Схема подключения биметаллических радиаторов: как подключить батареи правильно, соединение труб

Содержание

Основные схемы и способы подключения радиаторов отопления

Схема обвязки чугунного радиатора

Содержание:

Со временем эффективность системы отопления падает и возникает необходимость замены того или иного компонента.

Самостоятельная замена частей отопительной системы по плечу любому, достаточно лишь наличие теоретической информированности в данном вопросе и инструмента необходимого в работе.

Самая частая причина замены батарей – это функциональное устаревание отдельных элементов отопления, которое влечет за собой уменьшение отдачи тепла.

Также часто меняют старые чугунные батареи на алюминиевые по причине совсем не эстетичного и громоздкого вида радиаторов старого образца. Приятная внешность биметаллических радиаторов позволяет вписать их в любой интерьер.

После покрытия качественными красками такие агрегаты смотрятся достаточно достойно, и не требуется их прятать за занавесками или обустраивать специальные короба, которые к тому же крадут пространство комнат.

Замена радиаторов отопления в случае капитального ремонта дома должна быть осуществлена на одном из первых этапов. К их монтажу стоит приступать сразу после замены окон.

Когда лучше менять батареи?

Простая замена труб — это большой ремонт

Мнения специалистов по поводу выбора оптимального для замены или первоначального монтажа системы отопления кардинально разошлись.

Одни считают лучшим временем года для данной процедуры лето, когда трубы свободны от воды и не требуется дополнительный её слив.

Другие специалисты утверждают, что необходимо проводить монтаж компонентов отопления только на рабочей системе, когда теплоноситель внутри – т.е. зимой.

Такая позиция объясняется тем, что обнаружение и устранение протечек возможно сразу же после монтажа.

Итак, если вы выбрали для смены батарей лето, то вам не придется тратить время на отключение воды и спуск стояков. Летом вас встретят пустые батареи и ограничений по времени на установку у вас нет.

Вы можете работать в спокойном темпе и не переживать, что из-за вас без отопления остался целый дом, если замена батарей происходит в многоквартирном доме.

Однако у такого способа есть существенный минус – при подаче воды в систему с началом отопительного периода в случае некачественного соединения элементов обязательно случится протечка. Если вас вдруг не окажется дома, то неизбежно затопление, как собственной квартиры, так и соседей на несколько этажей.

Для осуществления замены батарей в зимнее время вам потребуется вызвать специалиста из теплосетей, который отключит подачу воды в стояк и спустит систему.

Важно: После отключения и опустошения труб, вам необходимо в максимально короткий срок осуществить монтаж радиаторов, помня о том, что без тепла остались не только вы, но и ваши соседи. Лучше выбрать для данных работ хорошую и, насколько это возможно зимой, теплую погоду.

После всех проведенных работ специалисты осуществят пуск воды.

В этот момент стоит проверить на герметичность все стыки и соединения. В случае обнаружения протечки стоит немедленно устранить щели, дабы избежать затопления. Как видите, в данном способе шанс неконтролируемого затопления минимален в сравнении с летней заменой радиаторов.

Последовательность работ при замене батарей

Процесс сварки труб отопления

В подавляющем большинстве случаев, замена элементов системы отопления производится следующим образом:

  1. Производится демонтаж старой батареи.
  2. Выполняется навес на стену нового радиатора.
  3. Делается нарезка на вводе в стояк.
  4. Радиатор подсоединяется к стояку.

Монтаж радиатора на стену производится путем навеса на три кронштейна (два сверху, один снизу батареи)

Важно: Если ваш радиатор состоит более чем из 10 секций, то настоятельно рекомендуется установить дополнительное крепление, а лучше даже несколько. Читайте статью как заменить батареи в доме своими руками.

Тяжесть батареи распределяется по верхним креплениям, нижнее крепление предотвращает болтание батареи от стены.

Стандарты расстояний, на которых должен быть выполнен монтаж радиатора:

  • от подоконника до батареи должно быть оставлено 10 сантиметров;
  • от пола до батареи расстояние равное 12 сантиметрам;
  • от стены до батареи не менее 5 сантиметров.

Процесс монтажа должен исключать перегибы на подходящих к батареи трубах по следующим причинам:

  • перегиб верхней трубы влечет постоянное попадание воздуха;
  • перегиб нижней трубы грозит образованием воздушной пробки.

Схемы изгиба труб при подключении радиаторов

Комфортная температура в доме напрямую зависит от правильного выбора типа отопительной системы. Также выбор определенной системы повлияет на размер и окончательную стоимость работ.

Если вы осуществляете работы самостоятельно, то в данном случае играет роль различная стоимость и количество расходных материалов.

Схема подключения к однотрубной системе отопления

Такая система отопления — это классика организации отопления. (от первого этажа дома к последующим).

Схема подключения батарей к однотрубной и двухтрубной системе

Однако, не оснащая подобную систему специальными регуляторами, не представляется возможным равномерное распределение тепла – на первых этажах будет недостаточный теплообмен.

Схема подключения к двухтрубной системе отопления

Схема подключения к однотрубной и двухтрубной системе в двухэтажном доме

При организации системы двух труб подвод горячей воды к батареям организован по одной трубе, а остывшая отводится по совершенно иной.

Системы с «обраткой» особенно популярны в частных домах.

В многоэтажных домах такой вид подключения большая редкость, это объясняется большим количеством соединений и как правило существенному увеличению объема коммуникаций, что влияет и на стоимость и на длительность работ.

Преимущество подобного соединения является равномерное распределение тепла по всем помещениям. Также возможно установить вентили на каждую батарею и регулировать подачу тепла.

Монтаж отопительных систем производится по различным схемам, каждая из которых обладает рядом преимуществ и недостатков.

Схемы подачи и отвода теплоносителя

Самой часто применяемой можно назвать схему, когда монтаж основной трубы происходит в отвод батареи, расположенный сверху, а отвод организован с другой стороны в низу.

Следующим вариантом может быть схема подключения по диагонали.

Её используют при монтаже длинных радиаторов – более 14 секций. Основной ввод подводят в таком случае к верхнему отводу радиатора, а отвод «обратки» подключается снизу диагонально вводу стороны батареи.

Схемы подключения к вертикальной и горизонтальной

Еще существует способ, использующийся для подключения системы теплых полов. Трубы при данном способе проводят вдоль плинтусов.

Итак, теперь вы ознакомлены со всеми нюансами монтажа радиаторных батарей и можете сделать выбор – подключать их самостоятельно, или все же обратится за помощью к профессионалам.

Если прочитав данный материал, вы чувствуете, что такая работа вам под силу, то можете смело приступать к делу. Установка батарей своими руками имеет ряд преимуществ – вы будете на все сто процентов уверены в качестве материалов и самих соединений, также вы существенно сэкономите свой бюджет так, как вам не придется оплачивать работу мастерам.

Также вы сможете спланировать систему отопления таким образом, чтобы температура в помещениях была комфортна именно для вашего проживания. Однако у профессиональных монтажников тоже есть ряд своеобразных козырей.

Первый и основной – это опыт. Можно сколько угодно читать теорию, однако ее никак не заменит практика.

Именно практический опыт позволит произвести монтаж в максимально кратчайшие срок и как правило без последующих доработок и переделок.

схема подключения биметаллических, алюминиевых и стальных батарей с нижней подводкой

Радиаторы отопления с нижним подключением не только прогреют ваше жилье в зимний период, но и гармонично впишутся в обстановку. Трубы скрываются под полом, а вся система отопления не портит интерьер.

На качество отопления помещения не влияет ни боковая, ни нижняя схема подключения радиаторов. Тепло распределяется равномерно в обоих случаях. Однако нижняя схема смотрится изящней. В этой статье мы расскажем именно о ней.

Виды систем

Прежде чем установить батареи, нужно определиться с отопительной системой. Она бывает однотрубной и двухтрубной.

Однотрубная

Однотрубную схему чаще всего используют в высотных домах. Для её установки не нужно много деталей и усилий. Но регулировать прогревание батареи в однотрубной системе нельзя, потому что показатели задаются заранее, и изменить их впоследствии невозможно.

Есть у неё и ещё один существенный недостаток – воздушные пробки. Поэтому в каждом высотном доме система отопления снабжена специальными кранами для спускания воздуха.

Тем не менее у однотрубной системы много достоинств:

  1. На чердаке трубы не устанавливают, поэтому тепло сохраняется лучше.
  2. Подключать батареи можно до завершения строительства.
  3. Благодаря уровневому обогреву, температура помещения не зависит от того, что происходит на других этажах.
  4. Чтобы сэкономить пространство, можно размещать управление отоплением в одном месте.
  5. Можно регулировать температуру в различных комнатах по-разному.

Двухтрубная

В двухтрубной системе по одной трубе поступает горячая вода, а после охлаждения вытекает по другой. При этом батареи укладываются параллельно. В такой системе можно регулировать температуру в помещении. Для этого конструкцию оснащают вентилями.

Для установки двухтрубного подключения с нижней подводкой понадобится больше деталей, чем для верхнего. Зато благодаря вертикальному соединению приборов по стояку, не образовываются воздушные пробки.

Таким образом решаются сразу две проблемы. Во-первых, поступающая вода горячее сточной. Во-вторых, компенсируется высокое давление в многоэтажных домах.

Выбираем радиатор

Теперь настало время подобрать радиатор. Итак, батареи отопления бывают:

  • чугунные;
  • алюминиевые;
  • стальные;
  • биметаллические.

Биметалл

Сегодня очень популярны биметаллические радиаторы, которые можно подсоединить собственными силами при помощи переходных устройств. Купить их можно в любом специализированном или интернет-магазине. Чтобы установить такую батарею отопления правильно, достаточно внимательно изучить схему подключения. С этим справятся даже те, кто раньше не сталкивался с монтажом.

Биметаллические радиаторы выполнены из двух типов металла. Снаружи – алюминий, внутри – сталь. Такой радиатор:

Отлично сохраняет тепло

Благодаря стали, из которой выполнена внутренняя поверхность биметаллической батареи, контакт с водой максимально безопасен. Сталь прекрасно проводит тепло, поэтому алюминиевое покрытие легко нагревается и нагревает воздух в помещении.

Безопасен

Зоны контакта защищены специальными прокладками. Поэтому они безопасны в конструкциях с любой подводкой.

Прочен и долговечен

Биметаллические батареи выдерживают высокое давление. Неочищенная вода, циркулирующая по ним, не разрушает конструкцию изнутри. Стало быть, вам не придётся разбирать напольное покрытие из-за аварии.

Отлично выглядит

Секции биметаллического радиатора качественно и красиво собраны. Поэтому он будет хорошо смотреться в любой обстановке.

Алюминиевый радиатор

В отличие от биметаллической батареи, в алюминиевой нет внутреннего стального сердечника. За счёт этого алюминиевые батареи отопления весят существенно меньше, но подвержены внутренней коррозии от высокого содержания щёлочи в проточной воде.

Стальной

Стальные батареи весят не в пример больше алюминиевых. Казалось бы, чем внушительней – тем надёжней. К сожалению, это не так. Толщина стенок стального радиатора варьируется от 1,25 до 2,5 см. Не факт, что он выстоит против коррозии. К тому же стальные батареи рассчитаны на невысокое давление.

Поэтому устанавливать их в многоэтажных домах не рекомендуется.

Как подключить радиатор

Подключить радиатор можно несколькими способами:

  • по диагонали;
  • по параллели;
  • по последовательному принципу;
  • прикрепить батареи к прибору сбоку;
  • нижнее подключение.

Вид подключения при нижней подводке к радиатору.

Ещё один способ — использовать блок нижнего подключения, с которым радиатор отсоединяется от сети без слива воды. То есть в остальных местах отопительная система продолжает исправно функционировать.

Установка радиаторов с нижней подводкой

Как мы обещали в начале статьи, рассмотрим устройства с нижней подводкой подробнее. Монтировать их можно по-разному:

  • односторонне;
  • разносторонне;
  • от низа к низу;
  • центровое подключение.

Не забывайте, что радиаторы отопления отвечают за рассеивание теплого воздуха, который мешает холодному проникнуть в помещение. Поэтому устанавливать их нужно там, где холоднее. Чаще всего приборы крепят под окном.

  1. Вот несколько принципов, по которым нужно монтировать батареи с нижним подключением:
  2. Отдаленность от края подоконника до верхнего края прибора не должна быть меньше 11 см.
  3. От пола до нижнего края устройства — не меньше 13 см.
  4. Отдаление от стены на 2-3 см.

