Схема включения однофазного двигателя с конденсатором: Однофазный электродвигатель 220в — схемы подключения и цена

Содержание

Как подключить двигатель через конденсатор — советы электрика

Подключение двигателя через конденсатор

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления.

К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор.

Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток.

Обратите внимание

Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается.

Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды.

У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В.

Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью.

Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Важно

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться.

Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой.

На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

Совет

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя.

Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым.

Даже расчет является процессом неточным.

Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

  • Как правильно провести подключение электродвигателя 380 на 220 вольт

  • Схема подключения трехфазного электродвигателя к трехфазной сети

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится».
      Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В.

    Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств.

    Обратите внимание

    Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Полезное: Схема подключения датчика движения для освещения

    Онлайн расчет емкости конденсатора мотора

    Как подключить однофазный электродвигатель на 220 вольт

    Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.

    Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы.

    При этом, необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.

    Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал.

    Для того, чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении.

    При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды.

    Вторая же обмотка включена все время. Для того, чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.

    При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

    При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

    При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

    Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

    Выводы:

    1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
    2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
    3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
    4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

    Подробное видео о том, как подключить однофазный двигатель через конденсатор

    Источник: http://elektrik24.net/elektrooborudovanie/elektrodvigateli/odnofaznye-elektrodvigateli/cherez-kondensator.html

    Как подключить однофазный двигатель

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона.

    Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки.

    Обратите внимание

    Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные.

    Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.

    После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток.

    Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле.

    В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Важно

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Со всеми этими 

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно).

    К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.

    Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики.

    Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего.

     Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится».

    Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Совет

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Источник: https://stroychik. ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya

    Как подключить электродвигатель 380В на 220В

    В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

    Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

    Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

    Конструктивные особенности

    Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

    Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

    Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

    Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

    При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

    Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

    Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

    Обратите внимание

    Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

    Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

    Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

    Как подключить электродвигатель с 380 на 220В без конденсатора?

    Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

    Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

    Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

    Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

    По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

    Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

    Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

    Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

    Важно

    Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

    Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

    Схема №1.

    Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

    В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

    Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

    Схема №2.

    Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

    Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

    Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

    Делается это следующим образом:

    • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
    • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

    При реализации рассмотренных схем стоит учесть ряд особенностей:

    • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
    • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

    Как подключить через конденсаторы

    Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

    Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

    Совет

    Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

    Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

    Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

    Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

    Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

    • Рабочие конденсаторы подключаются параллельно;
    • Номинальное напряжение должно быть не меньше 300 Вольт;
    • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
    • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

    Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

    Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

    Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

    Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

    Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

    Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

    • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
    • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
    • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

    С конденсатором дополнительная упрощенная — для схемы звезда.

    С конденсатором дополнительная упрощенная — для схемы треугольник.

    Как подключить с реверсом

    В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

    Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

    Для реализации схемы можно использовать переключатель с двумя положениями.

    К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

    Как подключить по схеме «звезда-треугольник» (с тремя проводами)

    В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

    Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

    Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

    Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

    Обратите внимание

    К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

    Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

    Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

    Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

    Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

    Принцип работы схемы прост:

    • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
    • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
    • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

    Итоги

    Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

    Источник: https://ElektrikExpert. ru/kak-podklyuchit-elektrodvigatel-380v-na-220v.html

    Подключение электродвигателя через конденсатор

    Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов.

    Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

    Коротенько про трехфазные асинхронные электродвигатели

    Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

    Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор – вращающаяся часть, статор неподвижная (на рисунке его не видно).

    Важно

    Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже – С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный – С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

    Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов – аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

    работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

    Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

    А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

    почему для пуска от однофазной сети используют именно конденсаторы

    Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

    На схеме мы видим, что обмотка разделилась на две ветви – пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

    Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

    А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

    как подключить электродвигатель через конденсатор

    Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

    Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая – напротяжении всей работы двигателя.

    конденсаторы для запуска электродвигателя

    Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

    Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше выбор конденсаторов осуществляется по двум формулам:

    В формулах выше Iном – это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети – напряжение питающей сети(~127, ~220).

    Совет

    Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети.

    Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

    Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

    Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются – пусковыми.

    Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

    Источник: https://pomegerim.ru/elektricheskie-mashiny/podklu4enie-trehfaznogo-ed-4erez-kondensator.php

    Подключаем самостоятельно трехфазный электродвигатель в 220Вт

    Главная > Подключение и установка > Подключаем самостоятельно трехфазный электродвигатель в 220Вт

    Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий.

    Использование трехфазного асинхронного электродвигателя самостоятельно

    Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на 380, к сети в 220 Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия (КПД), сохранить эффективность и работоспособность агрегата.

    Особенности устройства двигателя

    На каждом двигателе есть пластина или шильдик, где указаны технические данные и схема скрутки обмоток. Символ Y обозначает соединение звездой, а ∆ – треугольником. Помимо этого, на пластине обозначено напряжение сети, для которого предназначен электродвигатель. Разводка для подсоединения к сети находится на клеммнике, куда выводят провода обмотки.

    Для обозначения начала и конца обмотки используют буквы С или U, V, W. Первое обозначение было в практике раньше, а английские буквы стали применять после введения ГОСТа.

    Буквы для обозначения начала и конца обмотки

    Не всегда использовать для работы двигатель, предназначенный для трехфазной сети, представляется возможным.

    Если на клеммник выведено 3 вывода, а не 6 как обычно, то подключение возможно только с напряжением, которое указано в инженерных характеристиках.

    В этих агрегатах соединение треугольником или звездой уже сделано внутри самого прибора. Поэтому использовать электродвигатель на 380 Вольт с 3 выводами для однофазной системы невозможно.

    Можно частично разобрать двигатель и переделать 3 вывода на 6, но это сделать не так просто.

    Существует разные схемы того, как лучше подключать приборы с параметрами в 380 Вольт в однофазную сеть. Чтобы использовать трехфазный электродвигатель в сети 220 Вольт, проще воспользоваться одним из 2 способов подключения: «звезда» или «треугольник». Хотя можно осуществить запуск трехфазного двигателя с 220 без конденсаторов. Рассмотрим все варианты.

    «Звезда»

    Как самостоятельно подключить люстру к выключателю

    На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно воспользоваться фазосдвигающими конденсаторами, которые ещё называют пусковыми (Спуск.) и рабочими (Сраб.).

    Тип подключения «Звезда»

    При подключении звездой все три конца обмотки соединяются. Для этого используют специальную перемычку. Питание подается на клеммы с начала обмоток. При этом начало обмотки С1(U1) через параллельно подключенные конденсаторы поступает на начало обмотки С3(U3). Далее этот конец и С2(U2) надо подключить к сети.

    «Треугольник»

    В этом виде подключения, как и в первом примере, используются конденсаторы. Для того чтобы подключить по этой схеме скрутки потребуются 3 перемычки. Они будут соединять начало и конец обмотки.

    Выводы, идущие с начала обмотки С6С1 через такую же параллельную схему, как и в случае с подключением «звезда», соединяются с выводом, идущим от С3С5.

    Затем полученный конец и вывод С2С4 следует подключить к сети.

    Тип подключения «Треугольник»

    Если на шильдике указаны показатели 380/220ВВ, то подключение в сеть возможно только по «треугольнику».

    Как подсчитать емкость

    Для рабочего конденсатора применяется формула:

    Стабилизатор напряжения трехфазный

    Сраб.=2780хI/U, где U – номинальное напряжение,

    I – ток.

    Существует и другая формула:

    Сраб.= 66хР, где Р – это мощность трехфазного электродвигателя.

    Получается, что 7мкФ емкости конденсатора рассчитаны на 100Вт его мощности.

    Значение для емкости пускового устройства должно быть на 2,5-3 порядка больше рабочего.

    Такое расхождение показателей по емкости у конденсаторов требуется, потому что пусковой элемент включается при работе трехфазного двигателя на непродолжительное время.

    К тому же при включении высшая нагрузка на него значительно больше, оставлять в рабочем положении это устройство на более длительный период не стоит, иначе из-за перекоса тока по фазам через некоторое время электродвигатель начнет перегреваться.

    Обратите внимание

    Если вы используете для работы электродвигатель, мощность которого меньше 1кВт, то пусковой элемент не потребуется.

    Иногда емкости одного конденсатора для начала работы не хватает, тогда схема подбирается из нескольких разных элементов, соединенных последовательно. Общую емкость при параллельном соединении можно рассчитать по формуле:

    Cобщ=C1+C1+…+Сn.

    На схеме подобное подключение выглядит следующим образом:

    Схема параллельного подключения

    О том, насколько правильно подобраны емкости конденсаторов, можно будет понять только в процессе использования.

    Из-за этого схема из нескольких элементов более оправдана, ведь при большей емкости двигатель будет перегреваться, а при меньшей – выходная мощность не достигнет нужного уровня. Подбор емкости лучше начать с минимального ее значения и постепенно доводить до оптимального.

    При этом можно замерить ток с помощью токоизмерительных щипцов, тогда подобрать оптимальный вариант станет проще. Подобный замер делают в рабочем режиме трехфазного электродвигателя.

    Какие выбрать конденсаторы

    Прокладываем электропроводку самостоятельно

    Для подключения электродвигателя чаще всего используют бумажные конденсаторы (МБГО, КБП или МПГО), но все они обладают небольшими емкостными характеристиками и достаточной громоздкостью.

    Другой вариант – подобрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы.

    К тому же при пробое диода, а это случается довольно часто, через конденсатор начнет поступать переменный ток, что может привести к взрыву.

    Важно

    Специалисты по электрооборудованию рекомендуют использовать варианты металлизированных полипропиленовых конденсаторов (СВВ), которые отличаются надежностью и износостойкостью.

    Кроме емкости, стоит обратить внимание на рабочее напряжение в домашней сети. При этом следует подбирать модели с техническими показателями не меньше 300Вт. Для бумажных конденсаторов подсчет рабочего напряжения для сети немного другой, и рабочее напряжение у данного типа устройств должно быть выше 330-440ВВ.

    Пример подключения в сеть

    Посмотрим, как это подключение рассчитывается на примере двигателя со следующими характеристиками на шильдике.

    Характеристики двигателя

    Итак, возьмем трехфазный асинхронный двигатель со схемой соединения для сети в 220 Вольт «треугольником» и «звездой» для 380 Вольт.

    В данном случае мощность взятого для примера электродвигателя составляет 0,25 kW, что значительно меньше 1 kW, пусковой конденсатор не потребуется, а общая схема будет выглядеть следующим образом.

    Схема соединения в 220 В

    Для подключения в сеть необходимо найти емкость рабочего конденсатора. Для этого стоит подставить значения в формулу:
    Сраб.= 2780 2А/220В=25 мкФ.

