Схема соединения электродвигателя с конденсатором: Подключение электродвигателя 380В на 220В

Содержание

Схема соединения эл двигателя 220в с конденсатором. Подключение через конденсатор

Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключение электродвигателя 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.

Во время интенсивного запуска пусковая муфта используется до 7, 5 кВт. Если муфта допускает полный запуск на холостом ходу, эти двигатели могут быть подключены к сети мощностью 15 кВт непосредственно к сети, пусковой ток не должен превышать номинальный ток более чем в 2, 5 раза, однако неравномерность переключения не должна превышать номинальный ток в 1, 9 раза.

Особенности и способы подключения к однофазной сети

Для двигателей с двигателями с щеткой и короткой муфтой, а также для пусков больших двигателей следует избегать неисправности. Для двигателей, предназначенных для прерывистой работы, ток зацепления не должен превышать номинальный ток в 3 раза. Для коммутационных двигателей применяется одно и то же положение.

Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.

Разница между однофазными и трехфазными агрегатами

Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:

Однофазные двигатели: Режимы для подключения двигателей постоянного тока. Ток зацепления не должен превышать номинальный ток в 2, 5 раза. Способы подключения переносных и переносных двигателей. Ни в коем случае нельзя подключать двигатель непосредственно к наружной линии. Конструкция подвижного источника должна быть такой, чтобы соответствовать рабочей среде, поперечному сечению проводов и типам вилок и гнезд в соответствии с текущей нагрузкой, мощностью двигателя и защитным проводником, соединенным с защитным контактом вилки с защитным зажимом двигателя.

  • что собой представляют двигатели обоих классов;
  • как они работают;
  • каковы принципы функционирования однофазной (220) и трехфазной (380) сети.

Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.

Однако, если подача коротка, она устанавливается с другим подвижным входом в том же поперечном сечении, которое предусмотрено на одном конце вилки и второй подвижной розетке. Невозможно соединить провода, подключив их. Рекомендуется использовать намоточный барабан, подходящие намоточные седла или зажимы на крышке или несущей раме для перемещения корма. При подключении двигателя необходимо соблюдать особую осторожность, чтобы предотвратить повреждение всасывания при помощи дросселя, скручивания и т.д. если соединение двигателя надежно подключено, переход к каретке или каретке должен выполняться таким образом, чтобы он не был поврежден даже после длительного использования, и он не должен быть поврежден, даже когда крышка закрыта.

Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.

Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:


Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:


Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:


Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:


Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

  • Скорость вращения не изменяется.
  • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

  • Два контакта подсоединяются к сети.
  • Один через конденсатор к обмотке.

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.


В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Соединение звездой:

Cр = 2800 I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73 U n cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.


Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70 Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

  • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
  • Низкая мощность двигателя, значит, емкость занижена.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).


Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Похожие записи:

Подключение электродвигателя через конденсатор | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Бытовая техника часто комплектуется таким мотором, как электродвигатель серии АИРЕ. Он представляет собой однофазный силовой агрегат с короткозамкнутым ротором, заниженным пусковым моментом, небольшим КПД и маленькой перегрузочной способностью. Его характеристики существенно ниже, чем у трехфазных двигателей, поэтому любители самодельных станков и оборудования предпочитают использовать подключение электродвигателя через конденсатор к сети 220В. Оно позволяет применить трехфазный двигатель, включив его в обычную бытовую электросеть. Для этого используются пусковые конденсаторы для электродвигателей, включающиеся на период пуска для компенсации обратной составляющей электромагнитного поля. Они имеют небольшие габариты, поэтому следует внимательно отнестись к выбору конденсатора. Определенный состав рабочего электролита, материала прокладки позволит добиться минимального значения тангенса угла потерь и последовательного сопротивления.

Схемы подключения электродвигателя с помощью конденсатора

Трехфазные двигатели отличаются разнообразием вариантов соединения обмоток, поэтому схемы подключения отличаются друг от друга. Самая простоя из них содержит один конденсатор, через который подключаются все обмотки, за исключением фазы двигателя, которая запитывается непосредственно от однофазной сети. В результате фаза сдвигается на +90 градусов, в том случае, если используется катушка индуктивности, то сдвиг происходит на -90 градусов. При этом существует риск, что магнитное поле станет эллиптическим. Чтобы этого не произошло, в схему включается проволочный переменный резистор, подключающийся последовательно к конденсатору. Наиболее популярная схема подключения конденсатора к двигателю – «треугольник», но при ее использовании мощность мотора будет всего 70-755 от номинальной. Поэтому при необходимости приблизить параметры мощности к номинальной применяется схема «звезда», при которой две фазные обмотки подключаются в сеть, а третья через конденсатор к одному из проводов электросети. Выбор конденсатора для электродвигателяОсуществляя подключение электродвигателя через конденсатор, стоит помнить, что на нем напряжение может быть существенно выше напряжения электросети. Действующие нормативы говорят о том, что конденсатор должен выдерживать не менее 20-30 пусков в минуту. Каждый из них должен длиться не менее 2-3 секунд, при этом не допускается никаких перегревов. Как подобрать конденсатор для электродвигателя определенной мощности? Главное, что необходимо учесть, это емкость. Она рассчитывается по довольно простой формуле и равна произведению номинальной мощности электродвигателя на коэффициент, равный 66. зависит емкость от следующих параметров:

  • толщина слоя используемого диэлектрика;
  • площадь обкладки;
  • диэлектрической проницаемости применяемого диэлектрика.

Элементарный расчет демонстрирует, что на каждые 100 Вт мощности потребуется 7 мкФ емкости. Если трехфазный двигатель имеет мощность в 2 кВт, то емкость конденсатора должна равняться 140 мкФ. Можно использовать несколько, параллельно соединенных конденсаторов, способных в итоге обеспечить необходимую суммарную емкость. Размер этого параметра есть на корпусе каждого конденсатора, он закодирован: М1 обозначает, что емкость конденсатора равна 0,1 мкФ. Рабочее напряжение конденсатора не должно превышать напряжение сети более чем в полтора раза. В том случае, когда двигатель запускается под нагрузкой, следует учитывать пусковой момент.