После того как подберёте правильное место для монтажа, зафиксируйте мультифлексы гайками на отвесной части конструкции. Снизу закрепите трубу.

Схемы подключения радиаторов отопления: одностороннее, двухстороннее, по диагонали

Для рассмотрения возможных вариантов подключения к системе отопления отопительных приборов нужно некоторое внимание уделить видам самой системы, а точнее разводке трубопроводов. От размещения в помещении трубопроводов и типа разводки напрямую зависит схема подключение радиаторов.

Существуют две широко применяемые исполнения разводки – однотрубная и двухтрубная:

  1. При однотрубной схеме теплоноситель (вода или, в некоторых случаях, специальная среда) проходит по подающей трубе к последовательно подключенным радиаторам, постепенно остывая. Иными словами, подающий трубопровод “превращается” в обратный.
  2. При двухтрубном варианте организации отопления способ подключения радиаторов отопления – параллельный. То есть, подающая и обратная ветки независимы друг от друга. Соединение их происходит через конечный прибор системы.

Практически все радиаторы при покупке унифицированы под любое соединение, имея 4 возможные точки подключения (2 верхние и 2 нижние). В комплект обязательно входят заглушки, а также воздушный клапан (воздухоотводчик, кран Маевского и пр.) для удаления воздушных “пробок”. Рассмотрим типовые подключения радиаторов, но перед рекомендуем вам посмотреть видео – будет очень полезно и познавательно:

Одностороннее присоединение подачи и обратки

Для удобства выходящую из радиатора трубу будем называть “обраткой” и для однотрубной системы. Эта схема подключения наиболее часто применяется в этажных многоквартирных домах. Чаще всего в таких строениях устраивается система с верхней (чердачной) разводкой.

Схема одностороннего подключения радиатора к однотрубной отопительной системе

Эффективность такого подключения практически стопроцентная, но при условии небольшого количества секций подключаемого прибора (до 12-15). С увеличением количества регистров (секций), при боковом подключении к прибору, снижается прогрев противоположного отдаленного участка, что приводит к снижению теплоотдачи.

Для малометражных советских комнат, в которых не требовались мощные радиаторы, такие системы и подключения были оптимальны. Одностороннее – экономное подключение с точки зрения расхода материала (типовая стояковая система не требует длинных отводов).

Пример однотрубного бокового подключения радиатора

Чтоб избежать резкого остывания теплоносителя при однотрубной системе с односторонним последовательным подключением отопительных радиаторов, между патрубками входа и выхода воды предусматривается перемычка (замыкающий участок). Часть теплоносителя с параметрами, близкими к начальным, в таком случае, проходит мимо прибора к следующему. Система с замыкающими участками требует детального гидравлического и теплового расчета для определения нужных диаметров всех участков.

Нужно отметить, что нарушать такую обвязку самовольным демонтажем перемычки (как это довольно часто происходит в многоэтажках с централизованной подачей тепла) ни в коем случае нельзя.

Подключение радиатора отопления по диагонали

Для радиаторов с пятнадцатью и более секциями, если позволяет установка прибора, применим иной способ обвязки: подключение по диагонали. То есть, по ходу перемещения воды – сверху вниз с разных сторон. Такая схема дает максимальный равномерный прогрев всех участков прибора, а величина теплового потока наиболее приближена к паспортной.

Схема подключения радиатора по диагонали к двухтрубной отопительной системе

Неудобство такого присоединения замечается при однотрубном теплоснабжении – теплоноситель, проходя последовательно через каждый радиатор, значительно теряет свой температурный показатель. Тепловой напор от конечных приборов при большой длине ветки или стояка будет мал. Поэтому такую обвязку применяют только для двухтрубного исполнения системы.

Отметим, что эти две схемы подключения радиаторов отопления предусматривают подачу горячей воды в верхний патрубок, а обратный трубопровод подключается к нижнему.

Такая врезка наиболее эффективна с точки зрения физики процесса циркуляции теплоносителя и теплоотдачи. В противном случае, отдача тепла от радиатора воздуху помещения снижается до 40-50%.

Нижнее двухстороннее подключение

Отметим, что радиаторы отопления с нижним подключением отдают помещению на 12-15% меньше тепловой энергии от номинальной мощности прибора. Это происходит из-за того, что гидравлическое сопротивление прохода теплоносителя мимо прибора меньше препятствия проходу через радиатор.

Нижнее двухстороннее подключения радиатора отопления

Такого подключения стараются избегать, но часто конфигурация отопительной системы (особенно индивидуального исполнения в частном доме с прокладкой трубопроводов у пола) диктует такую обвязку. Подключение к системе отопления алюминиевых или биметаллических радиаторов сокращает потери величины теплоотдачи за счет высокого значения теплопроводности материалов, из которых они изготовлены.

Запорная арматура – важный элемент системы отопления

Обвязка радиатора играет большую роль не только в подаче и распределении теплоносителя по прибору отопления. На подающем и обратном патрубках устанавливаются регулирующие и запорные устройства (арматура). В первую очередь запорные вентили, позволяющие отсечь подачу воды в радиатор для осуществления его замены или ремонтных работ не нарушая циркуляции жидкости по системе.

Элементы регулирующей и запорной арматуры

На подающем отводе к прибору практически всегда предусматривается арматура с устройством температурного регулирования путем изменения проходного сечения трубы. Такой арматурой осуществляется наладка всей системы (обеспечивается равный прогрев всех приборов и предотвращается перегрев первых по ходу радиаторов). Регулирование строго необходимо в однотрубных системах.

Заметим, что согласно правил эксплуатации отопительных систем, регулировка расхода запорными устройствами не разрешается.

Обвязка радиатора в некоторых случаях оснащается дренажным отводом, если прибор установлен в нижней точке системы или ее части. Дренажный вентиль может выполняться как на подводящей трубе (обычно обратной), так и в “пробке” самого прибора.

К запорным, регулирующим и дренажным элементам необходимо обеспечить свободный доступ, а в декоративных панелях выполнить отверстия.

Правильное подключение биметаллических радиаторов отопления

Чтобы максимально повысить эффективность обогрева помещений необходимо позаботиться, чтобы подключение биметаллических радиаторов отопления было выполнено в соответствии со всеми стандартами и правилами. Процесс подключения таких радиаторов не должен вызвать у Вас особых сложностей, однако в случае, когда не имеется хотя бы минимальных сантехнических навыков, к выполнению этой работы лучше всего привлечь специалистов. Если же Вы обладаете некоторыми навыками по монтажу трубопроводов, а также нужным инструментом, то можете смело приступать к самостоятельному подключению.

Подключение биметаллических радиаторов отопления: ключевые нюансы

Биметаллические радиаторы отличаются от обычных чугунных батарей тем, что для их изготовления используются два разных металла: сталь и алюминий. Первая используется во внутренней конструкции радиатора, в то время как внешний корпус изготовлен из алюминия. Такая конструкция позволяет сочетать преимущества алюминиевых и стальных радиаторов, а именно:

1. Предотвращать коррозию и окисление при контакте с веществами, растворёнными в воде;

2. Обеспечивать высокую эффективность обогрева за счёт повышенных свойств теплообмена у алюминия.

Подключение биметаллических радиаторов отопления начинается с подготовки всех необходимых для этого материалов. В частности, Вам потребуется:

  • Монтажный комплект, который обычно продаётся вместе с радиатором;
  • Элементы трубопровода;
  • Набор ключей и инструментов для монтажа труб;
  • Фитинги, краны и переходники;
  • Радиатор.

Существует несколько схем подключения радиаторов. Для биметаллических радиаторов наиболее предпочтительным считается диагональное подключение, когда ввод воды осуществляется сверху, а вывод снизу. Также перед подключение радиатора стоит учитывать, что оптимальным количеством секций считается 7-8, поэтому если необходимо обогреть помещение большой площади, то лучше установить два радиатора с оптимальным числом секций, нежели один, но большой.

Чтобы работа была выполнена качественно, предварительно необходимо составить детальную схему отопления, на которой будут отображены все детали. Само подключение радиатора начинается с его крепления на стену, для чего используется подготовленный монтажный комплект. Далее через фитинги и краны подключается трубопровод, а также краны Маевского, которые предназначены для быстрого удаления воздуха их радиатора.

Приобрести все материалы, необходимые для монтажа системы отопления, Вам предлагает интернет-магазин «СанКомф», где покупатели найдут лучшие цены на любые товары.

Подключение радиатора отопления

Биметаллические радиаторы все больше вытесняют алюминиевые и устаревшие аналоги из чугуна. Это связано с тем, что они спокойно выдерживают высокое давление в централизованной системе отопления и при этом обладают отличной теплоотдачей. Комфортный микроклимат в помещении, при минимальном расходе энергоносителя, невозможно обеспечить без правильного монтажа оборудования. Схема подключения биметаллических радиаторов отопления, от которой зависит эффективность обогрева, практически ничем не отличается от других разновидностей отопительного оборудования, и зависит от особенностей конкретного помещения.

Факторы, влияющие на эффективность системы отопления

На температуру в доме и счета за использованный энергоноситель напрямую влияют следующие факторы:

  • схема подключения;
  • место установки радиаторов в помещении;
  • тепловая мощность оборудования.

Длина радиаторов и их количество рассчитывается для каждой комнаты индивидуально, в зависимости от площади, схемы подключения, теплоизоляции наружных стен и мощности батарей, заявленной заводом изготовителем.

В большинстве случаев оптимальным местом для установки радиаторов в квартире является ниша под окном. В случае если промежуток между окнами достаточно большой, устанавливают дополнительные батареи между ними. В помещениях, не имеющих оконных проемов, таких как прихожая или ванна, радиаторы монтируют на глухую стену или в углу.

Подключение биметаллических радиаторов отопления производится согласно следующим правилам:

  • все радиаторы монтируются вертикально и находятся на одном уровне;
  • радиаторы устанавливают посередине окна или со смещением от центра не более 20 мм;
  • расстояние между подоконником и батареей — 100-120 мм;
  • от пола до батареи — 80-120 мм;
  • длина радиатора должна составлять не меньше 75% длины оконного проема.

Уменьшить потери тепла поможет теплоотражающий экран, который устанавливается между стеной и батареей.

Разновидности отопительных систем

Количество тепла, излучаемое радиатором, напрямую зависит от выбранного типа разводки трубопровода. Наиболее часто используются однотрубная и двухтрубная системы отопления. Биметаллические радиаторы имеют универсальную конструкцию и пригодны для подключения к любому типу разводки.

Однотрубная система

При использовании такой системы подключение радиаторов отопления производится последовательно к одному трубопроводу, по которому движется теплоноситель. Поочередно проходя через все батареи, он постепенно остывает и возвращается в отопительный котел или в стояк, если это многоквартирный дом. Таким образом подающий трубопровод одновременно является обратным и, чтобы он эффективно выполнял свою функцию, необходимо правильно рассчитать его диаметр.

В плане экономии затрат на материалы и монтаж – это самый экономичный вариант, поэтому такую разводку часто используют как в многоквартирных постройках, так и частных домах. Но последовательная система подключения радиаторов отопления имеет несколько существенных недостатков. Такая разводка исключает возможность регулирования теплоотдачи отдельной батареи. При изменении регулятором температуры одной из них, изменится температура всей системы отопления. Помимо этого, радиаторы, расположенные ближе к котлу или стояку, будут нагреваться сильнее, но по мере продвижения теплоносителя через систему он постепенно остывает и, соответственно каждая последующая батарея будет становиться холоднее.

Двухтрубная система

Двухтрубная разводка системы предполагает параллельное подключение радиаторов отопления к двум трубопроводам – через один производится подача нагретого теплоносителя, а через второй отведение уже остывшего в котел или стояк. Таким образом батареи имеют одинаковую температуру и все комнаты прогреваются равномерно. В плане тепловых потерь — это самый эффективный вариант, позволяющий производить регулировку тепловой мощности каждого радиатора по отдельности.

Многие заказчики предпочитают все-таки однотрубную разводку, аргументируя это тем, что при системе с двумя ветками требуется большое количество труб, что увеличивает трудозатраты и стоимость проекта в целом. Но если внимательно изучить особенности разводки с двумя магистралями, то окажется, что при условии правильного монтажа батарей и расчета диаметров труб, она в последующей эксплуатации будет обходиться дешевле из-за более лучшей циркуляции жидкости и минимальных тепловых потерь.

