Сколько квт в 1 секции биметаллического радиатора: Мощность 1 секции биметаллических радиаторов отопления

Содержание

Как рассчитать биметаллический радиатор отопления

Без понимания того, как рассчитать биметаллические радиаторы отопления правильно, невозможно будет добиться комфортной температуры в помещении. Несоответствие габаритов батареи метражу комнаты, а также другим параметрам, чревато чрезмерной жарой или холодом в вашем доме в отопительный сезон. Именно биметаллические изделия пользуются большой популярностью для установки в многоэтажных домах, так как устойчивы к гидроударам, имеют малый вес и отличную теплопроводность, обусловленную их конструкцией.

Как рассчитать количество секций биметаллического радиатора

Чтобы корректно рассчитать, сколько секций должны иметь радиаторы, необходимо учитывать следующие показатели:

  • мощность одной секции устройства;
  • площадь помещения – за расчет берется именно размер  комнаты, а не всей жилплощади;
  • высота потолков;
  • факторы, увеличивающие теплопотери — наличие большого количества застекленных площадей, оконных и дверных проемов, либо угловое положение комнаты.

По самой простой формуле, чтобы рассчитать необходимое число отсеков батареи, требуется предусмотреть 0,1 кВт отопительной мощности на каждые 2,7 м3 (1 м2 при h потолков 2,7 м) отапливаемого помещения. В случае, если у вашего помещения есть факторы значительных теплопотерь, расчетное количество секций рекомендуется увеличить на 15-20%.

Стоит понимать, что подобные расчеты справедливы для исправно функционирующей системы центрального отопления, либо автономного отопительного контура. В случае, если давление и температура воды в сети не отвечают нормам, может потребоваться увеличение количества секций с целью компенсации.

Сколько кВт в одной секции биметаллического радиатора

Изделия разных марок отличаются различными показателями мощности. Узнать их можно, просмотрев документацию изделия. Как правило, это от 100 до 200 Вт в одном сегменте, в зависимости от межосевого расстояния, т.е. по сути высоты. Наиболее популярный формат — 60см, имеет показатель около 150 Вт.

Обратившись в интернет-магазин «Теплозон», вы получите подробную консультацию о свойствах интересующего вас биметаллического радиатора, а также сможете купить необходимое количество сегментов. При этом цена на продукцию в нашем каталоге является приемлемой для всех сегментов ассортимента батарей.

Смотрите также:

Радиатор биметаллический Sira RS 500 8 секций

 Корпорация Sira Group открыла российскому потребителю радиаторы «биметалл». Синергия двух металлов, стали и алюминия, позволила решить глобальные проблемы российских отопительных систем.
RS Bimetall выдерживает в 4 раза превосходящее значение рабочего давления в теплосети.
Отличные форма и содержание радиаторов Sira Group RS Bimetal — это еще одна степень свободы для архитекторов и дизайнеров. RS Bimetal позволяет отказаться от декоративных решеток, которые поглощают до 20-30% полезного тепла.


 

 

  • RS Bimetal способен выдерживать давление до 40 BAR
  • Тепловая мощность радиатора RS Bimetal достаточна для создания комфортного микроклимата в доме
  • Теплоотдача RS Bimetal при температуре равной 70°C составляет 142 -280 Вт, что позволяет использовать меньшее количество секций для поддержания комфортной температуры, чем у радиаторов других производителей
  • RS Bimetal при высоких показателях теплоотдачи достаточно компактен, а разнообразие типоразмеров позволяет использовать этот биметаллический радиатор в помещениях как с большой, так и малой площадью
  • функциональный дизайн
  • Компактность конструкции
  • Безупречно гладкое эмалевое покрытие «псевдокерамика»
  • Блестящий модный цвет
  • При четком соблюдении условий монтажа и эксплуатации RS Bimetal сохраняет технические и эстетические свойства долгие годы
  • Sira Group гарантирует срок эксплуатации для RS Bimetal — 20 лет
  • Конструктивная особенность позволяет установить радиатор БЫСТРО, ЛЕГКО, В ЛЮБОЙ СИСТЕМЕ ОТОПЛЕНИЯ (как однотрубной, так и двухтрубной и с любым видом клапана)
     
ПроизводительSira
СерияРадиаторы биметаллические Sira RS 500
 
Типсекционный
Материалбиметаллический
Количество секций8
Максимальная температура110 °С
Отапливаемая площадь16. 00 кв. м
Давление60.00 атм
 
Мощность1.592 кВт
 
Цветбелый
Способ креплениянастенный
Высота572 мм
Ширина640 мм
Глубина95 мм
Межосевое расстояние500 мм
Вес15.40 кг
Патрубок DN1
 
Гарантия10 лет
Страна производстваИталия

Сколько кВт в 1 секции чугунного радиатора?

Лучшим отопительным устройством для жилых помещений является чугунный радиатор. Это обусловлено его инертностью в тепловом отношении. Бесспорно, что времени на нагрев батареи из этого металла требуется больше сравнительно с другими материалами, но и тепло она сохраняет значительно дольше.

Стандартные показатели мощности

Как правило, если батарея состоит из отдельных секций, то ее общая мощность наращивается путем их добавления. Именно поэтому при выборе чугунного радиатора всегда необходимо ориентироваться на отдельные секции. А зависит мощность непосредственно от емкости изделия – чем больше объем теплоносителя, тем больше кВт будет выдавать устройство.

Сегодня производители выпускают радиаторы с различными размерами секций, поэтому мощность может составлять от 0,075 до 0,30 кВт. Наиболее распространенными являются 150-ваттные изделия.

Но выдавать такой показатель прибор будет только при соблюдении разности температур – комнатной и теплоносителя. Расхождение в значениях должно быть в пределах 50 °C – если в помещении 18-20 °C, температура воды в отопительной системе не должна быть менее 70 °C.

В среднем для отопления комнаты площадью 15 м² необходим чугунный радиатор, конструкция которого состоит из 10 секций мощностью 0,15 кВт.

При установке чугунных радиаторов необходимо учитывать, что в пределах 80 % теплоотдачи они осуществляют конвективным методом и около 20 % при помощи инфракрасного излучения.

Это определяет их расположение – вблизи окна либо под ним. За счет повышенной циркуляции воздуха значительно улучшится теплоотдача.

Разновидности и преимущества

Сегодня на рынке отопительной техники встречаются радиаторы различных типов:

  • одноканальные;
  • двухканальные;
  • трехканальные;
  • с прямоугольными секциями;
  • с внешним оформлением в стиле ретро.

Также продукция может быть отечественного и зарубежного производства, основными отличиями которых являются:

  • теплоотдача – одинакова, но объем секций у импортных моделей меньше;
  • стоимость – отечественные устройства значительно дешевле;
  • поверхность – зарубежные приборы отличаются более гладкой поверхностью, что сокращает гидравлическое сопротивление.

Чугунные радиаторы обладают меньшей теплоотдачей, чем алюминиевые устройства, но этот недостаток нивелируется их более медленным остыванием, а также надежностью и большим сроком службы. Биметаллические приборы характеризуются аналогичной теплоотдачей, но их устойчивость к коррозии оставляет желать лучшего.

сколько секций батарей на 1 квадратный метр, калькулятор


Подсчет по площади

Приблизительно вычислить количество секций можно при знании площади помещения, в котором будут устанавливаться батареи. Это самый примитивный метод вычисления, он неплохо работает для домов, где высота потолков небольшая (2,4-2,6 м).

Правильная производительность радиаторов рассчитывается в «тепловой мощности». По нормативам для обогрева одного «квадрата» площади квартиры нужно 100 ватт — на этот показатель и умножается полная площадь. Например, на помещение в 25 кв.м потребуется 2500 ватт.

Виды секций

Вычисленное таким образом количество тепла делят на теплоотдачу от секции батареи (указывается производителем). Дробное число при расчетах округляют в большую сторону (чтобы радиатор гарантированно справился с прогревом). Если батареи выбирают для помещений с низкой потерей тепла или дополнительными отопительными приборами (например, для кухни), можно округлить результат в меньшую сторону — нехватка мощности не будет заметна.

Разберем на примере:

Если в комнату площадью 25 кв.м планируется установка радиаторов отопления с теплоотдачей 204 Вт, формула будет выглядеть так: 100 Вт (мощность для обогрева 1 кв.м) * 25 кв.м (общая площадь) / 204 Вт (теплоотдача одной секции радиатора) = 12,25. Округлив число в большую сторону, получим 13 — количество секций батареи, которое потребуется для отопления комнаты.

Обратите внимание!

Для кухни той же площади достаточно взять 12 секций радиаторов.

Как учитывать эффективную мощность

Эффективная и расчетная мощность не одно и то же. Даже если подсчеты выполнены верно, теплоотдача может быть ниже. Происходит это из-за слабого температурного напора. Положенная мощность, заявленная производителем, обычно указывается для температурного напора в 60°C, а в реальности он нередко составляет 30-50°C. Это происходит из-за низкой температуры теплоносителя в контуре. Чтобы определить эффективную мощность батареи, необходимо ее теплоотдачу умножить на температурный напор в системе, а затем разделить на паспортное значение.

Температурный напор определяют по формуле Т=1/2×(Тн+Тк)-Твн, где

  • Тн – температура теплоносителя на подаче;
  • Тк – температура теплоносителя на выводе;
  • Твн – температура в комнате.

Производитель за Тн принимает 90°C; за Тк – 70°C, за Твн – 20°C. Реальные значения могут сильно отличаться от исходных. На случай экстремально низких температур необходимо прибавить 10-15% мощности.

Рекомендуется предусмотреть возможность ручной или автоматической регулировки подачи теплоносителя в каждый радиатор. Это позволит регулировать температуру во всех помещениях, не расходуя лишнюю тепловую энергию.

Дополнительные факторы

Количество радиаторов на квадратный метр зависит от особенностей конкретного помещения (наличия межкомнатных дверей, количества и герметичности окон) и даже от расположения квартиры в здании. Комната с лоджией или балконом, особенно если они не остеклены, отдает тепло быстрее. Помещение на углу здания, где с «внешним миром» соприкасается не одна, а две стены, потребует большего числа батарей.

На количество секций батареи, которое потребуется для обогрева помещения, влияет также материал, использованный для возведения здания, и наличие дополнительной утепляющей обшивки на стенах. Кроме того, комнаты с окнами во двор будут удерживать тепло лучше, чем с окнами, выходящими на улицу, и потребуют меньшего количества отопительных элементов.

Для каждого из быстро остывающих помещений следует увеличить требуемую мощность, вычисленную по площади комнаты, на 15-20%. Исходя из этого числа высчитывают нужное число секций.

Разница подсоединения

Это интересно! Теплоотражающий экран за радиатором: как установить самостоятельно и преимущества его использования

Примерный расчет — сколько секций батареи на квадратный метр

Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.

Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:

14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.

Объемный или для нестандартных помещений

Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:

К- необходимое количество секций радиатора,

О -объем помещения, он равен произведению высоты на ширину и на длину комнаты.

Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:

3.0*4.0*3.5=42 метра кубических.

Расчитывается общая потребность в тепловой энергии данной комнаты:

42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10. 8, округляется до 11 секций.

Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.

Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.

Подсчет секций по объему

Расчет по объему комнаты более точен, чем подсчет на основе площади, хотя общий принцип остается тем же. В этой схеме учитывается и высота потолка в доме.

По нормативу на 1 кубометр пространства требуется 41 ватт. Для комнат с качественной современной отделкой, где на окнах стоят стеклопакеты, а стены обработаны утеплителем, требуемое значение всего 34 Вт. Объем рассчитывают, перемножая площадь на высоту потолка (в метрах).

Например, объем комнаты в 25 кв.м с высотой потолков 2,5 м: 25 * 2,5 = 62,5 кубометра. Помещение той же площади, но с потолками 3 м, будет большим по объему: 25 * 3 = 75 кубометров.

Расчет количества секций радиаторов отопления проводят, разделив нужную суммарную мощность радиаторов на теплоотдачу (мощность) каждой секции.

Для примера возьмем комнату со старыми окнами площадью 25 кв.м и с потолками 3 м нужно взять 16 секций батарей: 75 кубометров (объем комнаты) * 41 Вт (количество тепла для обогрева 1 кубометра помещения, где на окнах не установлены стеклопакеты) / 204 Вт (теплоотдача одной секции батарей) = 15,07 (для жилого помещения значение округляют в большую сторону).

На фото количество радиаторов на квадратный метр

Это интересно! Температура радиаторов отопления в квартире — норма

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления. когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

В однотрубной системе вода на каждый радиатор поступает все более холодная

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую

Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Что учесть при подсчете?

Производители, указывая мощность одного секции батареи, немного лукавят и завышают цифры в расчете на то, что температура воды в отопительной системе будет максимальной. По факту в большинстве случаев вода для отопления не прогревается до расчетного значения. В паспорте, который прилагается к радиаторам, указываются и минимальные показатели теплоотдачи. В расчетах лучше ориентироваться на них, тогда в доме гарантированно будет тепло.

Обратите внимание!

Батареи, прикрытые сеткой или экраном, отдают немного меньше тепла, чем «открытые».

Точное количество «потерянного» тепла зависит от материала и конструкции самого экрана. Если планируется использовать такую дизайнерскую конструкцию, нужно увеличить расчетную мощность отопительной системы на 20%. То же касается и батарей, расположенных в нишах.

На фото расчет количества секций биметаллических радиаторов

Что необходимо учитывать при расчете количества секций радиаторов отопления

При проведении расчета секций радиаторов отопления необходимо учитывать множество параметров, среди которых:

  • линейные размеры помещения, которое требуется отопить;
  • тип отопительного радиатора и металл, из которого он изготовлен;
  • средняя мощность, которой обладает секция радиатора, или общая мощность всей батареи;
  • максимально возможное количество секций для выбранного типа отопительной батареи.

Сегодня на рынке представлены несколько видов отопительных батарей в зависимости от материала, из которого радиатор изготавливается.

  • Стальные радиаторы. Положительными характеристиками такого отопительного прибора можно назвать небольшой вес, тонкие стенки радиатора, элегантный дизайн. При этом стальные батареи не пользуются спросом, и на это много причин. Во-первых, малая теплоемкость материала – стальные батареи быстро нагреваются, но так же быстро и остывают. Во-вторых, сталь подвержена коррозии. Такие радиаторы быстро ржавеют, особенно в местах соединений. В-третьих, при аварийных гидравлических ударах или плановых испытаниях стальные радиаторы отопления очень часто лопаются и дают течь.

Стальные радиаторы чаще бывают цельными, реже – состоящими из отдельных секций. Мощность конкретной модели указывается в паспорте.

  • Чугунные батареи. Этот вид отопительного радиатора знаком практически всем жителям нашей страны. Материал долговечен, обладает отличными тепловыми характеристиками. Если говорить о классической советской чугунной «гармошке», то стандартной теплоотдачей в ней для одной секции радиатора было значение в 160 Ватт. У чугунных радиаторов множество положительных свойств: они практически не подвержены коррозии, прекрасно выдерживают гидравлические удары и испытания, обладают высокой теплоотдачей. К тому же, благодаря особой форме, чугунная батарея не ограничена количеством секций.

Чугун – довольно-таки инертный материал и позволяет использовать в качестве теплоносителя самые разнообразные жидкости. Сегодня в магазинах представлены чугунные радиаторы как классической формы, так и современные, дизайнерские модели.

  • Алюминиевые батареи. Легкость этого материала позволяет монтировать данные радиаторы практически на любую поверхность. Алюминий обладает отличными тепловыми характеристиками, теплоотдача одной секции достигает 200 Ватт. Но есть и существенный недостаток – коррозия металла на кислороде. Впрочем, производители научились с этим бороться методом анодного оксидирования алюминия, то есть контролируемого процесса окисления металла и создания на его поверхности защитной пленки.
  • Биметаллические радиаторы. Как видно из названия, сконструированы данные радиаторы из двух видов металла: внутренний слой – сталь, внешний – алюминий. Подобная конструкция придает биметаллическим радиаторам прочность и высокую теплоотдачу (до 200 Ватт). Существенным фактором, ограничивающим выбор данного вида радиаторов, является их высокая стоимость.

При расчете количества секций всегда учитывается материал, из которого изготовлены радиаторы отопления, так как тепловые свойства – один из ключевых показателей.

Точный подсчет радиаторов

Как рассчитать количество радиаторов отопления для комнаты в нестандартном помещении — например, для частного дома? Приблизительных подсчетов может быть недостаточно. На число радиаторов влияет большое количество факторов:

  • высота комнаты;
  • общее число окон и их конфигурация;
  • утепление;
  • соотношение суммарной площади поверхности окон и полов;
  • среднюю температуру на улице в холода;
  • число наружных стен;
  • тип помещения, расположенного над комнатой.