Схема подключения двигателя компрессора с двумя конденсаторами

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

схемы соединения обмоток и конденсаторы, емкость, реверс

Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

  • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Подключение электродвигателя 220380

Включение в работу

1-ое, что необходимо это сделать найти, где середина катушек, другими словами, место соединения. Если наш асинхронный аппарат в неплохом состоянии, то это сделать будет проще – по цвету проводов. Увидите на набросок:

Если что остается сделать нашему клиенту так выведено, то заморочек не будет. Однако в большинстве случаев приходится заниматься с агрегатами, снятыми со стиральной машины непонятно когда, и непонятно кем. Тут, естественно, будет труднее.

Стоит испытать вызвонить концы при наличии омметра. Наибольшее сопротивление – это две катушки, соединенные поочередно. Помечаем их. Далее, смотрим на значения, которые указывает устройство. Пусковая катушка имеет сопротивление чем просто, чем рабочая.

Как подключить двигатель 380 на 220 вольт.

Сейчас берем конденсатор. Вообщем, на различных электронных машинах они различные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такового нет, есть вариант взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для запуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Говоря иначе, надо сделать два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. По другому спалите аппарат

Если нужен реверс, то он делается по таковой схеме:

Если что остается сделать нашему клиенту изготовлено верно, тогда работает. Правда, конечно одна загвоздка. В борно случаются выведены далеко не все концы. Тогда с реверсом будут трудности. Только что разбирать и выводить их наружу без помощи других.

Вот некие моменты, как подсоединять асинхронные электронные машины к сети 220 вольт. Схемы легкие, и при неких усилиях не исключено полный набор сделать своими руками.

Использование магнитного пускателя

Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.

Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.

Схема подключения пускателя асинхронного двигателя электрического 380в:

На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.

Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.

Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.

Видео: Подключение асинхронного двигателя. Определение типа двигателя.

Схемы подключения трехфазных двигателей на 220 вольт

Если двигатель маломощный (менее 1,5 кВт), и подключение происходит без нагрузки, то для успешной работы достаточно просто подключить к схеме конденсатор. Например, один вывод припаять к входу нулевого провода, а другой — к свободному концу обмотки, или третьему выводу треугольника. Если направление вращения не устраивает, то нужно просто прикрепить второй вывод конденсатора к входу фазного провода.

          

Для запуска нагруженного или мощного двигателя необходим более мощный «толчок», который может обеспечить дополнительный (пусковой) конденсатор. Он впаивается в схему параллельно основному, однако работает не постоянно, а только несколько секунд, на время старта двигателя. Обычно его подключают через кнопку или двухпозиционный тумблер. Для запуска требуется нажать кнопку (включить тумблер) на то время, пока двигатель запустится и наберет обороты. Затем кнопку отпускают, разрывая сеть и отключая емкость.

Двигатель можно заставить работать в прямом и реверсивном режимах. Для этого в схеме подключения добавляется тумблер, который в одном положении подключает конденсатор к нулевому, а в другом — к фазовому проводу. В реверсивной схеме, если двигатель медленно запускается или не стартует вообще, также может быть добавлен пусковой конденсатор. Он точно так же подключается параллельно основному и включается кнопкой «Пуск».

Часто можно услышать вопрос, а можно ли в принципе запустить трехфазный двигатель без конденсатора? К сожалению, этого сделать нельзя. Так можно запустить только мотор, изначально предназначенный для работы с однофазной сетью 220 В.

Реверсирование двигателя

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.

Способ повысить развиваемую мотором мощность

Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.

Асинхронный двигатель — подключение на 220 В по улучшенной схеме

Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:

33,3 + 33,3 + 8,325 = 74.92%.

Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.

И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

https://youtube.com/watch?v=ukl8nctMpTI

Схема звезда-треугольник

В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.

Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.

Чтобы она работала необходимо три пускателя:

К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.

Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».

Переподключение с 380 вольт на 220

Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам

При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).

Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.

Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.

Видео:

Видео: Как подключить электродвигатель с 380 на 220

Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.

Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.

Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.

Увеличение напряжения

Представим, на бирке написано: Δ/Ỵ220/380. Это означает, что нам необходимо включение треугольником, потому что чаще всего соединение как правило – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то нетрудно. Там бывают перемычки, все, что необходимо – переключить их в необходимое положение.

Увы что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре необходимо отыскать три конца, которые друг с другом спаяны. Это и конечно соединение звездой. Провода необходимо рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное держать в голове, что бывают начало и конец катушек. Например, возьмем за начало концы, которые были выведены в борно электродвигателя. Означает то, что спаяно – это концы. Сейчас принципиально не спутать.

Подключаем так: начало одной катушки соединяем с концом другой, и т.д..

Как мы рассмотрели, схема обычная. Сейчас двигатель, который был соединен для 380, конечно включать в сеть 220 вольт.

Подбор емкости конденсатора

Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.

Для расчета необходимой емкости следует воспользоваться формулой:

  • для подключения «треугольником» С = (I/U)x4800;
  • для подключения «звездой» С = (I/U)x2800.

Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.

Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.

Приведем пример расчета

Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.

Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.

Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.

Дополнительные замечания и предостережения:

  • Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
  • Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
  • Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.

Однофазный

Сейчас побеседуем еще об одном виде асинхронных электродвигателей. Это однофазовые конденсаторные машины переменного тока. У их две обмотки, где, после запуска, работает только одна в их числе. Такие движки имеют свои особенности. Разглядим их на примере модели АВЕ-071-4С.

По-другому они еще именуются асинхронными движками с расщепленной фазой. У их на статоре намотана очередная, вспомогательная обмотка, смещенная относительно основной. Запуск делается с использованием фазосдвигающего конденсатора.