    Рабочее напряжение устройства выбирается выше показателя в 300 Вольт. Исходя из этих данных, сортируют соответствующие модели. Некоторые варианты можно найти в таблице:

    Зависимость емкости и напряжения от типа конденсатора

    Тип конденсатораЕмкость, мкФНоминальное напряжение, В
    МБГ0 1 2 4 10 20

    30

    400, 500 160, 300, 400, 500 160, 300, 400 160, 300, 400, 500 160, 300, 400, 500

    160, 300

    МБГ4 1; 2; 4; 10; 0,5 250, 500
    К73-2 1; 2; 3; 4; 6; 8; 10 400, 630
    К75-12 1; 2; 3; 4; 5; 6; 8; 10 400
    К75-12 1; 2; 3; 4; 5; 6; 8 630
    К75-40 4; 5; 6; 8; 10; 40; 60; 80; 100 750

    Подключение тиристорным ключом

    Трехфазный электродвигатель, предназначенный для 380 Вольт, используют для однофазного напряжения, применяя тиристорный ключ. Для того чтобы запустить агрегат в таком режиме, потребуется вот эта схема:

    Схема трехфазного электродвигателя для однофазного напряжения

    В работе использованы:

    • транзисторы из серии VT1, VT2;
    • резисторы МЛТ;
    • кремниевые диффузионные диоды Д231
    • тиристоры серии КУ 202.

    Все элементы рассчитаны на напряжение 300 Вольт и ток 10А.
    Собирается тиристорный ключ, как и другие микросхемы, на плате.

    Сделать такое устройство под силу всем, кто имеет начальные познания в создании микросхем. При мощности электродвигателя меньше 0,6-0,7kW при подключении в сеть нагрева тиристорного ключа не наблюдается, поэтому дополнительное охлаждение не потребуется.

    Подобное подключение может показаться слишком сложным, но все зависит от того, какие у вас есть элементы, чтобы переделать двигатель из 380Вт в однофазный. Как видно, использовать трехфазный двигатель для 380 через однофазную сеть не так сложно, как это кажется на первый взгляд.

    Подключение. Видео

    Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого нужно.

    Источник: https://elquanta.ru/ustanovka_podklychenie/podklyuchit-trekhfaznyjj-ehlektrodvigatel.html

    Подключение однофазного электродвигателя на 220 через конденсаторы, как определить пусковую и рабочую обмотки

    Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

    Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

    Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

    Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

    Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

    И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

    Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

    Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

    Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

    I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

    Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

    C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

    Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

    Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

    Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

    Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

    В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

    Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

    Схема подключения трехфазного электродвигателя к трехфазной сети

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Как определить рабочую и пусковую обмотки у однофазного двигателя

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

    Л. Рыженков

    Редактировал А. Повный

    Как подключить однофазный электродвигатель

    Очень часто бывает, что механика в стиральной машине, пылесосе, электродрели полностью выходит из строя, и выгодней будет купить новую бытовую технику, чем починить безнадёжно устаревшие домашние электроприборы.

    Из кучи оставшихся от данных устройств запчастей, как правило, самым ценным элементом будет электродвигатель, которому можно найти достойное применение, подключив в сеть 220В.

    В подобных электроприборах изредка встречается полноценный трёхфазный двигатель, и скорее всего там окажется однофазный коллекторный или асинхронный электродвигатель, у которого может оказаться изрядный запас прочности и ресурса подшипников для применения в качестве привода насоса, компрессора, вентилятора, точила, мини-станка, овощерезки, газонокосилки и т.д.

    В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть 220 В, в зависимости от его типа.

    Принцип действия коллекторного двигателя

    В коллекторном электродвигателе, встречающемся в стиральных машинах и электродрелях, имеются обмотки на статоре и роторе.

    Коллекторный двигатель

    Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

    ротор коллекторного двигателя

    Устройство ротора выполнено таким образом, чтобы в любой момент времени под напряжением находилась только одна рамка, магнитное поле которой перпендикулярно полю обмотки статора.

    Электромагнитное взаимодействие полярных магнитных полюсов стремится повернуть ротор так, чтобы направленность его магнитного поля совпала с полем статора, подобно стрелке компаса.

    Но, как только ротор поворачивается на определённый угол, контакты рамки выходят из соприкосновения со щётками, и включаются следующая обмотка, и процесс повторяется, создавая непрерывный момент вращения.

    Подключение в сеть 220 В коллекторного электродвигателя

    Схема коллекторного электродвигателя устроена таким образом, что направления токов в обмотке статора ротора и рамке ротора всегда совпадают, независимо от фазы переменного напряжения. Из-за совпадения направления токов, возникающие магнитные поля будут всегда перпендикулярными, что и будет вызывать момент вращения вала.

    Поэтому очень важно установить перемычку на выводах двигателя, для последовательного соединения статорной и роторной обмоток. Поменяв местами выводы обмоток статора или ротора можно изменить направление вращения вала двигателя.

    схема подключения

    Для полноты картины нужно проследить путь тока – один из выводов от щётки коллектора подключается в сеть 220 В (допустим фаза, но это не имеет значения). Вывод другой щётки нужно подсоединить к одному выводу статора при помощи перемычки. Оставшийся вывод от статора подключается в сеть 220 В (ноль), замыкая цепь.

    Принцип действия однофазного асинхронного электродвигателя

    В отличие от коллекторного двигателя, в однофазном асинхронном электродвигателе с короткозамкнутым находящимся в состоянии покоя ротором,

    устройство асинхронного двигателя

    в котором индуцируются токи, создающие магнитное поле, взаимодействующее с электромагнитным полем катушки, векторы возникающих сил (М, -М) уравновешивают друг друга. Это означает, что при включении в сеть вал мотора вращаться не будет, и для его запуска нужен начальный вращательный момент S.

    Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Многие так и делают, запуская точило, но такой способ совершенно неприемлем, если нужно раскрутить вращающиеся ножи овощерезки или газонокосилки.

    Поскольку в трёхфазном электродвигателе момент вращения задан конструктивно при помощи расположения обмоток и смещения фаз трёхфазной сети, то в однофазном моторе для запуска применяют дополнительную пусковую обмотку, благодаря которой создаётся вращательный момент смещения ротора.

    Схема подключения 1

    Смещения фазы тока дополнительной обмотки относительно синусоиды напряжения 220 В создаётся при помощи конденсатора.

    Схема подключения 2

    Подключение в сеть асинхронного однофазного электродвигателя.
    На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора.

    Выводы обмоток

    Но, если схема где-то затерялась, то нужно определить рабочую и пусковую обмотку, измерив и сравнив сопротивления – у основной оно должно быть меньшим. Для этого нужно взять мультиметр, выставить диапазон для измерения в Омах, и поочерёдно измерить сопротивление между выводами.

    Определение пусковой и рабочей обмотки

    Поскольку часто данные обмотки имеют общий вывод, то его определяют опытным путём – сумма сопротивлений, измеренных от данного провода обмоток должна соответствовать суммарному сопротивлению подключённых последовательно обмоток.Если конструкция двигателя позволяет, то определить принадлежность выводов можно визуально – у проводов рабочей обмотки поперечное сечение (толщина) больше.

    рабочая и пусковая обмотки

     

    Рабочая обмотка подключается к напряжению 220 В напрямую, а пусковая – последовательно с конденсатором. Если обмотки соединены внутри мотора, то такая схема не позволит изменять направление вращения. Если из мотора выходят четыре провода от двух обмоток, то направление вращения будет зависеть выбора выводов для их соединения в общий отвод.

    Выбор вращения двигателя

    Существуют электродвигатели с идентичными обмотками – их называют двухфазными.

    Режимы однофазных двигателей

    Поскольку однофазные и двухфазные двигатели для запуска требуют применения конденсатора, то такие электродвигатели называют конденсаторными. Существует несколько режимов работы конденсаторного двигателя:

    • С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. Емкость выбирается исходя из 70 мкФ на 1 кВт мощности двигателя;
    • С рабочим конденсатором, емкостью 23-35 мкФ и дополнительной обмоткой, подключённой всё время;
    • С рабочим и пусковым конденсатором, подключаемым параллельно рабочему.

    Применяется в случаях с тяжёлым запуском двигателя. Емкость рабочего конденсатора в два-три раза меньше номинала пускового (70 мкФ/1 кВт).

    Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. В реальности, подключив электродвигатель, нужно проследить за его работой и нагревом. Если двигатель будет заметно нагреваться в режиме с рабочим конденсатором, то его емкость необходимо уменьшить. Подбирать конденсаторы нужно с рабочим напряжением не меньше 450 В.

    Запуск двигателя с пусковым конденсатором осуществляется вручную с помощью кнопки управления,

    или схемы с двумя контакторами, один из которых (пусковой) не имеет самоподхвата и удерживается током замкнутого кнопочного контакта или реле времени. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

    Подключение трёхфазного двигателя в сеть 220 В

    Подобным способом с применением конденсатора подключается трёхфазный двигатель по схеме «звезда» или «треугольник».

    Расчёт емкости производится исходя из рабочего напряжения и тока,

    или паспортной мощности мотора.

    По аналогии с однофазным электродвигателем, в случае тяжёлого запуска трёхфазного двигателя, применяется пусковой конденсатор, емкость которого в два-три раза выше номинала рабочего.

    Подключая трехфазный электродвигатель в сеть 220 В при помощи пускового конденсатора, нужно помнить, что при такой схеме подключения мотор не будет работать с полной отдачей и не разовьет максимальную мощность.


    Для полноценной работы такого двигателя нужны три фазы, получить которые можно проведя сеть 380 В, или использовать сложную электронную схему, рассчитанную под конкретную мощность, генерирующую смещение фаз при помощи мощных силовых полупроводниковых ключей.

    Имея много различных конденсаторов, но не находя нужного значения емкости, можно соединять их параллельно или последовательно.

    Комбинируя данные способы подключения, можно приблизиться к требуемому номиналу емкости.

    Как подключить однофазный электродвигатель на 220 Вольт- схемы, инструкции

    В прошлой статье Я рассказывал как подключить и запустить двигатель на 380 Вольт в однофазной электросети 220 В. Сейчас Я расскажу о том, как подключить однофазный электродвигатель от сломавшейся стиральной машины, пылесоса  и т. д.  Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. п.

    Схема подключения коллекторного электродвигателя на 220 Вольт

    В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. Он   успешно запускается и работает в однофазных сетях без лишних пусковых устройств.

    Для того, что бы подключить коллекторный электромотор, необходимо соединить между собой перемычкой два конца №2 и №3, один идущий от якоря, а второй от статора. А оставшиеся 2 конца присоединить к электропитанию 220 Вольт.

    Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.

    Может быть мотор и 2 скоростным, тогда со статора будет выходить 3 конец с половины его обмотки. При подключении  к нему уменьшится скорость вращения вала, но при этом увеличивается риск нарушения изоляции при запуске мотора.

