс и возникает ток. Под влиянием тока в витке поток полюса раздваивается и фаза потока под частью полюсного наконечника, охваченной короткозамкнутым витком, сдвигается по сравнению с основным потоком. В результате поле становится вращающимся, однако не круговым, так как нельзя таким образом достичь сдвига фаз на 90°, а эллиптическим, но достаточным для возникновения небольшого пускового момента. Такие двигатели называют однофазными с экранированными полюсами или с коротко-замкнутыми витками на полюсе. Они широко применяются, например, в различных бытовых вентиляторах, так как пуск вентиляторов происходит с малым моментом сопротивления на валу.
В отличие от однофазных двухфазные двигатели питаются от двухфазной сети. Они используются в основном в различных системах управления, в которых сдвиг фаз питающей сети создается самой схемой. Их статор имеет также две обмотки, одна из которых носит название обмотки возбуждения, а вторая — обмотки управления. Обмотка возбуждения подключена к сети с неизменным по амплитуде напряжением. Регулирование частоты вращения двигателей осуществляется изменением амплитуды тока обмотки управления или его фазы. Иногда применяется и тот и другой метод управления одновременно. При равенстве токов и сдвиге их фаз на 90° поле двигателя круговое. При изменении тока обмотки управления или его фазы поле становится эллиптическим, электромагнитный момент двигателя и частота его вращения уменьшаются.
Двигатели рассчитывают так, что при пульсирующем поле они работать не могут. Поэтому при уменьшении сдвига фаз токов в обмотках до нуля или снятия напряжения с обмотки управления двигатели останавливаются. Как только фаза тока в обмотке управления изменится или подано напряжение при постоянном сдвиге фаз, двигатели начинают работать. Обмотки двухфазных двигателей в большинстве случаев одинаковые и симметрично расположены в пазах статора.
Рис. 8. Короткозамкнутый виток на полюсе асинхронного однофазного двигателя:
1 — короткозамкнутый виток, 2 — обмотка, 3 — сердечник
Особенности схем обмоток одно- и двухфазных двигателей
Однофазные асинхронные двигатели мощностью до 1, редко до 2 кВт, широко применяют в условиях, когда имеется только однофазная сеть, например, для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели будут хуже, чем у трехфазных, а пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не сможет начать работать. Поэтому в статорах однофазных двигателей устанавливают две обмотки, которые часто называют также фазами обмотки. Одна из них — главная, или рабочая, другая — вспомогательная.
Рис. 39. Оси обмоток двух- и однофазных двигателей: а — расположение катушек разных фаз в пазах статора, б — условное изображение фаз обмотки
Обмотки располагаются по пазам статора так, что их оси сдвинуты друг относительно друга в пространстве на электрический угол 90° (рис. 39). Если фазы токов обмоток будут не одинаковы, т. е. сдвинуты во времени, то электромагнитное поле в двигателе становится вращающимся. Энергетические показатели двигателя улучшаются и появляется пусковой момент. При сдвиге фаз токов на электрический угол 90° и одинаковых мдс обмоток поле становится круговым и кпд однофазного двигателя будет наибольшим. Добиться этого можно, выполнив обе обмотки двигателя одинаковыми и подключив последовательно к одной из них конденсатор (рис. 40, а). Такие двигателями называются однофазными конденсаторными.
Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают Ср. Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой момент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включают второй — пусковой конденсатор (С). Суммарная емкость рабочего и пускового конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключают, а рабочий остается включенным (рис. 40, б). Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.
Рис. 40. Схемы включения однофазных двигателей:
а — с постоянно включенным конденсатором (конденсаторные двигатели), б — с рабочим и пусковым конденсаторами, в — с пусковым элементом; Ср — рабочий конденсатор, Сп— пусковой конденсатор; ПЭ — пусковой элемент
Рис. 41. Схема однослойной концентрической обмотки с т—2, Z— 16, 2р—2, выполненной вразвалку
В однофазных конденсаторных двигателях обе обмотки, и главная и вспомогательная, выполняются одинаковыми, т. е. с одинаковым числом витков и катушек, из одинакового обмоточного провода. Они располагаются в одинаковом числе пазов, симметрично со сдвигом осей на 90°.
В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками (рис. 41). Они имеют либо четыре выводных конца — начала и концы главной и вспомогательной фаз, либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения — общая точка обмотки. Обозначение выводов обмоток приведено в табл. 3.
Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин (см. рис. 24). Если же число q нечетное, то большие катушки в группах делают «расчесанными», т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону (рис. 42).
Рис. 42. Схема однослойной концентрической обмотки с т— 2, Z—24, 2р=4, q= 3, выполненной с «расчесанными» катушками
Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем сами двигатели. Поэтому большинство однофазных асинхронных двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пустить, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называют двигателями с пусковой фазой.
Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем включения последовательно с ней так называемого пускового элемента (см. рлс. 40, в) — конденсатора или резистора (чаще всего используют более дешевый — резистор).
Пусковые обмотки, как правило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают 2/3 всех пазов статора. В оставшихся 2/3 пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы (рис. 43).
Рис. 43. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с Z=24, 2р=4; C1— С2 — главная фаза, В l— В2 — пусковая фаза
Рис. 44. Образование бифилярных витков
Рис. 45. Схема обмотки с катушками, имеющими бифилярные витки:
а — изображение катушек с би- филярными витками на схеме обмотки, б — схема обмотки с Z = 24, 2р=4
Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой. При этом длина провода обмотки возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и мдс остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки (рис. 44). Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Бифилярная секция имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначают петлей (рис. 45, а). На рис. 45, б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы на схеме обозначают, что они выполнены с частично бифилярной намоткой.
Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключить от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя.
Рис. 46. Короткозамкнутый виток на полюсе асинхронного однофазного двигателя:
1 — короткозамкнутый виток, 2 —обмотка, 3 — сердечник
Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках. Тепловое реле холодильника включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.
В небольших, мощностью до нескольких десятков ватт однофазных асинхронных двигателях вращающееся поле и в период пуска и во время работы получают более простым способом. Двигатель делают с явнополюсным статором. Часть площади полюсного наконечника охватывают короткозамкнутым витком (рис. 46), в котором индуктируется ЭДС и возникает ток. Под влиянием тока в витке поток полюса раздваивается и фаза потока под частью полюсного наконечника, охваченной короткозамкнутым витком, сдвигается по сравнению с основным потоком. В результате поле становится вращающимся, однако не круговым, так как нельзя таким образом достичь сдвига фаз на 90°, а эллиптическим, но достаточным для возникновения небольшого пускового момента. Такие двигатели называют однофазными с экранированными полюсами или с короткозамкнутыми витками на полюсе. _ Они широко применяются, например, в различных бытовых вентиляторах, так как пуск вентиляторов происходит с малым моментом сопротивления на валу. Основным достоинством двигателей с экранированными полюсами является простота их конструкции и технологии изготовления.
В отличие от однофазных двухфазные двигатели питаются от двухфазной сети. Они используются в основном в различных системах управления, в которых сдвиг фаз питающей сети создается самой схемой. Их статор имеет также две обмотки, одна из которых носит название обмотки возбуждения, а вторая — обмотки управления. Обмотка возбуждения подключена к сети с неизменным по амплитуде напряжением. Регулирование частоты вращения двигателей осуществляется изменением амплитуды тока обмотки управления или его фазы. Иногда применяется и тот и другой метод управления одновременно. При равенстве токов и сдвиге их фаз на 90° поле двигателя круговое. При изменении тока обмотки управления или его фазы поле становится эллиптическим, электромагнитный момент двигателя и частота его вращения уменьшаются.
Двигатели рассчитывают так, что при пульсирующем поле они работать не могут. Поэтому при уменьшении сдвига фаз токов в обмотках до нуля или снятия напряжения с обмотки управления двигатели останавливаются. Как только фаза тока в обмотке управления изменится или подано напряжение при постоянном сдвиге фаз, двигатели начинают работать. Обмотки двухфазных двигателей в большинстве случаев одинаковые и симметрично расположены в пазах статора.
КОНТРОЛЬНЫЕ ВОПРОСЫ
- Какую обмотку называют однослойной концентрической?
- В чем состоит особенность концентрических обмоток вразвалку?
- Чем отличаются равнокатушечные однослойные обмотки от концентрических?
- Как изображается катушечная группа двухслойной обмотки на условной схеме?
- Во сколько параллельных ветвей можно соединить двух- и однослойную обмотки шестиполюсной машины?