Для точного расчета используют формулу и поправочные коэффициенты.

Радиатор для большой комнаты

[rek_custom1]

Это интересно! Электрические радиаторы отопления – какие лучше: классификация и преимущества разных видов

Климатические зоны тоже важны

Не для кого ни секрет, что в разных климатических зонах имеется разная потребность в обогреве, поэтому при проектировании проекта необходимо учитывать и эти показатели.

Климатические зоны также имеют свои коэффициенты:

  • средняя полоса России имеет коэффициент 1,00, поэтому он не используется;
  • северные и восточные регионы: 1,6;
  • южные полосы: 0,7-0,9 (учитываются минимальные и среднегодовые температуры в регионе).

Данный коэффициент необходимо умножить на общую тепловую мощность, а полученный результат разделить на теплоотдачу одной части.

Выводы

Таким образом, расчет отопления по площади особых трудностей не представляет. Достаточно немного посидеть, разобраться и спокойно посчитать. С его помощью каждый владелец квартиры или дома может легко определить величину радиатора, который следует установить в комнате, кухне, ванной или в любом другом месте.

Если вы сомневаетесь в своих силах и знаниях – доверьте монтаж системы профессионалам. Лучше заплатить один раз профессионалам, чем сделать неправильно, демонтировать и повторно приступить к работе. Или же не сделать ничего вообще.

Формула расчета

Общая формула для подсчета количества тепла, которое должны генерировать радиаторы:

КТ = 100 Вт/кв.м * П * К1 * …* К7

П означает площадь комнаты, КТ — итоговое количество тепла, необходимое для поддержания комфортного микроклимата. Значения от К1 до К7 — поправочные коэффициенты, которые выбираются и применяются в зависимости от различных условий. Полученный в итоге показатель КТ делят на теплоотдачу от сегмента батареи для вычисления требуемого числа элементов (секций алюминиевых радиаторов потребуется иное количество, чем, например, чугунных).

Дополнительные секции

Специфика и другие особенности

Также возможна и другая специфика у помещений, для которых делается расчет, не все же они похожи и совершенно одинаковы. Это могут быть такие показатели как:

  • температура теплоносителя меньше 70 градусов – число частей соответственно предстоит увеличить;
  • отсутствие двери в проеме между двумя помещениями. Тогда требуется подсчитать общую площадь обоих помещений, чтобы вычислить количество радиаторов для оптимального обогрева;
  • установленные на окнах стеклопакеты препятствуют потере тепла, следовательно, можно монтировать меньше секций батареи.

При замене старых чугунных батарей, которые обеспечивали нормальную температуру в комнате, на новые алюминиевые или биметаллические, калькуляция весьма проста. Умножитьте теплоотдачу одной чугунной секции (в среднем 150 Вт). Результат разделите на количество тепла одной новой части.

Коэффициенты расчета

К1 — коэффициент для учета типа окон:

  • классические «старые» окна — 1,27;
  • двойной современный стеклопакет — 1,0;
  • тройной пакет — 0,85.

К2 — поправка на теплоизоляцию стен дома:

  • низкая — 1,27;
  • нормальная (двойной ряд кирпича или стены с утепляющей прослойкой) — 1,0;
  • высокая — 0,85.

К3 выбирают в зависимости от пропорции, в которой соотносятся площади комнаты и установленных в ней окон. Если площадь окон равна 10% от площади пола, применяют коэффициент 0,8. На каждые дополнительные 10% прибавляют 0,1: для соотношения 20% значение коэффициента составит 0,9, 30% — 1,0 и так далее.

К4 — коэффициент, выбираемый в зависимости от среднего значения температуры за окном в неделю с минимальной температурой за год. От климата также зависит, сколько нужно на комнату тепла. При средней температуре -35 применяют коэффициент 1,5, при температуре -25 — 1,3, дальше на каждые 5 градусов коэффициент понижают на 0,2.

К5 — показатель для корректировки расчета тепла в зависимости от числа наружных стен. Базовый показатель — 1 (нет стен, соприкасающихся с «улицей»). Каждая наружная стена комнаты добавляет к показателю 0,1.

К6 — коэффициент для учета типа помещения над расчетным:

  • отапливаемая комната — 0,8;
  • отапливаемое чердачное помещение — 0,9;
  • чердачное помещение без отопления — 1.

К7 — коэффициент, который берется в зависимости от высоты помещения. Для комнаты с потолком 2,5 м показатель равен 1, каждые дополнительные 0,5 м потолков добавляют к показателю 0,05 (3 м — 1,05 и так далее).

Для упрощения подсчетов многие производители радиаторов предлагают онлайн калькулятор, где предусмотрены различные типы батарей и есть возможность настроить дополнительные параметры без «ручного» подсчета и выбора коэффициентов.

Соединение секций

Это интересно! Какие биметаллические радиаторы отопления лучше: технические характеристики и отзывы

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет в зависимости от материала радиатора

Батареи, выполненные из разных материалов, отдают разное количество тепла и отапливают помещение с разной эффективностью. Чем выше теплоотдача материала, тем меньше потребуется секций радиатора, чтобы прогреть комнату до комфортного уровня.

Наиболее популярны чугунные батареи отопления и заменяющие их биметаллические радиаторы. Средняя теплоотдача от единственного секции батареи из чугуна — 50-100 Вт. Это довольно немного, зато число секций для помещения проще всего подсчитать «на глазок» именно для чугунных радиаторов. Их должно быть примерно столько же, сколько «квадратов» в комнате (лучше взять на 2-3 больше, чтобы компенсировать «недогрев» воды в системе отопления).

Теплоотдача одного элемента биметаллических радиаторов — 150-180 Вт. На этот показатель может влиять и покрытие батарей (например, окрашенные масляной краской радиаторы греют комнату чуть меньше). Расчет количества секций биметаллических радиаторов проводится по любой их схем, при этом общее число необходимого тепла делят на значение теплоотдачи от одного сегмента. Если Вы хотите приобрести радиаторы с установкой в Москве, рекомендуем обратиться сюда. Компания давно на рынке и хорошо себя зарекомендовала!

Рассмотрим метод вычислений для комнат с высокими потолками

Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:

24 кв.м х 3 м = 72 куб.м (объем комнаты).

72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).

Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:

2952 Вт / 180 Вт = 16,4

Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.

Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.

Почему не стоит подбирать котел со слишком большим запасом мощности

С недостатком теплопроизводительности все предельно понятно: система отопления попросту не обеспечит желаемый уровень температуры даже при беспрерывной работе. Однако, как мы уже упоминали, серьезной проблемой может стать и переизбыток мощности, последствиями которого являются:

  • более низкий КПД и повышенный расход топлива, особенно на одно- и двухступенчатых горелках, не способных плавно модулировать производительность;
  • частое тактование (вкл/выкл) котла, что нарушает нормальную работу и снижает ресурс горелки;
  • попросту более высокая стоимость котлоагрегата, учитывая, что производительность, за которую была произведена повышенная плата, использоваться не будет;
  • часто больший вес и большие габариты.

Когда чрезмерная теплопроизвоительность все же уместна

Единственной причиной выбрать версию котла гораздо большей мощности, чем нужно, как мы уже упоминали, является использование его в связке с буферной емкостью. Буферная емкость (также теплоаккумулятор) – это накопительный бак определенного объема наполненный теплоносителем, назначение которого – накапливать излишки тепловой мощности и в дальнейшем более рационально распределять их в целях отопления дома или обеспечения горячего водоснабжения (ГВС).

Например, теплоаккумулятор – отличное решение, если недостаточно производительности контура ГВС или при цикличности твердотопливного котла, когда топливо сгорая отдает максимум тепла, а после прогорания система быстро остывает. Также теплоаккумулятор часто используется в связке с электрокотлом, который нагревает емкость в период действия сниженного ночного тарифа на электроэнергию, а днем накопленное тепло распределяется по системе, еще долго поддерживая желаемую температуру без участия котла.

ИнструкцииКотлы

Размеры биметаллических радиаторов отопления: как правильно рассчитать?

Размеры биметаллических радиаторов — важная характеристика, влияющая на качество обогрева помещения.

Каких размеров выпускают батареи для отопления?

Имеют ли они стандартные значения или отличны у каждого производителя?

Размеры биметаллических радиаторов отопления

Габариты биметаллических радиаторов описываются следующими основными параметрами

: монтажной высотой, глубиной и шириной.

Высота и глубина зависят от размеров секции, а ширина — от их количества.

Высота батарей зависит от расстояния между вертикальными каналами. Оно имеет стандартные значения для радиаторов всех производителей — 200, 350 и 500 мм.

Расстояние между вертикальными каналами — отрезок между центрами входных и выходных отверстий. Конечная высота, а также глубина и ширина радиаторов различны (см. табл. 1).

Таблица 1. Размеры биметаллических радиаторов
БрендМодельРасстояние между вертикальными каналами, ммВысота/Ширина/Глубина, мм
Global (Италия)Style 350 350425/80/80
Style 500500575/80/80
Tenrad (Германия)Tenrad 350350400/80/77
Tenrad 500500550/80/77
Альтермо (Украина)Альтермо ЛРБ500575/82/80
Альтермо РИО500570/82/80
Grandini (Китай)Grandini 350350430/80/82
Grandini 500500580/80/80
Radena (Италия)Radena Bimetall 350350403/80/85
Radena (Италия)Radena Bimetall 500500552/80/85

Межосевое расстояние у большинства производителей указывается в названии модели.

Но монтажная высота отличается и указывается в спецификации к радиатору.

Ширина радиатора зависит от количества секций. Так, для 8 секционного радиатора параметр имеет значение 640 мм, для 10 секционного — 800 мм и для 12-секционного — 960 мм (значения для батарей с шириной секции 80 мм).

Расчет количества секций радиатора

Тепловая мощность радиаторной секции зависит от ее габаритных размеров. При расстоянии между вертикальными осями в 350 мм параметр колеблется в диапазоне 0,12-0,14 кВт, при расстоянии 500 мм — в диапазоне 0,16-0,19 кВт. Согласно требованиям СНиП для средней полосы на 1 кв. метров площади необходима тепловая мощность не менее 0,1 кВт.

Учитывая данное требование, используется формула для расчета количества секций:

где S — площадь отапливаемого помещения, Q — тепловая мощность 1-ой секции и N — требуемое количество секций.

Например, в помещение площадью 15 м2 планируется устанавливать радиаторы с секциями тепловой мощности 140 Вт. Подставив значения в формулу, получаем:

N=15 м2*100/140 Вт=10,71.

Округление осуществляется в большую сторону. Учитывая стандартные формы, необходимо устанавливать биметаллический 12-секционный радиатор.

Важно: при расчете биметаллических радиаторов учитывают факторы, влияющие на теплопотери внутри помещения. Полученный результат увеличивают на 10% в случаях расположения квартиры на первом или последнем этаже, в угловых помещениях, в комнатах с большими окнами, при малой толщине стен (не более 250 мм).

Более точный расчет получают путем определения количества секций не на площадь комнаты, а ее объем. Согласно требованиям СНиП для обогрева одного кубического метра помещения требуется тепловая мощность в 41 Вт. Учитывая данные нормы, получают:

где V — объем отапливаемого помещения, Q — тепловая мощность 1-ой секции, N — требуемое число секций.

Например, расчет для помещения все той же площадью 15 м2 и высотой потолков 2,4 метра. Подставив значения в формулу, получаем:

N=36 м3*41/140 Вт=10,54.

Увеличение вновь осуществляется в большую сторону: необходим радиатор с 12 секциями.

Выбор ширины биметаллического радиатора для частного дома отличается от квартирного. При расчете учитывается коэффициенты теплопроводности каждого материала, используемого при строительстве кровли, стен и пола.

При выборе размеров следует учитывать требования СНиП по монтажу батарей:

  • расстояние от верхнего края до подоконника должно быть не менее 10 см;
  • расстояние от нижнего края до пола должно быть 8-12 см.

Для качественного обогрева помещения необходимо уделить внимание выбору размеров биметаллических радиаторов. Габариты батарей каждого производителя имеют незначительные различия, что учитывают при покупке. Правильный расчет позволит избежать ошибок.

Какими должны быть правильные размеры биметаллических радиаторов отопления узнайте из видео:

Теплоотдача секции биметаллического радиатора. Вычисления мощности по габаритам помещения

Теплоотдача секции биметаллического радиатора. Вычисления мощности по габаритам помещения

Неважно, решили ли вы установить радиаторы в совсем новую квартиру, или меняете старьё, оставшееся с советских времён, нужно произвести расчёт секций биметаллических батарей отопления. Итак, какие же существуют вычислительные методы, чтобы подобрать батарею нужной мощности? С учётом габаритов квартиры расчёты производятся с учётом либо площади, либо объёма. Последний вариант более точен, но обо всём по порядку.

Сантехническими нормами, действующими на всей территории России, определены минимальные значения мощности отопительных приборов из расчёта на 1 квадратный метр жилища. Это значение равно 100 Вт (в условиях средней полосы России).

Расчёт биметаллических радиаторов отопления на квадратный метр помещения очень прост. Измерьте рулеткой комнату по длине и ширине и умножьте получившиеся значения. Полученное число умножьте на 100 Вт и поделите на значение теплоотдачи для одной секции.

Формула для расчета

Для примера возьмём помещение 3х4 м, это небольшая комнатка, и очень мощные обогреватели тут не понадобятся. Вот расчётная формула: К = 3х4х100/200 = 6. В приведённом примере за теплоотдачу 1 секции батареи взято значение в 200 Вт.

Однако, у формул, помогающих рассчитать тепловую мощность секций с учётом площади помещения, есть ряд существенных минусов, влияющих на точность результата:

  • результаты будут приближены к максимальной точности лишь в том случае, если подсчёты ведутся для помещения с потолками не выше 3 метров;
  • в этом расчёте не учтены важные факторы — число окон, размеры дверных проёмов, наличие утеплителя в полу и стенах, материал стен и т. д.;
  • формула не подойдёт для мест с экстремально низкими температурами зимой, например, для Сибири и Дальнего Востока.

Подсчёты секций будут точнее, если учитывать в вычислениях все три измерения — длину, ширину и высоту помещения, проще говоря, нужно рассчитать объём. Расчёт проводится по аналогичному алгоритму, как и в предыдущем случае, но за основу следует взять другие значения. Санитарные нормы, установленные для отопления на 1 кубический метр — 41 Вт.

Чтобы рассчитать количество секций батареи возьмём те же размеры комнаты, но прибавим к этому высоту. Допустим, потолок — 2,7 м, в итоге должно получиться следующее:

  • Объём помещения равен: V = 3х4х2,7 = 32,4 м3
  • Мощность батареи считается по формуле: Р = 32,4х41 = 1328,4 Вт.
  • Расчёт числа ячеек, формула: К = 1328,4/20 = 6,64 шт.

Полученное в результате подсчётов число не целое, поэтому его надо округлить в большую сторону — 7 шт. Сравнив значения легко обнаружить, что последний метод точнее и эффективнее расчётов секций батареи по площади.

Теплоотдача секции биметаллического радиатора рифар.

Base
Биметаллические секционные радиаторы RIFAR Base широко используют при строительстве новых и модернизации существующих систем отопления по всей России. Эти радиаторы учитывают требования и особенности эксплуатации отопительных приборов в российских системах отопления. В числе прочих конструктивных преимуществ, свойственных этим биметаллическим радиаторам, следует отметить уникальный способ герметизации межсекционного соединения, существенно повышающий надежность отопительного прибора.

Надежность межсекционного соединения достигается за счет фрезерования торца коллектора под прокладку типа O-ring из материала EPDM. Такая технология сборки радиатора из секций обеспечивает герметичность межсекционного стыка за счет образования замкового соединения. Это соединение существенно надежнее обычного соединения коллекторов с использованием плоской прокладки, которое применяют в обычных биметаллических секционных радиаторах.

Каждая секция радиатора RIFAR Base состоит из стальной трубы, залитой под высоким давлением высококачественным алюминиевым сплавом, обладающим высокими прочностными и антикоррозионными свойствами. Полученное в результате изделие с развитым оребрением обеспечивает эффективную теплоотдачу при максимальном запасе прочности.

При производстве радиаторов компания РИФАР использует стальные трубы собственного изготовления из качественной конструкционной стали, обеспечивающие высокие эксплуатационные характеристики и коррозионную стойкость выпускаемых приборов.

Радиаторы RIFAR Base представлены тремя моделями с межосевыми расстояниями 500, 350 и 200 мм.

Модель RIFAR Base 500 – одна из самых надежных и мощных среди биметаллических радиаторов, что делает ее приоритетной при выборе радиаторов для отопления больших и/или слабоутеплённых помещений. Широкий модельный ряд позволяет выдержать единый стиль в помещениях с различными ограничениями по высоте в местах установки отопительных приборов. Преимуществом модели RIFAR Base 200 является закрытая задняя поверхность секции, что позволяет использовать прибор в сочетании с панорамным остеклением окон.