К тому же для нормальной работы однотрубной разводки требуются трубы большого диаметра и радиаторы, имеющие большую площадь, а двухтрубная система лишена этих недостатков. Поэтому разница в стоимости необходимых для монтажа материалов будет незначительной.

Помимо описанных типов отопительных систем, существует еще коллекторная, или так называемая лучевая схема разводки, когда к каждой батарее подводятся отдельные трубопроводы подачи и обратки. Недостатком такого подключения является большое количество труб и соответственно стоимость системы. Коллекторную разводку в основном монтируют по полу и заливают стяжкой, чтобы не портить внешний вид интерьера.

Способы обвязки радиаторов

От способа подачи теплоносителя в батарею напрямую зависит степень ее нагрева. Подключение радиаторов отопления из биметалла производится таким же образом, как и батареи из других материалов.

Одностороннее подключение

Односторонняя обвязка подразумевает подвод подающего трубопровода к верхнему отверстию батареи, к нижнему отверстию с той же стороны подключается обратный трубопровод. Такое подключение имеет высокую эффективность – при количестве секций не более 12 шт., потери тепловой мощности радиатора составляют около 3%. При увеличении длины батареи, отдаленные секции будут нагреваться слабее и соответственно обладать меньшей теплоотдачей.

При одностороннем подключении радиаторов отопления в однотрубную систему, для предотвращения резкого остывания теплоносителя, между подающей трубой и обратной предусмотрена перемычка так называемый байпас. Через него часть жидкости, с температурой близкой к начальной, проходит мимо батареи к следующей, позволяя поддерживать одинаковую температуру во всех точках системы. Помимо этого, байпас позволяет снимать радиатор для ремонта или замены, не останавливая всю систему отопления.

Для эффективной работы однотрубной разводки с байпасами необходим точный расчет диаметров труб на всех участках, в противном случае система будет разбалансирована. В многоквартирных домах некоторые жильцы, желая улучшить обогрев своего жилища, прибегают к самовольному демонтажу байпаса, что неизбежно приводит к ухудшению качества отопления у соседей. Такие действия противозаконны и караются штрафом.

Диагональное подключение

При диагональной обвязке нагнетающий трубопровод подключается к верхнему отверстию радиатора, а обратный к нижнему с противоположной стороны. Подобная схема обеспечивает равномерный нагрев всех участков, что позволяет устанавливать радиаторы с любым количеством секций.

Диагональное подключение считается самым эффективным – потери тепловой мощности радиатора практически равны нулю. Данные о мощности теплового потока, указанные в паспорте завода-изготовителя, действительны именно для такого подключения.

Единственный недостаток диагонального подключения – неудобство использования в однотрубных разводках отопительных систем. Теплоноситель по мере прохождения через радиаторы остывает и чем дальше установлен прибор от источника обогрева, тем он будет холоднее. В основном диагональное подключение используют при двухтрубной разводке отопительной системы.

При одностороннем и диагональном подключении батарей нагнетающий трубопровод всегда подводится к верхнему отверстию, а обратный к нижнему. Это связано с физическими свойствами теплоносителя. В случае если трубы будут подсоединены наоборот, эффективность обогрева может уменьшиться до 40%.

Нижнее двухстороннее подключение

Из всех способов нижнее подключение самое малоэффективное — потери тепловой мощности радиатора составляют до 12%. Это объясняется тем, что гидравлическое сопротивление прибора больше, чем у проходящего мимо него трубопровода. В данном случае теплопотери компенсируют установкой более мощного радиатора.

В основном нижнее подключение используется только в тех случаях, когда без него невозможно обойтись. При прокладке труб по полу такой способ позволяет сделать разводку отопительной системы максимально незаметной.

Установка радиатора отопления

Перед тем как подключить биметаллический радиатор отопления следует удостовериться, что для этого есть все необходимые комплектующие:

  • кран Маевского или автоматический воздухоотводчик;
  • заглушка;
  • запорная арматура;
  • кронштейны или крюки.

Кран Маевского необходим для сброса воздуха из батарей и обязательно должен быть установлен на каждом приборе в верхнем свободном отверстии. Второе свободный выход закрывается заглушкой, имеющей одинаковый цвет с радиатором.

Запорная арматура обязательно устанавливается на подающем и обратном трубопроводе. Это позволяет регулировать интенсивность подачи теплоносителя и снимать батарею для экстренного ремонта без остановки всей отопительной системы. При желании после запорной арматуры можно установить терморегулятор, который будет изменять теплоотдачу прибора.

Для монтажа прибора на стену понадобятся кронштейны или крюки. Количество крепежа зависит от числа секций в радиаторе. Если их не более 8, то достаточно будет 2 точки сверху и 1 снизу. При добавлении каждых 5 секций дополнительно монтируется по 1 креплению сверху и снизу.

Батареи навешиваются строго в горизонтальном положении, допустимое отклонение не более 1°. Устанавливая крюки, следует учитывать, что верхний крепеж воспринимает основную нагрузку, а нижний только поддерживает радиатор на определенном расстоянии от стены. Если стена сделана из материала неспособного выдерживать нагрузки, например, гипсокартона, то в этом случае предусмотрена напольная установка батарей при помощи регулируемых ножек.

Схема подключения радиатора

Первое, с чем необходимо ознакомиться, – это варианты СХЕМ ПОДКЛЮЧЕНИЯ БАТАРЕЙ ОТОПЛЕНИЯ.

Их существует несколько:

Теперь подробнее.

ДИАГОНАЛЬНОЕ ПОДКЛЮЧЕНИЕ
   

выглядит таким образом: входной патрубок находится наверху с одной стороны батареи, а выходной – снизу, на другой стороне батареи.   

Такая схема подключения обеспечивает максимальную теплоотдачу радиатора, поэтому особенно рекомендуется для батарей, состоящих из 12 секций и более, а также по усмотрению хозяина или монтажника.

Обратите внимание! Когда в документации к радиатору указана тепловая мощность изделия, имеется в виду как раз случай диагонального подключения.

Имеется в этом способе подключения один недостаток: нет возможности изменить количество секций радиатора без переделок по узлам подключения.

 БОКОВОЕ ПОДКЛЮЧЕНИЕ РАДИАТОРОВ   

Это тот вариант, когда входной и выходной патрубок устанавливаются на одной стороне батареи. Обычно горячая вода заходит через верхний патрубок, а выходит через нижний. Этонаиболее часто встречающаяся схема подключения. Используется при монтаже отопления в квартирах в связи с особенностями расположения стояков отопления.

Такой тип подключения дает теплоотдачу ниже примерно на два-пять процентов (по сравнению с диагональным). Однако, в отличие от диагонального, легко можно добавить (или уменьшить) количество секций.

 НИЖНЕЕ ПОДКЛЮЧЕНИЕ БАТАРЕИ   

Нижнее подключение радиаторов считается наименее эффективным из всех схем по теплоотдаче. Тем не менее, ему часто отдают предпочтение в закрытых системах отопления частных домов. Привлекает то, что трубы подводки можно легко скрыть, особенно если купить специальный радиатор с нижним подключением к сети (трубы можно закрыть плинтусом или спрятать в стяжку под пол).

В сравнении с диагональным, потери при нижнем подключении примерно 10- 15 % мощности теплоотдачи.

Обратите внимание, что на приведенные цифры потери тепла при боковом и нижнем подключении нужно обращать внимание только при трубопроводе большой протяженности

При автономном (индивидуальном) отоплении эти потери столь малы, что, как правило, не берутся в расчет.

 ПОДКЛЮЧЕНИЕ С БАЙПАСОМ   

Иногда на стыке стояка и байпаса ставится трехходовой кран, которым регулируется температура.

Система, по которой осуществляется подача воды в теплоноситель, может быть 

  • однотрубная и 
  • двухтрубная.

Однотрубные системы отопления отличаются тем, что горячая вода проходит по зданию сверху вниз, отдавая тепло через отопительные приборы, установленные в квартирах. Такой способ применяется в большинстве многоквартирных домов. К недостаткам такой системы можно отнести то, что для регулирования температуры понадобится установка специальных приборов.

При двухтрубной системе отопления горячая вода в батареи подается по одной трубе, а обратно — по другой. Подключение радиаторов в таком случае производится параллельно. Такая система используется в коттеджах и частных домах. Она обеспечивает одинаковую температуру всех нагревательных приборов в доме. Регулировка температуры производится с помощью установки одного терморегулятора на подающей трубе.

Когда Вы определитесь, что хотите установить биметаллические радиаторы, то следует учесть, что схемы подключения биметаллических радиаторов могут быть различными (как и для других видов радиаторов), однако наиболее предпочтительным способом подключения биметаллических радиаторов является диагональное подключение. Особенно данная схема подключения рекомендуется тогда, когда предполагается батарея из большого числа секций (10-12).

Если Ваш выбор остановится на стальных радиаторах, то в качестве схемы подключения для стальных радиаторов также чаще используется диагональная. Если все же в планах осуществить боковое подключение, рекомендуем купить стальные радиаторы с удлинителем протока жидкости, который улучшает циркуляцию и способствует более равномерному нагреву радиаторов.

Итак, какую из схем подключения радиаторов Вы бы ни выбрали, и какими бы радиаторами ни надумали воспользоваться – посетите сеть магазинов Сила Воды, здесь для Вас найдется все, что нужно (и даже больше)! 

Варианты подключения радиаторов отопления

Существует несколько способов подключения радиаторов в системах отопления. Их мы и рассмотрим в данной статье.

Для того чтобы выбрать схему подключения, здесь важны много факторов. Частный это дом или квартира, централизованное отопление или автономное, стальные панельные радиаторы или секционные, разводка труб, материал, из пола или со стены подключение и так далее. Попробуем немного разобраться.

Боковое подключение батарей отопления


Подача и обратный трубопровод находятся на одной секции прибора, что обеспечивает одинаковое нагревание всех секций каждого радиатора. По трубе подачи, расположенной вверху, продвигается вода и уходит охлажденная жидкость по отводящей трубе, расположенной внизу.
Такой метод по большей части используется в многоэтажных постройках с разводкой по вертикали. При таком способе стояки пробиваются сквозь все этажи, спускаясь сверху вниз. Радиаторы подключаются на каждом этаже. Система обогрева может быть двухтрубная (с двумя стояками рядом) и однотрубная (с одним стояком). Данный вид подсоединения характеризуется не очень большой потерей тепла (5-10%), неплохой продуктивностью и минимальным расходом труб при подключении.

Нижнее подключение батарей отопления


Еще одним видом является нижнее подключение. Как правило используется для стальных панельных радиаторов, а также дизайнерских (трубчатых). Суть в том, что трубы подключения выходят из пола. В данный момент самый распространенный вид подключения, из за того что самого подключения практически не видно, так как оно под радиатором.

Используются узлы нижнего подключения разных модификаций.

Диагональное подключение батарей отопления


Одним из разновидностей является диагональное подключение. Подвод в таком случае находится сверху, а отводящая труба – снизу, но с разных сторон. Теоретически считается, что это самая оптимальная схема подсоединения отопительных приборов, поскольку расчетные тепловые потери не превосходят 2-5%. Нагретая вода ровно распределяется по каждой секции, обеспечивая максимальную отдачу тепла. В этом варианте применяются заглушки и кран Маевского.

Изредка встречается и другая картина – снизу подача, а сверху обратка, хотя при таком раскладе теплопотери достигают 20-25%. В отдельных случаях такая схема функционирует удовлетворительно и вся поверхность батареи прогревается более или менее нормально.

Прямое подключение радиаторов


Прямое подключение радиаторов используется в двух случаях:

при боковом подключении — это когда радиатор с боковым подключением и тогда если использовать прямые радиаторные краны, то они будут идти вдоль стены, и труба соотвественно. Такое используется в старых домах и в старом жилом фонде, где стояковая система отопления.

при нижнем подключении — это когда радиатор с нижним подключением и тогда если использовать прямые краны, то подключение будет прямо из пола. Используется в новостройках и новых квартирах.

Угловое подключение радиаторов


Угловое подключение радиаторов используется в двух случаях:

при боковом подключении — это когда радиатор с боковым подключением и тогда если использовать угловые краны для подключения радиатора, то они будут заходить в стену, тоесть труба выходит из стены и соединяется с помощью кранов с батареей. Такое используется в новых домах и в старом жилом фонде когда делается капитальный ремонт и клиенты прячут трубы в стенах. Большой плюс такой системы сто не видно труб отопления в интерьере.