Схема однофазового асинхронного двигателя

Из схемы видно, что электронные машины АВЕ отличаются от собственных трехфазных братьев, также от коллекторных однофазовых агрегатов.

Всегда пристально читайте, что написано на бирке! То, что выведено три провода, полностью не означает, что это для подключения на 380 в. Просто спалите неплохую вещь!

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

https://youtube.com/watch?v=tqwz6Uv7mlE

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Как еще можно подключить электродвигатель

Помимо соединения звезда-треугольник, также есть еще несколько вариантов, которые применяются более часто:

Многие электрики советуют поставить конденсатор. Конечно, это самое простое решение, но в тоже время Вы сразу получите резкое снижение мощности электродвигателя. Для её реализации понадобится только исправный конденсатор. Нужно два контакта конденсатора подключить к нулю и третьему выходу электродвигателя. В итоге получится маломощный агрегат до 1,5 Вт. Но если Ваш электродвигатель производит большую мощность, то нужно в схему ввести еще пусковой конденсатор. Но в тоже время, если у Вас однофазное подключение, то конденсатор просто компенсирует отсутствие третьего выхода; Фото – схема подключения двигателя с конденсаторами
Если у Вас асинхронный электродвигатель, то можно легко его подключить в звезду либо треугольник по желанию с 380 на 220 В

В таких двигателях установлено три обмотки, которые соединены между собой в звезду или треугольник, для изменения напряжения нужно просто поменять выводы, которые идут на вершины соединений;
Очень важно внимательно читать инструкция к двигателю, его сертификат и паспорт. У многих импортных моделей возможна только монтажная схема соединения треугольник к нашему напряжению 220 В

Если Вы проигнорируете это правило и включите их в сеть 220 при помощи соединения звезда, то моторы просто сгорят под высокой нагрузкой. Также нельзя подключать к домашней сети двигатель, у которого мощность более трех киловатт, иначе начнутся короткие замыкания или даже сгорит автомат УЗО.

Дополняя пункт про конденсаторы, нужно отметить, что подбирать эту комплектующую необходимо исходя из минимально допустимой емкости, постепенно пробными методами увеличивая её до оптимальной, необходимой двигателю. Если электродвигатель очень долго стоит без нагрузки, то он может просто сгореть при подключении к сети. Также помните, что даже после того, как Вы выключили из сети электродвигатели, конденсаторы хранят напряжение на своих контактах.

Ни в коем случае не трогайте их, а желательно оградите специальным изолирующим слоем, который поможет избежать несчастных случаев. Также перед работой с ними нужно делать разрядку.

Это интересно: Электрический теплый пол своими руками — разбираем подробно

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, Вт IC1=IL1, A C1, мкФ L1, Гн
100 0.26 3.8 2.66
200 0.53 7.6 1.33
300 0.79 11.4 0.89
400 1.05 15.2 0.67
500 1.32 19.0 0.53
600 1.58 22.9 0.44
700 1.84 26.7 0.38
800 2.11 30.5 0.33
900 2.37 34.3 0.30
1000 2.63 38.1 0.27
1100 2.89 41.9 0.24
1200 3.16 45.7 0.22
1300 3.42 49.5 0.20
1400 3.68 53.3 0.19
1500 3.95 57.1 0.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.

Таблица 2
P, Вт IC1, A IL1, A C1, мкФ L1, Гн
100 0.35 0.18 5.1 3.99
200 0.70 0.35 10.2 2.00
300 1.05 0.53 15.2 1.33
400 1.40 0.70 20.3 1.00
500 1.75 0.88 25.4 0.80
600 2.11 1.05 30.5 0.67
700 2.46 1.23 35.6 0.57
800 2.81 1.40 40.6 0.50
900 3.16 1.58 45.7 0.44
1000 3.51 1.75 50.8 0.40
1100 3.86 1.93 55.9 0.36
1200 4.21 2.11 61.0 0.33
1300 4.56 2.28 66.0 0.31
1400 4.91 2.46 71.1 0.29
1500 5.26 2.63 76.2 0.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220 237 254
0.2 0.63 0.54 0.46
0.5 1.26 1.06 0.93
1 2.05 1.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
Трансформатор Номинальный
ток, A
Мощность
двигателя, Вт
ТС-360М 1.8 600…1500
ТС-330К-1 1.6 500…1350
СТ-320 1.6 500…1350
СТ-310 1.5 470…1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25 400…1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1 350…900
ТС-200К 1 330…850
ТС-200-2 0.95 300…800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87 275…700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

Именно на примере этой работы я и расскажу, как всё происходило

Содержание статьи

Что необходимо для подключения трёхфазного двигателя на 220 В

Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

Для работы потребуется:

  1. Непосредственно сам электромотор.
  2. Два конденсатора (пусковой и рабочий).
  3. Магнитный пускатель соответствующего номинала.
  4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
  5. Провода соответствующего сечения.
  6. Кнопочный пост на 2 точки управления.
  7. Плоскогубцы, отвёртки, ключи.

Подготовив всё необходимое, приступаем к работе.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Несколько слов о магнитном пускателе

Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Этапы подключения пускателя для второго конденсатора

Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

Устанавливаем перемычку между контактами второго пускателя

Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

Подключение провода для подачи питания на второй пускатель

Катушка второго магнитного пускателя

Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

Подключаем пусковой конденсатор: второй провод

Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

Подключение свободного провода пускового конденсатора

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Окончательные этапы сборки схемы подключения электродвигателя

Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

Почему всё так сложно

Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая

ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

Следующая

ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Show & Tell: асинхронные двигатели переменного тока

Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения. По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.

Немного истории

Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей.Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную.Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году. Оба опубликовали статьи в 1888 году, чтобы объяснить эти технологии. Тесла подал заявку на патенты в США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, получил лицензию на патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса. развивать технологию дальше.General Electric (GE) начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.