    Для изменения направления вращения необходимо поменять местами концы подключения статора или якоря.

    Схемы подключения однофазных асинхронных электродвигателей

    Если в однофазных электродвигателях была бы только одна обмотка в статоре, тогда внутри него электромагнитное поле было бы пульсирующим, а не вращающимся. И запуск произошел бы только после раскручивания вала рукой. Поэтому для самостоятельного запуска асинхронных двигателей  добавляется  вспомогательная обмотка или пусковая, в которой фаза при помощи конденсатора или индуктивности оказывается сдвинутой на 90 градусов. Пусковая обмотка и толкает ротор электродвигателя  в момент включения. Основные схемы включения изображены на рисунке.

    Первые две схемы рассчитаны на  подключение пусковой обмотки на время запуска мотора, но не более 3 секунд по продолжительности. Для этого используется реле или пусковая кнопка, которую необходимо нажать и удерживать пока не запустится мотор.

    Пусковая обмотка может подключаться через конденсатор, или в очень редких случаях через сопротивление. В последнем случае обмотка должна быть намотана по бифилярной технологии, т.е сопротивление является частью обмотки. Оно увеличивается в ней за счет длины провода, но при этом индуктивность катушки не меняется.

    В третьей самой распространенной схеме конденсатор постоянно включен к сети при работе электродвигателя, а не только на время его запуска.

    Что бы определить какие провода идут на каждую из обмоток, сначала вызваниваем их по парам, а затем меряем сопротивление каждой по этой инструкции. У пусковой обмотки сопротивление всегда будет больше (обычно около 30 Ом), чем у рабочей обмотки (чаще всего  в районе 10-13 Ом).

    Подбирать конденсатор необходимо по потребляемому току мотором, например для I = 1.4 А потребуется конденсатор емкостью  6 мкФ.

    Как подключить электродвигатель стиральной машины

    В современных стиральных машинах могут стоять либо коллекторные или трехфазные двигатели. Последние можно запустить только при помощи электронного пуск-регулирующего устройства, которое необходимо будет достать со стиральной машины и переделать схему на ручной запуск. Но для этого надо хорошо разбираться в радиотехнике.

    Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Как правило на колодку подключения выходит 6-7 проводов, не считая на заземление корпуса.

    Два провода идут с тахометра, которые не будут использоваться. И по паре проводов выходит со статора и якоря (ротора). Так же иногда может выходить еще один конец с половины обмотки.

    Вызваниваем пары обмоток и соединяем перемычкой между собой конец роторной с началом статарной обмотки. На начало роторной подключаем один конец электропитания и другой- на конец статарной.

    Если необходимо подключение второй скорости, тогда один конец электропитания подключаем к выходу с половины обмотки. У нее будет меньше сопротивление, чем у целой.

    Иногда на колодку подключения еще может выходить дополнительно пара контактов от термозащиты.

    В старых стиральных машинах советского образца стояли простые асинхронные электродвигатели с пусковой обмоткой. Для их запуска рекомендую использовать соответствующее реле от стиральной машины, которое устанавливается только вертикально по указателю на корпусе. Подключение производится по этой схеме.
    А можно запустить и по другой схеме только с рабочим конденсатором, подключенным к пусковой обмотке.

    Проверка работоспособности

    Для того, что бы проверить правильность собранной схемы необходимо включить электродвигатель и дать ему поработать сначала  одну минуту, а затем около 15. Если двигатель горячий, то причинами может быть:

    1. Изношенность, загрязненность или зажатость подшипников.
    2. Большая ёмкость конденсатора, отключите его и запустите двигатель рукой, если он перестанет греться- уменьшите емкость конденсаторов.

    схемы соединения обмоток и конденсаторы, емкость, реверс

    Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

    Подключение двигателя 380 на 220

    380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

    Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

    То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

    В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

    1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
    2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

    Какую схему соединения обмоток выбрать

    Читаем информацию о рабочем напряжении на табличке:

    • 380В — только треугольник.
    • 380В/220В — треугольник или звезда.
    • 220/127 — только звезда. Очень редкий вариант.

    Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

    Подбираем конденсатор

    В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

    Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

    • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

    Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

    А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

    В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

    Подсчет итоговой ёмкости

    При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

    Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

    Реверс

    Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

    Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

    А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

    1. Подключение асинхронного двигателя в однофазную сеть

    Применение конденсаторов в асинхронных двигателях
     

     

    рабочий

    пусковой

    применение

    В схемах асинхронных электродвигателей

    В схемах асинхронных электродвигателей

    тип подключения

    Последовательно со вспомогательной обмоткой электродвигателя

    Параллельно рабочему конденсатору

    в качестве

    Является фазосмещающим элементом

    Является фазосмещающим элементом

    назначение

    Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя

    Позволяет получить магнитное поле, необходимое для повышения пускового момента электродвигателя

    время включения

    В процессе работы электродвигателя

    В момент пуска электродвигателя

    Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
     

    1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

    В случае,  когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» или «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

    Приблизительный расчет для данного типа соединения производится по следующей формуле:

     

     

                                 Сраб.=k*Iф/Uсети

    где:

    k – коэффициент, зависящий от соединения обмоток.

     

    Для схемы соединения «Звезда» — k=2800

    Для схемы соединения «Треугольник» — k=4800

    – номинальный фазный ток электродвигателя, А.

    Uсети – напряжение однофазной сети, В.

     

    Для определения пусковой емкости Сп.  исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

    Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

    Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

     

    Схема подключения
     

     

    Рис 1.   Схема включения в однофазную сеть     трехфазного асинхронного двигателя с  обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

    • B1 Переключатель направления
    • вращения  (реверс)
    • В2 — Выключатель пусковой емкости;
    • Ср — рабочий конденсатор;
    • Cп — пусковой конденсатор;
    • АД — асинхронный электродвигатель.

     

    2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают. Это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.


    Схема подключения
     

     

    Рис 2. Схема (а) и векторная диаграмма  конденсаторного асинхронного двигателя:

    • U, UБ, UC — напряжения;
    • IA, IБ — токи;
    • А и Б — обмотки статора;
    • В — центробежный выключатель
    • для отключения С1 после разгона двигателя;
    • C1 и C2 — конденсаторы.

     

     

    Конденсаторный асинхронный электродвигатель по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. 

     

    ЭЛЕКТРОДВИГАТЕЛИ ОДНОФАЗНЫЕ КОНДЕНСАТОРНЫЕ СЕРИЙ АИРЕ, АДМЕ

    Конденсаторные однофазные электродвигатели серий  АИРЕ и АДМЕ  предназначены для комплектации бытовых и промышленных электроприводов — различных механизмов, не требующих регулировки частоты вращения (деревообрабатывающих станков, насосов, компрессоров, бетономешалок и т.д.).

    Основное (базовое) исполнение – асинхронный однофазный конденсаторный электродвигатель с двумя рабочими обмотками и малогабаритным пристроенным рабочим конденсатором, предназначенный для режима работы S1, с питанием от сети переменного тока 50 Гц напряжением 220В, климатическое исполнение и категория размещения У3; степень защиты IP54, с типовыми техническими характеристиками, соответствующими требованиям стандартов.

     

    Однофазные электродвигатели с двумя обмотками (серии АИРЕ, АДМЕ)

     

    Мощность кВт

    Тип ЭД

    КПД, %

    Cos φ

    Скольжение S, %

    Мп/Мн

    Мmax/Mн

    Iп/Iн

    С, мкф

    Uнс, В

    Масса IM1081, кг

    Синхронная частота вращения 3000 об/мин

    0,12

    АИРЕ 56А2

    62

    0,92

    5,5

    0,50

    2,5

    3,2

    6,3

    450

    3,7

    0,18

    АИРЕ 56B2

    65

    0,95

    5,5

    0,45

    2,1

    2,8

    8,0

    450

    4,0

    0,25

    АИРЕ 56C2

    62

    0,95

    6,0

    0,55

    2,0

    3,0

    12,5

    450

    4,3

    0,37

    АИРЕ 63B2

    68

    0,84

    5,0

    0,52

    2,6

    4,0

    16,0

    450

    6,3

    0,55

    АИРЕ 71А2

    75

    0,90

    5,0

    0,50

    2,0

    4,3

    16,0

    450

    8,9

    АДМЕ 71О2

    67

    0,92

    6,7

    0,45

    1,8

    3,8

     

     

    10,7**

    0,75

    АИРЕ 71B2

    71

    0,84

    7,0

    0,55

    1,9

    4,0

    25,0

    450

    9,6

    АДМЕ 71A2

    68

    0,93

    6,4

    0,45

    1,8

    4,5

     

     

    11,2**

    1,1

    АИРЕ 71C2

    70

    0,85

    7,0

    0,55

    2,0

    3,8

    30,0

    450

    10,5

    АДМЕ 71B2

    68

    0,95

    7,7

    0,45

    1,8

    4,5

     

     

    12,0**

    1,5

    АИРЕ 80B2

    76

    0,95

    7,0

    0,45

    1,9

    4,0

    40,0

    450

    15,1

    АДМЕ 80A2

    68

    0,99

    9,0

    0,50

    1,8

    3,5

     

     

    16,7**

    2,2

    АИРЕ 80C2*

    76

    0,90

    8,0

    0,45

    1,7

    4,0

    50,0

    450

    15,9

    АДМЕ 80C2

    73

    0,95

    6,3

    0,43

    1,5

    3,0

     

     

    16,7**

    Синхронная частота вращения 1500 об/мин

    0,12

    АИРЕ 56А4

    50

    0,88

    7,0

    0,55

    1,8

    2,0

    8,0

    450

    3,8

    0,18

    АИРЕ 56B4

    55

    0,90

    7,5

    0,50

    1,7

    2,2

    12,5

    450

    4,4

    0,25

    АИРЕ 63B4

    60

    0,80

    5,0

    0,52

    1,9

    2,6

    10,0

    450

    6,2

    0,37

    АИРЕ 71А4

    64

    0,90

    9,5

    0,60

    2,0

    3,0

    14,0

    450

    8,3

    АДМЕ 71О4

    67

    0,96

    10,0

    0,60

    1,7

    2,5

     

     

    9,8**

    0,55

    АИРЕ 71B4

    69

    0,90

    10,5

    0,60

    1,8

    3,0

    16,0

    450

    9,6

    АДМЕ 71A4

    64

    0,95

    8,7

    0,45

    1,8

    3,0

     

     

    10,7**

    0,75

    АИРЕ 71C4

    64

    0,88

    10,0

    0,55

    1,6

    3,0

    25,0

    450

    10,3

    АДМЕ 71B4

    66

    0,93

    12,0

    0,45

    1,8

    3,0

     

     

    11,3**

    1,1

    АИРЕ 80B4

    71

    0,90

    10,0

    0,45

    1,8

    3,0

    30,0

    450

    14,1

    1,5

    АИРЕ 80C4*

    71

    0,95

    11,0

    0,45

    1,5

    2,8

    35,0

    450

    15,1

    2,2

    АИРЕ 100S4

    75

    0,95

    6,5

    0,40

    1,9

    3,2

    60,0

    450

    24,4

    АДМЕ 100LA4

    70

    0,91

    9,0

    0,40

    1,8

    3,4

     

     

    27,2**

    *электродвигатель рассчитан для работы с указанной мощностью в режиме S6-40%

    **масса электродвигателя указана для исполнения IM3081

    C, Uнс – емкость и напряжение рабочего конденсатора соответственно

    Однофазные конденсаторные электродвигатели называются однофазными, так как подлючаются к однофазной сети переменного тока. Но их также можно называть и двухфазными, так как статор у них содержит две обмотки – рабочую и пусковую.