при нижнем подключении — это когда радиатор с нижним подключением и тогда если использовать угловые краны, то подключение будет снизу из стены. Используется в новостройках и новых квартирах.

Подключение при однотрубной системе отопления


Текст

Подключение при двухтрубной системе отопления


Текст

 

Установка и установка радиаторов (батарей) для отопления: теория

Установка радиаторов отопления — не такая уж простая задача, как может показаться на первый взгляд, предполагающая наличие как теоретических знаний, так и практического опыта, ведь малейшая неточность может привести к проблемы при эксплуатации. Если вам раньше не приходилось заниматься этим видом работ, пошаговые инструкции и видео будут бесценны.

Содержание

  • Типы систем отопления
  • Схемы установки радиатора
  • Установка радиатора своими руками
  • Правила установки батарей

Немного теории, чтобы знать

Как уже было сказано, качественная установка радиаторов отопления невозможна без теоретических знаний.Прежде всего, необходимо иметь представление о системах отопления и способах разводки аккумуляторных батарей.

Типы систем отопления

На сегодняшний день широко используются две системы отопления: однотрубная и двухтрубная.

1. Система отопления однотрубная. Горячая вода, подаваемая в здание, стекает по отопительным приборам. Эта система реализована практически в каждой стандартной квартире. Недостаток — невозможность регулировки температуры без установки дополнительных конструктивных элементов.Причем при такой организации вода на нижних этажах будет намного холоднее, чем на верхних.

2. Двухтрубная система отопления. В этом случае горячая вода циркулирует по одной трубе, а обратная (охлаждаемая) по другой. Эта система отопления применяется в коттеджах и частных домах. Главное достоинство — постоянная температура нагревательных приборов и возможность регулировать температурный режим.

Типы систем отопления

Схема установки радиаторов

Схема установки радиаторов отопления — это способ разводки батарей или, проще говоря, способ подключения устройств к централизованной сети.Наиболее распространенные схемы:

1. Боковое подключение — наиболее популярное, так как помогает добиться максимальной теплоотдачи.

Впускная труба подсоединяется к верхней трубе, а выпускная труба — к нижней. При обратном подключении (поток жидкости снизу) мощность уменьшается.

Тип бокового подключения: расположение элементов конструкции, схема движения теплоносителя

2. Диагональное подключение оптимально для длинных радиаторов. Такой способ позволит равномерно прогреть аккумулятор.Подающий патрубок с одной стороны подсоединяется к верхнему патрубку, а выход к нижнему — с противоположной.

Диагональная схема подключения отличается минимальными тепловыми потерями — лучший вариант

Важно! Мощность аккумулятора при подаче теплоносителя снизу снижается на 10%.

3. Нижнее соединение. Такой вид разводки применяется, если система отопления скрыта в полу. По сравнению с боковой теплопередачей при этом методе КПД снижается на 5-15%.

Нижняя схема подключения или «Ленинградка» применяется в тех случаях, когда труба отопления размещается в зоне нижнего этажа, она характеризуется наибольшими значениями теплопотерь

Установка радиатора своими руками

Радиатор отопления должен быть устанавливается строго горизонтально или с небольшим уклоном в сторону трубы. Для чего это? По окончании отопительного сезона (после слива воды) обязательно просушить аккумулятор. При минимальном уклоне в сторону трубы радиатор сливается полностью.

Важно! Батарейки размещаются на высоте 8 см от подоконника, 10 см от пола и 5 см от стены.

Установка батарей отопления подразумевает, прежде всего, обработку стены, которую необходимо выровнять и оштукатурить, т.е.подготовить под отделку. При установке алюминиевых и биметаллических радиаторов отопления следует учитывать, что эти отопительные приборы должны находиться в упаковке до завершения всего комплекса работ и проверки на работоспособность.На каждом радиаторе установлен выпускной клапан.

Важно! При затяжке клапана усилия не должны превышать 12 кг. Профессионалы советуют использовать для контроля динамометрический ключ, позволяющий затягивать задвижку определенным зажимом.

Перед установкой необходимо ввернуть пробки радиаторов в радиаторы, установить прокладки и пробки, а также установить термостатические клапаны. Помните, что при установке заглушек и переходников нельзя очищать поверхности, контактирующие с прокладками.В противном случае стыковка элементов не будет полностью герметичной, что неминуемо приведет к протечке.

Установка аккумулятора: разметка и установка кронштейнов радиатора

Кронштейны, на которые устанавливаются аккумуляторные батареи, закрепляются на стене дюбелями. Допускается метод, когда крепежные детали заделываются в заранее подготовленные технологические отверстия. Повесьте радиатор на кронштейны так, чтобы крючки оказались между секциями.

Тогда нижние края коллекторов аккумулятора правильно войдут в кронштейны.С помощью уровня проверьте положение ТЭНа, и можно сказать, что установка радиаторов отопления своими руками завершена. Осталось только подсоединить аккумулятор к патрубкам стояка и заделать швы паклей или герметиком.

Установка радиатора своими руками: установка арматуры и подключение прибора к сети.

Правила установки батарей

Установка батарей отопления своими руками сложна тем, что нужно учитывать множество нюансов, от которых будет зависеть качество работы.

  • Приобрести динамометрические ключи. Многие соединения систем отопления требуют строгого соблюдения динамометрических стандартов. Из-за того, что вода в системе отопления находится под давлением, недостаточно плотное соединение, а также чрезмерная перетяжка приведут к протечкам. Динамометрические инструменты позволят этого избежать;
  • при установке АКБ нужно перекрыть воду и откачать ее из системы с помощью помпы; подумайте о сливе воды: всегда есть участки, где невозможно перекрыть воду, поэтому ставьте емкости с жидкостью в месте установки;
  • Подбирайте схему подключения и детали заранее.Тип и количество деталей зависят не только от схемы подключения, но и от типа радиатора;

Важно! Многие, руководствуясь списком, приобретают шаровые краны с американкой, но эта деталь исключительно для специалистов, у которых очень сложно добиться герметичности. Вы можете заменить их на радиаторные клапаны.

  • Однотрубная система отопления требует байпаса — обходного пути для протока теплоносителя. В противном случае при закрытии клапана система отопления стояка будет парализована;
  • Для предотвращения потерь тепла можно соорудить «пирог» из фольги и изоляционного материала.Утеплитель снизит степень проникновения тепла через стену на улицу, а фольга будет отражать желаемое тепло в помещение;
  • между патрубками радиатора нам понадобятся перемычки, которые необходимо расположить перед кранами, т.е. чтобы при закрытии кранов вода проходила через перемычки, а затем уходила в стояк. Несоблюдение этого простого правила отключит отопление всех нижних этажей.

Honeywell R841E Руководство пользователя | 2 страницы

HONEYWELL I

Т Р А Д Е Л И Н Е

I УПРАВЛЕНИЕ

заявка

Реле электрического обогрева R841E — двухконтактное

Устройство

, используемое с одним 24-вольтовым двухпроводным термостатом
для одновременного управления одной или двумя нагрузками; или
с двумя термостатами для управления двумя независимыми нагрузками.

Это реле прямого следования, которое работает с каждым

цикла термостата (от 4 до 6 циклов в час с

T822Dor T87F Термостат), имеет встроенный транс

бывшая. R841E не следует использовать как discon

переключатель nect.

2.

Провести линейное напряжение от нагревателей к реле

Распределительная коробка

. Используя беспаечные соединители, сделайте

соединений, показанных на рисунках 3, 4 или 5.

3.

Проложите кабель термостата от термостата к

реле. Подключите к реле согласно рисункам 3, 4 или 5.

ВСЕ ЭЛЕКТРОПРОВОДКА ДОЛЖНА СООТВЕТСТВОВАТЬ МЕСТНЫМ КОДАМ.

Убедитесь, что напряжение источника питания соответствует значению
на этикетке реле.

УСТАНОВКА-

ЭКСПЛУАТАЦИЯ

R841E должен быть установлен там, где температура окружающей среды

температура находится в диапазоне от -20 до ISO F год

вокруг.Небольшой размер и бесшумная работа

R841 допускает установку в жилом помещении, подсобном помещении
или подвале. Биметаллические переключатели
позволяют установить реле в любом удобном положении.

Рис. 1 — Типовая установка реле на основной плате

обогреватель.

Схема цикла R841E определяется

термостат. При запросе нагрева термостат
включает один или оба низковольтных резистивных нагревателя
в R841E.Нагреватель приводит в действие биметаллический элемент
, который приводит в действие МИКРОПЕРЕКЛЮЧАТЕЛЬ SPST * мгновенного действия
. Биметалл выдерживает температуру окружающей среды
и находится в диапазоне от -20 до 150 F. При номинальном напряжении и частоте
переключающие контакты R841E делают примерно
примерно через 80 секунд (от холодного запуска) после того, как термостат
требует тепла. и сломается примерно через 100 секунд после
термостат перестает требовать тепла.

На рис. 1 показана типовая установка в com

перегородка на конце обогревателя плинтуса.

В этом случае втулка кабелепровода
ed может быть подсоединена к отсеку проводки в нагревателе. Задняя часть
корпуса отсека должна быть снабжена тиснением
для снятия крепежных винтов.

R841E также может быть установлен без отсека

Корпус

на кабельном канале или распределительной коробке (рис. 2).

ВНИМАНИЕ: ОТКЛЮЧИТЕ ЭЛЕКТРОПИТАНИЕ.

1.

Надежно закрепите реле на монтажной поверхности с помощью

.

два монтажных отверстия в ответной планке или конус

Втулка воздуховода.

♦ Товарный знак
5-68

Дж. К.

Рис. 2 — Четыре реле, установленные на кабельном канале.

ЧЕККОУТ-

После завершения монтажа и электромонтажа,

включите питание. Установите термостат выше
комнатной температуры до тех пор, пока не запустится электронагревательное оборудование
(подождите около 80 секунд после холодного запуска). За

, чтобы система работала достаточно долго, чтобы доказать, что

Отопительное оборудование

работает исправно.Верните термостат
к желаемой комнатной температуре, прежде чем
выйдет из установки.

Fofrn Numbiir

93–6804

Rasidential Div.

Amazon.com: PELONIS Electric 1500 Вт масляный радиаторный нагреватель с защитой, светодиодным дисплеем, 3 настройками нагрева и пятью настройками температуры. Идеально подходит для дома или офиса: дом и кухня

Аппарат работает хорошо, как я и ожидал. Пока я могу сказать только хорошее. Я обновлю, если мое мнение изменится.

Я купил 2 обогревателя, так как я не работаю по контракту, и мне не нужно часто отапливать все помещение, только спальню 20×20 и / или ванную комнату 15×12.

Я немного многословлюсь здесь и попытаюсь развенчать часть брошенной кабинетной ненужной науки и, возможно, сделать это немного забавным для некоторых.

Короче говоря, пусть уровень шума и циклические колебания температуры решают за вас, если вам действительно не нравится что-то одно в другом — но не обманывайте себя.

Запах
Появляется первоначальный запах, когда краска застывает и любое покрытие / пленка выгорает.Тщательное протирание может уменьшить этот период запаха (выделения газа). Те, кто говорят, что запаха изначально нет, просто не обладают оптимальными чувствами (и сколько людей вы когда-либо слышали, чтобы их чувства притупились — нет!) — люди не знают того, чего не знают. Подумайте об этом на мгновение или дольше. Доверяйте канарейкам — они в большинстве своем беспристрастны и вам что-то говорят. То, что что-то не чувствуется, не означает, что все в порядке.

Тепловая мощность
Тепловая мощность соответствует ожидаемой — не потому, что я так говорю, а потому, что так говорят законы физики.Эти законы редко меняются, и редко с кресел.