Асинхронные двигатели

идеальны для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на длительный режим работы и обычно служат долгое время из-за своей простой конструкции.

Конструкция и теория эксплуатации

На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами. Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора.Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Теорию работы асинхронного двигателя переменного тока можно объяснить с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга.

Хотите узнать больше о теории работы двигателей переменного тока?

Однофазные асинхронные двигатели

Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира.Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.

Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора. Когда ток (L) подключен либо к черному, либо к красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.

Подключение конденсатора

Для однофазных двигателей конденсатор важен для запуска.Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал. Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.

Вот пример подключения 4-контактного конденсатора и однофазного двигателя.

Пусть вас не смущает количество выводов на конденсаторе.На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны.

Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

Трехфазные асинхронные двигатели

Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц.В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T).Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W. Принцип работы такой же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.

При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

Вы наверное обратили внимание, что на схеме подключения нет конденсатора .Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не нужен. Мы также сняли видео, чтобы продемонстрировать правильную проводку.

И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала.

Вот и все, что касается подключения однофазных и трехфазных асинхронных двигателей.Следите за новостями в следующем посте, где я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.

Не забудьте подписаться!

Еще немного истории …

Вот видео, которое кратко объясняет историю развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до появления серий KII и KIIS.

Схемы подключения

3 0 1 7 2
Схема подключения Описание
3226 381200, 416279 Две скорости, одна обмотка, ТН или ТТ M / S, одно напряжение
3233 Две скорости, одна обмотка, CHP M / S, одно напряжение
3251 344139, 416282 Две скорости, две обмотки, VT / CT / CHP M / S, одно напряжение
11658 344137, 416280 Соединение звезда-треугольник, одиночное напряжение
108323 Однофазный, двойное напряжение, 6 выводов, вращение против часовой стрелки
108324 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
109144 158802, 344136 Соединение звездой, двойное напряжение
109145 158803, 344122 Соединение треугольником, двойное напряжение
130274 381679 Соединение звездой, двойное напряжение, PWS на низком напряжении
137033 344138 Соединение звезда-треугольник, двойное напряжение
159833 344133 Соединение треугольником, двойное напряжение, PWS на низком напряжении
165975 377836, 416281, 896428 Соединение звездой или треугольником, одно напряжение, PWS
195759 96441 6 выводов, соединение звездой или треугольником, одно напряжение с полной обмоткой — начало через линию
356693 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
387151 7 выводов, две скорости, две обмотки, ТН / ТТ / ТЭЦ, одно напряжение
388299 Соединение звездой с нейтралью, одно напряжение
3 Соединение звездой, двойное напряжение, с термозащитой
414729 6 выводов, соединение звездой, одно напряжение, полная обмотка — начало через линию
434839 Одиночное напряжение звезды или треугольника с одинарным трансформатором тока
438252 438264 6 выводов, 1.Соотношение 73: 1, двойное напряжение или запуск по схеме звезда — треугольник при низком напряжении
453698 Однофазный, однофазный, 4 вывода, индукционный генератор
463452 2 скорости, 2 обмотки, одно напряжение, соединение звездой, с трансформаторами тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений; Низкоскоростная обмотка
466703 12 выводов, пуск звезда — треугольник или одно напряжение PWS, собранный в кабельной коробке
488075 Соединение звезда, треугольник, треугольник или PWS, 12 выводов, двойное напряжение
488076 Соединение звезда, треугольник или PWS, 2 полюса, 12 выводов, одно напряжение
499495 (дельта) 3 Соединение треугольником, одно напряжение
499495 (звезда) 3 Соединение звездой, одно напряжение
587-13816 423622, 978576 Соединение треугольником, трансформаторы тока
587-18753 423555, 958798 Соединение звездой, трансформаторы тока
779106 Две скорости, две обмотки, CT / VT / CHP M / S, YD на обеих скоростях, одно напряжение
845929 Соединение звездой, трансформаторы тока, LA, SC, одиночное напряжение
872326 Две скорости, одна обмотка, яркость на высокой скорости, одно напряжение
897847 Подключение силового блока
1 Одна фаза, одно напряжение, 3 вывода, вращение по часовой или против часовой стрелки
Однофазный, 115/230 В, 7 выводов, с тепловой защитой, вращение по часовой стрелке

6

Соединение звездой, двойное напряжение, с термозащитой
0 12 выводов, двойное напряжение, Y-D, ИЛИ, 6 выводов, одиночное напряжение, Y-D
Однофазный, двойное напряжение, 11 выводов, с термозащитой, вращение по часовой стрелке
356692 Однофазный, однофазный, 5 выводов, с тепловой защитой, вращение по часовой стрелке
108323 Однофазный, двойное напряжение, 6 выводов, вращение по часовой стрелке
Две скорости, две обмотки, одно напряжение, PWS на обеих обмотках или полная обмотка — начало через линию
0 Соединение треугольником, одно напряжение, с 4 трансформаторами тока, LA и SC
924243 Соединение звездой, двойное напряжение, PWS на оба напряжения
957238 Пуск, треугольник, звезда или соединение, 12 выводов, одно напряжение
965105 Соединение треугольником, 9 выводов, ТН, 2 скорости, 1 обмотка, одно напряжение
987241 Соединение треугольником, одно напряжение, с трансформаторами тока, LA и SC
991905 Подключение двигателя с тройным расходом
2010950 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока
2010964 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений
Воздуходувка Схемы подключения одно- и трехфазного вентилятора,
* Термозащита

Дешевая электрическая схема конденсатора электродвигателя, найдите специальные предложения на электросхему конденсатора электродвигателя на сайте Alibaba.com