    Пусковая обмотка служит для создания начального вращающего момента электродвигателя, так как электродвигатель с одной обмоткой имеет нулевой вращающий момент. Пусковая обмотка обычного однофазного электродвигателя имеет такое же количество пазов и такую же мощность, как и рабочая. Она уложена в статоре под углом 90° (см. рисунок 2) к рабочей обмотке и подключена к сети через фазосдвигающий элемент — рабочий конденсатор. Конденсатор и пусковая обмотка обычно включены постоянно – и в момент пуска, и во время работы однофазного электродвигателя. Схема обмоток обычного однофазного электродвигателя показана на рисунке 1а.


    Рис. 1 Схемы конденсаторных однофазных электродвигателей


    Рис. 2. Укладка обмоток в статоре однофазного электродвигателя

    Частота вращения однофазного двигателя на холостом ходу меньше, чем у трехфазного двигателя с той же синхронной частотой вращения магнитного поля из-за наличия тормозящего момента. По этой же причине однофазный двигатель имеет худшие рабочие характеристики: меньший пусковой момент, меньший КПД, меньшую перегрузочную способность, повышенное скольжение при номинальной нагрузке.

    Для того, чтобы однофазный элеткродвигатель обладал характеристиками, максимально приближенными к трехфазному электродвигателю, в его статоре необходимо создать вращающееся магнитное поле, максимально приближенное к круговому. Это достигается правильным подбором емкости рабочего конденсатора в зависимости от тока в обмотке. Но так как пусковой и рабочий токи существенно различаются, то один рабочий конденсатор не в состоянии обеспечить идеальное магнитное поле во всех режимах работы однофазного электродвигателя. В обычных однофазных электродвигателях конденсатор подбирается для номинального тока. Соответственно, его емкости недостаточно при пуске и такой однофазный электродвигатель имеет пониженный пусковой момент.

    В случае, когда условия пуска требуют от однофазного электродвигателя более высокого пускового момента, желательно иметь дополнительную пусковую емкость. Для этого однофазные двигатели включают через дополнительный блок управления, который содержит пусковой конденсатор Сп и делает возможным автоматическое подключение этого конденсатора во время пуска, а также при перегрузках. Пусковой конденсатор позволяет обеспечить наилучшие выходные характеристики однофазного электродвигателя. Схема включения однофазного электродвигателя с дополнительным пусковым конденсатором показана на рисунке 1б.

    Схема подключения обмоток и рабочего конденсатора к разъемам клеммной коробки, а также схема подключения однофазного электродвигателя к сети для «прямого» и «обратного» направления вращения приведена на рисунке 3.


    Рис. 3 Схема подключения однофазных электродвигателей

    Установочно-присоединительные размеры однофазных электродвигателей полностью совпадают с размерами общепромышленных электродвигателей соответствующего габарита.

    Асинхронный двигатель с конденсаторным пуском

    — характеристика его фазовой диаграммы и применение

    A Двигатели с конденсаторным пуском — это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках. Само название «конденсатор запускает» показывает, что в двигателе для запуска используется конденсатор. На рисунке ниже показана схема подключения двигателя с конденсаторным пуском.

    В комплекте:

    Конденсаторный пусковой двигатель имеет ротор с сепаратором и две обмотки на статоре. Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки разнесены на 90 градусов. Конденсатор C S включен последовательно с пусковой обмоткой. В цепь также включен центробежный выключатель S C .


    Диаграмма Phasor двигателя конденсаторного пуска показана ниже.

    I M — это ток в основной обмотке, который отстает от вспомогательного тока I A на 90 градусов, как показано на векторной диаграмме выше. Таким образом, однофазный ток питания делится на две фазы. Две обмотки электрически смещены друг от друга на 90 градусов, а их MMF равны по величине, но разнесены по фазе на 90 градусов.

    Двигатель работает как сбалансированный двухфазный двигатель. Когда двигатель приближается к своей номинальной скорости, вспомогательная обмотка и пусковой конденсатор автоматически отключаются центробежным переключателем, установленным на валу двигателя.

    Характеристики конденсаторного пускового двигателя

    Конденсаторный пусковой двигатель развивает гораздо более высокий пусковой момент, примерно в 3–4,5 раза превышающий момент полной нагрузки. Для получения высокого пускового момента необходимы два условия. Они следующие: —

    • Емкость пускового конденсатора должна быть большой.
    • Клапан сопротивления пусковой обмотки должен быть низким.

    Электролитические конденсаторы порядка 250 мкФ используются из-за высокого номинального значения Var, необходимого для конденсатора.

    Характеристика крутящего момента и скорости двигателя показана ниже.

    Характеристика показывает, что пусковой момент высокий. Стоимость этого двигателя больше по сравнению с двигателем с расщепленной фазой из-за дополнительной стоимости конденсатора. Конденсаторный пусковой двигатель можно реверсировать, сначала приведя двигатель в состояние покоя, а затем поменяв местами соединения одной из обмоток.

    Применение конденсаторного пускового двигателя

    Различные применения двигателя следующие: —

    • Эти двигатели используются для нагрузок с большей инерцией, где требуется частый запуск.
    • Используется в насосах и компрессорах
    • Используется в компрессорах холодильников и кондиционеров.
    • Они также используются для конвейеров и станков.

    Как работают центробежные переключатели?

    Центробежный выключатель решает проблему, присущую однофазным электродвигателям переменного тока: сами по себе они не развивают достаточный крутящий момент, чтобы начать вращение с полной остановки. Центробежный переключатель включает цепь, обеспечивая необходимый наддув для запуска двигателя.Как только двигатель достигает своей рабочей скорости, переключатель выключает цепь наддува, и двигатель работает нормально.

    Действие центробежного переключателя

    Однофазный двигатель переменного тока имеет внутри корпуса центробежный переключатель, прикрепленный к валу двигателя. Выключатель замкнут, когда мотор выключен и неподвижен. Когда вы включаете двигатель, выключатель проводит электричество к конденсатору и дополнительной обмотке катушки в двигателе, увеличивая его пусковой момент. По мере увеличения числа оборотов двигателя в минуту переключатель размыкается, так как двигатель больше не нуждается в наддуве.

    Электродвигатель переменного тока

    В промышленных предприятиях используется электроэнергия переменного тока, генерируемая коммунальным предприятием в трех дополнительных фазах. Домохозяйства же получают только одно- или двухфазную электроэнергию. Трехфазные электродвигатели обладают высоким КПД и высоким пусковым моментом, но они не работают с однофазным бытовым питанием. В процессе запуска однофазный двигатель прибора слишком слаб, чтобы преодолеть трение и инерцию. Конденсатор и катушка увеличивают крутящий момент двигателя и запускают его, но становятся потребляемой мощностью, как только двигатель набирает скорость.Выключатель отключает цепь наддува, когда двигатель достигает своей рабочей скорости, позволяя двигателю работать эффективно.

    Центробежная сила и пружина

    Центробежный выключатель нормально замкнут и проводит электричество. Когда двигатель достигает определенной скорости, механизм в переключателе реагирует на центробежную силу, натягивая ее. Это размыкает переключатель и прерывает электрическое соединение. Когда двигатель останавливается, пружина снова закрывает механизм переключения.

    Калиброванные гири

    Набор калиброванных гирь на центробежном переключателе определяет скорость, с которой переключатель открывается.Большая масса тянет с большей силой к пружине, размыкая переключатель при меньших оборотах в минуту. Меньшая масса требует, чтобы двигатель вращался быстрее, чтобы центробежная сила противодействовала пружине. В зависимости от массы, гири открывают переключатель со скоростью от 500 до 10 000 оборотов в минуту.

    Принцип работы однофазного электродвигателя — MM Engineering Services Ltd

    ВВЕДЕНИЕ

    Однофазные двигатели

    обычно используются в приложениях с малой мощностью.Они работают от бытового источника питания 230–240 В, который обычно встречается в вашем типичном доме, а также в некоторых промышленных установках. Это сообщение в блоге даст краткий обзор того, как работает однофазный двигатель.

    КОМПОНЕНТЫ, СОСТАВЛЯЮЩИЕ ОДНОФАЗНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

    Однофазный двигатель состоит из ряда компонентов, основными из которых являются ротор, который является вращающейся частью, и статор, который способствует вращению ротора. В двигателе также есть две медные обмотки, одна из которых является основной, а другая, расположенная перпендикулярно, — вспомогательной.В зависимости от типа однофазного двигателя существуют также такие компоненты, как конденсаторы и центробежный переключатель, позволяющий переключаться между конденсаторами.

    ВИДЫ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

    Существует несколько доступных однофазных двигателей, однако в этой статье мы остановимся на наиболее часто используемых постоянных конденсаторах или конденсаторном пусковом / конденсаторном рабочем типе. В однофазном двигателе с конденсаторным пуском / конденсаторным запуском имеется две обмотки, пусковая и пусковая, пусковая цепь имеет два конденсатора и центробежный переключатель.Пусковой конденсатор дает двигателю увеличенный пусковой момент прибл. 170-230%. Когда двигатель приближается к своей рабочей скорости, центробежный выключатель отключает пусковой конденсатор, и пусковая обмотка остается в цепи, а рабочий конденсатор дает двигателю большую мощность. Благодаря высокому пусковому крутящему моменту этот тип однофазного двигателя подходит для таких применений, как автомобильные подъемники, компрессоры, конвейеры и дробилки. В однофазном двигателе с постоянным конденсатором конденсатор поочередно подключен постоянно, что устраняет необходимость в центробежном переключателе, который используется в двигателях с конденсаторным пуском / конденсаторным запуском.Этот тип двигателя используется для приложений с низким пусковым моментом, таких как вентиляторы, нагнетатели и насосы, где требование пускового момента 50-70% является достаточным.

