Схема установки батарей отопления в квартире: Способы и схемы подключения радиаторов отопления: как правильно провести монтаж

Содержание

Как правильно подключить батарею отопления в квартире

При устройстве системы обогрева коттеджа или квартиры важным моментом является оптимальное размещение отопительных приборов и присоединение их к магистральным трубопроводам. Эти аспекты, как и выбор схемы, следует продумать заранее, поскольку они влияют на эффективность обогрева. В данной статье мы расскажем о том, как правильно подключить батареи отопления и каким образом это влияет на их теплоотдачу.

Где лучше установить радиатор?

Этот вопрос немаловажен, ведь перед подключением батарею нужно установить и закрепить в определенном месте. Всем известно, что обычно отопительные приборы стоят под окнами, но почему так делается, люди начинают интересоваться, лично занимаясь организацией обогрева жилища и при монтаже батарей в квартирах или загородных домах. Дело в том, что сквозь окно в комнату поступает гораздо больше холода, чем сквозь наружные стены. Холодный воздух от окон сразу опустится в нижнюю зону и станет стелиться по полу, вызывая чувство холода, если на его пути не поставить нагреватель.

Если правильно поставить батарею под световым проемом, чтобы ее длина составляла от 70 до 90% от ширины окошка, то холодный воздушный поток от него будет сразу же прогреваться. При этом рекомендуется высоту нагревателя принимать как минимум на 110 мм меньше, чем расстояние от подоконника до пола, чтобы при его монтаже снизу остался просвет минимум 60 мм, а сверху – 50 мм. Минимальный отступ от внутренней поверхности – 25 мм.

В угловых комнатах, где имеется дополнительная наружная стена и тепловые потери гораздо выше, следует поставить и подключить радиатор не только под окном, но и возле холодной стены. Его задача — компенсировать теряемое боковой ограждающей конструкцией тепло. Высота установки в данном случае не играет решающей роли, надо просто ориентироваться по уровню батарей, стоящих под окнами.

В угловых комнатах нужно верно распределить мощность радиаторов, что будут стоять под окнами и возле стены. Для этого нужно заблаговременно рассчитать потери тепла через световые проемы и наружные ограждения помещения.

Способы присоединения радиаторов

После того как нагреватели подобраны по мощности и размещены по местам, пришло время осуществить соединение всех радиаторов с магистральными трубопроводами, подающими теплоноситель. Независимо от того, какая выбрана схема, — одно – или двухтрубная, существуют следующие методы присоединения нагревателей:

  • разносторонний диагональный;
  • разносторонний нижний;
  • односторонний боковой;
  • односторонний нижний.

Все вышеперечисленные схемы подключения радиаторов в квартире либо частном доме изображены на рисунке в том же порядке:

Разберем каждую схему поподробнее, каждая из них имеет свои особенности. Разностороннее диагональное подключение считается одним из самых эффективных, потому что все части прибора в этом случае прогреваются равномерно, интенсивно отдавая тепло в комнату. Это происходит внутри нагревателя следующим образом:

Диагональное подключение

Тем не менее схема имеет свои недостатки:

  1. Протоку воды создается наименьшее сопротивление, в связи с чем вода протекает через батарею, не успевая отдать всю свою тепловую энергию. Следовательно, лучше применять диагональное подсоединение при количестве секций свыше 10.
  2. Не очень хорошо выглядит с точки зрения интерьера как при врезке в вертикальный стояк, так и при подводках к трубам, проложенным горизонтально внизу или в полу.

Вторая схема подключения батареи часто используется в однотрубных системах, называемых «ленинградка». Хотя разносторонние нижние подводки актуальны и при двухтрубных системах, так как они просты в монтаже и выглядят более эстетично. Но вот с прогревом всех частей батареи дела тут обстоят хуже:

Нижнее подключение

Видно, что со стороны подачи теплоносителя плохо нагревается ближний верхний угол батареи, а это влияет на величину общей теплоотдачи прибора. Ее значение становится равным 86—88% от заявленной мощности. Если вы являетесь сторонником такого подсоединения, то вам придется учесть сниженную теплоотдачу отопительного прибора.