Радиаторы RIFAR Base предназначены для использования в водяных системах отопления открытого или закрытого типа, подключенным к внешним теплосетям по зависимой или независимой схемам.

Серийно производятся радиаторы с числом секций от 4 до 14.

Радиаторы модификациипредназначены для нижнего подключения к системе отопления и применяются при устройстве современных систем отопления с лучевой разводкой или модернизации традиционных систем отопления со скрытием инженерных коммуникаций.

Для установки радиаторов вдоль закругленных стен производятся уникальные радиаторы с радиусом кривизны.

Подтверждая высокие конструктивные характеристики своих радиаторов и благодаря системе контроля качества, действующей на предприятии, компания РИФАР устанавливает гарантийный срок на радиаторы модели Base 10 лет при соблюдении условий монтажа и эксплуатации; срок службы радиаторов составляет 25 лет с момента установки.

Радиаторы RIFAR Base прошли обязательную сертификацию на соответствие требованиям ГОСТ 31311-2005. Вся продукция застрахована СПАО «ИНГОССТРАХ».

    Теплоотдача секции биметаллического радиатора 500. Расчет тепловой мощности

    Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

    Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира.

    Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

    Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

    DT = (tпод + tобр) / 2 – tкомн, где:

    • tпод – температура воды в подающем трубопроводе;
    • tобр – то же, в обратке;
    •  tкомн – температура внутри комнаты.

    После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

    Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

    Теплоотдача секции биметаллического радиатора 350. Сколько реальных кВт тепла в одной секции радиатора

    Сколько кВт в 1 секции чугунного, биметаллического, алюминиевого или стального радиатора? Реальное количество киловатт, которое пишут производители, не соответствует действительности. А это очень важно ! Используя завышенные данные вы не сможете.

    На рынке представлены четыре вида батарей отопления – чугунные, биметаллические, алюминиевые и стальные. Они отличаются дизайном,, размерами и стоимостью. Но прежде всего вам важно знать, их теплопроизводительность – от этого зависит, насколько хорошо они будут обогревать помещение.

    Что нужно знать про мощность радиаторов?

    Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.

    Наглядный пример:

    Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.

    Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.

    Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).

    Зная значение реальной мощности можно подсчитать необходимое количество секций в.

    Сколько кВт в одной секции алюминиевого радиатора

    Тепловая мощность секции алюминиевого радиатора зависит от объема воды, которая находится в ней. Стандартные объемы – 0,35 и 0,5 л.

    Алюминиевые батареи отдают тепло на 50-60% за счет излучения и на 40-50% в виде конвекции. Отсекатель воздуха усиливает конвекцию на 20-25%, что повышает теплоотдачу.

    При температуре воздуха 20-24 °С и воды в контуре 65-70 °С тепловая мощность одной алюминиевой секции составляет:

    • Объем 0,35 л., без отсекателя – 0,1-0,12 киловатт;
    • Объем 0,35 л., с отсекателем – 0,12-0,13 киловатт;
    • Объем 0,5 л., без отсекателя – 0,155-0,170 киловатт;
    • Объем 0,5 л., с отсекателем – 0,170-0,200 киловатт.

    Точное количество теплоотдачи сложно назвать – оно зависит от особенностей конструкции, диаметра труб, толщины ребер. На производительность влияет тип подключения батареи, скорость прокачки воды, загрязненность внутренних поверхностей.

    Алюминиевый радиатор без отсекателей воздуха.

    Сколько кВт в одной секции чугунного радиатора

    Производительность тепла чугунного радиатора зависит от объема воды, толщины стенок, наличия ребер, высоты и ширины секции. Существует несколько стандартных моделей чугунных батарей, заявленная теплоотдача одной секции которых составляет:

    • МС-140 – 175 Вт;
    • МС 140-500 – 195 Вт;
    • МС 140-300 – 120 Вт;
    • МС 110-500 – 150 Вт;
    • МС 100-500 – 135 Вт;
    • МС 90-500 – 140 Вт.

    В классификации первое число обозначает ширину вертикального чугунного протока, второе – ее высоту.

    Стандартный 6-секционный чугунный радиатор МС-140-500.

    Современные чугунные батареи отличаются от стандартных изделий марки МС. Они могут иметь другие размеры и дизайн, есть модели с отсекателями воздуха. Производители заявляют производительность одной секции в пределах от 150 до 220 Вт.

    Если показатели тепловой мощности приводятся для разницы температур ΔТ в 60-70 градусов, они отличаются от реальных.

    Для батарей с температурой воды 55-60 °С реальная производительность составит 75-85%, для батарей с температурой воды 65-70 °С – порядка 85-90% от указанной в спецификации производителя.

    Сколько киловатт в одной секции биметаллического радиатора

    Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.

    Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Соответственно, чтобы однозначно ответить на вопрос сколько квт в 1 секции биметаллического радиатора, нужно знать все условия. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.

    Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:

    • 200 мм – 0,5-0,6 кВт;
    • 350 мм – 0,1-0,11 кВт;
    • 500 мм – 0,14-0,155 кВт.

    Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:

    • 200 мм – 0,6-0,7 кВт;
    • 350 мм – 0,115-0,125 кВт;
    • 500 мм – 0,17-0,19 кВт.

    Радиатор стальной: сколько киловатт в 1 секции

    Стальные радиаторы принципиально отличаются от чугунных, алюминиевых и биметаллических. Они изготавливаются не отдельными секциями, а в виде цельного нагревательного прибора.

    Тепловая производительность стального радиатора зависит от его высоты, ширины, количества конвекторов. Различают три типа радиаторов:

      Для удобства приводим таблицу тепловой мощности стальных радиаторов (значения приведены в Вт).

    Теплоотдача одной секции биметаллического радиатора 500. Виды расчетов мощности одной секции

    Усредненные значения мощности 1 секции радиаторов

    Есть два способа расчета, благодаря которым можно определить мощность одной секции биметаллического радиатора.

    Стандартный способ

    Санитарно-техническими нормами определяется минимальный показатель теплоотдачи батарей для каждого региона отдельно. Для средней полосы России на один квадратный метр должно быть не менее 100 Вт. Расчет по стандартной схеме производится следующим образом:

    • берется площадь помещения, в которое производится установка;
    • полученный показатель умножается на 100 Вт;
    • результат нужно поделить на теплоотдачу одной секции, эти данные можно найти в техническом паспорте отопительного оборудования.

    У такого способа есть свои минусы. Его рекомендуется использовать только для комнат, в которых высота потолков не более трех метров. При расчете не берется во внимание материал стен, оконных конструкций и степень утепления.

    Объемный способ

    Формула расчета мощности радиатора для определенной площади помещения

    Объемный способ позволяет получить точный расчет, который дает возможность более эффективно подобрать нужное количество секций. Расчет мощности производится в кубических метрах. По нормам СНИП берется значение в 41 Вт. Подсчет делается следующим образом:

    • высчитывается площадь помещения;
    • полученный показатель перемножается на высоту комнаты, таким образом получается объем;
    • определяется нужная мощность для помещения – норма СНиП умножается на полученный объем;
    • для расчета точного количества секций общая мощность делится на параметр по одной секции.

    Полученный результат будет отличаться от расчета стандартным способом. Объемный метод считается наиболее точным.

    Теплоотдача одной секции биметаллического радиатора. Теплоотдача и способ подключения

    Правильно подобранное количество секций радиатора для определенной комнаты – это только половина работы. Оставшаяся часть – найти оптимальный способ подключения отопительного прибора, чтобы он в полной мере смог показать свои качества. Итак, придется выбирать из таких вариантов:

    Одностороннее прямоеСамый оптимальный вариант подсоединения не только биметаллического радиатора, но и любого другого. Именно этот показатель теплоотдачи вы можете видеть в паспорте устройства.

    В данном случае теплоноситель попадает в радиатор сверху, полностью проходит по всем его секциям и уходит с этой же стороны снизу.

    ДиагональноеНеплохой вариант и полностью себя оправдывает только для батарей с большим количеством секций, а именно – > 12 штук. Нагретая вода поступает в устройство с одной стороны сверху, проходит по каналам и выходит через нижний радиаторный выход с другой стороны.

    В данном случае вы сможете максимально снизить возможные теплопотери и добиться необходимого результата.

    НижнееИспользуется в том случае, когда по проекту трубопровод отопительной системы скрыт в полу. Инструкция подключения следующая: вход – с одной стороны в нижнее отверстие устройства, выход – из нижнего отверстия с другой стороны.

    Как показывает опыт, в этом случае придется добавить секцию, так как потери тепла составят в пределах 10%.

    ОднотрубноеДанное подключение представляет собой последовательное соединение радиаторов отопления . Теплопотери могут при этом достичь 40%, поэтому использовать в системах автономного отопления не рекомендуем, иначе цена тепла будет неподъемной.

    Радиаторы отопления биметаллические размеры сечения. Какие габариты у алюминиевых радиаторов. Биметаллический и стальной

    Биметаллический радиатор

    Устройство

    Каждый тип радиатора имеет свои преимущества. Чугунный радиатор прочен, долго сохраняет тепло, но выглядит не очень привлекательно. Алюминий эстетично выглядит, обладает высоким уровнем теплоотдачи, но недолговечен. Стальной аккумулятор прочный, но сохраняет тепло не хуже, чем предыдущие модели, и требует дополнительного декора при использовании в жилом помещении.

    Среди разных типов аккумуляторные биметаллические радиаторы имеют несравненные преимущества. Они сделаны из стали и алюминия. От стали они получили прочность и надежность, от алюминия — привлекательный внешний вид. Благодаря гармоничному сочетанию качеств обоих металлов биметаллический аккумулятор может долго сохранять тепло.

    Особенности конструкции

    Вода содержит большое количество примесей. Они вызывают коррозию при контакте с алюминием. Через несколько лет использования эти процессы приведут к утечке устройства.

    Особенностью конструкции этих радиаторов является наличие внутреннего сердечника из нержавеющей стали, который снаружи окружен алюминиевым сплавом. Таким образом, вода не контактирует с алюминием, что значительно продлевает срок службы системы.

    Возможны два варианта изготовления:

    1. Псевдобиметалл. В этом случае стальной сердечник располагается только внутри вертикальных каналов. Так что алюминий защищен не полностью, а только в самых слабых местах. Эти модели дешевле, с типичным сроком службы до 10 лет при использовании в системах с высоким давлением воды (например, в городских квартирах).
    2. Биметалл. Он имеет цельный стальной внутренний кожух, отлитый сверху под давлением из алюминиевого сплава. Здесь алюминий защищен со всех сторон. Это более дорогие модели и срок их службы в аналогичных условиях эксплуатации до 30 лет.

    Биметаллическое аккумуляторное устройство. Способ изготовления напрямую влияет на объем воды в секции биметаллического радиатора. Если сравнивать с любым другим аккумулятором, то здесь объем одной секции будет существенно меньше.Недостаток компенсируется наличием двух сплавов. В результате внутренний стальной сердечник не позволяет алюминиевой оболочке быстро остывать.

    есть разные способы соединения двух металлов. Предпочтительно, если алюминий заливается поверх стали под давлением. Эта модель батареи прослужит дольше. Есть вариант, когда металлы соединяются сваркой.

    По техническому исполнению радиаторы могут быть:

    • Разборные. Это означает, что с помощью радиаторного ключа можно открутить любое количество секций и прикрутить их к другому радиатору.Этот вид чаще устанавливают в частных домах с автономной системой отопления, где нет высокого давления воды.
    • Нерушимый. Радиатор монолитный, его нельзя раскручивать, разрезать, прикреплять к другому. Идеально подходит для использования в городской квартире, где всегда высокий уровень давления.

    Размеры

    Размер биметаллических секций радиатора определяется расстоянием от середины входа до середины выхода. Сегодня батарейки делают с расстоянием между указанными отверстиями. :


    Размеры биметаллических батарей отопления

    Перед тем, как выбрать требуемые размеры батарей отопления, помните, что от пола до низа радиатора должно быть не менее 12 см, а от его верха до выступающей части подоконника. — не менее 10 см. В противном случае будет недостаточная циркуляция воздуха, что снизит эффективность теплопередачи устройства.

    Ширина профиля от 80 до 90 мм. Толщина — от 80 до 120 мм. Высота, ширина и толщина влияют на выходную мощность аккумулятора.

    Вместимость секции

    Специфика конструкции радиаторов обуславливает их довольно низкую мощность. Это и хорошо, и плохо.

    Малая мощность не требует большого количества охлаждающей жидкости (горячей воды), что означает экономию воды и топлива для ее нагрева. Но чем меньше охлаждающей жидкости, тем быстрее остывает радиатор. Здесь не происходит быстрого охлаждения, так как между водой и алюминиевой поверхностью все еще остается стальная оболочка, которая долго не остывает.


    Соединение двух металлов

    Небольшая емкость способствует быстрому загрязнению, засорению каналов при использовании некачественной воды. Для решения этой проблемы в частном доме устанавливают систему очистки. Минимальное требование — установка двух фильтров: тонкой и грубой.

    Объем одной секции зависит от ее размера. :

    • при расстоянии между входным и выходным отверстиями 500 мм вместимость секции составит 0,2–0,3 литра;
    • с расстоянием 350 мм, вместимость составит 0,15–0,2 литра;
    • расстояние 200 мм гарантирует объем 0,1–0,16 литра.

    Расчет количества секций

    Объем и количество секций определяют тепловую мощность одного радиатора. Перед совершением покупки важно рассчитать эту мощность, чтобы найти необходимое количество секций для помещения. Для этого используйте любую из двух формул:

    1. Общая. Когда расчет секций производится исходя из площади помещения. В среднем на 10 м 2 требуется не менее 1 кВт энергии. Для расчета используется формула N = S × 100 / Q.Где N — количество секций для комнаты, S — площадь помещения в квадратных метрах, Q — энергоемкость секции. Энергоемкость указывается производителем на упаковке или в сопроводительных документах.
    2. Попробуем посчитать количество секций для комнаты площадью 25 м 2, с энергетической мощностью секции 180 Вт. Получается: 25 × 100/180 = 13,88. После округления получаем 14 участков (округление нужно делать вверх). При ширине 8 сантиметров общая ширина радиатора составит 112 сантиметров.В этом случае можно установить 2 радиатора по 7 секций.

    3. Подробно. Эта формула учитывает объем помещения в кубических метрах (м 3). В среднем на 1 кубический метр помещения требуется 41 ватт энергии. Далее воспользуйтесь формулой N = S × 41 / Q, где N — количество секций для помещения, V — объем помещения в кубометрах, Q — энергоемкость секции.

    Размеры радиатора

    Рассчитаем количество секций для обогрева помещения со следующими параметрами: длина 5 метров, ширина 3 метра, высота потолков 2.5 метров. Для начала нужно найти площадь комнаты. Умножаем длину на ширину и получаем 15 м 2. Полученный показатель умножаем на высоту потолков — получаем 37,5 м 3. За мощность одной секции берем 180 Вт, тогда 37,5 × 41/180 = 8.54. Округлите и получите 9 разделов.

    При расположении квартиры на первом или последнем этаже, в угловой квартире, в комнате с большими окнами или в доме со стенами толщиной не более 25 сантиметров, к полученному параметру необходимо прибавить 10%.

    Подведем итоги. Для осуществления правильного выбора необходимо обратить внимание на все указанные характеристики:

    • Дизайн. Для городской квартиры подойдет монолитная, полностью биметаллическая батарея, выдерживающая давление до 15 атмосфер и более (обычно в квартирах используется давление около 12 атмосфер, в то время как в частном доме рекомендуется устанавливать давление только одну атмосферу). Для автономных систем отопления подходят более дешевые модели, так как в них нет высокого давления.
    • Размер. Если расстояние между полом и подоконником не менее 80 сантиметров, выбирайте самую высокую модель. В противном случае придется брать радиатор меньшего размера, чтобы пол был не менее 12 см, а до подоконника не менее 10 см.
    • Вместимость. Одна из главных особенностей — довольно узкие проходы. Обеспечьте, по возможности, воду хорошего качества, подаваемую в систему отопления.
    • Расчет сечения. Перед покупкой прочтите описание модели, чтобы узнать номинальную мощность.Количество секций лучше рассчитывать по второй (подробной) формуле, где необходимое количество тепла определяется исходя из объема помещения. Не забудьте добавить 10% в случае значительных потерь тепла из-за внешних факторов.

    Основные технические характеристики моделей алюминиевых радиаторов отопления — информация, которую желательно знать перед их выбором и покупкой. Технические данные, помимо внешнего вида (конструкции) обогревателя и его стоимости, позволяют сравнить разные модели между собой и выбрать оптимальный по основным параметрам вариант.