- Чем отличается обмотка с дробным числом пазов на полюс и фазу от обмотки с целым q?
- Какие двигатели называют многоскоростными и в чем особенность их обмоток?
- Как называются обмотки двухфазных двигателей?
- Какие двигатели называют однофазными конденсаторными?
- Какие схемы применяют для пуска однофазных асинхронных двигателей?
- Назад
- Вперёд
Асинхронные двигатели с конденсаторным пуском | Вопросы для собеседования по электротехнике
Конструкция этого типа двигателей аналогична резистивным двигателям с расщепленной фазой. Отличие в том, что последовательно со вспомогательной обмоткой включен конденсатор. Емкостная цепь потребляет опережающий ток, эта функция используется в этом типе для увеличения фазового угла разделения α между двумя токами I m и Ist.
В зависимости от того, остается ли конденсатор в цепи постоянно или отключается от цепи с помощью центробежного выключателя, эти двигатели классифицируются как
1. Конденсаторный пусковой двигатель и 2. Конденсаторный пусковой двигатель
Подключение конденсаторного пускового двигателя показано на рис. 1(а). Ток I м отстает от напряжения на угол Φ м , а благодаря конденсатору ток Iст опережает напряжение на угол Φ ст . Следовательно, существует большая разность фаз между двумя токами, которая составляет почти 90 o , что является идеальным случаем. Векторная диаграмма показана на рис.1(б).
Рис. 1. Конденсаторный пусковой двигатель |
Пусковой крутящий момент пропорционален ‘ α ’, поэтому такие двигатели создают очень высокий пусковой крутящий момент.
При приближении скорости к 75-80% синхронной скорости происходит отключение пусковой обмотки за счет срабатывания центробежного выключателя. Конденсатор остается в цепи только при пуске, поэтому он называется двигателем с пусковым конденсатором.
Клавиша точка : В случае запуска двигателя с конденсатором, центробежный переключатель отсутствует, и конденсатор постоянно остается в цепи. Это улучшает коэффициент мощности.
Схематическое изображение такого двигателя показано на рис. 2.
Рис. 2 Конденсаторный пусковой конденсаторный двигатель |
Векторная диаграмма остается такой же, как показано на рис.1(b). Производительность не только при пуске, но и в рабочем состоянии также зависит от конденсатора C, поэтому его значение должно быть рассчитано таким образом, чтобы обеспечить компромисс между наилучшим пусковым и рабочим состоянием. Следовательно, пусковой момент, доступный в таком типе двигателя, составляет от 50 до 100% крутящего момента при полной нагрузке.
Направление вращения в обоих типах можно изменить, поменяв местами подключение основной обмотки или вспомогательной обмотки. Постоянно включенный в цепь конденсатор улучшает коэффициент мощности. Эти двигатели более дорогие, чем двигатели с расщепленной фазой.
Значение конденсатора можно выбрать в соответствии с требованием пускового момента, пусковой момент может составлять от 350 до 400 % крутящего момента при полной нагрузке. Характеристики момент-скорость показаны на рис.3.
Рис.3 Моментно-скоростная характеристика конденсаторного двигателя с расщепленной фазой |
Области применения
Эти двигатели имеют высокий пусковой момент и, следовательно, используются для тяжелых пусковых нагрузок. Они используются для компрессоров, конвейеров, измельчителей, вентиляторов, воздуходувок, холодильников, кондиционеров и т. д. Это наиболее часто используемые двигатели. Двигатели с конденсаторным пуском используются в потолочных вентиляторах, воздуходувках и системах циркуляции воздуха. Эти двигатели доступны до 6 кВт.
Пример : Электродвигатель с конденсаторным пуском мощностью 250 Вт, 230 В, 50 Гц имеет следующие импедансы в состоянии покоя.
Основная обмотка, Z м = 7 + j5 Ом
Вспомогательная обмотка, Z a = 11,5 + j5 Ом токи в двух обмотках. Нарисуйте схему и векторную диаграмму двигателя.
Решение : Пусть X c будет емкостным реактивным сопротивлением, подключаемым к вспомогательной обмотке при запуске, как показано на рис. 1(а).