Очень популярно одностороннее боковое соединение батарей отопления по схеме №3. Используется во всех типах систем для врезки в вертикальный стояк квартиры или горизонтально проложенные трубы. Равномерность нагрева поверхности прибора сохраняется при небольшом количестве секций (до 10). Когда секций больше, то появляется холодная зона в верхнем дальнем от подающего патрубка углу, поэтому при таком раскладке лучше следовать схеме №1.

Схема №4, где подключение отопления осуществляется снизу, обрела популярность в последние годы, когда на рынке появились соответствующие изделия с размещенными на нижней стороне нагревателя подающей и обратной подводками:

В этих моделях вода по одной из секций поднимается в верхний горизонтальный коллектор батареи, после чего растекается по остальным частям, нагревая их достаточно равномерно. Однако, при большом количестве секций придется мириться с недогревом дальнего верхнего угла батареи. Чтобы этого избежать, лучше поставить вместо одного большого радиатора два поменьше. Одностороннее подключение батарей по схеме №4 актуально для любых систем с горизонтальной нижней разводкой и удовлетворит самые высокие требования к интерьеру. Его недостаток – более высокая стоимость оборудования по сравнению с предыдущими способами.

Рекомендации по подключению

Осуществлять монтажные работы по присоединению отопительных приборов несложно, стоит только соблюдать ряд рекомендаций:

  1. На подводках к радиатору всегда надо ставить запорную и регулирующую арматуру. Это нужно не только для балансировки, в которой нуждается каждая система отопления, но и чтобы обеспечить возможность снятия батареи для промывки, замены и так далее. С этой же целью подключение подводок лучше сделать с помощью «американок».
  2. По возможности использовать готовые комплекты для сборки и подсоединения нагревателей. Это позволит не только быстро и надежно смонтировать отопление, но и придаст ему надлежащий эстетический вид.
  3. Для лучшего выпуска воздуха при закреплении батареи к стене соблюдать не видимый глазу уклон в сторону, противоположную крану Маевского.
  4. Для систем «ленинградка» использовать специальные врезные клапаны, что позволяют воде равномерно прогревать прибор, как показано на рисунке:

Врезной клапан

Заключение

схемы обвязки и монтаж батарей

Правильно выбрать схемы обвязки батарей, провести монтаж и подключение радиаторов отопления – необходимое условие для создания в доме комфортного микроклимата. При правильной обвязке теплоприборы будут работать корректно, с максимальной отдачей.

Содержание статьи

  • Как добиться эффективной работы батарей
    • Способ расчета по площади
    • Как рассчитать по кубатуре
    • Зависимость отдачи тепла от типа монтажа и обвязки
  • Схемы разводки батарей
    • Однотрубная система отопления
    • Двухтрубная теплосистема
  • Схемы подключения радиаторов
  • Обвязка в системе с естественной и принудительной циркуляцией
  • Где и как расположить радиаторы в помещении

Как добиться эффективной работы батарей

Мощность отопительных приборов должна соответствовать параметрам комнаты. Рассчитать требуемое количество радиаторных секций можно по площади помещения и его объему. Приведенные расчеты подходят для климатической зоны не выше 60 градусов северной широты.

Способ расчета по площади

В средних широтах на 1кв.м площади требуется 100 Вт тепла. Например, чтобы согреть помещение размером в 20 кв.м, потребуется 20х100 = 2000 Вт.

Чтобы подсчитать требуемое количество секций радиатора, посмотрите в паспорте теплоприбора мощность одной секции и разделите общее необходимое количество тепла на этот показатель:

Например, для комнаты в 20 кв. м, в которой нужно установить радиаторы мощностью 185 Вт, расчет будет таким:

2000/185 = 11 секций. Когда будете проводить подсчеты, округляйте результат в большую сторону, чтобы иметь запас на случай сильных холодов.

Способ расчета по кубатуре

Этот метод учитывает высоту потолков, поэтому расчеты получаются точнее. Вначале вычислите объем комнаты, например, площадью 20 кв. м при высоте потолков 2,6 м.