    Различают количественные и качественные характеристики алюминиевые радиаторы. Количественные позволяют сравнивать отопительные приборы по их массогабаритным параметрам и мощности теплового потока … В свою очередь качественные характеристики учитывают конструкцию и технологию изготовления.

    Количественные характеристики

    Количественные характеристики должны быть подтверждены в ходе испытаний, результаты которых служат основанием для получения сертификата соответствия.Перечень подтвержденных характеристик, а также методы и условия испытаний указаны в нормативных документах — российском (ГОСТ) и европейском (EN 442-2) стандартах или специально выпущенных и утвержденных технических условиях (ТУ).

    Количество секций

    Подавляющее большинство моделей алюминиевых радиаторов состоит из отдельных секций. Разделение на секции позволяет подобрать устройство необходимой мощности в зависимости от площади отапливаемого помещения.

    Покупатель может приобрести как отдельные секции радиатора, так и готовый обогреватель заводской сборки. Как правило, радиаторы заводской сборки включают от 4 до 12 секций. При сборке секций используется ниппельное соединение.

    Количество секций, необходимых для обогрева помещения, определяется по примерной формуле:

    где S — площадь помещения, м2;

    П — тепловая мощность одной секции, Вт.

    Итальянская компания Global производит сдвоенные модели серии GL / D с 2-мя рядами, расположенными симметрично относительно плоских секций задней стенки.Сдвоенные радиаторы используются, если их нужно установить на некотором расстоянии от стены.

    Тепловая мощность (номинальный тепловой поток)

    Этот параметр (измеряется в ваттах) позволяет определить, сколько секций должно быть у радиатора для обогрева определенной площади.

    Согласно ГОСТ 31311-2005 «Приборы отопительные. Общие технические условия », тепловая мощность определяется при следующих условиях:

    • температурный напор (разница температур теплоносителя и воздуха в помещении) ΔТ = 70 ° С;
    • атмосферное давление B = 760 мм рт.
    • теплоноситель движется по нагревательному устройству «сверху вниз».

    Некоторые производители дополнительно указывают тепловую мощность, измеренную при температуре напора 30 ° C и 50 ° C.

    Площадь внешней поверхности нагрева

    В это значение входит площадь всех поверхностей секции радиатора, контактирующих с воздухом в помещении, включая площадь ребер. Площадь внешней поверхности обычно:

    1. для секций с межосевым расстоянием 350 мм — 0,3 … 0,4 м2;
    2. для секций с межцентровым расстоянием 500 мм — 0.4 … 0,5 м2.

    Геометрические характеристики

    Габаритные и установочные (присоединительные) размеры определяют возможность установки радиатора отопления в конкретных условиях размещения. Также размеры каменки влияют на его тепловую мощность.

    Размеры.

    Межосевое расстояние

    Межцентровое расстояние — это расстояние между осями верхнего и нижнего коллекторов. Среди серийно выпускаемых радиаторов преобладают модели с межосевым расстоянием 200, 300, 350, 500, 600, 800 мм. Межосевое расстояние 500 мм является наиболее распространенным, и радиаторы такого типоразмера присутствуют в моделях всех производителей. Global производит модели серии Oscar с межосевым расстоянием от 900 до 2000 мм.

    Установочные размеры.

    Ширина профиля

    Подавляющее большинство моделей алюминиевых радиаторов имеют ширину секции 80 мм. Реже выпускаются секции шириной 70 мм, 100 мм и другими значениями.

    Глубина

    Это значение определяет монтажное расстояние от оси коллектора до стены соседнего помещения.Наиболее распространенные изделия имеют глубину 80 мм, но для увеличения теплоотдачи производители в некоторых моделях увеличивают глубину радиатора до 100 мм.

    Внутренний объем секции

    Один из параметров, определяющих мощность ТЭНа. Внутренний объем секции (измеряется в литрах) зависит от высоты радиатора, а также формы и площади поперечного сечения вертикального воздуховода. Для увеличения внутреннего объема некоторые производители выпускают модели с овальным сечением воздуховода (радиаторы Royal Thermo).

    Канал вертикальный овальной формы.

    Вес секции

    Вес секции включает вес лакокрасочного покрытия, а также средний вес прокладок и ниппелей. Иногда в паспорте на изделие указывается удельное значение массы (расхода материала), которое измеряется в кг / кВт.

    Давление

    Большинство алюминиевых радиаторов рассчитаны на рабочее давление 16 атм (1,6 МПа). Некоторые модели предполагают работу в системах с рабочим давлением 20 и 25 атм (например, Rovall производства Sira Group).

    Испытательное (давление) давление, при котором радиатор не должен разрушиться, должно быть в 1,5 раза выше рабочего давления. Производители также указывают максимальное (разрывное) давление, которое обычно составляет 40-60 атм, но не менее чем в 2 раза превышает рабочее давление.

    Температура теплоносителя

    Нагревательные устройства этого типа рассчитаны на температуру теплоносителя 110 ° C. Некоторые модели (например, серия Rifar Alum) допускают работу при 135 ° C.

    В таблицах 1 и 2 приведены технические характеристики моделей с межосевым расстоянием 350 и 500 мм.В сравнительных таблицах приведены массогабаритные параметры, объем теплоносителя и номинальный тепловой поток производственного участка 7 разных компаний.

    Таблица 1 — Технические характеристики алюминиевых радиаторов (межосевое расстояние 350 мм)

    Производитель и модель Габаритные размеры, мм Объем секции, л Масса секции, кг Тепловая мощность, Вт
    высота ширина глубина

    Рифар

    Квасцы 350

    415 80 90 0,19 1,20 139

    Royal Thermo

    Индиго 350

    435 80 100 0,29 1,30 155

    Коннер

    ЛЮКС 80/350

    430 80 80 0,28 1,05 145

    Ферроли

    ПОЛ 350

    431,5 80 98 0,31 1,10 155

    General Hydraulic

    Lietax B 350-80

    420 80 80 0,22 0,80 135

    Глобальный

    VOX R 350

    440 80 95 0,35 1,12 145

    Вармега

    Альмега 350/80

    426 80 80 0,30 1,10 147

    Таблица 2 — Технические характеристики алюминиевых радиаторов (межосевое расстояние 500 мм)

    Производитель и модель Габаритные размеры, мм Объем секции, л Масса секции, кг Тепловая мощность, Вт
    высота ширина глубина

    Рифар

    Квасцы 500

    565 80 90 0,27 1,45 183

    Royal Thermo

    Индиго 500

    585 80 100 0,37 1,65 205

    Коннер

    ЛЮКС 80/500

    582 80 80 0,43 1,25 190

    Ферроли

    ПОЛ 500

    581,5 80 98 0,38 1,40 180

    General Hydraulic

    Lietax B 500-80

    582 80 80 0,36 1,03 180

    Глобальный

    VOX R 500

    590 80 95 0,46 1,45 195

    Вармега

    Альмега 500/80

    576 80 80 0,38 1,20 191

    Модели с межосевым расстоянием 200 мм являются самыми маленькими по высоте среди алюминиевых секционных радиаторов. Изделия такого типоразмера используются для установки под оконные проемы с увеличенной площадью остекления. Сравнительные характеристики устройств данного типоразмера приведены в таблице 3 и включают данные по продукции трех производителей.

    Таблица 3 — Технические характеристики алюминиевых радиаторов (межосевое расстояние 200 мм)

    Производитель и модель Габаритные размеры, мм Объем секции, л Масса секции, кг Тепловая мощность, Вт
    высота ширина глубина

    Вармега

    Альмега 200/80

    275 80 80 0,20 0,64 101

    Сира

    Тепловая линия 200

    245 80 80 0,16 0,56 89

    Коннер

    ЛЮКС 80/200

    275 80 80 0,26 0,62 123

    Качественные характеристики

    Перед покупкой утеплителя следует также изучить качественные характеристики различных моделей, показывающие особенности конструкции и технологию изготовления.

    Теплоносители

    В техническом паспорте на изделие необходимо указать, с какими теплоносителями допускается его эксплуатация. Также может быть уточнен допустимый диапазон значений водородного индекса (pH) теплоносителя. Если алюминиевый радиатор предполагается работать с незамерзающими жидкостями (антифризами), в его конструкции используются специальные перекрестные прокладки.

    Способы подключения

    Стандартная алюминиевая секция радиатора имеет верхний и нижний коллекторы, что позволяет использовать один из известных способов бокового подключения.Некоторые модели отопительных приборов снабжены коллектором с нижним присоединительным патрубком, что обеспечивает удобное нижнее подсоединение при установке системы отопления коллектора.

    Способ изготовления

    Профили могут быть изготовлены методом литья под давлением или экструзией. Экструзия — это метод формования под давлением, при котором получают заготовку повышенной плотности. Радиаторы, изготовленные этим методом, обладают более высокой прочностью, что позволяет им выдерживать повышенное давление.

    Алюминиевые секционные радиаторы хорошо зарекомендовали себя в индивидуальных системах отопления, когда у домовладельца есть возможность самостоятельно выбирать тип теплоносителя и контролировать его качество. Такие устройства отличаются высокими тепловыми характеристиками, превосходя биметаллические модели за счет более низкой стоимости. Технические характеристики алюминиевых радиаторов отопления дают покупателю возможность выбрать лучшую модель среди ряда аналогов.

    Габаритные размеры радиаторов определяют количество охлаждающей жидкости, которое они могут вместить.

    Определяет мощность нагревательных батарей.

    Типоразмеры радиаторов

    В ГОСТ 26645-85 описаны допуски по номинальным интервалам.

    Радиатор имеет три линейных размера , отвечающих за объем секции.

    Ширина: тонкая или толстая

    Это расстояние между внешними стенками батареи. Довольно вариативный показатель.

    Глубина обычно составляет 75-140 мм , в зависимости от материала и производителя.

    В редких случаях встречаются более крупные предметы.

    Длина

    Визуально — длина. Это промежуток слева от правой боковой стены. Показатель принимается равным 80 мм при заказе 95% устройств. В остальных случаях чуть больше, максимум — 88 мм. Любые другие радиаторы изготавливаются под заказ. Это не относится к чугунным приборам : они шире.

    Минимальная высота

    Самое переменное значение, которое представляет собой вертикальный компонент сечения.

    Обычно это 380-420 или 540-580 мм .

    Есть специальные типы аккумуляторов, длина которых находится в интервале от двух до трех метров.

    Такие устройства ставятся в ванных комнатах.

    Важно! Часто упоминается осевое расстояние. Это зазор между точками подключения подающего и обратного патрубков. Стандартные размеры — 350 и 500 мм … Но есть и другие варианты, особенно среди алюминиевых изделий.

    Как правильно выбрать размер секций радиатора

    Определение размеров секций и их количества — самый важный этап в создании классической системы отопления.

    При стандартной компоновке

    Размер батарей и материал определяют мощность, которую они могут развивать.

    Длина почти всегда одинакова и составляет 80 мм. Сначала определите высоту. Для этого выберите место установки, от которого зависит доступное пространство.

    И дизайн тоже играет большую роль. Эти параметры определяют вертикальную составляющую. Обычно выбирают между 350 и 500 мм.

    В зависимости от характеристик помещения, приборы от 200 мм. Если приобретается радиатор для ванной или ванной, рекомендуется узкая модель, способная полностью покрыть пространство между полом и потолком. Высота аппаратов имеет разные вариации от полутора до трех метров.

    Определив , две линейные характеристики и материал, переходите к расчету глубины и количества секций.Количество последних обычно принимают равным 10 , но есть и другие. Толщина определяется по объему. Кубическая величина делится на длину и высоту. Определение мощности также тесно связано с этими показателями: зная необходимое, можно найти количество секций.

    С оригинальным интерьером

    Производители часто жертвуют на создание дизайнов технических характеристик .

    В первую очередь это относится к изделиям из чугуна.Отечественные радиаторы выглядят серьезно, тогда как они просто покрыты краской .

    Европейские изящнее, но по нагреву слабее. В любом случае необходимо узнать из документации о мощности, которую они способны развивать, так как нужно выбирать устройства для теплопередачи.

    Ссылка! Есть батарейки в стиле «ретро». Они имеют приятный внешний вид, но дороги.

    Алюминий имеют одинаковую форму, кроме нестандартных, но отличаются разнообразием цветов.К тому же широкий размерный ряд помогает вписать их практически в любую часть комнаты.

    Биметаллические радиаторы , в отличие от аналогов, выполняются не только прямыми, но и изогнутыми. Благодаря этому они хорошо смотрятся в комнатах с ровными углами.

    Вне зависимости от выбранного материала, перед покупкой следует ознакомиться с технической документацией и узнать размеры внутренних частей частей сечения, содержащих охлаждающую жидкость.

    Это поможет определить батареи не только по внешним признакам, но и по их способности к нагреванию.

    Стоит помнить о возможности комбинаций … Итак, если определенное устройство подходит по конструкции, но его мощности не хватает, можно установить дополнительный обогрев, спрятав его за боковой панелью. Или совместите радиаторное отопление с теплым полом.

    Хорошим вариантом для гостевых комнат станет установка камина … Хотя последняя часто выполняет декоративную роль, она также способна уменьшить количество или размер секций, устанавливаемых в комнате.Иногда лучше пожертвовать красотой, чем каждую зиму замерзать.

    Если есть желание создать особую конструкцию , следует проконсультироваться с производителями батарей. Они помогут вам завершить расчеты. При этом готовое изделие будет красиво смотреться и выполнять свое прямое назначение.

    Вам также будет интересно:

    Какие размеры

    Есть радиаторы следующих типоразмеров.

    Чугун

    По ТУ стандартные размеры:

    • Ширина — 93 или 108 мм.
    • Глубина от 85 до 140 с шагом 5.
    • Высота — 588.

    Профили на заказ могут быть практически любых размеров.

    Зная длину, определяют габариты устройства в сборе, так как между деталями ставится паронитовая прокладка толщиной 1 см .

    Если установка производится в месте с ограниченным пространством, добавьте размер промывочного клапана.

    Важно! Расстояние между осями обычно составляет 500 мм. Маленькие батарейки номиналом 350 встречаются редко.

    Каждая секция способна выдавать от 160 Вт , если среднесуточная температура воздуха и теплоносителя отличается от до 70 градусов. Чугун выдерживает рабочее давление до 9 атм.

    Алюминий

    Различные модели имеют схожие внутренние размеры. Ширина составляет т. 80 или 88 мм. Глубина варьируется в пределах 10-90 мм. Высота 50 или 35 см … Модели для ванных комнат достигают трех метров в длину.

    Фото 1. Алюминиевый радиатор модели Indigo 500/100 с боковым подключением, мощность секции 196 Вт, производитель — Royal-Thermo, Россия.

    Проектирование систем отопления — задача не из легких. Следует учесть множество нюансов: даже выбор размера радиатора требует определенных знаний.

    Какие должны быть габариты радиаторов

    Выбор размеров отопительных приборов не основывается на эстетических соображениях.Здесь главную роль играет теплообмен. Особенно это актуально, если модель выбрана для установки под окном. Подбирать модель нужно таким образом, чтобы она отвечала сразу нескольким требованиям:

    Только при таких условиях теплопередача выбранного вами нагревательного устройства будет нормальной: оно будет производить количество ватт, указанное производителем.

    Терминология

    Часто в описаниях и спецификациях встречается понятие «межосевое расстояние». Иногда встречаются термины «межсосный» и «межцентровый» или соединительные размеры.Это разные названия для одного размера. Он определяется как расстояние между центрами входных отверстий секции или радиатора.

    Этот параметр важен, если подающие трубы находятся в хорошем состоянии и нет необходимости их менять. В этом случае, чтобы не переваривать подводку, можно выбрать модель с таким же межцентровым расстоянием, что и у старых радиаторов.

    Габаритные размеры самой секции или радиатора описываются следующими параметрами:

    • монтажная высота;
    • глубина;
    • ширина.

    Если радиатор имеет секционную структуру, то глубина и ширина относятся к размерам секции. Причем глубина радиатора будет одинаковой, а ширина батареи зависит от необходимого количества секций (нужно прибавить еще около 1 см для прокладок, которые подходят для герметичности стыков).

    В названиях радиаторов часто встречаются цифры: RAP-350, Magica 400, Rococo 790 или RAP-500. Цифры — это межосевое расстояние, указанное в миллиметрах.Это упрощает навигацию как для покупателя, так и для продавца. Дело в том, что при одинаковом межосевом расстоянии монтажная высота может существенно отличаться. Поэтому в спецификации установлено наиболее точное значение.