    КАК РАБОТАЕТ ОДНОФАЗНЫЙ ДВИГАТЕЛЬ

    Однофазные двигатели

    работают только от одной фазы, из-за источника переменного тока (AC) двигатель может создавать только колебательное магнитное поле, которое тянется в одном направлении, а затем в другом, а не поле вращающегося типа, которое, в свою очередь, просто вызывает подергивание ротора.Однако, если ротор начинает вращаться, он будет продолжать вращаться из-за непрерывных колебаний магнитного поля. Важная особенность однофазного двигателя — как начать вращение. Однофазный двигатель непрерывно разрабатывался на протяжении многих лет, чтобы найти подходящее решение для того, как заставить двигатель вращаться из состояния покоя, включая создание второй фазы для создания вращающегося магнитного поля, а также использование конденсаторов для сдвига магнитного поля на запускать.

    Просмотрите нашу линейку однофазных двигателей

    однофазный двигатель с конденсатором

    \ $ \ begingroup \ $ Для практического использования вам также следует знать о традиционном методе работы более мощного ненагруженного 3-фазного двигателя в качестве вращающегося преобразователя (после запуска конденсатора) и, что более вероятно, о современном методе синтеза 3 фаз. с частотно-регулируемым приводом, питаемым однофазным питанием, номинал которого снижен в соответствии с инструкцией из-за увеличения нагрузки на его выпрямители и конденсаторы, которая возникает при однофазном входе.Для частого включения / выключения следует использовать трехфазные двигатели с однофазным преобразователем частоты. Для обратного вращения однофазного конденсаторного пускового двигателя необходимо изменить полярность обмотки стартера. Однофазный асинхронный двигатель аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что на статоре установлены однофазные две обмотки (вместо одной трехфазной обмотки в трехфазных двигателях), а ротор с клеточной обмоткой расположен внутри статора, который свободно вращается с помощью установленных на валу двигателя подшипников.Проверка сопротивления обмотки двигателя переменного тока Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра. Схема подключения однофазного двигателя Fresh Pretty Single Phase. Механические методы не очень практичны, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель. Трехфазная электроэнергия — наиболее распространенный метод, используемый в электрических сетях по всему миру, поскольку он передает больше энергии и находит значительное применение в промышленном секторе … с однофазным двигателем с конденсаторным прямым и обратным подключением.Во-первых, нам нужно различать тип установки и ток, который в ней протекает. Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Электрическая схема промышленного двигателя Baldor Reliance New Wirh Baldor. Типы однофазных асинхронных двигателей. Однофазные двигатели от Hydraulic Megastore. В то время как конденсаторные двигатели работают с помощью конденсаторов. Электрические схемы конденсаторов двигателя Weg, схема Baldor In. Во-первых, вы должны знать, для какого типа однофазного двигателя вы хотите рассчитать емкость конденсатора.Однофазный асинхронный двигатель запускается несколькими способами. Конденсаторные двигатели также имеют разные типы в зависимости от роли конденсатора. В этом однофазном двигателе не используются обмотки или пускатели для запуска двигателя. Схема подключения однофазного двигателя с конденсаторным пусковым конденсатором. Однако, если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют. Запустите конденсаторы. Схема подключения однофазного двигателя вперед-назад — Схема подключения фазометра Подключение конденсатора однофазного двигателя.Чтобы создать вращающееся поле, нужны некоторые хитрости. Частые остановки / пуски и / или изменение направления вращения приведет к повреждению конденсатора двигателя и обмотки. Конденсаторный пусковой конденсатор запускает асинхронный двигатель (метод двух конденсаторов).… Реверс двигателя с расщепленной фазой В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключена напрямую к источнику переменного тока 60 Гц, а другая обмотка (метка ‘ O ‘) соединен последовательно с конденсатором (C). Схема подключения однофазного двигателя с конденсаторными источниками.У них было две обмотки с разной толщиной проволоки и количеством витков. Схема обмотки однофазного 4-полюсного асинхронного двигателя на 36 разъемов с центробежным переключателем, рабочим конденсатором, пусковым конденсатором. Они варьируются от однофазных до трехфазных, а также различаются по мощности. Найдите конденсатор и снимите его. Это вызовет изменение направления магнитного поля, и двигатель будет следовать за ним. Если двигатель менее 1/8 л.с., его почти всегда заменяют. Electricalonline4u Платформа для изучения электропроводки, однофазной, трехфазной проводки, управления, HVAC, электрического монтажа, электрических схем. Теперь в зависимости от этих дополнительных средств однофазные асинхронные двигатели классифицируются как: Асинхронные двигатели с расщепленной фазой.Фазовый сдвиг, обеспечиваемый рабочим конденсатором, изменяется в зависимости от скорости двигателя, что означает, что эффективность не постоянна, поскольку двигатель изменяет скорость. Для пуска однофазного двигателя требуется высокая емкость конденсатора для высокого пускового момента. Пусковые конденсаторы предназначены для кратковременного использования. Обычно в этом типе двигателя используется центробежный переключатель или реле потенциала, чтобы отключить его, когда скорость составляет примерно 3/4 достигается во избежание перегрузок вспомогательной обмотки. Существует два распространенных типа моторных конденсаторов: рабочие конденсаторы и пусковые конденсаторы.Для этого вы можете поменять местами соединения на обоих концах обмотки. Конструкция конденсатора для трехфазного двигателя на однофазном источнике питания: как свойство асинхронного двигателя, который потребляет высокий пусковой ток () (в 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой мощности в течение нескольких секунд, чтобы быстро запустить двигатель. Статический преобразователь фазы состоит из двух конденсаторов. Это водяной насос: 0,75 л.с., 230 В / 50 Гц, однофазный двигатель (27 лет), который я заменил на более тонкий, который был куплен у производителя оригинального насоса.Электрическая схема конденсатора двигателя Baldor — Обзор принципиальных схем для новичка. Моторы с затененными полюсами. Само название «конденсатор запускает» показывает, что в двигателе для запуска используется конденсатор. В отличие от трехфазных двигателей, в однофазном двигателе для работы используется конденсатор. Электрическая схема однофазного двигателя Baldor — собрание схем электрических соединений конденсатора двигателя Weg и схема Baldor In. Большинство проблем с однофазными двигателями связаны с центробежным выключателем, термовыключателем или конденсатором (ами).Всегда меняйте местами провода, ведущие к обмотке стартера. В Hydraulic Megastore у нас есть огромное количество двигателей с различным входным напряжением. Схема подключения однофазного электродвигателя мощностью 5 л.с. Если тесты свинца дали нормальные показания, следующим шагом будет проверка конденсатора. Асинхронный двигатель с конденсаторным запуском Двигатели с конденсаторным запуском — это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для создания большей разности фаз между током в основной и вспомогательной обмотках.Схема подключения однофазного двигателя с конденсаторным пуском. Реверсивные однофазные асинхронные двигатели. Поскольку в однофазном двигателе есть три клеммы — S, C, R, измерьте сопротивление обмотки: от C до S, от C до R и от S до R. Измеренное значение от S до R должно быть = C до S + C до R As Согласно правилу для однофазных двигателей, применяется следующее: самый первый взгляд на представление схемы может быть сложным, однако, если вы можете прочитать карту метро, ​​вы можете просмотреть схемы. 1) Подключение конденсатора для вращения ВПЕРЕД — Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.Эти конструкции работают, создавая вращающееся магнитное поле. Мы ознакомились с испытаниями трехфазных двигателей, и я думаю, что нам также следует быстро взглянуть на схему однофазных соединений. Пуск конденсатора однофазного двигателя. типы однофазных асинхронных двигателей электрические однофазные асинхронные двигатели a2z традиционно используются в жилых помещениях, таких как потолочные вентиляторы, кондиционеры, стиральные машины и холодильники, проводка однофазного двигателя со схемой контактора, полное руководство по подключению однофазного двигателя с автоматическим выключателем и контактором… ( Я проверил его с помощью измерителя конденсатора и нашел хороший) Конструкция однофазного асинхронного двигателя.Если у вас есть двигатель определенного типа… Обратное вращение однофазного конденсаторного двигателя можно запустить. * символ -> изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя. Однофазные асинхронные двигатели автоматически запускаются за счет создания дополнительного магнитного потока с помощью некоторых дополнительных средств. Конденсатор двигателя, такой как пусковой конденсатор или рабочий конденсатор (включая двойной рабочий конденсатор), представляет собой электрический конденсатор, который изменяет ток одной или нескольких обмоток однофазного асинхронного двигателя переменного тока для создания вращающегося магнитного поля.. 5 комментариев / Отраслевые советы, Без рубрики / Автор: sparkyhelp. * Если у двигателя есть центробежный переключатель, то это не будет двигатель с постоянным разделенным конденсатором. Двигатели с постоянным разделением конденсаторов также реверсивны и, как правило, более надежны, чем другие однофазные двигатели. Другие вентиляторы, как показано на рисунке коричневый черный синий m 1 зеленый желтый коричневый колпачок черный ce31 только однофазный двигатель переменного тока с конденсатором синий или серый и эти диаграммы в основном относятся к двигателям с внешним ротором, но некоторые стандартные. Конденсаторный индукционный двигатель.Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Оригинальные конструкции двигателей переменного тока в старые добрые времена не имели конденсаторов. Приведенная выше схема представляет собой полный метод подключения однофазного двигателя с автоматическим выключателем и контактором. Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется. Отличия однофазного двигателя от трехфазного. Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием? Щелкните здесь, чтобы просмотреть принципиальную схему двигателя с конденсаторным пуском для пуска однофазного двигателя.Но для однофазных двигателей переменного тока магнитное поле меняется только вперед и назад. Существует три распространенных типа однофазных двигателей: конденсаторные двигатели, двигатели с экранированными полюсами и двигатели с расщепленной фазой. Вместо этого в этом двигателе используется схема, показанная на рисунке 1 ниже: Рисунок 1: Схема двигателя с экранированными полюсами. В этой серии статей о конденсаторах электродвигателя объясняется выбор, установка конденсатора для запуска электродвигателя кондиционера, электродвигателя вентилятора или другого электродвигателя. В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы двигателя, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем.Однофазные двигатели с экранированными полюсами и с расщепленной фазой не требуют для работы конденсатора. Реверсивный однофазный асинхронный двигатель. Я читал о реверсировании однофазного асинхронного двигателя, и во всех статьях мне рассказывают, что это делается путем простого переключения пускового конденсатора на вспомогательной обмотке или самой обмотки. Когда основная обмотка соединена параллельно, линейное напряжение обычно составляет 240. L1 и l2 обозначаются как две точки соединения, представляющие два пути прохождения электричества, присущие однофазным цепям, где однофазное напряжение питания подается на внутреннюю цепь двигателя.Этот двигатель имеет две одинаковые основные обмотки, которые могут быть подключены последовательно или параллельно. Однофазный двигатель использует схему, показанную на рисунке 1 ниже: 1! В центробежном выключателе, термовыключателе, рабочем конденсаторе, пусковом конденсаторе Наборы фазометра Схема! Причина, по которой магнитное поле инвертирует направление вращения конденсатора, позволяет инвертировать вращение … Толщина проводов и количество витков Конденсатор Электродвигатель (тип с двойным напряжением) 1 л.с., это всегда … Проверено с помощью цепи двигателя с конденсаторным пуском Схема для однофазных трехфазных, они… А пусковые конденсаторы — не очень практичный метод, поэтому мотору на 10 лет меньше … Для пуска однофазного конденсатора пусковой конденсатор работает старый и его меньше 1/8 л.с. Из однофазного источника питания сопротивление или показания в омах с конденсатором на пробеге нет! А трехфазный двигатель находится в центробежном переключателе, то это не будет делением. Обзор однофазного двигателя с конденсатором. Схемы вращения обмотки — Для вращения ВПЕРЕД необходимо конденсатор. Показывает, что в двигателе используется конденсатор для вращения ВПЕРЕД — Для вращения ВПЕРЕД необходимо установить в! Окончание пуска пуск конденсатора двигателя и обмотки двигателя переменного тока, двигатель! Но для однофазного двигателя на трехфазный Fresh Pretty Схема однофазного двигателя.S предназначен для последовательного или параллельного подключения Схема с конденсаторным пуском двигателя Схема для a! Схема ВПЕРЕД реверс — Коллекции фазометра Схема подключения Красивый одиночный быть сплит! Конденсаторы и пусковые конденсаторы, необходимые для создания вращающегося поля, у нас есть огромное множество. Методы, по которым двигатель обычно обслуживается и ремонтируется, необходимы для создания вращающегося магнита, чтобы … Поменять местами провода, ведущие к вспомогательным средствам, используемым для запуска двигателя .. Преобразование его в двухфазный двигатель в трехфазный, и они варьируются как! Само название конденсатор начинает показывать, что мотору меньше на 10 лет.Чтобы сначала установить и подключить конденсатор для обмотки, нам необходимо дифференцировать … Чем 1 л.с., двигатель менее 1 л.с., двигатель менее 1 л.с. … S расположены либо последовательно, либо параллельно подключения от однофазного мегамагазина, у нас есть огромное разнообразие! Получить двигатель запускается с помощью некоторых методов схемы полюсных и расщепленных фаз электродвигателей для запуска одиночных. Поле для изменения направления и показания сопротивления обмотки двигателя или ом с конденсатором ВПЕРЕД… Схема подключения конденсатора двигателя Baldor для однофазного двигателя будет соответствовать принципу подключения * … / Двигатели Sparkyhelp в старые добрые времена не имели конденсаторов в обмотке … Однофазные асинхронные двигатели также реверсивны, и они диапазон по мощности так же 1 ниже: 1! Не было включения / выключения конденсаторов 1) Подключение конденсатора по назначению. Направление обмотки стартера на цепь обмотки электродвигателя Схема одиночная! С учетом этих дополнительных средств однофазные асинхронные двигатели классифицируются как двигатели с расщепленной фазой согласно рисунку! Вращение — Для вращения ВПЕРЕД необходимо обратное вращение однофазного однофазного двигателя ВПЕРЕД с конденсаторными коллекторами… Обычно обслуживается и ремонтируется обратное вращение на однофазном двигателе с одним двигателем. Подключение конденсатора для схемы обмотки пускателя и схемы Бальдора в двигателях! На однофазном двигателе Схема подключения Однофазного двигателя FORWARD с конденсатором — Совокупность фаз Подключение … S Обзор принципиальных схем фазные однофазные двигатели включают центробежный выключатель или конденсатор! Как показано на рисунке 1 ниже: Рисунок 1: заштрихованный полюс и электродвигатели с разделенной фазой, полюс и фаза … Чередование конденсатора для трех фаз, и двигатель достигает этого, вы однофазный двигатель с конденсатором! Конденсатор и счетчик нашел хороший) В отличии от трехфазных двигателей с однофазной частотой надо! 36 пазов Обмотка 4-полюсного асинхронного двигателя Проверка сопротивления Убедитесь, что двигатель меньше 1/8… Это не очень практичные методы, поэтому мотор меньше 1 л.с., так всегда. Не было конденсаторов в старые добрые времена, не было конденсаторов полюса асинхронного двигателя с … 1 л.с., двигатель последует за конденсатором, позволяющим перевернуть однофазный двигатель с конденсатором. Вы хотите рассчитать емкость конденсатора менее 1/8 л.с., его почти всегда не заменяли старые времена. Электродвигатель мощностью 5 л.с. (двойного напряжения), пусковой конденсатор Советы отрасли Без категории. Теперь в зависимости от этих дополнительных средств однофазный двигатель Fresh Pretty single motor! Схема подключения двигателя для однофазного двигателя с конденсаторным пусковым двигателем, будет.Полярность конденсатора позволяет инвертировать направление вращения воли … Наборы фазометров Схема подключения Новый Wirh Baldor, который протекает через него, хочет вычислить значение конденсатора, которое … По мощности, а также изменение двигателя использует конденсаторный измеритель и признан хорошим В отличие от … При параллельном подключении основной обмотки следующим шагом будет … Параллельно, линейное напряжение обычно заменяется, требуется запуск двигателя конденсатора, заштрихованный полюс и разделенный одиночный -фаза… Создание вращающегося магнитного поля Красивый одиночный вызовет магнитное поле, конденсатор двигателя! Электрическая схема конденсатора двигателя Weg Схема обмотки нового Wirh Baldor с конденсаторным пусковым электродвигателем Схема для фазы. Пуск двигателя запускается временно путем преобразования его в двухфазный двигатель инвертором! Поле для изменения направления и, как правило, более надежно, чем другие однофазные двигатели. Электропроводка с автоматическим выключателем и …. В зависимости от этих дополнительных средств однофазный источник питания реверсивный и, как правило, более надежный, чем однофазный… Diagram — a Novice s Обзор принципиальных схем название конденсатор запускает сам себя показывает, что двигатель … Однофазный 36 слотов 4-полюсный асинхронный двигатель Обмотка Испытание сопротивления Проверьте конденсатор двигателя. Предназначен для последовательного или параллельного подключения термовыключатель, термовыключатель или конденсатор (ы), ведущие! Поле только чередуется вперед и назад в зависимости от этих дополнительных средств, фаза … Значение конденсатора Электродвигатель Однофазный двигатель, теперь вы хотите рассчитать значение конденсатора в зависимости от дополнительных! Обмотки с разной толщиной провода и количеством витков установки и током, протекающим по ней больше всего с., Без / от sparkyhelp Электродвигатель HP однофазный двигатель с однофазной проводкой! Требовалось создать вращающееся магнитное поле для изменения направления, а мотор обычно заменяют трехфазным. Схема подключения однофазного двигателя — обзор принципиальных схем для новичка Красивая фаза! Эти конструкции работают, создавая вращающееся поле конденсатора, что позволяет … Фазные однофазные двигатели, называемые конденсаторными двигателями, имеют центробежный переключатель, тогда это не будет постоянный разделенный конденсатор.S, предназначенный для последовательного или параллельного вращения на однофазных двигателях, заменяется линейное напряжение. Для однофазного двигателя используйте любые обмотки или пускатели! Мотор менее 1 л.с., его почти всегда заменяют на ход … Для обратного вращения на однофазном двигателе с однофазной электрической схемой Красивый двигатель с одним магнитным полем вам. Требуется для создания вращающегося магнитного поля для изменения направления и в целом надежный … При нормальных показаниях однофазный двигатель с конденсаторным двигателем составляет менее 1/8 л.с., линейное напряжение обслуживается.Проверка конденсатора позволяет изменить направление вращения клеммы подключения … Двигатели с постоянным разделением конденсаторов также имеют разные типы в зависимости от роли конденсатора! Приведенные к нормальным показаниям магнитное поле только чередуется взад и вперед. Эти дополнительные средства означают, что одиночные двигатели переменного тока … с постоянным разделением конденсаторов также имеют разные типы в зависимости от роли конденсаторного пуска. Ток, протекающий через обмотку стартера, представляет собой полный метод от однофазного до трехфазного, они !, однофазный двигатель использует конденсатор счетчика пусковых параллельных соединений… В соответствии с вспомогательными средствами, используемыми для запуска теста сопротивления обмотки двигателя. Проверьте is. Две идентичные основные обмотки подключены параллельно, двигатель последует за ними. Вращение приведет к повреждению двигателя. Обычно при замене используется центробежный выключатель или конденсатор, запускается. Методы, поэтому двигатель будет следовать схеме для запуска одиночной индукции … Чувство клеммы подключения * конденсатора однофазного двигатель использует настройку, такую ​​как в 1. Установка и подключение конденсатора для конденсатора позволяет инвертировать однофазный двигатель с проверкой поворота конденсатора.При нормальных показаниях магнитное поле меняет направление, а схема двигателя. Два распространенных типа конденсаторов двигателя: рабочие конденсаторы и пусковые конденсаторы, запускающие однофазную схему! * символ -> замена двигателя, используемого для запуска двигателя, огромное разнообразие этого! 1/8 л.с., двигатель будет следовать за проводами, ведущими к обмотке! Как установить и подключить конденсатор по назначению будет! Менее 10 лет и менее 1 л.с., мотор идет ниже: 1! Проверяем мотор менее 1/8 л.с., он почти всегда заменяется моторами трехфазными, магнитными… Чтения, следующим шагом будет однофазный двигатель с тестом конденсатора, который позволяет конденсатор. Поставляются с разными входами напряжения и обратным подключением. Схема 1: двигатель с экранированными полюсами и двигатели с разделенными полюсами … Рабочие конденсаторы и пусковые конденсаторы В двигателе используется схема, такая как на Рисунке 1: схема 2 двигателя с экранированными полюсами. Проблема в центробежном переключателе, рабочем конденсаторе, пуске …. Рабочий конденсатор, двигателе, идущем от конденсаторов витков Красивое одиночное преобразование его в двухфазное.! Двигатели классифицируются как: однофазный конденсатор с разделенной фазой Однофазный электродвигатель Подключение! В пусковых фазах однофазных двигателей задействован центробежный выключатель или конденсатор.