Умножьте площадь на высоту: 20 х 2,6 = 52 куб.м – такой объем надо прогреть.

Необходимое количество тепла зависит от материала, из которого построен дом:

  • панельный – 41 кВт;
  • кирпичный – 34 кВт.

Теперь умножьте объем на количество тепла. Допустим, наша гипотетическая 20-метровая комната находится в кирпичном доме:

Общее количество тепла – 34х52 = 1768 Вт. Разделите этот показатель на мощность одной секции, которая, например, составляет 185 Вт. Получается 10 секций. Именно столько нам потребуется для обогрева.

Познакомьтесь с радиаторами теплоприбор

Смотреть видео

Преимущества радиаторов ТЕПЛОПРИБОР

Надежные и долговечные

— функционируют при показателях давления 16–20 атм. и выдерживают скачки до 30 атм. Срок их службы – от 25 лет.

Имеют длительную гарантию

— на алюминиевые модели – 10 лет,
а на биметаллические – 15 лет.

Состоят из российских материалов на 90%

– работаем с сырьем, получаемым напрямую от ведущих плавильных предприятий России, и отечественными составляющими.

Подходят для различных отопительных cистем

– можно устанавливать в однотрубные, двухтрубные, автономные теплосистемы с верхним и нижним подключением.

Легкие и компактные

– предприятие производит радиаторы
с массой одной секции от 1,06 до 1,94 кг. Их размер колеблется от 400х80х90 до 567х80х90 мм.

Мощные

– теплоотдача 500-миллиметровых изделий составляет 185 Вт – 191 Вт,
а 350-миллиметровых – 134-138 Вт. По этому показателю они не уступают мировым брендам.

Зависимость отдачи тепла радиаторами от способа монтажа и обвязки

Рассчитанное количество тепла любые батареи (алюминиевые, биметаллические, стальные, чугунные и другие) дают не при всех вариантах обвязки. 100% ППД достигается только при диагональном креплении, когда горячий теплоноситель поступает сверху с одной стороны, а выходит с противоположной внизу. В остальных случаях к полученному результату нужно добавлять от 3 до 22%.

Например, для бокового подключения с нижней подачей тепла, при котором горячая вода поступает снизу, а остывшая уходит сверху, потребуется прибор на 22% мощнее. Делаем поправку. Если при расчетах требуемое количество секций было равно 10, в этом случае их понадобится больше

10 х1 22% »12,2, т.е. требуется 13 секций.

Тепловой прибор, установленный в нишу или за экран, тоже греет хуже, поэтому нужно сделать поправку на теплопотери в соответствии с инфографикой ниже. Например, при установке в нише к количеству секций нужно прибавить еще 7%. Если при предварительных расчетах получилось 10 секций, нужно купить более мощный теплоприбор из 11 секций.

Схемы разводки батарей

Существует два типа разводки батарей, каждая из которых имеет свои особенности:

  1. Однотрубная, в которой входящий и выходящий патрубки отопителя присоединяются к одной и той же линии. Теплоноситель последовательно поступает в каждый радиатор и согревает его;
  2. Двухтрубная – при такой обвязке один патрубок соединяют с подводящей линией, а другой – с обратной. Батареи греются одновременно.

Рассмотрим их более детально, что разобраться в особенностях монтажа и обвязки.

Однотрубная система отопления

При однотрубной схеме обвязки оба патрубка присоединены к одной и той же линии. Существует два основных типа таких теплокоммуникаций:

  1. Вертикальные – теплоноситель движется сверху вниз по стояку. Монтируются с верхней разводкой, когда теплоноситель подается сверху вниз и с нижней, когда он поступает снизу вверх. По такой схеме обвязаны теплокоммуникации во многих многоквартирных домах;
  2. Горизонтальные с трубами, протянутыми вдоль комнат. Чаще всего их монтируют в частных домах небольшой площади и на дачах.