Мощность — это мощность, или, если говорить об одном типе устройства, мощность — это мощность (за исключением любых незначительных дефектов). Имея это в виду, керамический нагреватель (100 В x 15 А) мощностью 1500 Вт и масляный радиатор мощностью 1500 Вт будут обеспечивать одинаковую теплопередачу (один может быть более направленным или демпфированным / рассеянным или более тихим, чем другой). Все, что делают масло и плавники, — это рассеивают направление рассеивания / передачи тепла и гасят относительные колебания температуры при циклическом изменении температуры — плавный график температуры с течением времени или пиковый (другие характеристики, как правило, являются воображаемыми).1500 Вт в час, это 1500 Вт в час — без каких-либо серьезных потерь где-то (синусоида, прямоугольная волна, среднеквадратичное значение здесь не являются реальной разницей). Потери здесь в обогревателе сами по себе производили бы ТЕПЛО — обогреватели интересные устройства, они могут быть грубыми и они довольно последовательны в поведении при заданном энергопотреблении. Это в отличие от кондиционера, где неэффективность (меньше отводимого тепла) производит контрпродуктивное тепло (тепло = плохо). Этот маслонаполненный обогреватель обеспечивает не более или менее теплопередачу в герметичное помещение заданного размера, чем любой другой обогреватель, судя по нашему глупому мнению.человек может понять (некоторые незначительные недостатки, которые также производят отходящее тепло, потеря — это победа!). Любая фиксация другого в основном не имеет отношения к использованию простых людей0.

Temp
Температура работает нормально (при условии отсутствия дефектов в вашем устройстве). Настройки температуры здесь, вероятно, не лучше всего указывать на F или C, поскольку это вводит некоторых в заблуждение. Лучшая (относительная) шкала — от 1 до 10. Маркетологи снова взяли верх над инженерами.
Вот почему установка температуры является глупой;
Начнем с того, что в этих типах устройств в лучшем случае используется дешевый датчик DS1820b на 20 центов или, возможно, даже что-то менее точное, чем это, например, биметаллические катушки в старых термостатах — здесь не уверен (я не читал детали, для меня это не важно) .Эти биметаллические катушки работают достаточно хорошо, если не имеют дефектов (более 100 лет опыта в этой области). Следующий уровень полупроводникового датчика температуры стоит 5+ долларов. Но неважно, насколько они точны, по многим другим причинам. Во-первых, вы подверженный ошибкам человек, подверженный субъективному влиянию (подумайте о акустических кабелях, какая тема игнорирует слепое тестирование). Если бы у кого-то был датчик температуры за 100 долларов, он не принес бы больше пользы (исключая ОКР) для нас, глупых людей. Где измерять температуру? На масляном баке? Рядом с ним? Что значит «рядом»? На расстоянии 6 дюймов? На расстоянии 10 футов? Находится ли агрегат в комнате 10×10? 30×30? Есть ли принудительная циркуляция в комнате, внутрь или из других комнат? Как насчет влажности (5% против 95%) и ее влияния на тепло перенос через заданное пространство? Так много переменных, которые необходимо учитывать.Наличие 10 «высокоточных» датчиков температуры, пространственно размещенных в комнате и усредненных, все равно мало что значит в реальном мире — вы действительно беспокоитесь о том, чтобы держать паука в углу красиво и удобно? Наши человеческие опасения здесь в основном глупые, предвзятые и субъективные.

Здесь нет концепции, делающей всех счастливыми, кроме тех, кто понимает здесь науку (формально или неформально). Если кто-то из тех, кто думает, что существует такая концепция, что что-то имеет размер ровно 85F, или что-то длиной ровно 1 фут, или что шаг на половину расстояния до стены в конечном итоге приведет к стене (голова в ладони), тогда они будут разочарованы любым типом обогревателя (и будут преобладать только субъективные «чувства»).У вас может быть 12 яиц, но у вас никогда не будет 1 фунта яиц (около фунта, да, но не точного фунта). Спросите себя, что означает установка обогревателя на 80F? 80F где? Поразмыслите над этим. Специалисты по науке производителя не могут точно ответить на этот вопрос, и 99% специалистов по маркетингу, конечно, не могут ответить более точно, но они, в свою очередь, могут помочь вам почувствовать себя лучше благодаря своим характеристикам продукта и красиво оформленной литературе. Они действительно «выпустили» много информации о продукте — проявили доброту9.

Таймер
Таймер у меня работает нормально, но я не пробовал все настройки.Опять же, точность / точность времени относительны, и достаточно близко — достаточно хорошо (99% против 99,9%). Как и в случае с температурой, можно было бы добавить микроконтроллер, чтобы получить действительно точное время (помните, ничто не длится точно X дней, часов или миллисекунд), но эта дорогостоящая более высокая точность ничего не значила бы для нас, простых людей в реальном мире — это просто возможно заставить некоторых потребителей «почувствовать себя» лучше.

Я доволен своим устройством, поскольку в моем случае я хотел более тихое, более рассеянное тепло с циклическим режимом (меньше колебаний температуры), но я тоже субъективен — и, вероятно, трачу вдвое ради небольшой выгоды.Нагреватель, который производит 1500 Вт при 50% рабочем цикле и 750 Вт при 100% рабочем цикле, ничем не отличается (у вас просто есть шипы, которые могут повлиять на ваш комфорт). Возможно, вы захотите велосипедные шипы или нет. Что касается общего количества тепла, производимого каждым из них, если вы думаете, что есть существенные различия, пожалуйста, не ошибайтесь, мистер Эйнштейн и многие другие, и они подготовят Вселенную к некоторым тревожным временам впереди.

Здесь я просто хотел противопоставить некоторым кабинетным ученым, использующим субъективную псевдонауку в своих оценках.Я нахожу чтение приятным. Я многому у них учусь.

Уровень шума
Пока я пишу это, мой колеблющийся керамический обогреватель мощностью 1500 Вт за 30 долларов с внутренним вентилятором держит меня так же жарко в моей спальне 20×20 футов, как и масляный обогреватель 1500 Вт за двойную цену, но керамический обогреватель производит больше шума для того же производства и передачи тепла. Я думаю, что это, пожалуй, самая большая разница, которая может повлиять на покупателя. Относительно высокий уровень шума по сравнению с относительно низким уровнем шума. Это, вероятно, решающий фактор для многих — хорошая тишина, хороший белый шум — наконец то, что вы решаете.

Счастливый нагрев

Cool It! Диагностика управления вентилятором радиатора

Несмотря на все достижения в технологии двигателей внутреннего сгорания (ДВС) за более чем столетие, ДВС с поршневым приводом все еще не очень термически эффективен, даже при работе с наиболее эффективной нагрузкой. Возможно, от 30% до 34% тепла от сжигания топлива преобразуется в механическую энергию, и даже часть этого тепла теряется на внутреннее трение двигателя в виде тепла. Это означает, что от 66% до 70% тепла сгорания теряется в атмосферу, в основном через выхлопные системы и системы охлаждения.Около половины этого отработанного тепла в двигателе с жидкостным охлаждением уходит через систему охлаждения через радиатор.

Термин радиатор является неправильным, поскольку почти все тепло, которое он передает в атмосферу, происходит за счет принудительной конвекции. Я говорю «принудительно», потому что количество тепла, передаваемого в атмосферу, сильно зависит от количества воздуха, проходящего по трубкам и ребрам радиатора из-за движения автомобиля. Когда автомобиль неподвижен или движется медленно, через радиатор проходит недостаточно воздуха для надлежащего охлаждения двигателя, поэтому требуются некоторые средства обеспечения дополнительного воздушного потока.Войдите в вентилятор радиатора.

В качестве примечания, я однажды продемонстрировал себе, что вентилятор радиатора не требуется ни для чего, кроме холостого хода или остановки и движения. Я сделал это, сняв вентилятор радиатора со своей машины и отправившись в поездку по пересеченной местности в середине лета. Указатель температуры оставался в нормальной зоне на протяжении всей поездки в 4000 миль. Некоторые гонщики также снимают вентилятор с приводом от двигателя, поскольку вентилятор не требуется для скоростных гонок.

Моя копия 1927 года Everyman’s Guide to Motoring Efficiency На есть фотография современного двигателя Hupmobile с термосифонной системой охлаждения, в которой не используется насос для циркуляции охлаждающей жидкости от двигателя к радиатору и обратно.По мере того как охлаждающая жидкость в двигателе нагревается, она расширяется и поднимается вверх по верхнему шлангу радиатора к радиатору, где по мере охлаждения охлаждающая жидкость сжимается и течет вниз, в конечном итоге обратно в двигатель. Подавляющее большинство Ford Model T использовали аналогичную систему. Как и следовало ожидать, эта конструкция не пережила эволюцию ДВС. И Hupmobile, и Model T имели вентилятор охлаждения с приводом от двигателя, поэтому в таких вентиляторах нет ничего нового.

Несмотря на свою простоту и экономичность, двигательные вентиляторы имеют ряд недостатков.Диаметр вентилятора, количество лопастей, шаг лопастей и частота вращения должны быть такими, чтобы вентилятор перемещал достаточно воздуха для отвода тепла от радиатора и конденсатора кондиционера при работающем двигателе на холостом ходу или медленном движении автомобиля. На более высоких оборотах и ​​скорости автомобиля вентилятор, который в любом случае не нужен, просто шумит и тратит энергию. Более того, на высокопроизводительном двигателе вентилятор может быть перегружен на высоких оборотах.

В современную эпоху вентиляторы с приводом от двигателя обычно устанавливались на передней части вала насоса охлаждающей жидкости.Хотя это экономичный способ приведения в движение вентилятора, он заставляет вентилятор работать с частотой вращения насоса охлаждающей жидкости. Кроме того, любые силы дисбаланса в вентиляторе действуют на подшипник насоса. Эти силы дисбаланса увеличиваются с увеличением числа оборотов. Некоторые считают, что это является фактором относительно короткого срока службы насоса охлаждающей жидкости, характерного для некоторых марок автомобилей.

Для большинства марок конструкция вентилятора с приводом от двигателя не претерпевала существенных изменений в течение десятилетий до появления вентиляторов с термостатическим управлением, которые появились на основных транспортных средствах в середине 1950-х годов.Эта конструкция имеет муфту (также известную как муфта вентилятора) между вентилятором и его ведущим шкивом. Работает как миниатюрная трансмиссионная гидравлическая муфта, но с переменным уровнем жидкости. Когда температура воздуха на выходе из радиатора ниже определенной температуры, муфта остается отключенной. Согласно Hayden Automotive, типичная отключенная муфта будет работать на скорости вентилятора от 30% до 50% от его входных оборотов в минуту. Когда температура воздуха на выходе из радиатора достигает температуры зацепления, внутренний клапан муфты с биметаллическим приводом открывается, пропуская масло в муфту, тем самым увеличивая скорость вращения вентилятора до 60–70% от входной скорости вращения.При увеличении скорости автомобиля и понижении температуры воздуха в радиаторе клапан закрывается, масло стекает и муфта разъединяется. При отключении муфты вентилятора при более высоких оборотах и ​​скорости автомобиля опасность превышения скорости вращения вентилятора сводится к минимуму.

Ниже приведены некоторые недостатки термостатических вентиляторов с приводом от двигателя:

  • Значительное количество муфт заменяется из-за потери масла и выхода вентилятора из строя.
  • Термостатическая муфта относительно тяжелая и еще больше подвешивает на конце вала насоса охлаждающей жидкости.
  • В некоторых приложениях, особенно без дополнительного электрического вентилятора, может наблюдаться временная потеря производительности кондиционера, когда автомобиль останавливается и до того, как сработает муфта вентилятора.

Разновидностью вентилятора с приводом от двигателя является вентилятор, управляемый модулем управления двигателем. По сути, клапан с биметаллическим приводом в устаревшей муфте вентилятора с термостатическим управлением заменен соленоидом с приводом от ЭБУ. Этот тип муфты также известен как электровязкая муфта вентилятора.Поскольку она управляется ЭБУ, электровязкостная муфта вентилятора может реагировать на многие входные сигналы, такие как температура окружающей среды, температура охлаждающей жидкости, давление кондиционера, скорость автомобиля, температура трансмиссионной жидкости и т. Д. Кроме того, скорость вращения вентилятора контролируется ЭБУ, и коды неисправности будут установлены, если вентилятор не работает должным образом и / или если есть какие-либо проблемы с цепью.

Хотя некоторые серийные и нестандартные автомобили использовали вентиляторы радиатора с электродвигателем (некоторые в сочетании с вентилятором с приводом от двигателя), основным драйвером распространения электрических вентиляторов радиатора стало появление переднеприводных двигателей с поперечным расположением двигателя. транспортных средств.Поперечный двигатель потребует сложной системы шкивов и довольно длинного приводного ремня для привода вентилятора радиатора.