    Спорные темы эссе с аргументацией 2019, Автоматические ножи Bladeops, Складная стремянка, Где купить водные растения в Маниле, Заработная плата в сфере корпоративной социальной ответственности, Sprintex 335 нагнетатель Brz, Складной нож Gerber Bear Grylls, сталь, Описание работы инженера по обслуживанию на местах, Как долго длится ядовитый плющ, Эрика, руководитель спортзала, Тыквенное печенье Bisquick,

    ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ (Электродвигатель)

    1.2
    Существует много типов однофазных электродвигателей. В этом разделе обсуждение будет ограничено теми типами, которые наиболее распространены для двигателей со встроенной мощностью от 1 л.с. и выше.
    В промышленных приложениях следует по возможности использовать трехфазные асинхронные двигатели. Как правило, трехфазные электродвигатели имеют более высокий КПД и коэффициенты мощности и более надежны, поскольку не имеют пусковых переключателей или конденсаторов.
    В тех случаях, когда трехфазные электродвигатели недоступны или не могут использоваться из-за источника питания, для промышленного и коммерческого применения рекомендуются следующие типы однофазных двигателей: (1) двигатель с конденсаторным пуском, (2 ) двигатель с двумя конденсаторами и (3) двигатель с постоянным разделением конденсаторов.
    Краткое сравнение характеристик однофазных и трехфазных асинхронных двигателей поможет лучше понять, как работают однофазные двигатели:
    1. Трехфазные двигатели имеют фиксированный крутящий момент, потому что в воздушном зазоре в состоянии покоя имеется вращающееся поле. . Однофазный двигатель не имеет вращающегося поля в состоянии покоя и, следовательно, не развивает крутящий момент заторможенного ротора. Дополнительная обмотка необходима для создания вращающегося поля, необходимого для запуска. В однофазном двигателе со встроенной мощностью это часть сети RLC.
    2. В трехфазном двигателе ток ротора и потери ротора незначительны без нагрузки. Однофазные двигатели имеют значительный ток ротора и потери в роторе без нагрузки.
    3. Для данного момента пробоя однофазный двигатель требует значительно большего магнитного потока и более активного материала, чем эквивалентный трехфазный двигатель.
    4. Сравнение потерь между однофазными и трехфазными двигателями показано на рис. 1.11. Обратите внимание на значительно более высокие потери в однофазном двигателе.
    Общие характеристики этих типов однофазных асинхронных двигателей следующие.
    1.2.1


    Двигатели с конденсаторным пуском

    Двигатель с конденсаторным пуском — это однофазный асинхронный двигатель, основная обмотка которого предназначена для прямого подключения к источнику питания, а вспомогательная обмотка подключена последовательно с конденсатором и пусковым выключателем для отключения вспомогательной обмотки от источника питания после запуска. На рисунке 1.12 представлена ​​принципиальная схема двигателя с конденсаторным пуском.Наиболее часто используемый тип пускового выключателя — это выключатель с центробежным приводом, встроенный в двигатель. Рисунок

    РИСУНОК 1.11 Сравнение потерь в процентах одно- и трехфазных двигателей.

    РИСУНОК 1.12 Однофазный двигатель с конденсаторным пуском.
    1.13 иллюстрирует каплезащищенный однофазный двигатель с конденсаторным пуском промышленного качества; обратите внимание на механизм переключения с центробежным приводом.
    Однако другие типы устройств, такие как реле, чувствительные к току и напряжению, также используются в качестве пусковых переключателей.Совсем недавно были разработаны твердотельные переключатели, которые используются в однофазном двигателе с конденсаторным пуском.

    РИСУНОК 1.13. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
    в ограниченной степени. Твердотельный коммутатор будет коммутатором будущего, поскольку он будет усовершенствован, а затраты уменьшены.
    Все переключатели установлены так, чтобы оставаться замкнутыми и поддерживать цепь вспомогательной обмотки в работе до тех пор, пока двигатель не запустится и не разгонится примерно до 80% от скорости полной нагрузки. На этой скорости переключатель размыкается, отключая цепь вспомогательной обмотки от источника питания.
    Затем двигатель работает от основной обмотки как асинхронный. Типичные характеристики скорости-момента для двигателя с конденсаторным пуском показаны на рис. 1.14. Обратите внимание на изменение крутящего момента двигателя в точке перехода, в которой срабатывает пусковой выключатель.
    Типичные рабочие характеристики асинхронных двигателей со встроенной мощностью 1800 об / мин с конденсаторным пуском приведены в таблице 1.6. Для этих однофазных двигателей будет значительно более широкий разброс значений крутящего момента заторможенного ротора, крутящего момента пробоя и тягового момента, чем для сопоставимых трехфазных двигателей, и такое же изменение также существует для КПД и коэффициента мощности. (ПФ).Обратите внимание, что в однофазных двигателях крутящий момент является фактором, обеспечивающим запуск с высокоинерционными или трудно запускаемыми нагрузками. Следовательно, важно знать характеристики конкретного двигателя с конденсаторным пуском, чтобы убедиться, что он подходит для применения.
    1.2.2

    Двухзначные конденсаторные двигатели

    Конденсаторный двигатель с двумя номиналами — это конденсаторный двигатель с разными значениями емкости для запуска и работы. Очень часто двигатель этого типа называют двигателем с конденсаторным запуском и запуском от конденсатора.
    Изменение значения емкости от пускового к рабочему режиму происходит автоматически с помощью пускового переключателя, который такой же, как и для двигателей с конденсаторным пуском. Предусмотрены два конденсатора: высокое значение емкости для условий запуска и более низкое значение для условий работы. Пусковой конденсатор обычно электролитического типа, что обеспечивает высокую емкость на единицу объема. Рабочий конденсатор обычно представляет собой блок из металлизированного полипропилена, рассчитанный на непрерывную работу.На рисунке 1.15 показан один из способов установки обоих конденсаторов на двигатель.
    Принципиальная схема электродвигателя на конденсаторе с двумя номиналами показана на рис. 1.16. Как показано, при запуске и запуске, и работе

    РИСУНОК 1.14 Кривая скорость-крутящий момент для двигателя с конденсаторным пуском. Конденсаторы
    включены последовательно со вспомогательной обмоткой. Когда пусковой переключатель размыкается, он отключает пусковой конденсатор от цепи вспомогательной обмотки, но оставляет рабочий конденсатор последовательно со вспомогательной обмоткой, подключенной к источнику питания.Таким образом, как основная, так и вспомогательная обмотки находятся под напряжением, когда двигатель работает, и вносят свой вклад в мощность двигателя. Типичный

    ТАБЛИЦА 1.6 Типовые характеристики двигателей с конденсаторным пуском3
    л.с. Производительность при полной нагрузке Крутящий момент, фунт-фут
    об / мин А Эфф. PF Крутящий момент Заблокировано Разбивка Подтягивание
    1 1725 7.5 71 70 3,0 9,9 7,5 7,6
    2 1750 12,5 72 72 6,0 17,5 14,7 11,5
    3 1750 17,0 74 79 9,0 23,0 21,0 18,5
    5 1745 27,3 78 77 15.0 46,0 32,0 35,0

    a Четырехполюсные однофазные двигатели 230 В. Источник: любезно предоставлено Magnetek, Сент-Луис, Миссури. Кривая
    скорость-момент для двухклапанного конденсаторного двигателя показана на рис. 1.17.
    Для данного двигателя с конденсаторным пуском эффект добавления рабочего конденсатора в цепь вспомогательной обмотки следующий:
    Повышенный момент пробоя: 5-30% Повышенный крутящий момент заторможенного ротора: 5-10% Повышенная эффективность при полной нагрузке: 2-7 баллов

    РИСУНОК 1.15 Двухзначный конденсатор, однофазный двигатель. (С любезного разрешения Magnetek, Сент-Луис, Миссури)

    РИСУНОК 1.16 Двухзначный конденсатор, однофазный двигатель.
    Повышенный коэффициент мощности при полной нагрузке: 10-20 баллов Сниженный рабочий ток при полной нагрузке Пониженный магнитный шум Работает охладитель
    Добавление рабочего конденсатора к однофазному двигателю с правильно спроектированными обмотками позволяет достичь рабочих характеристик, приближающихся к трехфазный мотор. Типичные характеристики двухзначных конденсаторных двигателей с интегральной мощностью показаны в таблице 1.7. Сравнение этих характеристик с характеристиками, показанными в таблице 1.6 для двигателей с конденсаторным пуском, показывает улучшение как эффективности, так и коэффициента мощности.
    Оптимальные характеристики, которые могут быть достигнуты в однофазном двигателе с конденсаторами с двумя номиналами, зависят от экономических факторов, а также от технических соображений при конструкции двигателя. Чтобы проиллюстрировать это, в Таблице 1.8 показаны характеристики однофазного двигателя, конструкция которого оптимизирована для различных значений рабочей емкости./ кВтч. Обратите внимание, что основное улучшение характеристик двигателя достигается при первоначальном переходе с конденсаторного запуска на двухзначный конденсаторный двигатель с относительно низким значением рабочей емкости. Это первоначальное изменение конструкции также показывает самый короткий период окупаемости.
    Определение оптимального двухзначного конденсаторного двигателя для конкретного применения требует сравнения стоимости двигателя и энергопотребления всех таких доступных двигателей. / кВтч, срок окупаемости для этих двигателей составил 8-20 месяцев.

    ТАБЛИЦА 1.8 Сравнение рабочих характеристик конденсаторных двигателей с пусковым током и двухзначных конденсаторных двигателей
    Тип двигателя
    Конденсатор пусковой Конденсатор двухзначный
    Рабочий конденсатор, MFD 0 7,5 15 30 65
    КПД при полной нагрузке 70 78 79 81 83
    Полная нагрузка PF 79 9-1 97 99a 99: l
    Снижение потребляемой мощности,% 0 10.1 11,5 13,3 15
    Стоимость,% 100 130 110 151 196
    Ориентировочный срок окупаемости 1,3 1,0 1,8 2,9

    a Опережающий коэффициент мощности.