Стартовый конденсатор 2 провода CD60 300 В 600 мкФ Пусковой конденсатор для сверхмощного электродвигателя Пусковой конденсатор для сверхмощного электродвигателя

null

Стартовый конденсатор Anycell 2 провода CD60 300 В 600 мкФ Пусковой конденсатор для тяжелого электродвигателя Пусковой конденсатор для сверхмощного электродвигателя

null

Общий конденсатор Конденсатор рабочего двигателя вентилятора Конденсатор электрического вентилятора 2,5 мкФ 450 В CBB61 Конденсатор

null

SODIAL (R) CBB65A 450 В переменного тока, 50/60 Гц 40 мкФ 5% Конденсатор запуска круглого электродвигателя

5.23

Anycell Рабочий конденсатор Два провода CBB60 450 В 12 мкФ Пусковой конденсатор двигателя для водяных насосов и электродвигателя Прочный суперконденсатор

null

Бесплатная доставка Пусковой конденсатор CD60 400 мкФ 250 В переменного тока насос Промывочный конденсатор вентилятора электродвигателя

$ 77,5

Бесплатная доставка Пуск конденсатор CD60 500 мкФ 250 В перем. тока насос Электродвигатель Конденсатор промывки вентилятора

$ 79,5

Marathon Electric / Regal Beloit — 5KCR49PN0492S — Двигатель вентилятора для птицеводства 3/4 л.

344.54

Marathon Electric / Regal Beloit — 5KCP49UN9837S — Двигатель вентилятора для птицеводства 1/2 л.с., постоянный разделенный конденсатор, 850 об / мин с паспортной таблички, напряжение 208-230, рама 56Y

363,62

Стартовый конденсатор Boyd Gresham, 2 провода CD60 300V 600UF, для тяжелых условий эксплуатации Пусковой конденсатор электродвигателя Пусковой конденсатор для сверхмощного электродвигателя

null

Электрический вентилятор 3 мкФ, двойные конденсаторы двигателя cbb61 вентилятор, кондиционер, конденсатор Аксессуары для вентиляторов

15 долларов США.00 / лот

CD60 100 мкФ сверхмощный пусковой конденсатор электродвигателя серии YC

$ 8,3

Надоело искать поставщиков? Попробуйте запрос предложений!

Запрос коммерческого предложения

  • Получите расценки по индивидуальным запросам
  • Позвольте подходящим поставщикам найти вас
  • Завершите сделку одним щелчком мыши

Настройка обработки Apperal

  • 1000 фабрик могут процитировать для вас
  • Более быстрый ответ ставка
  • 100% гарантия доставки

75 мкФ пусковой конденсатор электродвигателя для тяжелых условий эксплуатации

8 долларов США.40 / шт.

Конденсатор электрического вентилятора cbb61 Конденсатор двигателя 450 В 1,5 мкФ Пусковой конденсатор конденсатора вентилятора с круглым хвостом Детали кондиционера

33,04 долл. США / много

Конденсатор электрического вентилятора cbb61 Конденсатор двигателя 450 В 1,2 мкФ Пусковой конденсатор для вентилятора с круглым хвостом Кондиционер Детали

32,70 долл. США / лот

1949 1950 Схема электропроводки Ford Color

17,95

Вентиляторный конденсатор пусковой конденсатор двигателя вентилятора cbb61 450v5uf конденсатор конденсатор двигателя Детали кондиционера

37 долл. США.20 / лот

Kenmore 76044 Щиток проводки двигателя для утилизации мусора Оригинальная деталь производителя оригинального оборудования (OEM) для Kenmore, Emerson, Kenmore Elite, Insinkerator

9,15

Пусковой конденсатор двигателя TEMCo SC0074-161-193 mfd 220-250 В переменного тока Вольт uf Round HVAC AC Electric

12.03

TEMCo Motor Run Capacitor RC0014-45 mfd 370 V VAC volt 45 uf Round HVAC TEMCo AC Electric

10.85

TEMCo Motor Run Capacitor RC0006-5 mfd 370 VAC Round volt HVAC 5 uf VAC Round Volt TEMCo AC Electric

7.7

TEMCo Конденсатор работы двигателя RC0012-35 mfd 370 VAC, напряжение 35 мкФ Круглый HVAC TEMCo AC Electric

9,5

TEMCo Конденсатор работы двигателя RC0007-10 mfd 370 VAC, вольт 10 мкФ Круглый HVAC TEMCo

9000 AC

Электрический 9000

CBB61 6 мкФ Рабочий конденсатор электродвигателя вентилятора

5,46

Стартовый конденсатор Anycell 2 провода CD60 250 В 75 мкФ Пусковой конденсатор электродвигателя для тяжелых условий эксплуатации

null

Стартовый конденсатор Anycell 2 провода CD60 250 В 150 мкФ

Пусковой конденсатор

Пусковой конденсатор для тяжелого двигателя

Пусковой конденсатор Anycell с двумя проводами CBB60 450 В, 35 мкФ Пусковой конденсатор двигателя для электрической машины

null

Стартовый конденсатор Anycell, 2 провода CD60 250 В 250 мкФ Пусковой конденсатор электродвигателя для тяжелых условий эксплуатации

null

Конденсатор для запуска двигателя Anycell, 2 провода, для тяжелых условий эксплуатации CD60 250 В 75 мкФ Пусковой конденсатор двигателя

null

Anycell Staring Capacitor 2 провода CD60 250V 300uF Пусковой конденсатор электродвигателя для тяжелых условий эксплуатации

null

Вас также может заинтересовать:

Зачем нужен конденсатор для однофазного двигателя

Зачем нужен конденсатор для однофазного двигателя:

Однофазные двигатели не являются самозапускающимися двигателями, однофазный источник питания не может создавать вращающееся магнитное поле по своей природе (только одна фаза).Таким образом, чтобы вращать однофазный двигатель, мы должны придать вращающий момент или вращать вручную, чтобы получить непрерывное вращение. Но в то же время мы можем запустить двигатель, но добавив дополнительную пусковую обмотку, и обмотка будет подключена последовательно с конденсатором. Технически это называется методом конденсатора с разделенной фазой. Мы собираемся использовать свойство конденсатора (в конденсаторе напряжение отстает от тока на 90 градусов). Здесь напряжение питания будет сдвинуто по фазе на 90 градусов. следовательно, добавляя конденсатор, мы получаем одновременно две фазы от нашего однофазного источника питания.Следовательно, двигатель начинает вращаться.
[wp_ad_camp_1]

Принципиальная схема однофазного двигателя:

Конденсатор однофазного двигателя Форма волны конденсатора однофазного двигателя
[wp_ad_camp_1]
Здесь вы можете увидеть две обмотки, показанные на принципиальной схеме, одна — пусковая, а другая — бегущая. При этом пусковая обмотка включена последовательно с конденсатором. Вы можете увидеть диаграмму формы волны, как конденсатор создает фазовый сдвиг входного напряжения.

Как рассчитать емкость конденсатора для однофазного двигателя:

Вы можете использовать любой тип конденсатора, кроме конденсатора постоянного тока. При выборе конденсатора для однофазного двигателя следует учитывать два важных критерия.

№: 1 — это рейтинг: значение емкости.

Здесь мы увидим значение емкости конденсаторных двигателей некоторых бытовых приборов. Емкость конденсатора прямо пропорциональна мощности двигателя. т.е.

  • в нашем однофазном двигателе потолочного вентилятора мощностью 45 Вт и 2.Конденсатор емкостью 5 мкФ используется для запуска двигателя.
  • Наш вытяжной вентилятор для дома использует 4 мкФ и мощность 200 Вт.
  • В то же время однофазный двигатель мощностью 0,75 л.с. использует конденсатор емкостью 10 мкФ. Как это….
  • В однофазном двигателе
  • мощностью 3 л.с. используется конденсатор емкостью 42 мкФ.

Емкость конденсатора зависит от реактивной мощности, подаваемой на вспомогательную обмотку. Вспомогательная обмотка получает реактивный ток и не способствует развитию крутящего момента в двигателе.

No2: есть Номинальное напряжение:

Вы должны выбрать номинальное напряжение конденсатора 440 Вольт. На нем не должно быть 220 вольт. Если это 220 вольт, то ваш двигатель не работает или не дает желаемой мощности.

См. Также: Условия параллельной работы трансформатора

Предыдущая статьяРеле замыкания на землю ротора 64R Рабочая функцияСледующая статьяPLC DCS Start Stop Электросхема

Руководство по поиску и устранению неисправностей — Двигатели переменного тока

Используйте этот ресурс для устранения неполадок двигателя переменного тока.Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью к своему поставщику .

1. Двигатель не запускается при первоначальной установке

  • Двигатель подключен неправильно
    • Обратитесь к электрической схеме, чтобы убедиться, что двигатель подключен правильно.
  • Двигатель поврежден, ротор задевает статор
    • Проверните вал двигателя и нащупайте трение.
  • Неисправность источника питания или линии
    • Проверьте источник питания, перегрузку, предохранители, элементы управления и т. Д..

2. Двигатель работал, затем не запускается

  • Сработал предохранитель или автоматический выключатель
    • Замените предохранитель или переустановите прерыватель.
  • Статор закорочен или заземлен (двигатель издает гудение, и срабатывает автоматический выключатель или предохранитель)
    • Проверьте катушки на утечки. При обнаружении утечек мотор необходимо заменить.
  • Двигатель перегружен или заклинивает
    • Убедитесь, что нагрузка свободна.Сравните потребление тока двигателя в амперах с номиналом, указанным на паспортной табличке.
  • Конденсатор (на однофазном двигателе), возможно, вышел из строя
    • Сначала разрядите конденсатор. Чтобы проверить конденсатор, установите вольтметр на шкалу RX100 и прикоснитесь щупами к клеммам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля Ом и снова переместится на высокое значение. Постоянное нулевое сопротивление указывает на короткое замыкание; устойчиво высокое сопротивление указывает на обрыв цепи.

3.Мотор работает, но гаснет

  • Падение напряжения
    • Если напряжение ниже 90% номинального значения двигателя, обратитесь в свою энергетическую компанию или убедитесь, что другое оборудование не отнимает мощность у двигателя.
  • Нагрузка увеличена
    • Убедитесь, что нагрузка не изменилась и оборудование не затянулось. Если это вентилятор, убедитесь, что поток воздуха не изменился.

4.Мотор слишком долго разгоняется

  • Неисправный конденсатор
    • Проверьте конденсатор согласно предыдущим инструкциям.
  • Неисправные подшипники
    • Шумные или неровные подшипники должны быть заменены поставщиком двигателя.
  • Напряжение слишком низкое
    • Убедитесь, что напряжение находится в пределах 10% от номинального значения двигателя, указанного на паспортной табличке. В противном случае обратитесь в свою энергетическую компанию или проверьте, не отнимает ли какое-либо другое оборудование питание от двигателя.

5. Двигатель вращается в неправильном направлении

  • Неправильный монтаж
    • Перемонтируйте двигатель согласно схеме, прилагаемой к двигателю. Электрические схемы Groschopp можно найти на странице «Электрические схемы» в нашем разделе ресурсов или на страницах отдельных двигателей.

6. Двигатель перегружен / постоянно течет термозащита

  • Слишком высокая нагрузка
    • Убедитесь, что груз не зажат.Если двигатель заменяется, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был особой конструкции, штатный двигатель не сможет воспроизвести его характеристики. Снимите нагрузку с двигателя и проверьте мощность двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (верно только для трехфазных двигателей).
  • Слишком высокая температура окружающей среды
    • Убедитесь, что двигатель получает достаточно воздуха для надлежащего охлаждения.Большинство двигателей рассчитаны на работу при температуре окружающей среды не выше 40 ° C. (Примечание: исправный двигатель может быть горячим на ощупь.)