Несмотря на то, что электрические вентиляторы радиатора имеют большое преимущество в том, что они работают (потребляют мощность) только при необходимости, у них также есть несколько недостатков:

  • Они потребляют мощность генератора, часто когда генератор уже подает значительный ток в систему отопления, вентиляции и кондиционирования воздуха и фары.
  • Вентилятор, двигатель и монтажная рама могут быть тяжелыми и дорогими по сравнению с вентилятором старого образца с фиксированной скоростью и приводом от двигателя.
  • Многие автомобили имеют двойные электрические вентиляторы радиатора, что еще больше увеличивает их вес и сложность.
  • Их ремонт может быть более дорогостоящим; при условии ухода за ремнем вентилятора старый вентилятор обычно прослужит весь срок службы транспортного средства.
  • Они требуют некоторых средств контроля, которые, как мы увидим, могут быть довольно сложными.

Самая простая форма управления вентилятором радиатора — это переключатель, который подает напряжение B + на вентилятор всякий раз, когда водитель замыкает переключатель, независимо от положения переключателя зажигания.Такое расположение можно найти на некоторых гоночных автомобилях и нестандартных транспортных средствах. Недостатком, конечно же, является то, что если выключатель оставить включенным, аккумулятор разрядится за несколько часов. Другой заключается в том, что, если водитель не будет внимательно следить за ECT, двигатель перегреется.

Вероятно, лучшая система управления показана выше. (Примечание: на всех схемах в этой статье более жирные линии обозначают токи нагрузки, а более светлые линии обозначают управляющие токи.) В этой схеме, когда включен переключатель вентилятора, напряжение B + подается на двигатель вентилятора через реле, управление которым Источником питания (питания катушки) является шина зажигания.Таким образом, вентилятор выключится при включении зажигания независимо от положения переключателя управления, но ток вентилятора по-прежнему подается от шины аккумуляторной батареи.

Обратите внимание, что управляющая сторона схемы защищена отдельным предохранителем от токовой стороны вентилятора (более темные линии). Конечно, если перегорит какой-либо предохранитель, вентилятор не будет работать. Также обратите внимание, что даже эта простая схема имеет ряд компонентов и электрических соединений (включая два заземления), все из которых необходимы для работы вентилятора.Сравните это со старым односкоростным вентилятором с приводом от двигателя, который работал бы при условии, что ремень вентилятора не порвался.

Следующий уровень управления электровентилятором показан на рис. 2 (ниже). Единственные различия между рис. 1 и 2 состоит в том, что добавлен переключатель температуры, а также предусмотрены условия для кондиционирования воздуха. Я видел эти переключатели температуры на выходе воды из двигателя, впускном и выпускном баках радиатора и даже послепродажные переключатели, которые проникают датчиком в верхний шланг радиатора. Когда переключатель замыкается при повышении температуры охлаждающей жидкости, включается электрический вентилятор.В приложении оригинального оборудования нет переключателя с ручным управлением.

Пунктирная рамка на рис. 2 показывает интерфейс с элементами управления кондиционером. Каждый раз, когда включается компрессор кондиционера, включается и электрический вентилятор. Недостатком такой схемы является то, что вентилятор работает всякий раз, когда работает компрессор; это тратит впустую энергию на скоростях шоссе, когда вентилятор не требуется. Думайте о изоляционном диоде в цепи как об электрическом обратном клапане, который пропускает ток только в одном направлении.Обозначение диода можно представить как стрелку, указывающую направление допустимого тока. Без диода всякий раз, когда термореле замыкается для запуска вентилятора, компрессор кондиционера также будет работать!

Лучшее устройство для управления вентилятором в автомобиле с кондиционером показано на рис. 3. Реле давления, которое замыкается при повышении давления на стороне высокого давления, запускает вентилятор. На скоростях по шоссе, когда через конденсатор и радиатор проходит достаточный воздушный поток, переключатель остается разомкнутым, а вентилятор не работает.Когда автомобиль замедляется или останавливается, давление в кондиционере повышается и вентилятор работает независимо от температуры двигателя. В этой схеме диод не нужен. Обратите внимание на возрастающую сложность управления вентилятором, и это касается только односкоростного вентилятора.

Недостатком односкоростного вентилятора является то, что его размер должен обеспечивать достаточный воздушный поток для самых суровых условий охлаждения — длительный холостой ход в жаркий день, когда кондиционер работает на полную мощность и при полной загрузке пассажиров, или возможно, груженый автомобиль, поднимающийся на крутой холм на небольшой скорости.В большинстве других условий работы вентилятор перемещает больше воздуха, чем требуется, и, таким образом, расходует электроэнергию и издает чрезмерный шум. Двухскоростной вентилятор устраняет эти недостатки.

На рис. 4 ниже показана типовая схема для двухскоростного вентилятора, в которой реле запитываются путем переключения напряжения на их катушки. Некоторые производители предпочитают переключать заземление катушки реле. Это особенно актуально для реле, срабатывающих от ECU.

Резистор снижает напряжение на двигателе вентилятора, когда требуется низкая скорость.В некоторых двухскоростных схемах используется внешний резистор (как показано), в то время как в некоторых используется трехпроводной двухскоростной двигатель или двигатель с внутренним резистором на входном проводе низкоскоростного двигателя.

Вентилятор будет работать на низкой скорости либо при повышении давления кондиционера до значения, установленном реле давления кондиционера, либо при повышении температуры охлаждающей жидкости до 205 ° F. В зависимости от области применения реле давления кондиционера может быть подключено для работы вентилятора на низкой или высокой скорости.

Если ECT поднимается до 215 ° F, второй температурный переключатель замыкается, активируя высокоскоростное реле, и резистор обходится, обеспечивая полное напряжение на двигателе вентилятора.

В некоторых приложениях оба реле температуры объединены в один трехпроводной корпус. Настройки переключателя температуры зависят от производителя. В цепь не поступает сигнал от температуры трансмиссионной жидкости или температуры под капотом (IAT).

Если двигатель работает на любой скорости при выключенном зажигании, вентилятор остановится, поэтому не может быть функции охлаждения после работы. Эта схема более сложна, чем схема на рис. 3. Требуются третий предохранитель, резистор, второе реле и второй температурный выключатель.

У меня был интересный диагноз со схемой на рис. 4. Владелец сообщил, что кондиционер работал нормально, когда автомобиль двигался, но при остановке на светофоре воздух на выходе из кондиционера постепенно нагревался. Когда он уезжал от света, кондиционер возвращался в нормальное состояние. Наконец, если автомобиль застрял в пробке, кондиционер постепенно нагревается, как на светофоре, но после пяти минут холостого хода он возобновляет работу еще на минуту или около того! Что происходит?

Хотя рассматриваемый автомобиль OBD I не имел большого количества данных ECU, у него был PID для ECT, поэтому после того, как я откопал правильный адаптер диагностического разъема, я подключил свой старый сканер.Вооружившись ECT PID, цифровым мультиметром (DMM), термометром в воздуховоде кондиционера и принципиальной схемой, я приступил к проверке выявленных симптомов.

Вождение автомобиля подтвердило, что кондиционер работает нормально и ECT приемлемо. К тому времени, как мне потребовалось въехать в сервисный отсек, кондиционер уже нагрелся. Когда ECT превышала 205 ° F, вентилятор не запускался, как должен. Заметил также, что вскоре вышла из строя муфта компрессора кондиционера.

Оставление автомобиля на холостом ходу еще на несколько минут привело к включению вентилятора на высокой скорости и возобновлению работы кондиционера.Быстрая проверка схемы компрессора кондиционера показала еще одно реле давления, которое отключает компрессор, когда давление кондиционера становится слишком высоким. По-видимому, когда вентилятор не включился на низкой скорости, когда это должно было быть связано с повышением давления в кондиционере, давление как ECT, так и кондиционера продолжало расти, тогда реле высокого давления кондиционера отключило компрессор . Когда ECT достиг 215 ° F — установка переключателя высокой скорости вентилятора — переключатель высокой скорости замкнулся и запустил вентилятор на высокой скорости.

Когда вентилятор работал на высокой скорости, произошли две вещи: давление кондиционера упало ниже значения, установленного выключателем компрессора, и ECT упало ниже значения, установленного переключателем высокоскоростного вентилятора.Кондиционер снова заработал, пока не выключился вентилятор. Цикл повторится.

Теперь я знал, что происходит, но почему? Я позволил всему остыть и обдумал свой следующий шаг.

Снова посмотрев на Рис. 4 и зная симптомы, мы можем сделать следующие выводы: Поскольку вентилятор работает на высокой скорости, предохранитель F3, двигатель вентилятора и заземление вентилятора G2 в порядке. Земля G1, которая обеспечивает заземление для обеих катушек реле, также в хорошем состоянии. И предохранитель F1, который обеспечивает питание обоих реле, тоже хорош.

Для того, чтобы реле низкой скорости не запитывалось, реле давления кондиционера и реле температуры низкой скорости должны быть неисправными, при условии отсутствия обрыва в проводке между предохранителем F1 и катушкой реле. Плохое низкоскоростное реле, перегорел предохранитель F2 или обрыв резистора вентилятора не позволят вентилятору работать на низкой скорости — опять же, при условии отсутствия проблем с проводкой.

Быстрый визуальный осмотр показал, что реле и резистор малой скорости были на месте, а предохранитель F2 оказался исправным.Поэтому я установил на цифровой мультиметр напряжение и подключил его отрицательный вывод к отрицательной клемме аккумулятора.

Опыт и простота доступа к компонентам должны быть факторами на этапах диагностики. В этом случае наиболее доступными компонентами были предохранитель F2 и резистор вентилятора. Реле низкоскоростного вентилятора, хотя к нему легко получить доступ, необходимо снять для проверки, и я не верю в нарушение цепи, по крайней мере, во время предварительной диагностики.

Учитывая, что F2 выглядел как хорошо, я перезапустил несколько охлажденный двигатель и включил кондиционер, подключив положительный провод цифрового мультиметра к точке A, вход резистора вентилятора.Цифровой мультиметр показал 0 В. Поскольку ECT PID был ниже 205 ° F, я ожидал, что реле давления кондиционера закроется, включит реле низкой скорости, подаст напряжение на резистор вентилятора и запустит вентилятор вскоре после включения кондиционера.

Конечно, я очень скоро измерил напряжение на шине аккумуляторной батареи в точке A, доказав, что реле низкой скорости было под напряжением, но вентилятор не работал на низкой скорости. Перемещение плюсового провода цифрового мультиметра в точку B показало 0 В, поэтому я пришел к выводу, что резистор разомкнут. Новый резистор восстановил нормальную работу, но поскольку мне все равно пришлось проверять мой ремонт, я сделал еще пару проверок во время проверки.

К тому времени, когда был найден и установлен новый резистор, все остыло до температуры окружающей среды. Я завел двигатель и включил кондиционер. Вскоре после этого вентилятор включился на малой скорости, поэтому я выключил кондиционер, и вентилятор вскоре остановился. Когда ECT PID достиг 207 ° F, вентилятор снова включился, снова на низкой скорости. Пока вентилятор работал, я измерил напряжение в точках A и F. Точка A показала приблизительное напряжение на шине аккумулятора, а точка F показала практически 0 В, установив , когда цепь была загружена , что у нас хорошее питание и заземление на вентилятор мотор.Машину отправили — запчасти для ружья не потребовались.

Опыт показал, что резистор вентилятора сильноточного типа, требующий прохождения охлаждающего воздуха через него, неисправен. Но что, если во время диагностики цифрового мультиметра я не измерил напряжение на шине аккумуляторной батареи в точке A? Я бы переместил положительный провод цифрового мультиметра в легко доступную точку C, а затем в точки D и E. Доступ к D или E на этом автомобиле потребовал бы снятия реле низкой скорости, чтобы получить доступ к его разъему. Отсутствие напряжения на D будет означать, что реле не запитано, что указывает на проблему с реле давления кондиционера, реле низкой скорости или соединительной проводкой.Мы уже знаем, что предохранитель F1 хорош. Отсутствие напряжения на E указывает на плохое соединение между шиной аккумуляторной батареи и E, маловероятно, потому что реле высокоскоростного и низкоскоростного вентилятора расположены рядом друг с другом на панели предохранителей / реле, и мы знаем, что вентилятор работает на высокой скорости .