    Пример технических характеристик … Это Revolution Bimetall модель

    К параметрам радиатора, которые необходимо учитывать, относится объем воды в секции. Для квартир, подключенных к централизованному отоплению, эта характеристика ни на что не влияет, но для отдельных систем важна: когда требуется рассчитать объем системы (определить производительность котла или характеристики насоса).

    И самый главный, пожалуй, параметр — тепловая мощность. Следует отметить, что не всегда нужна максимальная мощность. Все чаще в квартирах и домах с хорошей теплоизоляцией требуются отопительные приборы средней мощности, и не огромной.

    При выборе тепловой мощности одной секции помните, что радиатор под окном должен закрывать не менее 75% ширины оконного проема. Тогда в комнате будет тепло, не будет холодных зон и стекло не будет «потеть».Поэтому лучше взять 10 секций меньшей мощности, чем 6 штук с большой теплоотдачей.

    Стандартная ширина окна 1100-1200 мм. Соответственно 75% — это 825-900 мм. Это длина вашей батареи или больше. Забегая вперед, скажем, что средняя ширина одной секции составляет 80 мм, а значит, вам понадобится 10-12 секций.

    Стандартная высота

    Когда говорят о стандартной высоте, имеют в виду межосевое расстояние 500 мм.Это те соединительные размеры, которые были у знаменитого чугунного «гармошки» советских времен. А так как у них долгий срок службы, эти батареи до сих пор находятся в тепловых сетях. Только сейчас их заменяют на новые. Более того, они часто не хотят переделывать систему, поэтому ищут отопительные приборы такого же размера. Что хорошо: они есть почти в каждой группе.

    Чугун

    Сегодня не только «гармошку» делают из чугуна, хотя она есть и пользуется успехом.Также существуют радиаторы в стиле ретро с межосевым расстоянием 500 мм, выполненные в современном стиле:


    Алюминий

    Стандартные стальные аккумуляторные батареи имеют высоту до 900 мм. Но есть и специальные модели, которые могут достигать двух метров и более. Например, у Kermi есть две модели Verteo Plan и Verteo Profil — они могут быть максимум до 2,2 м. Есть гиганты и Kos V, Faros V, Tinos V, Narbonne V и VT, Paros V. Они различаются типом лицевой панели (гладкая или профилированная) и глубиной.Но все они имеют только нижнее соединение.

    Доступны стальные трубчатые радиаторы высотой до 3000 мм. Более того, при необходимости некоторые производители могут сделать и повыше. Есть старшие модели от любого производителя: все на рынке предлагают такие нестандартные варианты «под заказ». Здесь мы перечисляем только самые интересные с точки зрения дизайна: Entreetherm, Planterm от Arbonia, серия Dekor от Kermi, Harmony от российского KZTO ,.

    В других типах высоких радиаторов нет. Выбор и так, надо сказать, немалый.Я бы не растерялся.

    Все обогреватели, межосевое расстояние которых менее 400 мм, можно считать низкоуровневыми. И здесь предлагают много разных моделей.

    В группе чугуна минимальное межосевое расстояние для модели BOLTON 220 с монтажной высотой 330 м немного выше, чем у Hellas 270 от Viadrus: она имеет монтажную высоту 340 мм. Все остальные выше — с межосевым расстоянием около 300–350 мм.

    Среди алюминиевых радиаторов у компании самый маленький с их установочной высотой 245 мм, а высота от центра до центра составляет 200 мм.Это модели Alux и Rovall глубиной 80 мм и 100 мм. Подобные габариты есть у другого известного производителя (Global) — модель Gl-200/80 / D, а у российского — это «Base 200» и «Forza 200».

    У всех производителей алюминиевые батареи чуть большего размера (с межцентровым расстоянием 300 мм и более). Есть большой выбор.

    У тех же Rifar и Sira биметаллические: высота 245 мм и 264 мм соответственно. Но больше всего моделей с присоединительными размерами 350 мм.Они есть у любого производителя. Такое расстояние, собственно, тоже можно отнести к стандартному — оно есть у всех.

    Еще больший выбор в группе стальных радиаторов. Самые маленькие панели производятся Purmo — Purmo Planora и Ramo Compact — их межосевое расстояние составляет 150 мм, а высота — 200 мм.

    Для всех остальных производителей высота начинается от 300 мм. Причем длина может достигать 3 метров (шаг ее изменения — 100 мм).

    Напольные радиаторы минимально возможные

    Трубчатые радиаторы тоже очень маленькие: от размеров Delta Laserline 150 мм (производства Purmo).В Arbonia высота всех моделей трубчатых радиаторов начинается от 180 мм, у Zehnder — от 190 мм (модель Charleston), у российских KZTO — от 300 мм.

    Есть низкие радиаторы. В основном они выпускаются небольших размеров — у них большая мощность, да и цена немаленькая. Самые низкие модели: украинская «Thermia» — высота от 200 м, польская Regulus-sistem — все модели высотой от 215 мм; Российский «Изотерм» — от 215 мм; Китайский Марс (секционного типа) высотой 385 мм.

    И самый низкий можно считать. Они вообще не выступают над уровнем пола, а ставятся для обогрева сплошным остеклением, либо встраиваются в подоконники, панорамные окна … Бывают они разной мощности и назначения, могут использоваться как дополнительное или основное отопление.

    Плоские радиаторы

    В некоторых случаях имеет значение не высота, а глубина радиаторов: нужны плоские батареи. Здесь выбор не очень большой.

    Малая глубина.Их модели RAP 500 и RAP 300 имеют глубину 52 мм, а тепловая мощность приличная — 161 Вт и 105 Вт.

    В стальных трубчатых радиаторах бывает небольшая глубина: двухтрубные радиаторы делают толщиной от 50 мм, трехтрубные от 100 мм до 110 мм, все остальные уже более солидные — от 135 мм и больше.

    Ни биметалл, ни особенно чугун не являются плоскими. Но есть очень хорошее и идеальное отопление плоского типа — при такой системе отопительные приборы располагаются вдоль пола по периметру.При этом их размеры составляют порядка 30 мм в глубину и 100-120 мм в высоту.

    Результат

    Разнообразие отопительных приборов позволяет подобрать вариант для любых условий: есть не только стандартные размеры, но и низкие, высокие, плоские. На любой вкус и цвет.

    Расчет мощности центрального отопления

    Расчет тепловой мощности вашего дома

    Никто не хочет сталкиваться с недостатком тепла или тратить деньги на отопительное оборудование, которое не удовлетворяет потребности дома в отоплении, особенно в разгар зимних морозов.Это небольшое руководство о том, как рассчитать мощность центрального отопления в вашем доме, поэтому вы получите котел или тепловой насос, которые будут соответствовать вашим предпочтениям и потребностям, максимально эффективно используя устройство центрального отопления. Эта мера поможет вам более эффективно использовать энергию, как и другие меры по обеспечению устойчивости и зеленой энергии.

    Что нужно учитывать при оценке мощности центрального отопления?

    Тепловая мощность источников тепла: котел , тепловой насос, газовая печь и др.Он должен при ограниченном расходе топлива (электричество, газ) обеспечивать минимально необходимое тепло в самые холодные зимние недели.

    Количество и размер теплораспределительных устройств: количество конвекторов и радиаторов (а также количество радиаторных секций), площадь полов с подогревом и т. Д.

    Диаметр труб , по которым теплоноситель системы центрального отопления будет транспортироваться и распределяться к отопительным приборам.

    Источники топлива для центрального отопления

    В контексте текущих эксплуатационных расходов, природный газ может оказаться наименее дорогим вариантом, когда дело доходит до источников топлива для центрального отопления, особенно если используется конденсационный котел, который способен преобразовывать почти 90% топлива, которое он потребляет, в обогрев. Тем не менее, уже не секрет, что в ближайшем будущем цены на газ вырастут из-за ограниченных запасов газа во всем мире и из-за постоянно растущего спроса на чистый природный газ.

    После газа уголь и древесина считаются оптимальными вариантами, когда речь идет о рентабельных источниках тепла. Помимо того, что котел на древесных гранулах или биомассе считается экологически чистым, он идеально подойдет тем домохозяйствам, которые используют биомассу в качестве источника тепла. Проблема с твердотопливными котлами состоит в том, что они нуждаются в постоянном обслуживании — котел необходимо топить ежедневно, желательно два раза в день, если вы хотите избежать перебоев в подаче центрального отопления.Однако, установив аккумулятор тепла, можно до минимума сократить объем работ, необходимых для эксплуатации котла на древесных гранулах. Обычно он входит в состав новейших систем отопления на биомассе, которые в настоящее время доступны на рынке (в зависимости от производителя).

    Когда дело доходит до электроэнергии в качестве источника энергии для системы центрального отопления, наиболее разумным способом сделать это (учитывая, что основная цель — сэкономить на счетах за отопление) является использование теплового насоса.Это может быть тепловой насос воздух-воздух, воздух-вода или грунтовый тепловой насос. Их электрические и тепловые входы различаются от 3 до 6 раз, что позволяет тепловому насосу обеспечивать максимальный КПД 300%. Тем не менее, вы должны иметь в виду, что эффективность тепловых насосов воздух-воздух и воздух-вода снижается с понижением уровня наружной температуры.

    Измерение теплопроизводительности

    Первый и самый простой метод расчета теплопроизводительности вашего дома изложен в основах «Строительных норм»: для обогрева каждых 10 квадратных метров вашего дома потребуется один киловатт тепла.Следовательно, для отопления дома площадью 100 квадратных метров нужно будет искать котел на 10 кВтч. Однако использование этого метода приведет к несколько ненадежным данным, так как:

    • объем воздуха при высоте потолка 2,5 м и 4,5 м будет отличаться, мягко говоря. Более того, теплый воздух неизбежно будет собираться вплотную к потолку.
    • потеря тепла через стены и потолок больше, когда разница между температурой внутри и снаружи большой.
    • по теплопроницаемости окна и двери значительно отличаются от стен и потолка.
    • на измерение теплоемкости сильно влияет тип измеряемого объекта — будь то частный дом или квартира. Положения строительных норм и правил одинаковы для всех типов недвижимости. При этом потери тепла в доме будут намного больше, чем в квартире.

    Итак, как более точно рассчитать теплопроизводительность своего дома и ответить на вопрос «какой размер котла мне нужен?»

    • Для нагрева одного кубометра воздуха достаточно 40 Вт тепловой мощности.
    • Каждое окно добавляет дополнительные 100 Вт тепловой мощности. Каждая дверь по 200 Вт.
    • Для домов типовой коэффициент измерения теплопроизводительности составляет 1,5, а для 2-4-х комнатной квартиры — 1,2-1,3, в зависимости от толщины и материала стен.
    • Учитывается и погодный коэффициент региона. Он составляет около 0,9 для северной части Шотландии и 0,8 для остальной части Великобритании.
    Пример

    В качестве примера определения потребности в отоплении дома мы рассчитаем теплопроизводительность одного этажа (дома) со следующими размерами: длина: 12 м, ширина: 6.5 м, высота: 3,2 м, с 4 окнами и 2 дверями, расположен на юге Великобритании. Расчет выглядит следующим образом:

    1. Площадь этажа: 12 * 6,5 = 78 кв.м
    2. Объем: 78 * 3,2 = 249,6 м3
    3. Значение необходимой тепловой мощности: 249,6 * 40Вт = 9984 Вт
    4. Четыре окна добавят еще 400 Вт, а две двери добавят еще 400. 9984 + 400 + 400 = 10,784 Вт
    5. Поскольку это дом, мы используем коэффициент нагрева 1.5: 10,784 * 1,5 = 16,176 Вт
    6. Учитывая, что дом расположен на юге, мы применяем погодный коэффициент 0,8: 16,176 * 0,8 = 12 940,8 Вт.
    Таким образом, чтобы обеспечить эффективное отопление площади этого дома (L-12 м, W-6,5 м) с высотой потолка 3,2 м, потребуется бойлер или тепловой насос с тепловой мощностью около 13 кВтч. .

    * Это приблизительная оценка, поэтому приведенные цифры не следует принимать как должное. На окончательные результаты может повлиять ряд факторов, таких как изоляция дома, материалы, из которых он сделан, стойкий микроклимат и т. Д.Поэтому мы советуем обсудить эти детали с поставщиком котла / теплового насоса, прежде чем приобретать устройство центрального отопления, и использовать калькулятор размера котла.

    Нагревательные устройства

    Используя ту же методику расчета, следует определить теплопроизводительность каждой комнаты в доме. По результатам можно выбрать наиболее подходящее устройство распределения тепла (т.е. радиатор, конвектор, фанкойл).

    Чтобы узнать, сколько тепла может отдавать радиатор, следует проверить некоторые технические параметры радиатора:

    • Технический паспорт устройства (технический паспорт), который должен быть предоставлен производителем.
    • Мощность радиаторов отопления на сайте производителя.

    Большинство производителей радиаторов и конвекторов отмечают, что разница между температурой в помещении и температурой нагревательного устройства составляет около 70 градусов Цельсия (C). Это означает, что при комнатной температуре 20 ° C температура радиатора должна быть около 90 ° C. Тем не менее, реальные значения могут отличаться от технических характеристик производителя.

    Таким образом, если рассматривать технические характеристики (приблизительные оценки) различных типов радиаторов со стандартным расстоянием 50 см между центром радиатора и его шлангами, мы получим следующие числа:

    • Секция из чугуна дает около 140 Вт тепла при разнице температур 70 градусов Цельсия из помещения.
    • Тепловая мощность биметаллической секции составляет около 180 Вт.
    • Алюминиевый радиатор может обеспечить около 190-210 Вт для каждой своей секции. Учитывая относительно низкие цены на алюминиевые радиаторы и их надежность при интеграции в систему центрального отопления, неудивительно, почему так много владельцев недвижимости выбирают их.

    Получите расценки на отопительные приборы!

    Если вы решили приобрести котел или тепловой насос, но не уверены, какой тип вам нужен, мы готовы вам помочь.Заполните форму на этой странице, указав свои личные предпочтения и информацию, и мы предоставим вам до четырех различных поставщиков котлов / тепловых насосов. Вы можете выбрать предложение, которое наилучшим образом соответствует вашим потребностям. Услуга бесплатная, без обязательств и занимает всего несколько минут.

    Радиатор

    — обзор | Темы ScienceDirect

    1 ВВЕДЕНИЕ

    Излучатели черного тела используются в качестве эталонных источников для калибровки радиационных термометров и радиометров, поскольку их характеристики излучения можно рассчитать на основе фундаментальных физических законов.Однако сами излучатели черного тела должны быть тщательно исследованы, желательно экспериментально, чтобы определить, чем их излучение отличается от излучения идеального черного тела.

    Имеющаяся литература по общему вопросу экспериментальной характеристики излучателей черного тела обширна. Однако существует лишь несколько обзоров по конкретным темам, например, раздел 12.9 в работе. [1], посвященный экспериментальной проверке результатов расчетов эффективной излучательной способности, и обзор [2], значительная часть которого посвящена современным методам экспериментального исследования высокотемпературных черных тел.

    Для длины волны λ в среде спектральная яркость L λ ( λ ), спектральная эффективная излучательная способность εe (λ, T0) и температура излучения T S ( λ ) ) излучателя черного тела связаны следующими уравнениями:

    (1) Lλ (λ) = εe (λ, T0) c1n − 2π − 1λ − 5 [exp (c2nλT0) −1] −1

    и

    (2) Lλ (λ) = c1n − 2π − 1λ − 5 [exp (c2nλTS (λ)) — 1] −1

    Уравнение (2) может быть решено для T S ( λ ), то есть

    (3) TS (λ) = c2n − 1λ − 1 [ln (c1n2πλ5Lλ (λ) +1)] — 1

    Здесь c 1 и c 2 — первые и 2-я радиационная постоянная соответственно [3] (см. также Приложение A к этой книге), n — показатель преломления окружающей среды, T 0 — температура изотермического излучателя черного тела или эталонная температура неизотермический (см. раздел 2 главы 5 в сопутствующем томе, Радиометрическое измерение температуры: I.Основы , Vol. 42 из этой серии).