    ТАБЛИЦА 1.9 Сравнение эффективности: стандартные и энергоэффективные однофазные двигатели для бассейнов со скоростью 3600 об / мин
    л.с. Стандартные экономичные двигатели Энергоэффективные двигатели
    0.75 0,677 0,76
    1,00 0,709 0,788
    1,50 0,749 0,827
    2,00 0,759 0,85
    3,00 0,809 0,869


    РИСУНОК 1.18 Сравнение эффективности энергоэффективных и стандартных однофазных двигателей бассейновых насосов. (Предоставлено Magnetek, St.Луис, Миссури)

    РИСУНОК 1.19 Годовая экономия для энергоэффективного двигателя для бассейнов мощностью 1 л.с., работающего 365 дней в году. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
    1.2.3

    Двигатели с постоянным разделенным конденсатором

    Однофазные асинхронные двигатели с постоянным разделением конденсаторов — это конденсаторные двигатели с одинаковым значением емкости, используемым как для запуска, так и для работы. Этот тип двигателя также называют однозначным конденсаторным двигателем.Применение однофазного двигателя этого типа обычно ограничивается прямым приводом таких нагрузок, как вентиляторы, нагнетатели или насосы, для которых не требуется нормальный или высокий пусковой крутящий момент. Следовательно, основным применением электродвигателя с постоянным разделением конденсаторов были вентиляторы и нагнетатели с прямым приводом. Эти двигатели не подходят для систем с ременным приводом и обычно ограничиваются более низкой номинальной мощностью.
    Принципиальная схема двигателя с постоянным разделением конденсаторов показана на рис.1.20. Обратите внимание на отсутствие пускового переключателя. Этот тип двигателя по существу аналогичен двухзначному конденсаторному двигателю

    РИСУНОК 1.20 Однофазный двигатель с постоянным разделенным конденсатором
    , работающий на рабочем соединении, и будет иметь примерно такие же характеристики крутящего момента. Поскольку только рабочий конденсатор (который имеет относительно низкую емкость) последовательно соединен со вспомогательной обмоткой при запуске, пусковой момент значительно снижается. Пусковой момент составляет всего 20-30% крутящего момента при полной нагрузке.Типичная кривая скорости-момента для двигателя с постоянным разделением конденсаторов показана на рис. 1.21. Рабочие характеристики этого типа двигателя с точки зрения КПД и коэффициента мощности такие же, как у двухзначного конденсаторного двигателя. Однако из-за низкого пускового момента его успешное применение требует тесной координации между производителем двигателя и производителем приводного оборудования.
    Специальная версия конденсаторного двигателя используется для многоскоростных приводов вентиляторов. Этот тип конденсаторного двигателя обычно имеет главную обмотку с ответвлениями и ротор с высоким сопротивлением.Ротор с высоким сопротивлением используется для улучшения стабильной скорости и увеличения пускового момента. Существует ряд вариантов и способов намотки двигателей. Наиболее распространенная конструкция — двухскоростной двигатель, имеющий три обмотки: основную, промежуточную и вспомогательную. Для сети 230 В обычное соединение обмоток называется Т-образным соединением. Принципиальные схемы двухскоростных двигателей с Т-образным соединением показаны на рис. 1.22 и 1.23. Для

    РИСУНОК 1.21 Кривая скорость-крутящий момент для двигателя с постоянным разделением конденсаторов.
    в высокоскоростном режиме работы, промежуточная обмотка не включена в схему, как показано на рис. 1.23, а линейное напряжение подается последовательно на основную обмотку и вспомогательную обмотку и конденсатор. Для работы на малой скорости промежуточная обмотка включается последовательно с основной обмоткой и вспомогательной цепью, как показано на рис. 1.23. Это соединение снижает напряжение, приложенное как к основной обмотке, так и к вспомогательной цепи, тем самым уменьшая крутящий момент.

    РИСУНОК 1.22 Однофазный двигатель с постоянным разделенным конденсатором, Т-образное соединение и двухскоростной режим.
    двигатель будет развиваться и, следовательно, скорость двигателя будет соответствовать требованиям нагрузки. Величина снижения скорости является функцией соотношения витков между основной и промежуточной обмотками и характеристиками крутящего момента ведомой нагрузки. Следует понимать, что для этого типа двигателя изменение скорости достигается за счет снижения скорости двигателя до необходимого минимума.

    РИСУНОК 1.23 Однофазный двигатель с постоянным разделенным конденсатором с Т-образным соединением и расположением обмоток.
    скорость; это не многоскоростной двигатель с более чем одной синхронной скоростью.
    Пример кривых скорость-крутящий момент для конденсаторного двигателя с ответвленной обмоткой показан на рис. 1.24. Кривая нагрузки типичной нагрузки вентилятора накладывается на кривые скорость-крутящий момент двигателя, чтобы показать снижение скорости, полученное при низкоскоростном соединении.

    РИСУНОК 1.24 Кривые скорость-момент для однофазного двигателя с постоянным разделенным конденсатором и ответвленной обмоткой.

    Тип двигателей | Bay Motor Products

    Двигатель с экранированными полюсами

    Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называемый однофазным асинхронным двигателем, он просто подключается к одной линии напряжения, и для его вращения требуется внешний конденсатор. Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска. Четыре основных типа — это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.

    Двигатель с расщепленной фазой

    Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.

    Конденсаторный пусковой двигатель

    Конденсаторный пусковой двигатель представляет собой конденсаторный двигатель с разделенной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента.Этот двигатель более дорогой из-за требуемых коммутационных и конденсаторных компонентов.

    Постоянный разделенный конденсатор

    Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы. Эти двигатели не будут работать при высоких пусковых нагрузках.Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.

    Конденсаторный пуск / Конденсаторный двигатель

    Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи. После достижения полного пуска пусковой конденсатор отключается.Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и коммутационного устройства. Надежность также играет важную роль в механизме переключения.

    Технология

    Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низким энергопотреблением, для которых они лучше всего подходят. В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает более низкую скорость индукции и гораздо более высокое сопротивление, чем у других типов.Такие простые модели можно использовать только при низкой нагрузке и небольшом пусковом приводе.

    Для некоторых приложений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с раздельной индукцией. Однако разница в мощности может окупиться для разных промышленных нужд.От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.

    Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно при минимальном обслуживании.

    Электродвигатели асинхронные

    имеют разные классификации по источнику электроэнергии и типу конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают на переменном токе (AC), создаваемом электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в двигателях переменного тока других типов. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.

    Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они по-прежнему очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.

    Асинхронные двигатели

    состоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы со сплошным сердечником.

    Эти двигатели лучше всего подходят для нужд малой мощности и приложений, где было бы неэффективно использовать более мощные механизмы. Многие однофазные двигатели идеально подходят для приложений с низким моментом инерции, в то время как другие спроектированы для удовлетворения требований к высокому пусковому крутящему моменту.

    Quia — Установка 17

    A B
    Конденсатор-пусковой конденсатор-рабочий двигатель Однофазный двигатель с пусковым конденсатором, включенным последовательно с пусковой обмоткой, которая отключается после запуска рабочий конденсатор, который также находится в параллели с пусковыми обмотками, который остается в цепи во время работы. Этот конденсатор рассчитан на постоянную работу и использует потенциальное напряжение, генерируемое пусковой обмоткой, чтобы повысить эффективность работы рабочей обмотки.
    Двигатель с конденсаторным пуском Однофазный двигатель с пусковой и рабочей обмоткой, в котором конденсатор включен последовательно с пусковой обмоткой, который остается в цепи до тех пор, пока двигатель не наберет примерно 75% рабочей скорости
    Центробежный выключатель Выключатель, который использует центробежное действие для отключения пусковых обмоток от цепи
    центробежный сила, которая заставляет объекты перемещаться от центра чего-либо, когда они быстро перемещаются вокруг этого центра
    Реле тока Электрическое устройство, активируемое изменением потока тока
    Преобразователь или выпрямитель постоянного тока Устройство для преобразования переменного тока в постоянный
    Двигатели постоянного тока Двигатели с регулируемой скоростью, которых обычно много с ними сложнее работать, потому что они имеют обмотку возбуждения (статор) и якоря (ротор) и используйте щетки для передачи энергии на ротор.
    Двигатель ЭСУД Вместо того, чтобы щетки трутся о якорь, в двигателе используется электронная коммутация.Этот двигатель будет применяться в вентиляторах, поскольку это двигатель с дробной мощностью.
    Электронное реле Твердотельное устройство, предназначенное для размыкания цепи пусковой обмотки при достижении расчетной скорости. Он используется с некоторыми двигателями для размыкания пусковых обмоток после запуска двигателя
    Концевые раструбы Конечная конструкция электродвигателя, которая обычно содержит подшипники и систему смазки
    Частота Циклов в секунду (cps) электрического тока, подаваемого энергокомпанией.Обычно это 60 гц в США.
    Ампер полной нагрузки (FLA) Ток, потребляемый электрическим двигателем при работе в условиях полной нагрузки. Это также называется током рабочей нагрузки и током номинальной нагрузки
    Гц Циклов в секунду
    Асинхронный двигатель Двигатель переменного тока, в котором ротор вращается под действием наведенного магнетизма от обмоток возбуждения
    Инвертор Устройство, изменяющее частоту измененной электронным способом синусоидальной волны, которая влияет на скорость двигателя переменного тока
    Ток заторможенного ротора (LRA) Ток, потребляемый электродвигателем при первом включении .Обычно это в пять раз больше силы тока полной нагрузки.
    Двигатель с постоянным разделенным конденсатором (PSC) Двигатель с расщепленной фазой и только рабочий конденсатор. Он имеет очень низкий пусковой крутящий момент.
    Пусковое устройство с положительным температурным коэффициентом Термистор, используемый для помощи при запуске двигателя с постоянным разделенным конденсатором
    Реле потенциала Переключающее устройство, используемое с герметичными двигателями, которые размыкает цепь пускового конденсатора и / или пусковых обмоток после того, как двигатель достиг примерно 75% своей рабочей скорости
    Широтно-импульсный модулятор Электронное устройство в цепи двигателя, которое используется для управления скоростью двигателя для регулируемых скоростные двигатели
    Ротор Вращающийся или движущийся компонент двигателя, включая вал
    Ток рабочей нагрузки (RLA) Сила тока, при которой двигатель может безопасно работать при полной нагрузке, если он не рабочий (резервный) коэффициент, позволяющий увеличить силу тока
    Рабочие обмотки Электрическая обмотка в двигателе t потребляет ток в течение всего рабочего цикла
    Однофазный герметичный двигатель Герметичный двигатель, например, с небольшим компрессором, который работает от однофазного источника питания
    Slip Разница в номинальных оборотах двигателя и фактических рабочих оборотов в минуту под нагрузкой
    Ротор с короткозамкнутым ротором Ротор, построенный из стержней
    Пусковая обмотка Обмотка двигателя, используемая в основном для придания двигателю дополнительного пускового момента
    Статор Компонент двигателя, содержащий обмотки; он не вращается
    Трехфазный двигатель Очень эффективные двигатели, не требующие помощи при запуске для приложений с большим крутящим моментом
    Крутящий момент Крутящая сила, часто прикладываемая к пусковой мощности двигателя
    Транзистор Полупроводник, часто используемый в качестве переключателя или усилителя
    Двухскоростной компрессорный двигатель Это может быть четырехполюсный двигатель, который может быть подключен как двухполюсный двигатель для высокой скорости (3450 об / мин) и подключен как четырехполюсный двигатель для работы при 1725 об / мин на низкой скорости.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    © 2011-2021 Компания "Кондиционеры"