Измерение напряжения как на D, так и на E может указывать на неисправное реле, а уже удаленное реле будет либо проверено, либо заменено заведомо исправным устройством. В предыдущих статьях я заявлял, что два реле имеют одинаковую конфигурацию контактов, размер и цвет не означает, что они взаимозаменяемы.Это особенно важно для реле, управляемых блоками управления двигателем, поскольку такие реле обычно оснащены устройством защиты от перенапряжения для защиты полупроводниковых выходов блока управления.

Несмотря на то, что схема на рис. 4 довольно сложна, она по-прежнему не предусматривает инерционную работу одиночного вентилятора, двойных вентиляторов, горячей трансмиссионной жидкости и т.д. где вентилятор (ы), если они работают при выключенном двигателе, будут продолжать работать в течение периода, зависящего от ECT и / или температуры под капотом во время выключения двигателя.

На рис. 5 показан следующий этап эволюции управления электровентилятором — вентилятор, управляемый ЭБУ. Эта схема представляет собой изображение одного из популярных азиатских автомобилей последней модели с двумя двухскоростными вентиляторами. Эта схема управления используется более десяти лет, поэтому существует множество подобных автомобилей. (Спасибо другу и коллеге-члену iATN Холлису Дэвису за предоставленную мне эту схему для справки.) Поскольку в ECU уже есть входы для ECT (либо напрямую, либо от шины последовательной связи), давление в / с, состояние кондиционера, транс температура жидкости, температура окружающей среды, IAT, скорость автомобиля и т. д., почему бы не позволить ЭБУ решать, когда и с какой скоростью запускать вентилятор (ы)?

Как показано на рис. 5, теперь у нас есть четыре предохранителя и три реле. Из трех реле два являются типичными, нормально разомкнутыми типами, а третье (высокоскоростное реле) является переключающим реле формы C. Реле, которые управляются ЭБУ, переключающим заземление катушек, имеют ограничительные диоды для защиты полупроводниковых переключателей в ЭБУ.

Поскольку катушки реле питаются от шины зажигания, вентиляторы могут работать только при включенном зажигании, поэтому в этой конструкции не предусмотрено остаточное охлаждение.Если бы F1 и F3 получали питание от аккумуляторной шины, система могла бы обеспечить работу вентилятора при выключенном зажигании.

Как это схема с двухскоростным вентилятором? Нет резисторов вентилятора или двухскоростных вентиляторов. Вентиляторы питаются от аккумуляторной шины, и каждый вентилятор имеет индивидуальные предохранители F2 (главный вентилятор) и F4 (вспомогательный вентилятор), за исключением работы на низкой скорости!

Нет реле температуры или давления. ЕСТ и давление / с, подают в ECU от threewire датчиков (не показаны на чертеже) на опорной цепью 5 ЭБУ в.ЭБУ получает данные о скорости автомобиля и температуре трансмиссионной жидкости от модуля управления трансмиссией, а также на вход кондиционера от модуля HVAC через входы последовательной шины.

Рассмотрим Рис. 6 (пути тока вентилятора для работы на малых оборотах показаны красным цветом). Для низкоскоростной работы обоих вентиляторов ЭБУ включает реле вспомогательного вентилятора, заземляя его катушку. F4 обеспечивает ток через замкнутые контакты реле вспомогательного вентилятора для запуска вспомогательного вентилятора. Но то, что вы ожидаете быть заземляющим проводом для субвентилятора, не идет на землю.Вместо этого ток вентилятора проходит к обесточенному высокоскоростному реле, через его нормально замкнутые контакты и оттуда к главному вентилятору, а затем на землю на G3! Таким образом, для низкоскоростной работы обоих вентиляторов ЭБУ подключает их последовательно, тем самым снижая доступное напряжение для каждого вентилятора. Для работы на малых оборотах предохранитель F4 обеспечивает ток для обоих вентиляторов.

Для высокоскоростной работы (Рис. 7 — опять же, пути тока вентилятора отмечены красным), ЭБУ активирует все три реле, и путь тока больше соответствует вашим ожиданиям, за исключением того, что путь заземления для вспомогательного вентилятора обеспечивается нормально разомкнутые контакты высокоскоростного реле.

У меня был еще один интересный диагноз схемы на рис. 5, который действительно подтвердил необходимость точной информации о схеме, а также понимания того, как работает схема управления вентилятором. Я сделал замену радиатора и термостата вместе с промывкой охлаждающей жидкости и проверял свою работу после проверки герметичности заполненной и удаленной системы. Несмотря на то, что не было никаких сообщений о проблемах с вентиляторами радиатора, я хотел убедиться, что они работают, до выпуска автомобиля.Поклонники потребовали снятия для замены радиатора, и я не хотел иметь дело с «Эвереттом Синчью», «любимым» клиентом всех техников.

Итак, я позволил автомобилю поработать на холостом ходу с выключенным кондиционером, ожидая, что оба вентилятора радиатора включатся на малой скорости, когда что-то нагреется, и они действительно сделали это. При правильной работе вентиляторов на низкой скорости, ECT была уменьшена настолько, чтобы вентиляторы остановились, поэтому необходимость в высокоскоростной работе отпала. Затем я подключил свой двунаправленный сканер и дал команду вентиляторам работать на высокой скорости.Включился только главный вентилятор! Какого черта!

Зная, что оба вентилятора включались при необходимости на малой скорости, мы можем сделать несколько выводов о вспомогательном вентиляторе, не проводя никаких тестов: Двигатель вентилятора в хорошем состоянии. Предохранитель F4 в порядке, реле вспомогательного вентилятора получает питание (вентилятор работает на низкой скорости). И проводка между точками A и B в порядке.

Это говорит о том, что цепь заземления вспомогательного вентилятора может быть плохой. Обратите внимание, что путь заземления к G2 через нормально разомкнутые контакты в высокоскоростном реле используется только тогда, когда вспомогательный вентилятор работает на высокой скорости.Кроме того, высокоскоростное реле могло быть неисправным, но проще всего получить доступ и проверить заземление реле вспомогательного вентилятора.

Мне повезло в том, что к двухпроводному разъему вспомогательного вентилятора можно было легко добраться под капотом, даже без необходимости поднимать автомобиль. С моим цифровым мультиметром, подключенным к напряжению и отрицательным проводом на отрицательной клемме аккумуляторной батареи, с помощью соответствующего адаптера на положительном проводе цифрового мультиметра я тщательно исследовал точку C на рис. 7 с включенным ключом и с помощью сканера, управляющего работой вентилятора на высокой скорости.

Когда главный вентилятор ревел на высокой скорости, я измерил напряжение аккумулятора в точке C, что указывало на плохое соединение где-то между разъемом вспомогательного вентилятора и массой G2. Единственными промежуточными соединениями между точками C и G2 на заводской схеме вентилятора были соединения на реле высокоскоростного вентилятора. Вместо того, чтобы снимать реле и нарушать цепь, я нашел G2, к которому было довольно легко получить доступ. Я нащупал петлю разъема провода на G2 и снова замерил напряжение аккумулятора.Заземленный G2, который выглядел идеально, был плохим, и, скорее всего, был плохим, когда вошел автомобиль. Разборка, очистка и повторное подключение G2 восстановили высокоскоростную работу вспомогательного вентилятора, и теперь, наконец, автомобиль был готов к отправке и вероятности визита г-на Синчё было сведено к минимуму.

Если бы я не измерял напряжение аккумуляторной батареи на G2, моим следующим шагом было бы отключение высокоскоростного реле, чтобы определить, не работает ли реле или его нормально разомкнутые контакты неисправны.Поскольку один и тот же выход ECU управляет как реле главного вентилятора, так и реле высокой скорости, я знал, что выход ECU должен быть хорошим, потому что главный вентилятор работает на высокой скорости. Точно так же я знал, что предохранитель F1 исправен, потому что предохранитель питает как реле главного вентилятора, так и реле высокой скорости.

В последней эволюции электрического управления вентилятором радиатора устранены все реле, и теперь ЭБУ управляет вентилятором (вентиляторами) напрямую через модуль управления вентилятором, который либо встроен в вентилятор, либо установлен отдельно.

В заключение я хочу еще раз подчеркнуть, что, помимо ознакомления с точными схематическими диаграммами, для постановки точных и эффективных диагнозов требуется понимание функций системы и основных принципов работы электричества и реле.

электрический — термостат, заставляющий нагревательный элемент многократно включаться и выключаться

Перед тем, как производить какие-либо внутренние настройки блока, убедитесь, что все главные разъединители и / или выключатели, питающие блок, выключены. Не пытайтесь выполнить эту работу, если у вас нет достаточного опыта для ее безопасного выполнения.

Я полагаю, у вас могут быть две отдельные проблемы:

  1. Термостат должен быть настроен для управления «электрическим» нагревателем, а не «ископаемым» нагревателем.

Если термостат находится в «ископаемом» режиме (обычное значение по умолчанию), он не будет активировать нагнетатель электропечи в «автоматическом» режиме, когда требуется тепло. Измените настройки термостата на «электрический» режим. В знак признательности ThreePhaseEel схема вашего устройства указывает на то, что эта замена термостата не требуется, но изменение режима термостата с «ископаемого» на «электрический» обычно тривиально, и внесение этого изменения позволит преодолеть возможный сбой нормально замкнутые контакты реле нагнетателя.

  1. Проблема с работой самой электропечи.

Сначала проверьте воздушный поток, когда вентилятор включен. Если воздушный поток из регистров кажется слабым, поищите препятствие, например, засоренный воздушный фильтр или закрытую сезонную заслонку. Убедившись, что препятствий нет, измените настройку скорости вентилятора, чтобы временно увеличить воздушный поток, в соответствии со схемой подключения в Обновлении № 2 (вы можете переместить разъем обратно в исходное положение позже).Сначала переместите разъем нагнетателя с контакта №6 на контакт №5, чтобы увеличить нагнетатель с низкого до среднего, а затем, в конечном итоге, на контакт №4, чтобы увеличить со среднего до высокого. Каждый раз, когда поток воздуха увеличивается, проверяйте, будет ли печь включаться без аномального отключения катушек. Для нормальной работы выпускаемый воздух должен быть примерно на 20–30 ° F теплее, чем воздух в помещении.

Если это не сработает, затем по очереди временно отключите каждую из трех нагревательных катушек. ОТКЛЮЧИТЕ ВСЕ ПИТАНИЕ ПЕРЕД ПРОДОЛЖЕНИЕМ. Поскольку у вас двухступенчатый нагреватель, начните с нижнего контактора. Отключите W2 и запустите нагреватель. Если W2 не подключен, перейдите к следующему шагу, установив перемычку между W1 и W2, а затем снимите один красный провод с верхнего контактора. Надежно заизолируйте отсоединенный провод, снова включите питание и зажгите нагреватель. Если устройство работает с отключенной одной из нагревательных катушек, может быть проблема с этой катушкой, но вы можете продолжать работать с пониженной мощностью с отключенной проблемной катушкой.. Если обнаруживается, что какая-либо катушка, подключенная к контактору W1, неисправна, оставьте W1 и W2 соединенными вместе и оставьте W2 отключенным от термостата, чтобы все оставшиеся катушки сработали с нагревом ступени 1.

Если все равно нет радости, то нужно будет копнуть поглубже. Электрические печи обычно имеют два основных типа защитных компонентов для предотвращения пожара. Один из них — концевой выключатель верхнего предела, который отключает катушки каждый раз, когда достигается безопасный предел высокой температуры, а другой — переключатель воздушного потока, который требует, чтобы воздух поступал на катушки для подачи энергии.Некоторые блоки имеют два набора высоких пределов, один из которых представляет собой биметаллическое устройство с самовозвратом, а другой — одноразовый плавкий предохранитель при более высокой температуре, возможно, подключенный последовательно с нагревательными элементами. Хотя на схеме они не обозначены, предохранительные выключатели, включенные в цепь управления, показаны на вашей фотографии схемы №1 и подключены последовательно к серому общему проводу, выходящему из контактора W2. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Если все контакторы переключаются вместе, несмотря на достаточный воздушный поток, скорее всего, проблема связана с верхним пределом или реле воздушного потока.Некоторые старые печи не имеют переключателя воздушного потока и вместо этого полагаются на межсоединение между управляющей мощностью вентилятора и контакторами нагрева, но поскольку ваша, похоже, не имеет этого межсоединения, я ожидаю, что ваша печь имеет переключатель воздушного потока. По моему опыту, выключатели верхнего предела с наибольшей вероятностью будут периодически выходить из строя, потому что они подвергаются злоупотреблениям, когда фильтры не меняются регулярно. Чтобы уточнить, если ваше устройство оборудовано плавкими предохранителями на каждом нагревательном элементе в дополнение к центральному верхнему пределу, тогда тепловые предохранители не будут причиной неустойчивого поведения, но, если они есть, их следует проверить для каждого элемента, чтобы подтвердить, что часть из них не продувается из-за хронического перегрева.