Отрегулировать работу однотрубной теплосистемы сложно – при такой последовательности радиаторов вода неминуемо теряет температуру к концу ветки.

Впрочем, существует несколько хитростей, позволяющих уравновесить нагрев:

  • поставить перемычки – байпасы, создающие обходной путь для теплоносителя;
  • установить регулировочные краны, чтобы менять нагрев каждого отопителя;
  • поставить батареи с меньшим числом секций вначале ветки и увеличивать их размер по мере удаления.

Эти варианты корректировки можно сочетать между собой, чтобы максимально выровнять температуру нагрева.

Двухтрубная теплосистема

В двухтрубной системе один патрубок радиатора соединяется с подающей линией, а другой – с обратной.

Существует два типа двухтрубных теплосистем:

  • попутные, в которых нагретый и остывший теплоноситель движутся в одном направлении;
  • встречные (тупиковые), где оба потока движутся навстречу друг другу.

Каждая такая конструкция может быть горизонтальной, с трубами, проложенными вдоль помещения, и вертикальной, состоящей из продольных стояков.

Поскольку в двухтрубной теплосистеме радиаторы нагреваются одинаково, проблем с их подсоединением и регулировкой не возникает. Отопители можно подключать разными способами, но по возможности, лучше выбрать диагональную обвязку с максимальным КПД.

Схемы подключения радиаторов

Существует несколько вариантов обвязки батарей, каждый из которых имеет свои особенности:

  1. Диагональная – горячий теплоноситель поступает через верхний патрубок, а отводится через диагонально расположенный нижний. Самая энергоэффективная.
  2. Нижняя боковая (седельная) – подача и отведение теплоносителя осуществляется через нижние патрубки, расположенные друг напротив друга. Подходит не для всех теплосистем. Чтобы прогреть радиатор снизу, требуется мощный насос, способный разогнать вихревые потоки.
  3. Боковая – подключение и отвод теплоносителя осуществляются с одной стороны. Широко применяется в вертикально ориентированных теплосистемах, например, так обвязывают радиаторы в многоквартирных домах. Схема не рекомендуется для установки крупных многосекционных радиаторов – велик риск, что при боковом подводе труб отопитель полностью не прогреется.
  4. Нижняя – носитель подается снизу через патрубки, расположенные перпендикулярно корпусу. Позволяет скрыть трубы в полу. Не все тепловые приборы можно присоединять таким способом – некоторые модели не имеют подвода внизу. Поэтому при покупке батарей изучайте сведения, указанные в паспорте.

Обвязка батарей в системе с естественной и принудительной циркуляцией

В системе с естественной гравитационной циркуляцией вода движется без насоса. При нагреве она поднимается вверх, а затем, после остывания, под действием силы тяжести опускается вниз.

Для теплосистемы с естественной циркуляцией подходят все варианты подключения радиаторов, кроме нижнего, постольку в таких условиях он дает большие потери тепла. Обвязывать элементы гравитационной системы отопления сложно – нужно правильно подобрать параметры и уклон подающего и возвратного трубопровода, чтобы вода могла подниматься и сливаться обратно. Поэтому монтаж лучше доверить профессионалам.

В системе с принудительной циркуляцией теплоноситель перекачивается насосом. Для отвода воздуха на батареях устанавливают краны Маевского. В такой теплосистеме можно использовать не только воду, но и антифриз, поэтому она подходит для домов, где хозяева не проживают постоянно. Для принудительной схемы подходят все варианты обвязки — нижняя, боковая, диагональная.

Теплосистема такой конструкции не столь капризна, как гравитационная, поэтому собрать контур и установить радиаторы можно своими руками, не приглашая мастеров.

Где и как расположить радиаторы в помещении

Эффективность работы теплоприборов зависит от места их установки. Оптимальная зона – пространство под окном. Тогда конвекционные потоки, идущие вверх, прогреют комнату и задержат проникновение холодного воздуха. Отопители монтируют симметрично относительно центра окна, а все батареи в комнате выставляют на единый уровень. Радиаторы можно повесить на стену – в таком положении они тоже эффективно прогревают воздух.