    Основными измеряемыми величинами искусственного черного тела являются спектральная яркость и температура яркости, которые связаны уравнением (3). Если температура T 0 черного тела может быть измерена независимо от спектральной яркости и яркости температуры (например, с использованием одного из контактных методов) или назначена с использованием некоторой воспроизводимой процедуры, то уравнение (1) может использоваться для расчета спектральная эффективная излучательная способность.Для изотермической полости закон Кирхгофа [4] позволяет определить эффективную излучательную способность ε e путем измерения коэффициента отражения ρ e , поскольку

    (4) εe = 1 − ρe

    Методы рефлектометрического определения эффективных коэффициентов излучения чернотельных излучателей рассматриваются в разделе 2. Для использования уравнения (4) должны выполняться следующие условия: исследуемая полость должна быть непрозрачной и изотермической, а для измерения коэффициента отражения полость должна быть облучаться излучением с одинаковым состоянием поляризации, геометрией пучка и в той же среде (воздух, вакуум и т. д.)) как для желаемого измерения коэффициента излучения. Применение принципа взаимности Гельмгольца [5] позволяет использовать два подхода к рефлектометрическим измерениям направленной излучательной способности. Первый, рассмотренный в разделе 2.1, — это облучение полости коллимированным пучком и сбор отраженного полостью излучения в полусферический телесный угол. Следовательно, в этом случае измеряется направленно-полусферическое отражение. Второй, рассмотренный в разделе 2.2, — это использование равномерного полусферического облучения полости и сбора отраженного излучения вдоль заданного направления.В этом случае будет измеряться коэффициент отражения в полусферическом направлении. Согласно взаимности Гельмгольца, эти две величины равны.

    Как правило, рефлектометрические методы, применяемые для полостей, такие же, как и для плоских образцов. Однако рефлектометрические измерения полостей имеют особенности, которые определяют конструкцию соответствующих измерительных устройств. Во-первых, уровень отраженного резонатором потока излучения крайне мал; обычно это <0,01 падающего потока.Во-вторых, излучение, отраженное полостью, может существенно отличаться по угловому распределению от ламбертовского случая даже для полостей с ламбертовскими стенками. В-третьих, вся внутренняя поверхность полости участвует в многократных отражениях. Следовательно, отверстие резонатора можно рассматривать как протяженный источник отраженного излучения. Наконец, для получения достаточно точных значений эффективной излучательной способности, ε e , резонатора допустима относительно большая неопределенность Δ ρ e для измерения эффективного коэффициента отражения ρ e , поскольку Δεe = Δρe = ρe (Δρe / ρe).Например, для измеренного коэффициента отражения 0,001 с неопределенностью Δρe / ρe, равной 10%, эквивалентная относительная неопределенность определения эффективной излучательной способности Δεe / εe составляет 0,01%. Отдельно рассматриваются методы и аппаратура, в которых используются источники лазерного и теплового излучения. Большинство этих методов требует использования стандарта отражательной способности.

    Прямое радиометрическое измерение — единственный способ получить рабочие параметры абсолютно черного тела с минимумом допущений. Раздел 3 посвящен измерению спектральной яркости, спектральной эффективной излучательной способности и яркости черных тел.В первых двух подразделах рассматривается применение этих методов к черным телам с высокими, средними и низкими температурами. Третий подраздел посвящен радиометрическим характеристикам излучателей черного тела в криовакуумных камерах в средах со средним и низким уровнем фона. Эти условия типичны для приложений дистанционного зондирования и обороны (мониторинг климата Земли, определение свойств земной поверхности и атмосферы, радиационного баланса, наведения, обнаружения и отслеживания ракет и т. Д.).

    На сегодняшний день вычислительные методы остаются важным инструментом, когда экспериментальное определение характеристик черного тела затруднено или даже невозможно с использованием современных современных методов измерения. Кроме того, такие расчеты необходимы на этапе проектирования абсолютно черного тела. Надежный расчет должен быть основан на адекватной математической и физической модели переноса излучения в анализируемом черном теле (и часто в системе сбора излучения). Входные данные модели зависят от предположений, которые составляют основу вычислительного метода.Простейшие аналитические формулы для эффективной излучательной способности полости абсолютно черного тела, полученные в рамках изотермической диффузной модели, требуют только знания геометрии и эмиттанса (или отражательной способности) стенки полости. Для более сложных моделей необходимо знать распределение температуры по излучающей поверхности, а также спектральные и угловые характеристики излучения, испускаемого и отражаемого излучающей поверхностью. Эти вопросы рассматриваются в разделе 4.1. Раздел 4.2 посвящен измерениям распределений температуры. Измерение спектральной направленно-полусферической отражательной способности и функции распределения двунаправленной отражательной способности (BRDF) материалов, подходящих для производства черного тела, обсуждается в разделах 4.3 и 4.4 соответственно. В разделе 4.5 рассматриваются измерения спектрального эмиттанса таких материалов. Раздел 5 следует с выводами.

    Сколько киловатт в квадратном метре. Расчет площади обогрева

    Расчет мощности нагревателя

    1.Какая разница между наружной температурой и желаемой температурой воздуха в помещении, ° C (Например, если в помещении требуется + 22 ° C при -20 ° C на улице, то разница температур будет 22 + 20 = 42 ° C)
    2. Укажите объем помещения в м 3 (Например, комната площадью 25 м 2, высота потолка 3,0 метра. Объем помещения = 25 * 3,0 = 75 м 3)
    3.Выберите тип утепления здания
    очень хорошая теплоизоляция — жилые дома с хорошей теплоизоляцией, толщина стен два-три кирпича, стеклопакеты (жилые и офисные здания)
    хорошая теплоизоляция — стандартные здания, толщина стен — два кирпича (с хорошей изоляцией производственные помещения, типовые кирпичные здания)
    плохая изоляция — плохо утепленные здания, толщина стен — кирпич (ангары сэндвич-типа, гаражи, производственные здания, бытовки и др.))
    без изоляции — здания и сооружения без теплоизоляции


    Нагреватели В настоящее время они пользуются большим спросом как в качестве основных источников тепла, так и в качестве дополнительных. С наступлением неизбежного похолодания они становятся очень актуальными. Бывают случаи отключения отопления или недостаточного обогрева помещения, поэтому ваш комфорт частично зависит от области применения. обогреватель который зимой лучше иметь под рукой.Виды обогревателей установлены, и из этого набора вам необходимо выбрать тот вариант, который максимально соответствует вашим потребностям. Мощность — важнейшая характеристика ТЭНа, в общем, от нее зависит эффективность его работы. Расчет мощности обогревателя сводится к расчету (в полностью неотапливаемом помещении) 1 кВт на 10 кв. Км. м площади помещения высотой 3 м. В случае использования нагревателя в качестве дополнительного источника мощность определяется в зависимости от требуемого перепада температур, который необходимо компенсировать.Также учитываются размеры, расположение окон, их количество, материал стен, их толщина, структура пола. То есть нужно учитывать всевозможные теплопотери в помещении. При тщательном обогреве дома лучше всего воспользоваться услугами профессионалов, которые подскажут, какие обогреватели нужно использовать и их расположение. Стоит обратить внимание на то, есть ли нагреватель , регулятор мощности , , что очень удобно в условиях перепада температур и позволяет использовать максимальную мощность только тогда, когда это особенно необходимо.При выборе обогревателя важно проанализировать все факторы, влияющие на обогрев, определить необходимое количество обогревателей, их расположение в помещении и мощность каждого. Если мощность будет больше, то это повлечет за собой потери, а при мощности меньше желаемая эффективность нагрева не достигается. При выборе обогревателя Помимо power выбирается и его тип, с различными функциями и возможностями.

    В зависимости от мощности , разновидности обогревателей, размеры, формы, принцип действия есть несколько видов обогревателей : масляные радиаторы, электрические обогреватели, конвекторы, тепловентиляторы, инфракрасные обогреватели.
    Масляные радиаторы имеют свои разновидности моделей. Эти модели отличаются количеством секций, температурой нагрева и мощностью . Причем значение мощность чем больше, тем больше разделов по количеству. Представляют собой масляные обогреватели системы в виде заправленных маслом батарей. Принцип действия основан на нагреве масла, которое, в свою очередь, передает тепло поверхности. Нагреватель , из металлического материала. Некоторые модели таких обогревателей имеют терморегулятор, который самостоятельно регулирует температуру, вентилятор, распределяющий тепло по помещению и еще несколько положительных качеств.Они нагреваются максимум до 150 градусов, это хорошее качество для обогрева, но в то же время, что тоже минус — можно обжечься. Электрические обогреватели из-за расхода электроэнергии считаются достаточно дорогими в использовании, но получили широкое распространение в наше время из-за простоты использования. Важно помнить о потребности в сумме мощностей , было меньше нагревателей мощности источника питания в помещении. Этот обогреватель типа не нагревается выше 60 градусов, что исключает возможность ожога.Тепловентиляторы имеют малую мощность и рассчитаны на непродолжительную работу. Это вееры со светящейся спиралью. Воздушный поток от тепловентиляторов направлен в одну сторону, то есть они обогревают только часть помещения, где находятся. В большинстве случаев тепловентиляторы используются в офисах, где эффективность отопления весьма сомнительна. Конвекторы — электрические обогреватели с естественной циркуляцией воздуха. Они не могут быстро обогреть комнату, только для поддержания определенной температуры. Есть разные емкости, которые различаются по цене.Инфракрасные обогреватели также работают от сети. Они производят тепло за счет излучения электромагнитных волн, при которых происходит излучение тепла. Во-первых, они нагревают предметы, на которые направлен обогреватель, например, стены, мебель, которые в свою очередь обогревают комнату. Располагайте такие обогреватели на потолке на определенном расстоянии от головы человека. Разные модели таких обогревателей отличаются мощностью и расположением потолка. То есть каждый нагреватель имеет свою удельную мощность . С нагреватель мощностью 800 Вт необходимо установить на минимальном расстоянии 0.7 метров от головы человека, а обогреватели мощностью 2-4 кВт на расстоянии около 2 метров.
    Для комфортного использования в будущем, если вы решили использовать обогреватель , важно сразу сделать правильный выбор. Выбор зависит от множества различных факторов, самым важным из которых является мощность нагревателя . От мощность обогревателя напрямую зависит от площади помещения, в котором они отапливаются. Для обычных квартир и коттеджей мощность обогревателя должна составлять 1 кВт на 10 кв.Если электронагреватель нужен только для дополнительного обогрева, то в этом случае будет достаточно использовать обогреватель мощностью от 1,0 до 1,5 кВт на комнату площадью 20-25 кв. Мощность обогревателя зависит от площади отапливаемого помещения. Примерный расчет мощности необходимого вам нагревателя сделать очень просто. Если помещение совсем не отапливаемое, а с хорошей теплоизоляцией, площадью примерно 10-12 кв. м. требуется нагреватель мощностью около 1000 Вт. Для обогрева помещений с (офис, квартира) площадью 20-25 кв.м нужно 1000-1500 Вт. Очень распространенным считается термоволновой обогреватель, который спокойно нагревает помещения в 1,5–2 раза больше, чем обогревателей той же мощности. Такой обогреватель в основном подходит для обогрева любой площади.

    Перед тем, как выбрать обогреватель Для начала необходимо рассчитать минимальное значение тепловой мощности для вашего помещения. Это зависит от мощности от таких показателей, как: объем помещения, которое нужно будет отапливать, разница температур в помещении и на улице.Также влияние на мощность имеет коэффициент рассеивания, который напрямую зависит от теплоизоляции помещения и типа конструкции. Коэффициенты имеют определенные постоянные значения. При использовании деревянной конструкции или металла (без теплоизоляции) коэффициент составляет 3-4. С небольшой теплоизоляцией в упрощенном исполнении комнаты 2-2.9. Средняя теплоизоляция и стандартное исполнение обеспечивают значение коэффициента от 1 до 1,9. И, наконец, при условии улучшенного строительства (кирпичные стены, двойная изоляция, толстый пол, качественный кровельный материал) с, так сказать, высоким коэффициентом изоляции — 0.6-0.9.
    Умножив значения этих параметров, вы получите довольно точное значение. Требуется мощность вашего обогревателя . Хотя безопаснее все же воспользоваться помощью опытных специалистов, которые могут внести некоторые поправки в ваши расчеты, или рассчитать мощность самостоятельно. После определения мощности можно смело выбирать ТЭН типа . И производителей для этого очень много.

    По сравнению с электрическими отопительными приборами собственная система отопления более выгодна как по экономии затрат , так и по максимальному удобству при обогреве помещений.

    Эффективность и экономичность системы отопления в доме зависит от правильных расчетов, соблюдения точных правил и инструкций.

    Расчет площади обогрева дома — процесс трудоемкий и сложный. Не стоит сильно экономить на материалах. Качественное оборудование и его установка сказываются на финансовом бюджете, но потом обслуживают дом хорошо и комфортно.

    При оснащении дома системой отопления строительные работы и монтаж отопления должны выполняться строго по проекту и с учетом всех правил техники безопасности при эксплуатации.

    Следует учитывать следующие моменты:

    • строительный материал дома
    • оконных проемов;
    • климатических особенностей местности, где расположен дом;
    • расположение оконных рам на компасе;
    • что такое устройство «теплый пол».

    При соблюдении всех вышеперечисленных правил и расчетов при проведении отопления необходимы некоторые инженерные знания. Но есть еще и упрощенная система — расчет отопления по площади, который можно сделать самостоятельно, опять же, придерживаясь правил и соблюдая все нормы.

    Выбор котла требует индивидуального подхода.

    Если в доме есть газ, то самый лучший вариант — это газовый котел . При отсутствии централизованного газопровода выбираем электрокотел, теплогенератор на твердом или жидком топливе. Учитывая региональные особенности, доступ к поставке материалов, можно установить комбинированный котел. Комбинированный генератор тепла всегда будет поддерживать комфортную температуру, в любых аварийных и форс-мажорных ситуациях.Здесь следует отталкиваться от простого типа работы, коэффициента теплоотдачи.


    После определения типа котла необходимо рассчитать площадь обогрева помещения. Формула простая, но учитывает температуру холодного периода, коэффициент теплопотерь для больших окон и их расположение, толщину стен и высоту потолков.

    Каждый котел имеет определенную мощность. Если вы сделаете неправильный выбор, в комнате будет либо холодно, либо чрезмерно жарко.Таким образом, если удельная мощность котла 10 куб. Учитывая площадь отапливаемого помещения в 100 кв.м, можно выбрать наиболее оптимальный теплогенератор.

    Из формулы, которую используют инженеры, — Wot = (SxWud) / 10 кВт . — Отсюда следует, что мощность котла в отопительном помещении 10 кВт на 100 кв.м .

    Необходимое количество секций радиатора.

    Чтобы было понятнее, решим задачу на примере конкретных чисел.При условии, что номер площадью 14 кв.м . и высота потолка 3 метра , объем определяется умножением.

    14 x 3 = 42 куб.м .


    В средней полосе России, Украине, Белоруссии тепловой мощности на кубический метр соответствует 41 Вт. Определяем: 41х 42 = 1722 Вт. Выяснили, что для комнаты 14 кв.м. Радиатор мощностью 1700 Вт нужен . Каждая отдельная секция (край) имеет мощность 150 Вт. Поделившись результатами, мы получаем количество разделов, необходимое для приобретения.Расчет площади обогрева не везде одинаков. Для помещений более 100 кв.м. Требуется установка циркуляционного насоса , служащего для «принудительного» движения теплоносителя по трубам. Его установка происходит в обратном направлении от отопительных приборов к теплогенератору. Циркуляционный насос увеличивает срок службы системы отопления, уменьшая контакт горячих жидкостей с приборами.

    При установке системы отопления теплый пол «Тепловой коэффициент дома значительно увеличивается.Подключить систему теплого пола уже могут существующие виды отопления. С радиаторов отопления снимается труба и подводится проводка теплого пола. Это наиболее удобный и выгодный вариант с учетом экономии средств и времени.

    Чтобы рассчитать количество радиаторов отопления в квартире или в частном доме, нужно для начала подобрать радиаторы. При этом измеряется отапливаемая площадь и учитываются другие исходные показатели.Все температурные нормы указаны в соответствующих СНиПах. Но изучать все это необязательно, ведь специальная программа избавит вас от многих трудностей.

    Расчет мощности радиатора отопления: калькулятор и материал батареи

    Расчет радиаторов отопления начинается с выбора самих отопительных приборов. Для батарей на батарее в этом нет необходимости, так как система электронная, но для стандартного обогрева вам придется использовать формулу или калькулятор.Различают аккумуляторы по материалам изготовления. У каждого варианта своя мощность. Многое зависит от необходимого количества секций и размеров отопительных приборов.

    Типы радиаторов:

    • биметаллический;
    • Алюминий;
    • Сталь;
    • Чугун.

    Для биметаллических радиаторов используют 2 вида металла: алюминий и сталь. Внутреннее основание выполнено из прочной стали. Внешняя сторона выполнена из алюминия.Это обеспечивает хороший прирост теплоотвода устройству. В результате получается надежная система с хорошей мощностью. Теплопередача зависит от центра и расстояния конкретной модели радиатора.

    Мощность радиаторов Rifar составляет 204 Вт с интервалом между осями 50 см. Другие производители предоставляют продукцию с более низкими характеристиками.

    Для тепловой энергии аналогично биметаллическим приборам. Обычно этот показатель при междурядье в 50 см составляет 180-190 Вт. Более дорогие устройства имеют мощность до 210 Вт.