Вам нужно будет найти неисправный компонент (ы) путем устранения неполадок и замены по мере необходимости, о чем я не буду здесь подробно рассказывать. НЕ … ПОВТОРЯЙТЕ … НЕ оставляйте работающий агрегат без присмотра с отключенными устройствами безопасности.

Фотографии типичного концевого выключателя и тепловых предохранителей:

Как работают домашние термостаты | HowStuffWorks

Часто в вашем доме есть комнаты, которые всегда теплее или холоднее, чем другие. Этому может быть много объяснений.Во-первых, повышается температура, поэтому в комнатах на втором или третьем этажах часто бывает слишком тепло. В свою очередь, в подвальных помещениях обычно слишком холодно. Комнаты со сводчатыми потолками с трудом удерживают тепло, в то время как комнаты, которые получают долгие часы солнечного света, часто трудно охладить. Это всего несколько причин, но независимо от того, почему температура в комнате неудобная, есть только один верный способ выровнять температуру в вашем доме: зонирование системы.

Системное зонирование довольно просто.Он включает в себя несколько термостатов, которые подключены к панели управления, которая управляет заслонками в воздуховоде вашей системы приточного воздуха. Термостаты постоянно считывают температуру в своей конкретной зоне, а затем открывают или закрывают заслонки в воздуховоде в соответствии с настройками термостата. Системное зонирование не только полезно для домов с непостоянной комнатной температурой, но также отлично подходит для обогрева или охлаждения отдельных спален в зависимости от желаемой настройки температуры. Если у вас обычно пустая комната для гостей, просто закройте дверь и закройте заслонку.

При правильном использовании зонирование системы может помочь вам сэкономить деньги на счетах за электроэнергию. По данным Министерства энергетики США, зонирование системы может сэкономить домовладельцам до 30 процентов на типичных счетах за отопление и охлаждение. Эта экономия может составлять приличную сумму — по оценкам Министерства энергетики, на отопление и охлаждение приходится 40 процентов расходов на коммунальные услуги в среднем домохозяйстве. Поскольку комнаты для гостей и другие редко используемые комнаты не требуют постоянного обогрева или охлаждения, зонирование системы позволяет вам сэкономить деньги, подавая в эти комнаты воздух с регулируемой температурой только тогда, когда это необходимо.

Многие домовладельцы не решаются или не хотят переходить на программируемые термостаты и зонирование системы из-за первоначальной стоимости установки. Это понятная проблема для всех, кто не строит новый дом или не заменяет старую систему отопления, вентиляции и кондиционирования воздуха, но есть и другие варианты. Несмотря на то, что установка типичной зонированной системы не является самостоятельным проектом, Программа изобретений и инноваций Министерства энергетики профинансировала разработку демпферной системы, которая может быть модернизирована для существующих воздуховодов.Система сочетает в себе вставки для контроля воздуха с гибкими заслонками RetroZone с электронным контроллером и системой откачки воздуха. Здесь нет тяжелых двигателей, поэтому существующие воздуховоды не нуждаются в изменении или поддержке.

Гибкие демпферы, которые выпускаются в моделях с круглым и квадратным воздуховодами, заполняются воздухом, чтобы ограничить или заблокировать воздушный поток внутри воздуховода. Они устойчивы к нагреванию, старению, влаге, переносимым по воздуху химическим веществам и озону, и даже если они проткнуты, что маловероятно, большинство отверстий не повлияют на производительность.Демпферы Flex следует устанавливать в стальных или гибких воздуховодах. Заслонки можно легко обслужить, получив доступ через регистр. Демпферы Flex также работают с большинством марок зонных панелей управления.

Если вы планируете установить модернизированную систему управления зонами, вот что вам нужно включить в список покупок:

  • термостат для каждой зоны
  • соленоидный насос
  • панель соленоидов
  • панель управления зонами
  • нагнетательный трубопровод
  • трансформатор
  • огнестойкая лента
  • контрольный концевой выключатель
  • гибкие демпферы

Количество зон, необходимых для вашего дома, повлияет на способ настройки системы.В двухзонной системе, где зоны примерно равны по размеру, воздуховоды каждой зоны должны быть способны обрабатывать до 70 процентов общего CFM (кубических футов в минуту) воздуха, производимого вашей системой HVAC. В трехзонной системе зоны должны располагаться как можно ближе по общей площади. В этом случае воздуховоды каждой зоны должны выдерживать до 50 процентов общего объема CFM. Установка четырехзонной системы требует немного больше работы. Воздуховоды необходимо увеличить на один дюйм, и они требуют демпфера сброса статического давления и защиты по верхнему и нижнему пределу.Чтобы избежать серьезных повреждений, не перекрывайте полностью поток воздуха через теплообменник или змеевик вашей системы отопления, вентиляции и кондиционирования воздуха.

Теперь мы рассмотрим еще одну новинку в области домашнего термостата — говорящий термостат.

Конструкция, свойства и его применение

Каждый металлический материал во Вселенной имеет свои собственные свойства, такие как электрические, механические, магнитные, химические, тепловые и оптические свойства. В этой статье рассказывается о биметаллической полосе, в основе которой лежит свойство теплового расширения.Обычно это наблюдается в таких устройствах, как железный ящик, нагреватели, чайники и т. Д. Биметаллическая полоса преобразует тепловую энергию в механическое смещение.

Что такое биметаллическая лента?

Определение: Биметаллическая полоса работает по принципу теплового расширения, которое определяется как изменение объема металла при изменении температуры. Биметаллическая лента работает на двух основных металлах.


  • Первый фундаментальный принцип — это тепловое расширение, которое означает, что металлы расширяются или сжимаются в зависимости от изменения температуры
  • Второй фундаментальный принцип — это температурный коэффициент, при котором каждый металл (имеющий свой собственный температурный коэффициент) расширяется или сжимается по-разному при постоянная температура.

Свойства биметаллической ленты

Некоторые из важных свойств биметаллической ленты:

  • Коэффициент расширения: он определяется как изменение физических свойств металла в ответ на изменение температуры, например, формы, площади и т.д. и объем.
  • Модули упругости: определяется как отношение напряжения к деформации в области упругой деформации.
  • Предел упругости при охлаждении: это стандартный предел, при котором металл возвращается в свое нормальное состояние при охлаждении.Это свойство варьируется от металла к металлу.
  • Электропроводность: определяется как величина тока, проходящего через материал.
  • Пластичность
  • Металлургическая способность.

Конструкция биметаллической ленты

Биметаллическая полоса формируется путем соединения двух разных тонких полос металлов, обычно из стали (12 * 10 -6 K -1 ) и латуни (18,7 * 10 -6 K -1 ), или медь (16,6 * 10 -6 K -1 ), где один конец этих металлов закрепляется сваркой, а другой конец остается свободным.При воздействии температуры на эти материалы они начнут изменять свое физическое состояние, расширяясь или деформируясь.

Конструкция

Это можно объяснить в следующих двух случаях:

Случай (i): Когда температура увеличивается, это позволяет полосе расширяться по направлению к металлу с более низким значением температурного коэффициента, что можно наблюдать в рисунок ниже.

Полоса, закрепленная на одном конце

Корпус (ii): При понижении температуры это позволяет полосе расширяться по направлению к металлу с более высоким значением температурного коэффициента, как показано ниже.

Прогиб биметаллической ленты

Из этого мы можем понять, что

Диапазон прогиба = используемый металл

Прогиб металла = (длина полосы + изменение температуры) / толщина полосы

Математическое представление

Рассмотрим два металла, такие как A и B при двух разных температурах «T1» и «T2». Радиус кривизны биметаллической полосы может быть математически определен из следующего уравнения.

R = t {3 (1 + m) 2 + (1 + m * n) [m 2 + 1 / m * n]} / 6 (α ‘ A — α’ B ) (T 2 -T 1 ) (1 + m) 2 …… 1

Где,

R = радиус кривизны при температуре ‘T2’

t = (t1 + t2) = сумма толщин биметаллической ленты

n = E A / E B = коэффициент упругости двух металлов

m = t1 / t2 = (Меньшая толщина — расширение металла) / (большая толщина — расширение металла)

α ‘ A , α’ B = термический коэффициент расширения металла A и B

T 1 = начальная температура

T 2 = Конечная температура.

Уравнение изгиба металлической полосы по направлению к металлу с низкотемпературным коэффициентом задается как

r = 2 t / [6 * (α A — α B ) (T 2 -T 1 )] …………… (2)

На практике соотношение модулей упругости металлов и их толщины должно поддерживаться одинаковым, чтобы металл возвращался в свое нормальное положение при изменении приложенной температуры. Если толщина металла составляет t / 2, то

[r + (t / 2)] / r = Длина расширенной полосы A / Длина расширенной полосы B

= L [1 + α A (T 2 -T 1 )] / L [1 + α B (T 2 -T 1 )]

= t / 2 [[1 + α B (T 2 -T 1 )] / [(α A — α B ) (T 2 -T 1 )]]

r = t / [2 α A (T 2 -T 1 )] ………….. (3)

Из приведенного выше уравнения можно сделать вывод, что если один конец металлической полосы зафиксирован, другой конец полосы расширяется или сжимается при изменении температуры. Такой принцип обычно наблюдается в термометрах с низкой чувствительностью.

Типы биметаллических полос

Биметаллические полосы доступны в двух типах:

Спиральная полоса Тип

Она состоит из спиралевидной структуры и к ней прикреплен указатель, который используется для масштабирования температуры.Когда эта пружинная конструкция нагревается, металлы проявляют свойство теплового расширения и деформируются при понижении температуры. На этом этапе стрелка фиксирует температуру на шкале. Такие термометры обычно используются для регистрации температуры окружающей среды.

Спиральная полоса типа

Спиральная полоса

Она состоит из спиральной структуры, действие которой аналогично биметаллической полосе. Где свободный конец полосы соединяется с указателем. Всякий раз, когда полоса нагревается, она испытывает свойство теплового расширения и сжимается при охлаждении.На этом этапе стрелка фиксирует показание температуры. Обычно такие термометры используются в промышленности.

Винтовой тип

Преимущества

Ниже приведены преимущества биметаллической ленты

  • Не требуется внешний источник питания
  • Простой в использовании и надежный
  • Меньшая стоимость
  • Дает точность от ± 2 до 5%

Недостатки

Ниже перечислены недостатки биметаллической ленты.

  • Они могут измерять до 4000 ° C.
  • При регулярном использовании будет изменение качества металла, что может привести к ошибке при измерении.
  • При низкой температуре чувствительность и точность не на должном уровне.

Применение биметаллической ленты

Ниже приведены области применения биметаллической ленты

Часто задаваемые вопросы

1). В каких устройствах используется биметаллическая полоса?

Биметаллическая полоса используется в таких устройствах, как пожарная сигнализация, вентиляторы и т. Д.

2). Что происходит при нагревании биметаллической ленты?

  • Когда биметаллическая полоса нагревается, металлы либо расширяются, либо деформируются в зависимости от их свойств теплового коэффициента.
  • Случай 1: При повышении температуры полоса расширяется по направлению к металлу с более низким значением температурного коэффициента, что можно увидеть на рисунке ниже и
  • Случай 2: Когда температура снижается, полоса расширяется в сторону металл с более высоким значением температурного коэффициента, как показано ниже.

3). Используется ли биметаллическая лента в вентиляторах?

Да, они используются в вентиляторах для преобразования температуры в механическое смещение.

4). Почему гнутся биметаллические полосы?

Биметаллические полосы изгибаются из-за свойства металла термического расширения.

5). Можно ли использовать в термостате биметаллическую полосу из латуни и серебра?

Нет, биметаллическую ленту из латуни и серебра нельзя использовать в термостате. Поскольку они имеют незначительную разницу в свойстве теплового расширения.

Таким образом, это все о биметаллической полосе, которая работает на двух основных фундаментальных принципах теплового расширения и температурного коэффициента.Обычно это термометр, который измеряет температуру.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*