7. Перегрев двигателя

  • Перегрузка. Сравните фактический (измеренный) ток с номиналом на паспортной табличке.
    • Найдите и удалите источник чрезмерного трения в двигателе или нагрузке. Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
  • Однофазный (только трехфазный)
    • Проверить ток на всех фазах.Должно быть примерно так же.
  • Неправильная вентиляция
    • Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно движется через каналы охлаждения. Если накопилось слишком много грязи, очистите двигатель.
  • Несимметричное напряжение (только трехфазное)
    • Проверить напряжение на всех фазах. Должно быть примерно так же.
  • Трение ротора о статор
  • Повышенное или пониженное напряжение
    • Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
  • Обрыв обмотки статора (только трехфазный)
    • Проверьте сопротивление статора на всех трех фазах на предмет баланса.
  • Неправильные соединения
    • Проверьте все электрические соединения на предмет надлежащей заделки, зазоров, механической прочности и целостности цепи. См. Схему подключения двигателя.

8. Двигатель вибрирует

  • Двигатель смещен относительно нагрузки
  • Несбалансированная нагрузка (приложение с прямым приводом)
    • Снимите двигатель с нагрузки и осмотрите двигатель самостоятельно.Убедитесь, что вал двигателя не погнут.
  • Неисправные подшипники двигателя
    • Проверить двигатель самостоятельно. Если подшипники неисправны, вы услышите шумы или почувствуете неровности.
  • Слишком малая нагрузка (только одна фаза)
    • Некоторая вибрация при небольшой нагрузке является стандартной. Рассмотрите возможность перехода на двигатель меньшего размера из-за чрезмерной вибрации.
  • Неисправна обмотка
    • Проверить обмотку на короткое замыкание или разрыв цепи.Усилители также могут быть высокими. При дефектной обмотке замените двигатель.
  • Высокое напряжение
    • Проверьте источник питания, чтобы убедиться в правильности напряжения.

9. Отказ подшипников

  • Нагрузка на двигатель может быть чрезмерной или несбалансированной
    • Проверьте нагрузку двигателя и проверьте натяжение приводного ремня, чтобы убедиться, что оно не слишком туго. Несбалансированная нагрузка также приведет к выходу подшипников из строя.
  • Высокая температура окружающей среды
    • Если двигатель используется в среде с высокими температурами окружающей среды, может потребоваться другой тип смазки для подшипников.Возможно, вам потребуется проконсультироваться с заводом-изготовителем.
  • Высокая температура двигателя
    • Проверьте и сравните фактическую нагрузку двигателя с его номинальной нагрузочной способностью.

10. Отказ конденсатора

  • Слишком высокая температура окружающей среды
    • Убедитесь, что температура окружающей среды не превышает допустимую температуру двигателя (указана на паспортной табличке).
  • Возможный скачок напряжения на двигателе (вызванный ударом молнии или другим высоким переходным напряжением)
    • Если это обычная проблема, установите сетевой фильтр.

Электрические символы | Электронные символы

Электрические символы и символы электронных схем используются для построения принципиальной схемы.

Символы обозначают электрические и электронные компоненты.