Рис. 1(а) |
. . . Z a = 11,5 + j (5-X c ) Ω
= 7 + j5 Ω = 8,6023
Теперь I a и I m mus t имеют разность фаз 90 o . I m будет отставать от напряжения на 35,5376 o , поэтому I a должны опережать напряжение на (90 o – 35,5376 o ), то есть 53,4624 o , как показано на рис. 1(b).
Рис. 1(b) |
Фазовый угол Z a is,
Φ a =tan -1 ((5 – X c )/11,5) = — 53.4624 o
Ключевая точка : В качестве выводов фазовый угол т.е. должен быть отрицательным, поэтому принимается как
тангенс (-53,4624 о ) = (5 – X c )/11,5, т.е.
-1,34956 = (5 – X c )/11,5
. . . X c = 20,52 Ом = 1/(2πfC)
. . . C = 1/(2π x 50 x 20,52) = 155,1217 мкФ
Integrated Publishing — ваш источник военных спецификаций и образовательных публикаций
Администрация — Навыки, процедуры, обязанности и т. д. военного персонала
Продвижение — Военный карьерный рост книги и т. д.
Аэрограф/метеорология
— Метеорология
основы, физика атмосферы, атмосферные явления и др.
Руководства по аэрографии и метеорологии военно-морского флота
Автомобилестроение/Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным деталям, руководства по деталям дизельных двигателей, руководства по деталям бензиновых двигателей и т. д.
Автомобильные аксессуары |
Перевозчик, персонал |
Дизельные генераторы |
Механика двигателя |
Фильтры |
Пожарные машины и оборудование |
Топливные насосы и хранение |
Газотурбинные генераторы |
Генераторы |
Обогреватели |
HMMWV (Хаммер/Хаммер) |
и т. д…
Авиация — Принципы полетов,
авиастроение, авиационная техника, авиационные силовые установки, справочники по авиационным частям, справочники по авиационным частям и т. д.
Руководства по авиации ВМФ |
Авиационные аксессуары |
Общее техническое обслуживание авиации |
Руководства по эксплуатации вертолетов AH-Apache |
Руководства по эксплуатации вертолетов серии CH |
Руководства по эксплуатации вертолетов Chinook |
и т.д…
Боевой — Служебная винтовка, пистолет
меткая стрельба, боевые маневры, штатное вооружение поддержки и т. д.
Химико-биологические, маски и оборудование |
Одежда и индивидуальное снаряжение |
Боевая инженерная машина |
и т.д…
Строительство — Техническое администрирование,
планирование, оценка, планирование, планирование проекта, бетон, кирпичная кладка, тяжелый
строительство и др.
Руководства по строительству военно-морского флота |
Совокупность |
Асфальт |
Битумный корпус распределителя |
Мосты |
Ведро, Раскладушка |
Бульдозеры |
Компрессоры |
Обработчик контейнеров |
дробилка |
Самосвалы |
Землеройные машины |
Экскаваторы | и т. д…
Дайвинг — Руководства по водолазным работам и спасению различного снаряжения.
Чертежник — Основы, методы, составление чертежей, эскизов и т. д.
Электроника — Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компонентам компьютеров, руководства по электронным компонентам, руководства по электрическим компонентам и т. д.
Кондиционер |
Усилители |
Антенны и мачты |
Аудио |
Батареи |
Компьютерное оборудование |
Электротехника (NEETS) (самая популярная) |
техник по электронике |
Электрооборудование |
Электронное общее испытательное оборудование |
Электронные счетчики |
и т.д…
Машиностроение — Основы и приемы черчения, составление проекций и эскизов, деревянное и легкокаркасное строительство и т. д.
Военно-морское машиностроение |
Армейская программа исследований прибрежных бухт |
и т. д…
Еда и кулинария — Руководства по рецептам и оборудованию для приготовления пищи.
Логистика — Логистические данные для миллионов различных деталей.
Математика — Арифметика, элементарная алгебра, предварительное исчисление, введение в вероятность и т. д.
Медицинские книги — Анатомия, физиология, пациент
уход, средства первой помощи, фармация, токсикология и т. д.
Медицинские руководства военно-морского флота |
Агентство регистрации токсичных веществ и заболеваний
Военные спецификации — Государственные спецификации MIL и другие сопутствующие материалы
Музыка — Мажор и минор масштабные действия, диатонические и недиатонические мелодии, паттерны такта, и т.д.
Основы ядра — Теории ядерной энергии, химия, физика и т.