    Алюминий часто используют при организации индивидуального отопления в частном доме. Конструкция устройств довольно проста, но устройства отличаются отличным отводом тепла. Такие радиаторы не устойчивы к гидравлическим ударам, поэтому их нельзя использовать для центрального отопления.

    При расчете мощности биметаллического и алюминиевого радиатора учитывается показатель одной секции, так как устройства имеют монолитную конструкцию. Для стальных составов расчет выполняется для всей батареи определенных размеров.Подбор таких устройств следует производить с учетом их рядов.

    Измерение теплопередачи чугунных радиаторов мощностью от 120 до 150 Вт. В некоторых случаях мощность может достигать 180 Вт. Чугун устойчив к коррозии и может работать при давлении 10 бар. Их можно использовать в любых постройках.

    Минусы чугунных изделий:

    • Heavy — 70 кг весит 10 секций с расстоянием 50 см;
    • Сложная установка из-за серьезности;
    • Длительно нагревается и потребляет больше тепла.

    Выбирая аккумулятор купить, учитывайте мощность одной секции. Так что определитесь с устройством с необходимым количеством ответвлений. При расстоянии между центрами 50 см расчетная мощность составляет 175 Вт. А на расстоянии 30 см показатель измеряется как 120 Вт.

    Калькулятор расчета радиаторов отопления по площади

    Калькулятор учета площади — это самый простой способ определить необходимое количество радиаторов на 1м2. Расчеты производятся исходя из норм вырабатываемой мощности.Есть 2 основных положения норм, учитывающих климатические особенности региона.

    Основные стандарты:

    • Для умеренного климата необходимая мощность 60-100 Вт;
    • Для северных регионов ставка 150-200 Вт.

    Многих интересует, почему у норм такой большой разброс. Но мощность подбирается исходя из исходных параметров дома. Бетонные здания требуют максимальной мощности.Кирпич — средний, утепленный — низкий.

    Все стандарты приняты во внимание при средней максимальной высоте полки 2,7 м.

    Для расчета сечений необходимо площадь умножить на норму и разделить на теплоотдачу одного сечения. В зависимости от модели радиатора учитывается мощность одной секции. Эту информацию можно найти в технических данных. Все достаточно просто и особых сложностей не представляет.

    Калькулятор для простого расчета радиаторов на площади

    Калькулятор

    — эффективный вариант расчета.Для комнаты размером 10 квадратных метров потребуется кВт (1000 Вт). Но это при условии, что комната не угловая и установлены стеклопакеты. Чтобы узнать количество граней панельных устройств, необходимо необходимую мощность разделить на теплоотдачу одной секции.

    Когда это принято во внимание. Если они будут выше 3,5 м, то потребуется увеличить количество секций на одну. А если комната угловая, то добавляем плюс один отсек.

    Учитывать запас тепловой мощности.Это 10-20% от расчетной цифры. Это необходимо в случае сильного холода.

    Разделы теплопередачи, указанные в технических характеристиках. Для алюминиевых и биметаллических батарей учитывают мощность одной секции. Для чугунных приборов за основу берется теплоотдача всего радиатора.

    Калькулятор для точного расчета количества секций радиаторов

    Простой расчет не учитывает многие факторы. Результат — кривые данные.Тогда одни комнаты остаются холодными, вторые — слишком горячими. Температуру можно контролировать с помощью задвижек, но лучше заранее все просчитать точно, чтобы использовать необходимое количество материалов.

    Для точного расчета используются понижающие и повышающие тепловые коэффициенты. В первую очередь следует обратить внимание на окно. Для одинарного остекления используется коэффициент 1,7. Для двойных окон фактор не нужен. Для тройки ставка 0,85.

    Если окна одинарные и нет теплоизоляции, то потери тепла будут довольно большими.

    При расчете учитывают соотношение площади этажей и окон. Идеальное соотношение — 30%. Затем применяется коэффициент 1. При увеличении коэффициента на 10% коэффициент увеличивается на 0,1.

    Коэффициент для разной высоты потолка:

    • Если потолок ниже 2,7 м, коэффициент не нужен;
    • При показателях от 2,7 до 3,5 м используется коэффициент 1,1;
    • При высоте 3,5-4,5 м коэффициент 1.2 требуется.

    При наличии чердаков или верхних этажей также действуют определенные факторы. На теплом чердаке показатель составляет 0,9, в гостиной — 0,8. Для неотапливаемых чердаков возьмите 1.

    .

    Калькулятор объема для расчета тепла для отопления помещений

    Аналогичные вычисления используются для слишком высоких или слишком низких помещений. В этом случае рассчитывается объем помещения. Значит, на 1 м куба нужно 51 Вт заряда батареи. Формула расчета следующая: A = B * 41

    Формулы расшифровки:

    • А — сколько разделов нужно;
    • B — объем помещения.

    Чтобы найти объем, умножьте длину на высоту и ширину. Если его аккумулятор разделен на секции, то общая потребность делится на мощность всей батареи. Полученные расчеты обычно округляются в большую сторону, так как компании часто увеличивают мощность своего оборудования.

    Как рассчитать количество секций радиаторов на комнату: ошибки

    Тепловая мощность по формулам рассчитана с учетом идеальных условий. В идеале температура на входе составляет 90 градусов на входе, а на выходе 70 градусов.Если в доме поддерживать температуру 20 градусов, в системе будет теплый напор 70 градусов. Но при этом один из показателей обязательно будет другим.

    Сначала необходимо рассчитать температурный напор системы. Берем исходные данные: температуру на входе и выходе, в помещении. Далее мы определяем дельту системы: необходимо будет вычислить среднее арифметическое между входом и выходом, затем измерить температуру в комнате.

    Полученную дельту следует найти в таблице преобразования и умножить мощность на этот коэффициент. В результате получает мощность одной секции. Таблица состоит всего из двух столбцов: дельты и коэффициента. Показатель получается в ваттах. Эта мощность используется при подсчете количества батарей.

    Особенности расчета отопления

    Часто утверждают, что на 1 квадратный метр достаточно 100 Вт. Но эти цифры поверхностны. Они не учитывают многие факторы, которые стоит знать.

    Необходимые данные для расчета:

    1. Площадь помещения.
    2. Количество внешних стен. Они охлаждают комнату.
    3. Сторона света. Важно солнце или притенение с этой стороны.
    4. Зимняя роза ветров. Там, где зимой ветрено, в помещении будет холодно. Все данные учитывает калькулятор.
    5. Климат региона — минимальная температура. Достаточно взять среднее.
    6. Кладка стен — сколько кирпича было использовано, есть ли утеплитель.
    7. Окно. Учитывайте их площадь, утеплитель, тип.
    8. Кол-во дверей. Стоит помнить, что они забирают тепло и приносят холод.
    9. Схема установки батареи
    10. .

    При этом всегда учитывается мощность одной секции радиатора. Это позволяет узнать, сколько радиаторов вешать в одну линию. Калькулятор значительно упрощает расчеты, так как многие данные неизменны.

    Как рассчитать площадь обогрева помещения: калькулятор (видео)

    Перед тем, как выбрать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

    Обычно для приблизительного расчета достаточно места в кубических метрах, разделенных на 30. Обычно менеджеры используют этот метод для консультирования покупателей по телефону. Такой расчет позволяет быстро оценить, какая общая теплоемкость может понадобиться для обогрева помещения.

    Например, для выбора теплового пистолета в комнату (или офис) площадью 50 м² и высотой потолка 3 м (150 м³) потребуется 5,0 кВт тепловой мощности. Наш расчет таков: 150/30 = 5.0

    Этот вариант расчетов в основном используется для расчета дополнительного обогрева в тех помещениях, где уже есть какое-то отопление и нужно лишь нагреть воздух до комфортной температуры.

    Однако этот метод расчета не подходит для неотапливаемых помещений, и если необходимо, помимо объема помещения, учесть разницу температур внутри-снаружи, а также конструктивные особенности самого здания (стены, изоляция и др.)

    Точный расчет тепловой мощности обогревателя:

    Для расчета тепловой мощности с учетом дополнительных условий помещения и температуры используется следующая формула:

    В × ΔT × K = ккал / ч , или

    В × ΔT × K / 860 = кВт , где

    В — Объем отапливаемого помещения в кубических метрах;

    ΔT — разница температур воздуха внутри и снаружи.Например, если температура воздуха на улице -5 ° C, а требуемая температура в помещении +18 ° C, то разница температур составляет 23 градуса;

    К — Коэффициент теплоизоляции помещения. Это зависит от типа конструкции и утепления помещения.

    K = 3,0-4,0 — Упрощенная деревянная конструкция или конструкция из гофрированного листового металла. Без теплоизоляции.

    K = 2,0-2,9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыш. Малая теплоизоляция.

    K = 1.0-1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое количество окон, крыша со стандартной крышей. Средняя теплоизоляция.

    K = 0,6-0,9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое количество стеклопакетов, толстое основание пола, крыша из качественного теплоизоляционного материала. Высокая теплоизоляция.

    При выборе значения коэффициента теплоизоляции необходимо учитывать старое или новое здание, так как старые здания требуют больше тепла для прогрева (соответственно, коэффициент должен быть выше).

    Для нашего примера, если учесть разницу температур (например, 23 ° C) и уточнить коэффициент теплоизоляции (например, у нас есть старое здание с двойной кирпичной кладкой, возьмем значение 1,9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так

    150 × 23 × 1,9 / 860 = 7,62

    То есть, как видите, скорректированный расчет показал, что для обогрева данного помещения потребуется больше теплопроизводительность, чем была рассчитана по упрощенной формуле.

    Этот метод расчета применим к любому типу отопительного оборудования, за исключением, возможно, инфракрасного обогревателя, поскольку он использует принцип явного тепла. Подходит для любых других типов обогревателей — водяных, электрических, газовых и масляных.

    После расчета необходимой тепловой мощности можно переходить к выбору типа и модели обогревателя.

    404 Not Found | Национальное космическое общество

    Подпишитесь на блог NSS по электронной почте

    Категории блога
    Категории блога Выберите категорию РелизыОбновления веб-сайта NSSПланетарная оборонаОповещение о политических действияхПроект МеркурийцитатыРоссийское космическое агентствоРоссийская космическая программаФантастикаКосмическая станция SkylabКосмические послыКосмическое искусствоКосмические книгиКосмический бизнесКосмическая колонизацияКосмические разработкиКосмические исследованияКосмическое правоКосмическая политикаКосмическая наукаКосмические поселенияКосмический шаттлКосмический космический транспорт

    Архив блога
    Архив блога Выберите месяц февраль 2021 январь 2021 декабрь 2020 ноябрь 2020 октябрь 2020 сентябрь 2020 август 2020 июль 2020 июнь 2020 май 2020 апрель 2020 март 2020 февраль 2020 январь 2020 декабрь 2019 ноябрь 2019 октябрь 2019 сентябрь 2019 август 2019 июль 2019 июнь 2019 май 2019 апрель 2019 март 2019 Февраль 2019 Январь 2019 Декабрь 2018 Ноябрь 2018 Октябрь 2018 Сентябрь 2018 Август 2018 Июль 2018 Июнь 2018 Май 2018 Апрель 2018 Март 2018 Февраль 2018 Январь 2018 Декабрь 2017 Ноябрь 2017 Октябрь 2017 Сентябрь 2017 Август 2017 Июль 2017 Июнь 2017 Май 2017 Апрель 2017 Март 2017 Февраль 2017 Январь 2017 декабрь 2016 ноябрь 2016 октябрь 2016 сентябрь 2016 август 2016 июль 2016 июнь 2016 май 2016 апрель 2016 март 2016 февраль 2016 январь 2016 декабрь 2015 ноябрь 2015 октябрь 2015 сентябрь 2015 август 2015 июль 2015 июнь 2015 май 2015 апрель 2015 март 2015 февраль 2015 январь 2015 2 декабря 014 Ноябрь 2014 Октябрь 2014 Сентябрь 2014 Август 2014 Июль 2014 Июнь 2014 Май 2014 Апрель 2014 Март 2014 Февраль 2014 Январь 2014 Декабрь 2013 Ноябрь 2013 Октябрь 2013 Сентябрь 2013 Август 2013 Июль 2013 Июнь 2013 Май 2013 Апрель 2013 Март 2013 Февраль 2013 Январь 2013 Январь 2013 Декабрь 2012 Ноябрь 2012 Октябрь 2012 Сентябрь 2012 Август 2012 Июль 2012 Июнь 2012 Май 2012 Апрель 2012 Март 2012 Февраль 2012 Январь 2012 Декабрь 2011 Ноябрь 2011 Октябрь 2011 Сентябрь 2011 Август 2011 Июль 2011 Июнь 2011 Май 2011 Апрель 2011 Март 2011 Февраль 2011 Январь 2011 Декабрь 2011 Декабрь 2010 Ноябрь 2010 Октябрь 2010 Сентябрь 2010 Август 2010 Июль 2010 Июнь 2010 Май 2010 Апрель 2010 Март 2010 Февраль 2010 Январь 2010 Декабрь 2009 Ноябрь 2009 Октябрь 2009 Сентябрь 2009 Август 2009 Июль 2009 Июнь 2009 Май 2009 Апрель 2009 Март 2009 Февраль 2009 Январь 2009 Декабрь 2008 Ноябрь 2008 Октябрь 2008 Август 2008 июль 2008 июнь 2008 май 2008 апрель 2008 март 2008 февраль 2008 январь 2008 декабрь 2007 ноябрь 2007 октябрь 2007 сентябрь 2007 август 2007 июль 2007 июнь 2007 май 2007 апрель 2007 март 2007 февраль 2007 январь 2007 декабрь 2006 ноябрь 2006 октябрь 2006 сентябрь 2006 август 2006

    Как электрические чайники работают?

    Как работают электрические чайники? — Объясни это

    Реклама

    Криса Вудфорда.Последнее изменение: 22 марта 2020 г.

    Машины работают на бензине … а люди бегают за чаем и кофе (по крайней мере, в моем доме)! Если пить кофе или чай ведром, то хоть раз порадуешься хватило смекалки изобрести сверхэффективный способ похолодать воду в горячую, а именно электрический чайник (также известный как электрочайник). Наполните его водой, включите, включите, и через пару минут у вас будет трубопровод горячей воды для пить или готовить. Как именно работает чайник? Почему это нужно так долго варить? И как он узнает, когда выключиться? Рассмотрим подробнее!

    Фото: Электрический чайник — удобный способ получения тепловой энергии из электричества.Это водонагреватель, но это также устройство преобразования энергии, которое иллюстрирует один из самых основных законов физики: сохранение энергии (обсуждается ниже).

    Что такое электрический чайник?

    Чайники — одни из самых простых бытовых приборов. Поднимите крышку, загляните внутрь и вы увидите в самом низу емкости для воды катушку толстый металл называется ТЭНом. Когда вы включаете чайник в электрическую розетку, в нагревательный элемент поступает большой электрический ток.Элементы сопротивление (тенденция любого материала останавливать электричество протекающий через него) превращает электрическую энергию в тепло. В другом словами, элемент становится горячим. Поскольку он находится в прямом контакте с холодной водой, тепло передается воде за счет теплопроводности и быстро нагревается. это тоже вверх.

    Фото: вверху: нагревательный элемент в основании электрического чайника, показанный на нашем верхнем фото. Внизу: в некоторых котлах элемент скрыт от глаз под внутренним полом, чтобы он не покрылся известковым налетом.Это более аккуратный дизайн, но он делает чайник намного шумнее.

    Сколько времени нужно для кипячения чайника?

    Вы можете кипятить воду разными способами — даже в простой кастрюле на открытом огне или плите — хотя закрытый чайник обычно работает намного быстрее: он предотвращает отвод тепла, позволяет давлению расти быстрее. (помните, что вода закипает, когда давление ее насыщенного пара равно атмосферному), и помогает воде закипеть быстрее. Но вы когда-нибудь расстраивались, сколько времени нужно вашему чайнику, чтобы закипеть? Не надо! Удивительно то, что ваш чайник закипает так же быстро, как и он — а вот Почему.

    Если вы продолжаете накачивать тепловую энергию на дно чайника (быстрее, чем тепло уходит через верх и по бокам), рано или поздно вода внутри него закипит. Основной закон физики называется сохранение энергии говорит нам, что если вам нужно вскипятить литр воды, начиная с одной и той же температуры, вам всегда придется добавлять одинаковое количество энергии для этого. Используете ли вы костер или чайник, микроволновую печь или что-нибудь еще перемешивая устройство в стиле Джеймса Прескотта Джоуля (см. вставку ниже), количество энергии, которое вы должны вложить, чтобы вскипятить воду, точно такое же.