Для правильной циркуляции воздуха при монтаже нужно соблюдать следующие правила:

  1. Над батареей нельзя крепить широкие полки и подоконники. Между верхним краем отопителя и расположенными над ним горизонтальными элементами должно оставаться примерно 10 см.
  2. Нежелательно устанавливать теплоприбор непосредственно над полом – расстояние между ним и напольным покрытием должно быть 10 –12 см. Иначе пыль, скапливающаяся внизу, будет переноситься конвекционными потоками.
  3. Не стоит устанавливать отопитель вплотную к стене – должен оставаться зазор в 2–3 см.

Современные радиаторы могут обогреть любую площадь. Главное – правильно подобрать нужную модель и правильно ее обвязать. Тогда в доме или квартире будет тепло даже в холода.

Не пропустите новые статьи!

Подпишитесь на нашу рассылку

Видео о радиаторах отопления

Вам будет интересно

Воздушно-цинковая батарея, ТЭЦ и фотоэлектрическая батарея для питания жилого комплекса в Нью-Йорке – журнал pv International

Воздушно-цинковая батарея мощностью 100 кВт/1,5 МВтч будет установлена ​​в Квинсе, штат Нью-Йорк, в сочетании с комбинированной системой отопления и электроснабжения и массив фотоэлектрических модулей. Пилотный проект призван продемонстрировать способность воздушно-цинковых батарей сохранять энергию в течение длительного времени.

Мария Майш

Канадский разработчик аккумуляторов Zinc8 Energy Solutions собирается внедрить свою запатентованную технологию цинково-воздушных аккумуляторов в жилом комплексе в Нью-Йорке, чтобы продемонстрировать способность длительного хранения энергии. Проект разработан в партнерстве с Digital Energy Corp, базирующейся в Нью-Йорке частной компанией-разработчиком теплоэлектроцентралей (ТЭЦ), солнечных систем и микросетей.

Цинково-воздушная система хранения энергии (ZESS) мощностью 100 кВт/1,5 МВтч будет установлена ​​в комплексе Fresh Meadows Community Apartments в Квинсе, штат Нью-Йорк, для поддержки и повышения экономической эффективности строящейся в настоящее время системы комбинированного производства тепла и электроэнергии (ТЭЦ). вместе с существующей фотоэлектрической системой.

Компания Zinc8 Energy Solutions разработала запатентованную технологию проточных батарей, которая, как утверждается, способна обеспечивать мощность в диапазоне от 20 кВт до 50 МВт при минимальном хранении емкости в течение восьми часов.

Модульная батарея может быть сконфигурирована для поддержки широкого спектра долговременных приложений для микросетей и коммунальных служб, а также для коммерческих и промышленных проектов. В отличие от литий-ионной технологии, для масштабирования которой требуются новые стеки, Zinc8 заявляет, что она полностью отделила связь между энергией и мощностью. Это означает, что масштабирование технологии Zinc8 может быть достигнуто путем простого увеличения размера топливного бака и количества заправляемого цинкового топлива.

Технология обещает нулевое снижение емкости в течение длительного срока службы. По словам производителя, tt не воспламеняется, не токсичен и устойчив со стабильными цепочками поставок для массового производства. Его также рекламируют как потенциально чрезвычайно экономичное решение, стоимость установки которого составляет 45 долларов США за кВтч.

Популярный контент

Система Zinc8 использует электроэнергию из сети или возобновляемых источников энергии для производства частиц цинка в регенераторе цинка, тем самым высвобождая кислород в качестве побочного продукта. Затем частицы цинка поступают в резервуар для хранения и удерживаются там в электролите с гидроксидом калия. Когда требуется энергия, частицы цинка доставляются в блок питания и рекомбинируются с кислородом для выработки электроэнергии. Побочный продукт оксида цинка возвращается в резервуар для хранения для последующей регенерации.

Zinc8 утверждает, что решил проблему дендритов, которая приводит к засорению мембран, используемых в проточных батареях. Батарея имеет КПД туда и обратно в диапазоне от 65% до 70%.

Для своего последнего проекта в апартаментах Fresh Meadows компания Zinc8 tech получила финансирование от Управления энергетических исследований и разработок штата Нью-Йорк (NYSERDA). В этом проекте Zinc8 сосредоточится на продвижении, разработке и полевых испытаниях своей технологии хранения данных, стремясь решить проблемы, связанные с затратами, производительностью и интеграцией в штате Нью-Йорк. «Это возможность для Zinc8 продолжить разработку ряда проектов и закрепиться на рынке Нью-Йорка». сказал Рон Макдональд, президент и главный исполнительный директор Zinc8 Energy Solutions.

Ранее компания Zinc8 подписала соглашение с Управлением энергетики Нью-Йорка (NYPA) о развертывании демонстрационной ZESS мощностью 100 кВт/1 МВтч за счетчиком в кампусе Университета в Буффало. Проект был разработан, чтобы обеспечить возможность пикового бритья и повысить отказоустойчивость кампуса, а также изучить альтернативные варианты использования, такие как аварийное резервное копирование для здания кампуса. Кроме того, проект Buffalo направлен на проверку надежности работы системы и помощь в определении расходов на эксплуатацию и техническое обслуживание и жизненного цикла.

Этот контент защищен авторским правом и не может быть использован повторно. Если вы хотите сотрудничать с нами и хотели бы повторно использовать часть нашего контента, обращайтесь по адресу: [email protected].

Руководство по системам хранения энергии на батареях штата Нью-Йорк

 

Руководство по системам хранения энергии на батареях содержит информацию, инструменты и пошаговые инструкции, которые помогут местным органам власти управлять развитием систем хранения энергии на батареях в своих сообществах. Справочник предоставляет местным чиновникам подробные сведения о процессе выдачи разрешений и проверок для обеспечения эффективности, прозрачности и безопасности в их сообществах.

Вы можете загрузить полное Руководство по хранению энергии [PDF] или получить доступ к отдельным главам ниже.

На странице «Тренинги для местных органов власти» предлагаются дополнительные ресурсы , в том числе записи и материалы тренингов NYSERDA по системам накопления энергии на батареях.

Типовой закон о системах хранения энергии на батареях

Типовой закон призван помочь должностным лицам местных органов власти и AHJ принять законы и правила для ответственного размещения аккумуляторных систем накопления энергии в их сообществах. В Типовом законе излагаются процедурные рамки и существенные требования к аккумуляторным системам хранения энергии для жилых, коммерческих и коммунальных предприятий.

  • Типовой закон о системах хранения энергии на батареях [PDF]

Инструменты

  • Типовой закон о системе хранения энергии на батареях [DOC]

Разрешение на использование модели аккумуляторной системы хранения энергии

Типовое разрешение предназначено для того, чтобы помочь должностным лицам местных органов власти и AHJ установить минимальные требования к подаваемым документам для рассмотрения электрических и структурных планов, которые необходимы при разрешении жилых и небольших коммерческих аккумуляторных систем хранения энергии.

  • Разрешение на использование модели аккумуляторной системы хранения энергии [PDF]

Инструменты

  • Разрешение на использование модели аккумуляторной системы хранения энергии [DOC]

Контрольный список электрических систем хранения энергии аккумуляторов

Контрольный перечень проверок предназначен для использования в качестве руководства при полевых проверках бытовых и небольших коммерческих аккумуляторных систем хранения энергии. Он может использоваться непосредственно местными сотрудниками правоохранительных органов или предоставляться стороннему инспекционному органу, где это применимо.

  • Контрольный список электрических проверок системы накопления энергии аккумуляторной батареи [PDF]

Инструменты

  • Аккумулятор Система накопления энергии Контрольный список электрических проверок [DOCX]

2020 Единая форма противопожарной защиты и строительства штата Нью-Йорк

Единый кодекс по предотвращению пожаров и строительству штата Нью-Йорк (Единый кодекс) устанавливает обязательные для всего штата минимальные стандарты строительства зданий и противопожарной безопасности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*