Светодиод
Обозначение Название компонента Значение
Обозначения проводов
Электрический провод Проводник электрического тока
Подключенные провода Подъездной переход
Не подключенные провода Провода не подключены
Обозначения переключателей и реле
Тумблер SPST Отключает ток при открытии
Тумблер SPDT Выбирает одно из двух подключений
Кнопочный переключатель (N.O) Выключатель мгновенного действия — нормально открытый
Кнопочный переключатель (Н.З.) Выключатель мгновенного действия — нормально замкнутый
DIP-переключатель DIP-переключатель используется для бортовой конфигурации
Реле SPST Реле размыкания / замыкания с помощью электромагнита
Реле SPDT
Джемпер Закройте соединение, вставив перемычку на контакты.
Паяльный мост Припой для закрытия соединения
Обозначения заземления
Земля Земля Используется для опорного нулевого потенциала и защиты от поражения электрическим током.
Шасси наземное Подключен к шасси цепи
Цифровой / Общий
Обозначения резисторов
Резистор (IEEE) Резистор снижает ток.
Резистор (IEC)
Потенциометр (IEEE) Регулируемый резистор — имеет 3 вывода.
Потенциометр (IEC)
Переменный резистор / реостат (IEEE) Регулируемый резистор — имеет 2 вывода.
Переменный резистор / реостат (IEC)
Подстроечный резистор Предустановленный резистор
Термистор Терморезистор — изменение сопротивления при изменении температуры
Фоторезистор / Светозависимый резистор (LDR) Фоторезистор — изменение сопротивления при изменении силы света
Обозначения конденсаторов
Конденсатор Конденсатор используется для хранения электрического заряда.Он действует как короткое замыкание с переменным током и разомкнутая цепь с постоянным током.
Конденсатор
Поляризованный конденсатор Конденсатор электролитический
Поляризованный конденсатор Конденсатор электролитический
Конденсатор переменной емкости Регулируемая емкость
Обозначения индуктора / катушки
Индуктор Катушка / соленоид, создающий магнитное поле
Индуктор с железным сердечником Включая утюг
Переменный индуктор
Обозначения источников питания
Источник напряжения Генерирует постоянное напряжение
Источник тока Генерирует постоянный ток.
Источник напряжения переменного тока Источник переменного напряжения
Генератор Электрическое напряжение создается за счет механического вращения генератора
Батарея Генерирует постоянное напряжение
Аккумулятор Генерирует постоянное напряжение
Источник управляемого напряжения Генерирует напряжение как функцию напряжения или тока другого элемента схемы.
Управляемый источник тока Генерирует ток как функцию напряжения или тока другого элемента схемы.
Обозначения счетчика
Вольтметр Измеряет напряжение. Обладает очень высокой стойкостью. Подключил параллельно.
Амперметр Измеряет электрический ток. Имеет почти нулевое сопротивление. Подключил поочередно.
Омметр Меры сопротивления
Ваттметр Меры электроэнергии
Обозначения ламп / лампочек
Лампа / лампочка Генерирует свет при протекании тока через
Лампа / лампочка
Лампа / лампочка
Символы диодов / светодиодов
Диод Диод позволяет току течь только в одном направлении — слева (анод) направо (катод).
Стабилитрон Позволяет току течь в одном направлении, но также может течь в обратном направлении, когда напряжение пробоя выше
Диод Шоттки Диод Шоттки — диод с низким падением напряжения
Варактор / варикап диод Диод переменной емкости
Туннельный диод
Светоизлучающий диод (LED) излучает свет, когда ток проходит через
Фотодиод Фотодиод пропускает ток при воздействии света
Обозначения транзисторов
Транзистор биполярный NPN Обеспечивает прохождение тока при высоком потенциале в основании (в центре)
Транзистор биполярный PNP Обеспечивает прохождение тока при низком потенциале в основании (в центре)
Транзистор Дарлингтона Изготовлен из 2-х биполярных транзисторов.Имеет общий прирост продукта каждого прироста.
JFET-N Транзистор Транзистор полевой N-канальный
JFET-P Транзистор Транзистор полевой P-канальный
NMOS-транзистор N-канальный полевой МОП-транзистор
PMOS транзистор P-канальный МОП-транзистор
Разное. Символы
Двигатель Электродвигатель
Трансформатор Измените напряжение переменного тока с высокого на низкий или с низкого на высокое.
Электрический звонок Звонит при активации
Зуммер Воспроизводить жужжащий звук
Предохранитель Предохранитель отключается, когда ток превышает пороговое значение. Используется для защиты схемы от высоких токов.
Предохранитель
Автобус Содержит несколько проводов. Обычно для данных / адреса.
Автобус
Автобус
Оптопара / Оптоизолятор Оптопара изолирует соединение с другой платой
Громкоговоритель Преобразует электрический сигнал в звуковые волны
Микрофон Преобразует звуковые волны в электрический сигнал
Операционный усилитель Усилить входной сигнал
Триггер Шмитта Работает с гистерезисом для снижения шума.
Аналого-цифровой преобразователь (АЦП) Преобразует аналоговый сигнал в цифровые числа
Цифро-аналоговый преобразователь (ЦАП) Преобразует цифровые числа в аналоговый сигнал
Кристаллический осциллятор Используется для генерации точного тактового сигнала частоты
Постоянный ток Постоянный ток генерируется от постоянного уровня напряжения
Условные обозначения антенн
Антенна / антенна Передает и принимает радиоволны
Антенна / антенна
Дипольная антенна Двухпроводная простая антенна
Символы логических вентилей
НЕ вентиль (инвертор) Выходы 1, когда вход 0
И Ворота Выходы 1, когда оба входа равны 1.
NAND Gate Выводит 0, когда оба входа равны 1. (НЕ + И)
OR Выход Выводит 1, когда любой ввод 1.
NOR Ворота Выводит 0, когда любой вход равен 1. (НЕ + ИЛИ)
Ворота XOR Выходы 1, если входы разные. (Эксклюзивное ИЛИ)
D Вьетнамки Хранит один бит данных
Мультиплексор / мультиплексор от 2 до 1 Подключает выход к выбранной входной линии.
Мультиплексор / мультиплексор от 4 до 1
Демультиплексор / демультиплексор с 1 по 4 Подключает выбранный выход к входной линии.

Как проверить электродвигатель: 12 шагов (с изображениями)

Об этой статье

Соавторы:

Специалист по ремонту автомобилей

Соавтором этой статьи является Duston Maynes.Дастон Мэйнс — специалист по ремонту автомобилей в RepairSmith. Duston специализируется на руководстве командой, которая занимается ремонтом различных автомобилей, включая замену свечей зажигания, передних и задних тормозных колодок, топливных насосов, автомобильных аккумуляторов, генераторов переменного тока, зубчатых ремней и стартеров. Дастон имеет степень младшего специалиста по автомобильным / дизельным технологиям Универсального технического института Аризоны и является сертифицированным техником-диагностом и техником по автомобильной механике BMW STEP. Компания RepairSmith получила награду Big Innovation Award 2020 от Business Intelligence Group и стартап года от American Business Awards.RepairSmith также была включена в список «50 стартапов, за которыми следует следить» по версии Built in LA, а также в список 52 компаний Business Intelligence Group, ведущих в сфере обслуживания клиентов. RepairSmith предлагает услуги на дому, чтобы обеспечить владельцам автомобилей удобный и полный ремонт автомобилей повсюду. Эту статью просмотрели 1 203 603 раза (а).

Соавторы: 24

Обновлено: 7 августа 2021 г.

Просмотры: 1,203,603

Краткое содержание статьи X

Чтобы проверить электродвигатель, чтобы выяснить, почему он вышел из строя, осмотрите снаружи на наличие следов мусора, который попал в обмотки электродвигателя, а также сломанных монтажных отверстий или опор и потемневшей краски, которые могут указывать на чрезмерный нагрев.Проверните роторы, толкните и потяните вал, чтобы проверить подшипники; Если роторы движутся плавно и вал практически не движется, подшипники, вероятно, в порядке. Если кажется, что проблема электрическая, используйте омметр, чтобы проверить значение сопротивления. Для получения информации о том, как проверить вентилятор и кожух колокола, читайте дальше!

  • Печать
  • Отправить письмо поклонника авторам
Спасибо всем авторам за создание страницы, которую прочитали 1 203 603 раза. .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*