    Допустим, вы начали с 1 литра (примерно 1 килограмм, 2,2 фунта) холодной воды. примерно при 10 ° C (50 ° F), и вы хотите поднять его на 90 ° C до точки кипения (100 ° C или 212 ° F). Количество энергии, которое вам нужно: 4,2 × 1000 грамм × 90 градусы = 378000 джоулей или 378 кДж.

    Загадочная цифра «4,2» — это постоянная величина, называемая удельной теплоемкостью воды. Каждый материал имеет разную удельную теплоемкость, которая представляет собой просто количество энергии, которую вы должны вложить, чтобы поднять температуру одного грамма материал на один градус по Цельсию.Вам нужно добавить 4,2 джоуля энергии для повышения температуры 1 грамма воды на 1 ° C, поэтому Удельная теплоемкость воды составляет 4,2 Дж / г / ° C.

    378 кДж для кипячения литра воды — гораздо больше энергии, чем вы думаете. Энергоэффективная лампа мощностью 10 ватт использует 10 джоулей энергии каждую секунду (потому что 1 ватт означает использование одного джоуля в секунду), таким образом, для использования потребуется 37 800 секунд (около 10,5 часов) столько энергии, сколько потребляет наш чайник на одно кипячение!

    Работа: Чайники расходуют много энергии для кипячения воды, но делают свою работу быстро (примерно 2.5 минут), потому что они работают на большой мощности. При том же количестве энергии вы можете включить микроволновую печь примерно на 8 минут, портативный компьютер на час 20 минут или энергосберегающую лампу примерно на 10,5 часов.

    Если вы используете электрический чайник мощностью 2400 Вт, это означает, что он потребляет 2400 Вт. джоулей электрической энергии в секунду, что примерно равно количество энергии в воду в виде тепла каждую секунду. Разделять 378000 на 2400, и вы обнаружите, что чайнику требуется около 160 секунд. делать работу, которая звучит примерно правильно — Электрический чайник обычно закипает примерно за 2–3 минуты.Старая пословица говорит, что горшок (чайник), за которым наблюдают, никогда не закипает, но это датируется временем когда большинство людей кипятили воду на ужасно неэффективной открытой угольные пожары. Электрический чайник может вскипятить воду всего за пару минут, потому что это может добавить тепла энергия для воды намного быстрее и эффективнее, чем открытый огонь (который позволяет теплу выходить во всех направлениях).

    Если мощность вашего чайника была примерно 2400 Вт (Вт), и вы использовали британский источник питания питание 240 вольт (В), это означает, что ток, проходящий через элемент будет 2400/240 или 10 ампер (A).По бытовым меркам это изрядная сила: для сравнения, маленькое зарядное устройство для моего iPod потребляет максимальный ток. 0,67 ампер — чайник потребляет в 15 раз больше! Итак, ответ на электрический чайник работает так быстро, если использовать относительно большой электрический ток. Количество произведенного тепла составляет пропорционально квадрату тока, поэтому больший ток производят гораздо больше тепла — и нагревают предметы гораздо быстрее, чем более мелкие.

    Фото: Скрытый нагревательный элемент типичного современного чайника, вид снизу.Элемент запечатан в светло-серой центральной части, и (если вы присмотритесь) вы можете просто увидеть два его вывода, торчащие в правом нижнем углу. Темно-серый ободок (к которому прикасается мой большой палец) представляет собой резиново-пластиковую прокладку, которая закрывает нагревательный элемент внутри дна чайника и предотвращает просачивание воды. Длинная трубка наверху направляет пар из чайника вниз к термостату, который в нужный момент выключает элемент (как описано ниже).

    Как работают водогрейные котлы быстрого приготовления?

    Если вы устали ждать и хотите, чтобы чайник закипел быстрее, вы можете сделать только две вещи.Один использовать больше электрического тока — другими словами, купить более мощный чайник; другое использование — использовать меньше воды.

    Водогрейные бойлеры / диспенсеры «мгновенного действия» (например, Breville Hot Cup и Morphy Ричардс Мено), который на самом деле может вскипятить всего лишь стакан воды. быстро объедините эти методы. Они используют более мощный нагрев элемент, чем обычный чайник (обычно 3000 Вт или более) и они разработаны таким образом, чтобы элемент мог безопасно работать в контакте с только небольшое количество воды.Если вы варите только (скажем) На четверть литра воды вам понадобится только четверть меньше энергии — скажем, 100 000 джоулей. И если вы снабжаете эту энергию элементом мощностью 3000 Вт, посчитайте, и вы обнаружите, что можете сделать это примерно за 30 секунд вместо 2,5 мин. Видите ли вы здесь еще одно большое преимущество? Если вы кипячение всего чайника, чтобы приготовить только один горячий напиток, вы эффективно тратя три четверти потребляемой энергии. Кипячение ровно столько воды, сколько вам нужно, значительно сэкономит вам денег — а также помогает окружающей среде.

    Как чайник узнает, когда нужно выключиться?

    Иллюстрация: Как выключается электрический чайник. Есть пароотводчик и трубка (желтый, 43 и 44), ведущие вниз от верхней части водяной камеры (серый, 38) к биметаллическому термостату и переключателю (оранжевый и красный, 1 и 2). Когда чайник закипает, по этой трубке вырывается пар, нагревает термостат и заставляет его открыться, отключая нагревательный элемент (зеленый, 39) и предотвращая кипение воды.Иллюстрация из патента США 4 357 520: Электрический контейнер для кипячения воды, имеющий включаемые сухие и чувствительные к потоку термочувствительные блоки управления от Джона К. Тейлора, любезно предоставлено Управлением по патентам и товарным знакам США.

    Ранние электрические чайники имели встроенную опасность: их было относительно легко включить, уйти и сделать одну или две работы по дому, а потом забыть о них. Если бы ты был повезло, когда вы вернулись через несколько минут, вы нашли свой кухня наполнена облаками пара. Если не повезло, чайник Элемент может перегореть, перегореть или даже вызвать пожар.

    К счастью, практически все современные чайники отключаются. автоматически с помощью термостатов (механических, электрических или электронные устройства, реагирующие на изменение температуры). Многие из них на основе разработок английского изобретателя Джон С. Тейлор, чей компании Otter Controls и Strix Ltd разработали более чем миллиардов таких термостатов по всему миру.

    Как они работают? Самые простые из них механические и используют биметаллический термостат (описанный в нашей основной статье о термостатах), интегрированный в элемент в нижней части чайника.Он состоит из диска два разных металла, тесно связанных друг с другом, один из которых расширяется быстрее другого по мере повышения температуры. Обычно термостат изогнутый в одном направлении, но когда горячая вода достигает точки кипения, образующийся пар попадает на биметаллический термостат и внезапно щелкнуть и согнуть в противоположном направлении, немного как зонт выворачивается наизнанку на ветру. Когда термостат открывается, он нажимает на рычаг, который срабатывает. цепь, отключает электрический ток и безопасно выключает чайник.Более сложные термостаты для чайников (используются в системах такие как модный кофейный бойлер Marco Über) полностью электронные и позволяют нагревать воду до точной температуры и поддерживать ее на неопределенный срок путем многократного включения тока и выкл.

    Фото: Вот как на самом деле выглядит типичный термостат-выключатель Strix. Я использовал точки того же цвета, что и на иллюстрации выше, чтобы показать ключевые детали этого старого разобранного чайника. Паровая трубка (желтая) направляет пар к биметаллическому термостату.Термостат (оранжевый) выключает чайник. Блок переключения (красный) и несколько проводов соединяют термостат, выключатель питания (розовый) и беспроводной разъем (темно-синий) с двумя клеммами нагревательного элемента (зеленый). Термостат и переключатель прикручены к нижней части светло-серого скрытого нагревательного элемента (показан на фото выше на этой странице).

    Фото: крупный план биметаллического термостата (показан оранжевой точкой на другом фото).

    «Механический эквивалент тепла»

    Иллюстрация: эксперимент Джоуля по поиску механического эквивалента тепла.

    Электрические чайники могут показаться ужасно обыденными, но их стоит прочитать и написать о том, потому что они блестяще иллюстрируют один из самых фундаментальные физические законы нашей Вселенной: вы можете преобразовывать один вид энергии в другой, но вы не можете создать энергию из воздуха или превратить ее в ничто. Эта чрезвычайно важная идея называется сохранением энергии, и английский физик Джеймс Прескотт Джоуль (1818–1889) был одним из первых, кто проник в ее суть.

    Джоуль провел блестящий эксперимент.Он прикрепил тяжелый груз (1) к веревке, намотанной на шкив (2), так, чтобы груз падал, веревка поворачивала ось (3) и перемешивала лопаточное колесо внутри емкости, полной воды (4). Он рассудил, что «механическая» энергия, которую он таким образом добавлял к воде, превратится в тепловую энергию, слегка нагревая воду. После многократных экспериментов он успешно доказал, что энергия (или, как он это называл, vis viva), теряемая падающим грузом, в точности равна энергии, полученной при нагревании воды.Таким образом, Джоуль подтвердил, что механическая энергия (или работа) и тепловая энергия были взаимозаменяемыми, и результаты были опубликованы в известной статье под названием «Механический эквивалент тепла», которая до сих пор считается одним из самых важных подтверждений теория сохранения энергии.

    Джоуль считал, что может найти доказательства, подтверждающие его идеи в реальном мире. Все, что ему нужно было сделать, это найти водопад и измерьте температуру вверху и внизу; падающая вода преобразует потенциал энергии в тепло, создавая разницу температур, которая, как он полагал, подтверждает его теория.По его расчетам, могучий Ниагарский водопад будет на пятую градуса теплее. внизу, чем вверху, хотя измерить это было бы довольно сложно! Пытаясь уладить этот вопрос, Джоуль взял с собой в медовый месяц несколько термометров. в Шамони, Франция, в 1847 году, и попытался измерить водопад там, но не смог сделать это достаточно точно чтобы доказать свою точку зрения.

    Узнать больше

    Узнать больше

    На этом сайте

    Вам могут понравиться эти другие статьи на нашем сайте на похожие темы:

    Статьи

    • Пылающее желание эффективности Тома Мерфи.Как я объяснял выше, для нагрева определенного количества воды до той же температуры требуется такое же количество энергии, как бы вы это ни выбрали. Но одни методы более эффективны, чем другие. Как объясняет Том Мерфи в этом замечательном сообщении в блоге, электрические чайники значительно более эффективны, чем чайники с варочной панелью и микроволновые печи.
    • Что более энергоэффективно — кипячение воды с помощью электрического чайника, чайника на газовой плите или микроволновой печи?: The Guardian, Notes & Queries, 2011.Читатели Guardian высказывают различные мнения об эффективности различных методов кипячения воды.
    • Fiddly, Fussy or Just Plain Ugly Kettles Алисы Роустхорн. The New York Times, 9 августа 2009 г. Почему чайники выглядят так плохо спроектированными? Эта писательница интересуется эстетикой, но, может быть, ей лучше было бы подумать о том, как наука и техника ограничивают конструкцию машины, которая может быстро и эффективно вскипятить воду?

    Патенты

    Если вас интересуют настоящие технические подробности, почему бы не взглянуть на некоторые из множества патенты, описывающие принцип работы чайников? Вот четыре, которые я выбрал, но вы найти больше в записях.

    • Предохранитель от Мориса Ли Уорнера: модифицированный предохранитель, предотвращающий выкипание электрических перколяторов. Патент США 1794045, 24 февраля 1931 г.
    • Электрический кофейник от Амброуза Олдса. Электрический кофейный перколятор, поддерживающий установленную температуру заварки. Патент США 1998732. 23 апреля 1935 г.
    • Электрический резервуар для кипячения воды, включающий сухой и чувствительный к потоку термочувствительный блок управления от Джона К. Тейлора. Патент США 4,357,520, 2 ноября 1982 г.
    • Термочувствительное устройство управления для контейнеров, оснащенных электронагревателями John C.Тейлор и др. Патент США 4,621,186. 4 ноября 1986 года.

    Видео

    Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

    статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

    Авторские права на текст © Крис Вудфорд 2011, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.

    Подписывайтесь на нас

    Поделиться страницей

    Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

    Цитируйте эту страницу

    Вудфорд, Крис. (2011/2020) Электрочайники. Получено с https://www.explainthatstuff.com/how-electric-kettles-work.html. [Доступ (укажите дату здесь)]

    Больше на нашем сайте…

    Процесс нагрева паром — расчет нагрузки

    Обычно паровой нагрев используется для

    • изменения температуры продукта или жидкости
    • поддержания температуры продукта или жидкости

    Преимущество пара заключается в большом количестве тепла энергия, которую можно передать. Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000 — 2250 кДж / кг (в зависимости от давления) — по сравнению с водой с 80 — 120 кДж / кг (с разницей температур 20 — 30 o С ).

    Изменение температуры продукта — нагрев продукта паром

    Количество тепла, необходимое для повышения температуры вещества, может быть выражено как:

    Q = mc p dT (1)

    где

    Q = количество энергии или тепла (кДж)

    м = масса вещества (кг)

    c p = удельная теплоемкость вещества (кДж / кг o C) — Свойства материалов и теплоемкость обычные материалы

    dT = повышение температуры вещества ( o C)

    Британские единицы? — Проверьте конвертер единиц!

    Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не принимает во внимание скорость передачи тепла , которая составляет:

    • количество тепловой энергии, переданной за единицу времени

    В приложениях без проточного типа нагревается фиксированная масса или единичная партия продукта.В приложениях проточного типа продукт или жидкость нагревается, когда она постоянно течет по теплопередающей поверхности.

    Непоточный или периодический нагрев

    В приложениях без проточного типа технологическая жидкость хранится в виде одной партии в резервуаре или емкости. Паровой змеевик или паровая рубашка нагревают жидкость от низкой до высокой температуры.

    Средняя скорость теплопередачи для таких приложений может быть выражена как:

    P = mc p dT / t (2)

    , где

    P = средняя скорость теплопередачи или мощность (кВт (кДж / с))

    м = масса продукта (кг)

    c p = удельная теплоемкость продукта (кДж / кг. o C) — Свойства материалов и теплоемкость обычных материалов

    dT = Изменение температуры жидкости ( o C)

    t = общее время, в течение которого процесс нагрева происходит (секунды)

    Пример — Время, необходимое для нагрева воды с прямым впрыском пара

    Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла мощностью 200 кВт (кДж / с) можно рассчитать, преобразовав уравнение.От 2 до

    t = mc p dT / P

    = (75 кг) (4,2 кДж / кг o C) ((75 o C) — (20 o C) ) / (200 кДж / с)

    = 86 с

    Примечание! — когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.

    При нагреве через теплообменник имеет значение коэффициент теплопередачи и разница температур между паром и нагретой жидкостью.Повышение давления пара увеличивает температуру и увеличивает теплопередачу. Время нагрева уменьшено.

    Общее потребление пара может увеличиваться — из-за более высоких тепловых потерь или уменьшаться — из-за более короткого времени нагрева, в зависимости от конфигурации реальной системы.

    Процессы проточного или непрерывного нагрева

    В теплообменниках поток продукта или жидкости непрерывно нагревается.

    Преимуществом пара является однородная температура поверхности нагрева, поскольку температура поверхностей нагрева зависит от давления пара.

    Средняя теплопередача может быть выражена как

    P = c p dT m / t (3)

    где

    P = средняя скорость теплопередачи (кВт (кДж / с) ))

    м / т = массовый расход продукта (кг / с)

    c p = удельная теплоемкость продукта (кДж / кг. o C)

    dT = изменение температуры жидкости ( o C)

    Расчет количества пара

    Если мы знаем скорость теплопередачи — количество пара можно вычислить:

    м с = P / h e (4)

    где

    м с = масса пара (кг / с)

    P = расчетная теплопередача (кВт)

    ч e = энергия испарения пара (кДж / кг)

    Энергию испарения при различных давлениях пара можно найти в таблице пара с единицами SI или в таблице Steam с британскими единицами измерения.

    Пример — периодический нагрев паром

    Количество воды нагревается паром с давлением 5 бар (6 бар абс.) от температуры 35 o C до 100 o C в течение периода 20 минут (1200 секунд) . Масса воды 50 кг и удельная теплоемкость воды 4,19 кДж / кг. o С .

    Скорость теплопередачи:

    P = (50 кг) (4,19 кДж / кг o C) ((100 o C) — (35 o C)) / (1200 с)

    = 11.35 кВт

    Количество пара:

    м с = (11,35 кВт) / (2085 кДж / кг)

    = 0,0055 кг / с

    = 19,6 кг / ч

    Пример — Непрерывный нагрев паром

    Вода течет с постоянной скоростью 3 л / с нагревается от 10 o C до 60 o C паром под давлением 8 бар (9 бар абс) .

    Расход тепла можно выразить как:

    P = (4.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *