Расчёт алюминиевого радиатора перед его покупкой
23.12.16
Для того чтобы сделать совою систему отопления эффективной и поддерживать оптимальную температуру внутри помещения, вам недостаточно просто купить радиаторы отопления из алюминия, необходимо правильно рассчитать их мощность. Один радиатор отопления состоит из определённого количества секций. В некоторых типах радиатора количество секций можно изменять, добавляя их или уменьшая количество, однако данный вид радиаторов не желательно использовать, так как в их конструкции содержится малонадёжные ниппельные и резьбовые соединения, которые являются основной причиной протечек отопительных приборов. Моноблочные радиаторы поставляются в не разборном виде, данное конструктивное решение эффективно, так как не использует малонадёжные ниппельные и резьбовые соединения. В любом случае один радиатор будет выдавать некоторое количество тепла, а значит, необходимо рассчитать количество таким образом, чтобы этого тепла было достаточно для прогревания всего помещения.
Чтобы не было так, что вы купили алюминиевый радиатор, цена которого достаточно высока, а внутри вашего дома достаточно холодно, необходимо воспользоваться простой формулой расчёта. Для того чтобы обогреть стандартное помещение, с высотой потолков до 3 метров, необходимо выделять 1 КВт мощности на каждый 10 квадратных метров площади. Если у вас 20 квадратных метров в комнате, то вам, соответственно, необходимо получить 2 кВт мощности. Остаётся подобрать радиатор, который такую мощность будет выдавать.
Теплоотдача одной секции стандартного радиатора составляет 0,2 кВт, соответственно, для обогрева одного квадратного метра необходимо использовать 0,1 кВт. Если одна секция способна обогревать 2 метра вашей площади, то для обогрева, например, комнаты в 20 метров, необходимо использовать радиатор с 10 секциями. Если размер помещения больше, то, соответственно, необходимо использовать радиатор с большим количеством секций, или же приобрести дополнительный радиатор отопления. Однако данный расчёт не является образцом, так как не учитываются размеры окон, и утомлённость помещения.
Чтобы купить моноблочные радиаторы отопления «Tipido» отечественного производства, необходимо позвонить по номеру: 8 727 338 33 16/17, или обратиться в любой магазин наших дилеров.
Читайте, также о:
Алюминиевые радиаторы мощность 1 секции
Среди большого разнообразия современных отопительных приборов выделяются стальные панельные радиаторы – особенно популярные из-за универсальности, высокой теплоотдачи и доступной стоимости
Что нужно знать про мощность радиаторов?
Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.
Наглядный пример:
Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.
Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.
Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).
Зная значение реальной мощности можно подсчитать необходимое количество секций в онлайн-калькуляторе.
Источник: http://vteple.xyz/skolko-kvt-odnoy-sektsii-radiatora/
Конструкция и принцип работы
Алюминиевые батареи могут быть цельными или секционными. Для прочности и антикоррозийной устойчивости к алюминию в процессе изготовления добавляют кремний, цинк, титан.
Секции соединяются резьбовыми соединительными элементами. Соединения герметизируются силиконовыми прокладками. Для предотвращения разрывов внутренняя часть радиаторов покрывается полимерными материалами.
Источник: http://proradiatory.ru/alyuminievye/
Правильный выбор
- Производительность отопительных приспособлений должна составлять 10% от площади комнаты, если высота ее потолка составляет менее 3 м.
- Если он выше, то прибавляются 30%.
- Для торцевого помещения надо прибавить еще 30%.
Необходимые подсчеты
Пример теплопередачи алюминиевого изделия.
После определения тепловых потерь нужно определить производительность прибора (сколько кВт в стальном радиаторе или других приборах должно быть).
- Например, надо отопить помещение, площадью 15 м² и высотой потолка 3 м.
- Находим его объем: 15∙3=45 м³.
- Инструкция говорит, что для обогрева 1 м³ в условиях Средней полосы России надо 41 Вт тепловой производительности.
- Значит, объем комнаты перемножаем на данную цифру: 45∙41=1845 Вт. Такую мощность должен иметь отопительный радиатор.
Обратите внимание!
Если жилище расположено в регионе с суровыми зимами, надо полученную цифру умножить на 1.2 (коэффициент потери тепла).Итоговая цифра составит 2214 Ватт.
Количество ребер
Далее надо рассчитать число секций в батарее. В инструкциях к изделиям указывается параметр каждого их ребра.
Из нее вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога – это 150-200 Вт. Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214_200=11.07. Значит, для обогрева комнаты нужна батарея из 11 секций.
Источник: http://gidroguru.com/otoplenie/otopit-pribory/radiatory/2892-kvt-v-radiatore
Для справки
Естественная конвекция не столь эффективна, поэтому для повышения коэффициента теплоотдачи в современных системах наиболее часто используется принудительная. Этот процесс осуществляется с помощью циркуляционного насоса.
Источник: http://fb.ru/article/460870/moschnost-odnoy-sektsii-alyuminievogo-radiatora-osobennosti-i-otzyivyi
Папка
» Уроки » “Куда оно пропала?”. Папка Recent. Windows XP
Сегодня мы поговорим с Вами о ситуации, в которую попадает любой пользователь, работающий за компьютером. И не только начинающий. Думаю, что Вы уже с этим сталкивались и столкнетесь еще ни один раз.
А ситуация следующая.
Допустим, Вы сделали много фотографий и, не откладывая в долгий ящик, хотите отправить их друзьям.
Быстренько создали папку. Быстренько придумали какое-то имя папке. Скачали фотографии с фотоаппарата на компьютер и начали просматривать, чтобы выбрать фото для отправки.
Вдруг Вас кто-то или что-то отвлекает. Вы откладываете это интересное занятие на 10 минут, на час, на день, на неделю….. Обстоятельства бывают разные.
Через некоторое время Вы возвращаетесь к компьютеру. Садитесь за него, включаете, загружаете. И, вдруг понимаете, что Вы совершенно не помните, на каком диске Вы создавали папку или подпапку и как назвали эту папку.
Начинается лихорадочный поиск фотографий, который не всегда приводит к положительному результату.
Или еще очень распространенный пример. Вы редактируете целый день документ. К вечеру уже устали и даже не помните, в каком месте и под каким названием его создавали. Вдруг происходит какой-то сбой в компьютере, и документ пропадает с экрана.
И где теперь его искать?
Состояние не из приятных. В подобные ситуации я попадал в течение первых 10 лет работы на компьютере ни один раз, пока не узнал про папку Recent.
Это папка, в которой хранятся ВСЕ наши ДЕЙСТВИЯ на компьютере. Точнее, все ссылки на документы, которые мы открывали. Будь то фотографии, документы, видео или папки.
И, хотя путь к этой папке выглядит как C:(D:)Documents and SettingsИмя вашей учетной записиRecent, мы не будем искать эту папку по этому пути по двум причинам.
Во-первых, имена папок на английском и русском языке не совпадают, что многих может ввести в заблуждение.
Во-вторых, папка “Recent” “скрытая” (невидимая). Т.е. эту папку просто так не увидишь. Для этого необходимо менять атрибуты папок и подпапок, чтобы были видны “скрытые” файлы и папки. А это начинающим пользователям делать нежелательно, так как можно нанести некий вред компьютеру (на то они и скрытые).
Поэтому мы поступим проще. Мы просто найдем эту папку с помощью встроенной в операционную систему процедуры поиска и “перетащим” на рабочий стол, чтобы всегда была “под рукой”.
Слово “Recent” в переводе на русский означает “недавний”. А соответствующая папка на русском языке носит название “Недавние документы”. Вот ее мы и будем искать.
Для примера я открою несколько разных файлов, чтобы показать Вам, как они потом будут “отражаться” в папке “Recent”
Я открыл последовательно два текстовых файла, которые находятся непосредственно на рабочем столе, файл с изображением и файл Microsoft Word, которые находятся в папке “Tmp” на рабочем столе.
Будем считать, что я “забыл“, где эти файлы находятся. Ищем папку “Recent“.
Наводим указатель мыши на кнопку “Пуск” и щелкаем по ней левой кнопкой мыши.
В появившемся меню наводим указатель мыши на пункт меню “Поиск” и щелкаем по нему левой кнопкой мыши.
У нас появится окно поиска. В этом окне наводим указатель мыши на пункт меню “Файлы и папки” и щелкаем по нему левой кнопкой мыши.
У нас откроется окно, в котором можно указать различные параметры поиска. Что мы и сделаем.
В поле “Часть имени файла или имя файла целиком:” пишем Недавние документы.
Затем наводим указатель мыши на кнопку, расположенную напротив пункта меню “Дополнительные параметры” и щелкаем по ней левой кнопкой мыши.
Добавляем еще одну “галочку” в “квадратик” (чекбокс) напротив параметра “Поиск в скрытых файлах и папках“.
Затем наводим указатель мыши на кнопку “Найти” и щелкаем по ней левой кнопкой мыши.
Через некоторое время в окне результатов поиска и появится папка “Недавние документы“.
>Наводим на эту папку указатель мыши и щелкаем по ней правой кнопкой мыши.
Затем последовательно наводим указатель мыши и щелкаем левой кнопкой мыши по пунктам меню “Отправить” и “Рабочий стол (создать ярлык)“.
На рабочем столе появится ярлык скрытой папки “Недавние документы”.
Теперь щелкаем по этой папке правой кнопкой мыши. В появившемся меню наводим указатель мыши на пункт меню “Открыть” и щелкаем по нему левой кнопкой мыши.
В окне просмотра “Недавние документы” мы и увидим все свои файлы, которые мы открывали. Как видите, самом верху “списка” и находятся файлы и папки, которые я открывал последними.
На этом можно было бы закончить рассказ о папке “Recent”, если бы не одно “Но…”.
Все это хорошо и красиво, так как у меня уже настроены вид папок и файлов и параметры сортировки. У Вас, приведенная выше картинка, может отличаться от моей.
Поэтому давайте дополнительно в этом уроке рассмотрим, как настраиваются “Вид папок и файлов” и “Параметры сортировки”. Выясним, зачем это нужно и отсортируем папки и файлы по своему вкусу.
Как я уже говорил, в папке “Recent” хранятся ссылки на ВСЕ ваши документы, которые Вы когда-то открывали. Этих ссылок может быть десятки, сотни, тысячи.
Так вот, если таких ссылок тысячи, да еще они находятся “вперемешку” (неотсортированные), то на поиск “потерянного” файла может уйти тоже достаточно много времени.
Я приведу Вам пример простой настройки, которая оправдывает себя, практически в 99% случаев.
Первое, что необходимо сделать (если еще не сделано), это привести просматриваемые файлы и папки к виду “Таблица”.
Для этого, наводим указатель мыши на пиктограмму “Вид” и щелкаем по ней левой кнопкой мыши.
Затем наводим указатель мыши на пункт меню “Таблица” и щелкаем по нему левой кнопкой мыши.
Теперь наши папки и файлы представлены в виде таблицы, заголовки столбцов в которой имеют название “Имя”, “Размер”, “Тип” и “Изменен”.
Как правило, для быстрого поиска нужного файла или папки, достаточно двух столбцов – это “Имя” и “Изменен”. Поэтому убираем столбцы “Размер” и “Тип”.
Для этого наводим указатель мыши на пункт меню “Вид” и щелкаем по нему левой кнопкой мыши.
Затем в выпавшем меню наводим указатель мыши на пункт меню “Выбор столбцов в таблице…” и щелкаем по нему левой кнопкой мыши.
Убираем “галочки” у чекбоксов “Размер” и “Тип”, щелкнув по ним левой кнопкой мыши. Галочки в чекбоксах “Имя” и “Изменен” оставляем. Затем наводим указатель мыши на кнопку “OK” и щелкаем по ней левой кнопкой мыши.
У нас остается два, довольно информативных столбца со списком ссылок на папки и файлы, которые мы открывали на этом компьютере.
В данном случае мой список отсортирован по дате последнего изменения. Т.е. на первом месте списка находится ссылка на файл, который я просматривал последним. На втором месте списка находится файл, который я просматривал предпоследним и т.д.
В столбце “Имя” я вижу имя файла, а в столбце “Изменен” дату и время, когда я его открывал (просматривал, редактировал).
И, если теперь навести мышку на заголовок столбца “Изменен” и щелкнуть по нему левой кнопкой мыши, то в самом верху списка будет ссылка на файл, который я открыл самым первым на этом компьютере.
Если еще раз щелкнуть по заголовку столбца, то сортировка опять изменится на противоположную, и в самом начале списка я увижу ссылки на файлы, которые я открывал последними.
Аналогично и со столбцом “Имя”. Если навести указатель мыши на заголовок столбца “Имя” и щелкнуть по нему левой кнопкой мыши, то список будет отсортирован в алфавитном порядке. Т.е. на первом месте будет стоять ссылка на файл, имя которого начинается на букву “а”, а последним в списке будет находиться ссылка на файл, имя которого начинается на букву “я”.
Если еще раз щелкнуть по заголовку “Имя”, то список будет отсортирован в обратном порядке. Т.е. на первом месте будет ссылка на файл, имя которого начинается на букву “я”, а последнем на букву “а”.
Таким образом, зная примерное время, когда вы открывали файл или, хотя бы первую букву имени файла, на поиск нужного вам документа или фото у Вас уйдет не больше минуты.
Ну а у пользователей WIndows 7 и Windows 8 папки и файлы “Недавние документы” выглядят немного иначе. Поэтому я расскажу о них в следующих уроках.
На этом на сегодня все. Всем удачи и творческих успехов.
Источник: https://compsam.ru/uroki/kuda-ono-propala-papka-recent-windows-xp.html
Источник: http://atn54.ru/skolko-kilovatt-v-odnoy-sektsii-alyuminievogo-radiatora/
Типы алюминиевых радиаторов по технологии изготовления
По методу производства они могут быть секционными (литыми) и цельными (экструзионными).
Литые
Каждая секция радиатора изготавливается при помощи литья под давлением. Этот метод гарантирует точные размеры и гладкую поверхность изделия.
Соединение секций в блок осуществляется посредством ниппелей. Такие батареи стоят дороже экструзионных, но и надежность их выше.
Экструзионные
Цельные модели изготавливаются из вторичного алюминия методом экструзии. Он заключается в продавливании расплава материала через формующие головки (фильеры) для получения нужного профиля.
В качестве фильер используются стальные профили. Заготовки, полученные таким способом, свариваются между собой. Получаются цельные изделия, которые нельзя нарастить или уменьшить.
Иногда для удешевления их стоимости отдельные части не свариваются, а склеиваются композитными клеями. Однако такая замена значительно ухудшает характеристики изделий.
Источник: http://proradiatory.ru/alyuminievye/
Расчет радиаторов Kermi
Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.
Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка. В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.
Радиатор Kermi Therm Х2 Plan-K
Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.
Источник: http://delta-instrument.ru/radiatory/moshchnost-panelnyh-radiatorov.html
Основные технические характеристики
Алюминиевые батареи привлекательны именно своими высокими техническими характеристиками при доступной цене. При этом:
- вес одной секции – 1…1,5 кг;
- емкость – 0,25…0,46 л;
- расстояние между осями – 20/35/50/80 см;
- гарантийный срок службы 10…20 лет.
Все основные характеристики производитель указывает в паспорте устройства.
Тепловая мощность
Под тепловой мощностью (теплоотдачей) понимают количество тепла, которое дает одна секция радиатора.
Коэффициент отдачи для стандартной секции составляет – 82…212 Вт . Он зависит от температуры теплоносителя. Общая тепловая мощность зависит от количества секций в батарее.
Рабочее давление
Существует два вида алюминиевых радиаторов:
- нормальные – с рабочим давлением до 6 атмосфер;
- усиленные – до 16 атмосфер
Поскольку рабочее давление в многоэтажных домах составляет 10…15 атмосфер, а в домах с автономной системой отопления – менее 1,4 атмосферы, то первый вариант подходит для установки в частных домах, а второй – в «многоэтажках».
Опресовочное давление
Для поддержания работоспособности системы она должна ежегодно подвергаться опрессовке, давление которой составляет 20…50 атмосфер.
Параметры теплоносителя
Температура теплоносителей в алюминиевых радиаторах может доходить до 120 °C, но обычно она не превышает 70 °C, и именно такая температура берется при расчете тепловой мощности.
Источник: http://proradiatory.ru/alyuminievye/
Сколько кВт в 1 секции алюминиевого радиатора
Тепловая мощность алюминиевых батарей напрямую зависит от ее высоты. Сейчас продаются два вида изделий:
- обычные батареи (высота 50 см) – мощность 1 секции 0,18…0,23 кВт;
- укороченные (высота 35 см) – мощность 1 секции 0,08…0,16 кВт.
Расчет количества секций на каждое помещение
Считается, что одна секция алюминиевой батареи отапливает 1,5…2 кв. метра помещения. Но существует немало факторов, которые понижают теплостойкость жилых помещений.
Поэтому при расчете количества секций следует учитывать и такие моменты:
- является ли комната угловой или внутренней;
- насколько высока степень промерзания стен, и какова их толщина;
- установлены ли стеклопакеты, и насколько хорошо они держат тепло;
- из какого материала сделана кровля, и каково ее состояние.
Если какой-либо из перечисленных факторов неблагоприятен, количество секций необходимо увеличить по сравнению со стандартным расчетом.
Источник: http://proradiatory.ru/alyuminievye/
Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.
Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Соответственно, чтобы однозначно ответить на вопрос сколько квт в 1 секции биметаллического радиатора, нужно знать все условия. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.
Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:
- 200 мм – 0,5-0,6 кВт;
- 350 мм – 0,1-0,11 кВт;
- 500 мм – 0,14-0,155 кВт.
Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:
- 200 мм – 0,6-0,7 кВт;
- 350 мм – 0,115-0,125 кВт;
- 500 мм – 0,17-0,19 кВт.
Источник: http://vteple.xyz/skolko-kvt-odnoy-sektsii-radiatora/
Полезное видео
Посмотрите видео, в котором рассказывается, как рассчитать мощность батарей отопления.
Источник: http://ogon.guru/otoplenie/radiatori/vidi/alyuminievie/raschet.html
Мощность 1 секции алюминиевого радиатора
Ребята продолжаю говорить о мощности различных видов радиаторов отопления. Мы уже поговорили о мощности 1 секции чугунного радиатора. Сегодня как вы наверное уже догадались, будем говорить о мощности алюминиевого радиатора. Ведь многие из нас с вами ставят именно алюминий в свои системы отопления …
Сейчас существует очень много видов алюминиевых радиаторов. Их гораздо больше, чем чугунных вариантов. Однако практически все производители придерживаются двух основных типов, которые различаются по высоте. Первый тип — это алюминиевые радиаторы высотой в 500 мм (обычные батареи), второй тип – это алюминиевые радиаторы высотой 350 мм (укороченные батареи). Не смотря на различность форм и вычурности дизайна, они практически идентичны по выделению мощности тепла, поэтому я их так и буду разделять, алюминиевые радиаторы 500 мм и радиаторы 350 мм.
Мощность 1 секции 500 ммЭто стандартная одна секция обычной батареи, таких сейчас устанавливают тысячи в наших домах или квартирах. Как заверяют сами производители, мощность 1 секции колеблется от 180 Вт, до 230 Вт тепловой энергии . Причем, по моим наблюдениям, чем дороже производитель, тем тепловыделение выше (видно применяются другие технологии)! Так что не обязательно гнаться за дешевыми китайскими радиаторами.
Мощность 1 секции 350 ммЭто уменьшенная батарея, такие вешают в основном в ограниченном пространстве. Например, под большими окнами или в узких карманах стен. Мощность такой секции чугунного радиатора намного ниже, так как площадь, да и применяемый теплоноситель в радиаторе меньше. Значение колеблется от 120 до 160 Вт тепловой энергии . Опять же все конкретно зависит от производителя.
Выбирайте и рассчитывайте радиаторы правильно, ведь если недосчитать то будет холодно, а вот если повесить больше, то зря будете расходовать газ или электричество.
Мощность 1 секции алюминиевого радиатора
Мощность алюминиевого радиатора
Источник: remo-blog.ru
Источник: http://klimat-vdome.ru/moshhnost-odnoy-sektsii-alyuminievogo-radiatora.html
Что нужно знать при выборе алюминиевых батарей
Алюминиевые радиаторы очень боятся кислой среды в отопительной системе. Поэтому надежная долговечная работа возможна только при pH 6,5… 8.
Также следует знать что:
- внутренняя поверхность должна быть тщательно обработана, нанесена оксидная пленка;
- радиатор должен иметь паспорт с указанными в нем характеристиками, желательно, чтобы имелся протокол испытаний;
- заводская сборка надежнее, поэтому по возможности следует купить уже готовую батарею из нужного количества секций;
- не следует устанавливать батарею более 15 секций, лучше установить две;
- необычный дизайн радиатора может ухудшить его эксплуатационные характеристики;
- следует избегать радиаторов китайского производства NF/68. Они могут содержать асбест, опасный для здоровья.
Источник: http://proradiatory.ru/alyuminievye/
Варианты подключения
Самым эффективным является диагональное подключение, при котором потери тепла составляют всего 2 %.
Однако, внешний вид этого подключения несколько портит окружающий дизайн, поэтому чаще отдают предпочтение изделиям с боковым и нижним подключением, которые выглядят более эстетично.
с боковым подключением
При боковом подключении входная и выходная трубы подключаются сверху и снизу к секции с одной стороны радиатора, что обеспечивает равномерный нагрев всех секций.
Такое подключение можно использовать при большом количестве секций – до 15.
с нижним подключением
Этот вариант подключения подходит для систем отопления, расположенных под полом. Обе трубы, подводящая и отводящая, присоединяются к нижним патрубкам батареи.
Это самый привлекательный с точки зрения дизайна вариант, но из-за неравномерного нагрева радиатора теплопотери при этом могут достигать 15%.
Источник: http://proradiatory.ru/alyuminievye/
Зачем нужно знать мощность одной секции алюминиевого радиатора?
Малоизвестные Altera RМожно сколько угодно говорить о том, что сердцем системы отопления является котел, но тепло в обогреваемом помещении обеспечивается благодаря радиаторам. От того, правильно ли рассчитано их количество, будет напрямую зависеть уют в доме. Чтобы грамотно сделать расчет, за основу берутся показатели мощности одной секции алюминиевого радиатора.
Почему алюминиевого? В первую очередь потому, что они значительно превосходят по своим показателям традиционные чугунные батареи, и именно их все чаще применяют при создании современных отопительных сетей.
Разновидности алюминиевых батарей
Обратите внимание! Алюминиевые радиаторы производятся двумя методами — литья и экструзии. При использовании метода литья каждая секция изготавливается отдельно.
Сырьем является силумин — алюминий с кремниевыми добавками, не превышающими 12%. Литьем получают разнообразные по форме секции, способные выдерживать давление до 16 атмосфер.
Методом экструзии изготавливаются не радиаторы, а их отдельные части, затем скрепляемые между собой. Этот метод позволяет удешевить производство, но по техническим характеристикам батареи, созданные экструзионным способом, уступают литым. Есть у них и еще один недостаток — изменить количество секций в радиаторе невозможно.
Нельзя не отметить еще один вид алюминиевых батарей — анодированного типа. Они самые дорогостоящие и, безусловно, высококачественные. Сырьем для их производства служит очищенный алюминий. Готовое изделие анодируется, благодаря чему становится абсолютно не подверженным коррозии. Отдельные детали в таких радиаторах соединяются муфтами.
Поэтому внутри они абсолютно гладкие, а значит, им не страшно обрастание накипью. Их рабочее давление — до 70 атмосфер.
Важные параметры
Устройство RoyalThermo Evolution- Расстояние между осями может быть стандартным — 200, 350, 500 мм — или нестандартным. Самый распространенный вариант — 500 мм.
- Высота также может быть различной. Прежде чем покупать батареи, стоит измерить расстояние под подоконником. Сверху и снизу от батареи должно быть около 10 см свободного пространства. От стены до радиатора — около 3 см. Все секции должны хорошо вмещаться в отведенное для радиатора место.
- Давление. Этот показатель включает в себя рабочее и опрессовочное давление. Иногда может быть указано еще и максимальное. Стандартные показатели рабочего давления для алюминиевых радиаторов — 10–15 атмосфер. Для автономного отопления это достаточные параметры, а для квартир с центральным отоплением лучше подобрать модель с более высокими показателями — до 30 атмосфер. Опрессовочное давление должны быть не менее 30 атмосфер. Лучше покупать батареи с запасом. Это поможет в случае неисправности или неожиданного увеличения давления в системе.
- Теплопередача. Этот показатель указывается в отношении одной секции. В среднем теплоотдача секции составляет 100–150 Вт. Радиаторы с высокой теплоотдачей энергоэффективнее. Именно по этой причине алюминиевые модели стали быстро лидировать на рынке.
Преимущества и недостатки
От чугунных алюминиевые батареи отличаются целым рядом показателей:
Технические моменты- Высокая теплоотдача, а значит, меньший износ котла и возможность снизить затраты на отопление.
- Легко монтируются и вписываются в любой интерьер.
- Хорошо подходят для автономных систем отопления, а также могут устанавливаться в многоквартирных домах.
- Могут монтироваться как в систему со старыми чугунными трубами, так и в современные пластиковые и металлопластиковые сети.
Нет ни одного отопительного прибора, ни одного элемента инженерных сетей, который был бы идеальным и полностью лишенным недостатков. Радиаторы из алюминия — не исключение из этого правила.
Среди важных недостатков стоит отметить:
Уплотнительная прокладка- Высокий риск образования протечек в местах стыков секций.
- Неравномерное распределение тепла.
- Незначительную конвекционную теплоотдачу.
- Непродолжительный срок службы по сравнению с чугунными батареями.
- Высокую подверженность коррозии за исключением анодированных батарей.
- Чувствительность к нестабильности давления в системе.
Эти недостатки можно считать неважными в автономных системах отопления, но при замене радиаторов в доме, подключенном к центральной магистрали, нужно быть осторожным. В таких случаях лучше выбирать анодированные модели, не глядя на их высокую стоимость.
Как рассчитать мощность радиатора
Зависимость от числа трубКакими бы качественными ни были батареи, они не смогут обеспечить необходимую теплоотдачу, если изначально расчет мощности и количества секций был выполнен неверно. Основой расчетов является мощность одной секции. Она указывается производителем в спецификации к товару. Но необходимо учитывать, что средние показатели могут существенно отличаться от реальных.
Для расчета теплоотдачи применяется параметр ∆t, представляющий собой разность между температурой воздуха в обогреваемом помещении и температурой в системе. На практике этот показатель редко превышает ∆t 50°C. В то же время производителями он декларируется как ∆t 70 °C, представляющий собой идеальные условия.
При расчете необходимо учитывать и иные данные:
Формула расчета- Расположение помещения в доме.
- Состояние строительных конструкций.
- Размеры и расположение окон и дверей.
- Материалы, из которых построен дом.
- Используемый вид котельного оборудования и т. п.
Простейший расчет можно сделать по формуле — площадь комнаты, умноженная на 100 и разделенная на мощность одной секции. Например, для эффективного обогрева помещения площадью 25 кв. м необходимо 16 секций. Эта цифра получается из простого расчета — 25×100/150.
Заключение
Мощность каждой секции радиатора из алюминия всегда указывается производителем в спецификации к модели. Делая расчет количества батарей, лучше брать не декларируемые цифры, а усредненные показатели. Кроме того, необходимо учитывать и другие факторы, влияющие на энергоэффективность системы, а также тепло в доме.
Мощность секции алюминиевого радиатора. Чугунные радиаторы и расчёт их мощности для помещения
Радиаторы из чугуна — это радиаторы, дошедшие до нашего времени с далеких 70-х годов прошлого тысячелетия. Сегодня они более современны, их практически невозможно отличить от биметаллических или алюминиевых радиаторов, покрытых эмалью. Чугунные радиаторы способны работать с температурой теплоносителя вплоть до 110 0 С.
Довольно большой размер и внушительный вес компенсируется инерционностью, позволяющей регулировать температуру. Они идеально подходят для любого помещения, надежны и долговечны, могут использоваться с любыми котлами и теплоносителями. Многих интересует вопрос — сколько киловатт в одной секции чугунного радиатора? Ответ на этот вопрос вы найдете чуть ниже.
Чугунный радиатор отопления
Чугунные радиаторы М-140
Радиаторы типа М-140 имеют довольно простую конструкцию и легки в обслуживании. Материал, использующийся при их изготовлении – чугун. Он имеет высокую стойкость к коррозийным процессам и может использоваться с любым теплоносителем. Невысокий уровень гидравлического давления позволяет использовать радиаторы, как для гравитационной, так и для принудительной системы циркуляции теплоносителя. Высокий порог противодействия гидравлическим ударам позволяет эксплуатировать их как в двухэтажных, так и в девятиэтажных зданиях. Плюсы М-140 – легкость в обслуживании, надежность, длительный срок службы и низкая стоимость.
Чугунные радиаторы МС-140-500
Широко используются для обогрева строений с t теплоносителя в пределах 130 0 С и давлением 0,9 МПа. Ёмкость одной полости – 1,45л, объём обогреваемой площади – 0,244 квадратных метра. Материал, используемый для изготовления секций – СЧ-10 (серый чугун).
Чугунные радиаторы МС-140-300
Радиаторы, используемые для прогрева помещений с низкими подоконниками и давлением 0,9 Мпа. Ёмкость полости — 1,11л. Вес полости с учетом комплектующих – 5700 г. Сила расчетного теплового потока – 0,120 кВт.
Чугунные радиаторы МС-140М-500-09
Радиаторы этой модели используются для разных помещений с t теплоносителя до 130 0 С и давлением 0,9 мПа. Масса одной полости – 7100 г. Используемый для изготовления материал – серый чугун. S нагрева одной полостью — 0,244м 2 .
Важно! Выбирая радиатор для жилья, обязательно обращайте внимание на его характеристику и делайте всевозможные расчеты заранее, так, как обменять приобретённый товар будет практически невозможно.
Плюсы и минусы использования чугунных радиаторов
Стилизованный чугунный радиатор
Любая, существующая на сегодняшний день отопительная система имеет как плюсы, так и минусы, рассмотрим их.
Номинальное значение тепловой мощности каждой секции составляет 160Вт. Примерно 65 % выделяемого теплового потока обогревает воздух, скапливающийся в верхней части помещения, а оставшиеся 35% прогревают нижнюю часть комнаты.
- Длительный период использования, находящийся в пределах 15- 50 лет.
- Высокий уровень противодействия коррозийным процессам.
- Возможность использования в отопительных системах с гравитационной циркуляцией теплоносителя.
- Низкая эффективность коррекции показателя теплоотдачи;
- Высокий уровень трудоемкости при монтаже;
Важно! Дабы не столкнуться с проблемой при монтаже, обязательно учитывайте указанные выше плюсы и минусы чугунных радиаторов. Их установка – не дешевая, а повторные монтажные работы потребуют множества финансовых средств.
Расчет секций (полостей) радиаторов
И так, сколько квт в 1 секции чугунного радиатора? Для расчёта количества секций и их мощи необходимо определиться с V помещения, который в дальнейшем будет фигурировать в расчетах. Далее выбираем значение тепловой энергии. Ее значения следующие:
- обогрев 1м 3 дома из панелей — 0,041кВт.
- обогрев 1м 3 дома из кирпича со стеклопакетами и утепленными стенами — 0,034 кВт.
- обогрев 1м 3 помещений возведенных по современным строительным нормам — 0,034 кВт.
Тепловой поток одной полости МС 140-500 равен 0,160 кВт.
Далее проводят следующие математические действия: объём помещения умножают на тепловой поток. Полученное значение делится на количество теплоты, выделяемое одной полостью. Результат округляем в большую сторону и получаем нужное число секций.
Сколько киловатт в чугунной секции? Каждый тип радиатора имеет разное значение, которое производитель рассчитывает при их изготовлении и указывает его в сопровождающей документации.
Произведём примерный подсчет по имеющимся данным.
Комната имеет следующие данные: тип помещения – панельный дом, длина — высота — ширина – 5х6х2,7 м соответственно.
- Рассчитываем объём помещения V:
V=5 х 6 х 2,7=81 м 3
- Объём нужной теплоты:
Q=81*0,041 =3,321 кВт
- Исходя из этого, количество секций радиатора имеет следующий вид:
n= 3,321/0,16=20,76
где 0,16 – тепловая мощь одной секции. Указывается производителем.
- Округляем значение в большую сторону, исходя из которого число необходимых секций равно 21 штуке.
Чтобы отопление жилища было эффективным, следует купить качественные его элементы. Перед этим — осуществить правильный расчет их мощности.
Вычисления производятся с учетом:
- площади комнаты;
- высоты ее потолка;
- числа окон,
- длины помещения;
- особенностей климата в регионе.
Правильный выбор
- Производительность отопительных приспособлений должна составлять 10% от площади комнаты, если высота ее потолка составляет менее 3 м .
- Если он выше, то прибавляются 30% .
- Для торцевого помещения надо прибавить еще 30% .
Необходимые подсчеты
После определения тепловых потерь нужно определить производительность прибора (сколько кВт в стальном радиаторе или других приборах должно быть).
- Например, надо отопить помещение, площадью 15 м² и высотой потолка 3 м.
- Находим его объем: 15∙3=45 м³.
- Инструкция говорит, что для обогрева 1 м³ в условиях Средней полосы России надо 41 Вт тепловой производительности.
- Значит, объем комнаты перемножаем на данную цифру: 45∙41=1845 Вт. Такую мощность должен иметь отопительный радиатор.
Обратите внимание!
Если жилище расположено в регионе с суровыми зимами, надо полученную цифру умножить на 1.2 (коэффициент потери тепла).
Итоговая цифра составит 2214 Ватт.
Количество ребер
Из нее вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога – это 150-200 Вт. Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214:200=11.07. Значит, для обогрева комнаты нужна батарея из 11 секций.
Тепловая мощность
На фото — примерная теплопередача чугуна.
В комнате отопительные приспособления ставятся у наружной стены под оконным проемом. Вследствие этого, излучаемое прибором тепло распределяется оптимально. Холодный воздух, поступающий от окон, блокируется нагретым потоком, идущим наверх от радиатора.
Батареи из чугуна
Чугунные аналоги имеют такие плюсы:
- обладают продолжительным эксплуатационным ресурсом;
- имеют высокий уровень прочности;
- они устойчивы к поражению коррозией;
- отлично подходят для применения в коммунальных системах, работающих на низкокачественном теплоносителе.
- сейчас производители изготавливают чугунные батареи (цена их выше, чем обычных аналогов), имеющие улучшенный внешний вид, благодаря использованию новых технологий отливки их корпусов.
Недостатки изделий: большая масса и тепловая инерционность.
Нижняя таблица озвучивает, сколько кВт в чугунном радиаторе, исходя из его модели.
Обратите внимание!
Чтобы отопить комнату, площадью 15 м², мощность, то есть кВт чугунного радиатора, должно быть не менее 1.5. Иными словами, батарея должна состоять из 10-12 секций.
Радиаторы из алюминия
Изделия из алюминия имеют большую тепловую мощность, чем аналоги из чугуна. При вопросе о том, сколько кВт в одной секции алюминиевого радиатора, специалисты отвечают, что она доходит до 0.185-0.2 кВт. В итоге для нормативного уровня прогревания пятнадцатиметрового помещения будет достаточно 9-10 секций алюминиевых секций.
Преимущества таких приборов:
- легкий вес;
- эстетичный дизайн;
- высокий уровень теплопередачи;
- температурой можно управлять своими руками при помощи вентилей.
Но изделия из алюминия не имеют такой прочности, как аналоги чугунные, например масляный радиатор 2 кВт. Поэтому они чувствительны к скачкам рабочего давления в системе, гидравлическим ударам, излишне высокой температуре носителя тепла.
Обратите внимание!
Когда у воды уровень рН (кислотность) повышенный, алюминий выделяет много водорода.
Это негативно влияет на наше здоровье.
Исходя из этого, такие приборы желательно применять в обогревательной системе, в которой обладает нейтральной кислотностью.
Биметаллические изделия
Прежде чем выяснить, сколько кВт в 1 секции биметаллического радиатора, следует учесть, что такие батареи обладают похожими эксплуатационными параметрами с алюминиевыми аналогами. Однако у них нет минусов, им свойственных.
Это обстоятельство обусловила конструкция приборов.
- Они состоят из медных либо стальных труб, по которым течет теплоноситель.
- Трубки спрятаны в алюминиевом пластинчатом корпусе. В итоге вода, циркулирующая внутри, с алюминием корпуса не взаимодействует.
- Исходя из этого, кислотные и механические характеристики носителя тепла на работу и состояние прибора никоим образом не влияют.
Благодаря стали труб приспособление имеет высокую прочность. Повышенную теплоотдачу обеспечивают внешние ребра из алюминия. Пытаясь узнать, сколько кВт в стальном радиаторе, учтите, что биметалл имеет самую высокую теплоотдачу — около 0.2 кВт на одно ребро.
Вывод
Выяснив, сколько кВт в 1 секции стального радиатора либо аналога из другого металла, вы сможете рассчитать теплопередачу приобретаемой продукции. Это позволит вам обустроить эффективную отопительную систему в своем жилище.
Видео в этой статье продолжает наглядно информировать вас по теме.
Эти приборы выглядят современно и стоят недорого. Они способны при правильной установке и эксплуатации длительное время выполнять свои функции. Чтобы использовать полноценно все потенциальные возможности, необходимо точно рассчитать мощность алюминиевого радиатора, которая потребуется для качественного отопления жилья в наиболее сложных погодных условиях.
Конструктивные и технические особенности
Качественные изделия из данного металла создают с использованием литья. Это позволяет изготавливать цельные прочные приборы отопления, в которых отсутствуют отдельные элементы, их соединения. Данная технология достаточно сложна. Чтобы исключить появление брака требуется точное соблюдение многих производственных режимов, контроль отсутствия скрытых дефектов, полостей. Стоимость таких радиаторов несколько выше, чем сборных моделей. Но именно они могут выдержать без повреждений большое повышение давления в магистралях подачи теплоносителя.
Вторая распространенная методика основана на экструзии. Металл под давлением заполняет специальную форму. Заготовка разрезается на части. Соединение отдельных элементов производится с помощью сварки. В данном случае используются относительно недорогие производственные процессы. Но следует учитывать, что готовые изделия получаются менее прочными и надежными по сравнению с первым вариантом.
Алюминиевые радиаторы нужных размеров создают из отдельных блоков с тем, чтобы итоговая мощность была достаточна для определенного помещения. Приведем далее диапазоны значений основных характеристик приборов этого типа:
- Допустимое максимальное давление в системе теплоснабжения: от 6 до 24-х атм.
- Температура теплоносителя (макс.): до + 110°С.
- Срок службы прибора отопления: от 10 до 20 лет.
Параметры одной секции:
- мощность — от 0,08 до 0,210 кВт;
- объем теплоносителя — от 0,2 до 0,5 л.;
- вес — от 0,9 до 1,5 кг.
Сколько секций алюминиевого радиатора надо для отопления одной комнаты
Самый простой и, соответственно, не точный расчет, можно произвести, используя следующую пропорцию: на каждый квадратный метр помещения необходима тепловая мощность не мене 0,1 кВт.
Чтобы узнать, сколько понадобится секций, выполним следующие действия:
- Для обогрева одной комнаты площадью 30 м.кв. потребуется мощность 3 кВт: 30*1=3.
- Если мощность единичного элемента составляет 0,15 кВт, то понадобится 20 секций: 3/0,15=20.
- Это количество слишком велико для одного радиатора, поэтому необходимо будет создать и установить в комнате две батареи. Каждая из них будет составлена из 10-ти секций.
Более точный результат можно получить, если учитывать следующие факторы:
- климатические условия в данной местности;
- высоту потолков;
- количество оконных и дверных проемов в помещении, внешних стен;
- наличие снизу и сверху обогреваемых этажей;
- общие изоляционные характеристики строения.
Для каждого из параметров используются поправочные коэффициенты. Значения их можно найти в профессиональных справочниках. Подставив их в общую формулу, будет не трудно выяснить, какая потребуется мощность в кВт секции и прибора в целом для определенной комнаты. Если получится не точная цифра, то округление следует производить в сторону увеличения. Коррекции при настройке оборудования проще производить правильно, если оно приобретено с определенным запасом возможностей.
Как правильно монтировать и более выгодно эксплуатировать алюминиевые радиаторы
Основные преимущества приборов этого типа не сложно понять из приведенных выше данных.
Тем не менее, перечислим их отдельно:
- Сборная конструкция позволяет довольно точно подбирать количество элементов, чтобы мощность отопления получилась достаточной.
- Малый вес облегчает производство транспортных и монтажных операций. Он же не создает излишние нагрузки на крепления, конструкцию здания.
- Небольшие внутренние объемы и отличная теплопроводность снижают инерционность. Это значит, что допустимо совместное использование таких приборов с индивидуальными регуляторами, а также интеграция их в современные системы автоматизированного подержания комфортных температурных условий. Такое оснащение снизит затраты энергетических ресурсов в процессе эксплуатации.
- Нейтральный внешний вид большинства моделей хорошо подходит к разным дизайнам.
- Невысокая стоимость приборов позволяет без больших затрат создавать новые, или модернизировать старые системы отопления.
Они подойдут для простейших однотрубных и сложнейших коллекторных схем. Они пригодны для работы с гравитационным, или принудительным передвижением теплоносителя.
При монтаже следует учитывать следующие особенности:
- Все приборы необходимо оснащать клапанами для выпуска воздуха.
- Закрепление их надо выполнять в строго горизонтальном положении.
- При выходе водородного показателя теплоносителя (Ph)за пределы диапазона от 7 до 8 единиц будут возникать реакции, разрушающие алюминий.
- Этот металл покрывается со временем защитной пленкой из окислов, которая предотвратит упомянутые выше процессы. Однако она сама может быть повреждена песком и другими механическими примесями. Удалить такие загрязнения можно с помощью стандартного магистрального фильтра.
- В городских условиях сложно предупредить возникновение аварийных ситуаций, сопряженных с резким повышением напора. Здесь рекомендуется устанавливать отопительные приборы, рассчитанные на повышенное давление.
Мощность секции алюминиевого радиатора 500 мм и 350 мм Теплоприбор
Производители выпускают широкий ассортимент алюминиевых радиаторов с разной мощностью секций. Рассмотрим два самых распространенных типа с межосевым интервалом 350 и 500 мм (это расстояние между осями верхней и нижней трубы, проходящими поперек ребер устройства).
Содержание статьи
Радиаторы 500 мм – стандартные батареи
Стандартные алюминиевые и биметаллические модели с межосевым расстоянием 500 мм подходят для большинства помещений. Могут иметь от 1 до 14 секционных элементов. Чем их больше, тем мощнее тепловое устройство.
Мощность также зависит от бренда, причем разница существенна. Сравним параметры одной 500–мм секции разных марок.
Марка | Страна происхождения | Мощность, Вт |
---|---|---|
Faral | Италия | 212 |
Mirado | Испания | 196 |
Global | Италия | 187 |
Nova Florida | Италия | 178,5–182 |
Fondital | Италия | 178–182 |
Alltermo | Китай | 177 |
Tenrad | Германия | 161 |
Solar | Хорватия | 114 |
Радиаторы 350 мм – компактные, но мощные
Небольшие батареи с межосевым расстоянием в 350 мм устанавливаются в узких стеновых карманах и под большими оконными проемами. Из-за меньшей высоты они не столь мощны, как 500-миллиметровые. 350-мм модели тоже могут иметь от 1 до 14 секций
Мощностные характеристики секций 350–мм радиаторов разных марок
Марка | Страна происхождения | Мощность, Вт |
---|---|---|
Mirado | Испания | 154 |
Faral | Италия | 151 |
Nova Florida | Италия | 147,2 |
Global | Италия | 145 |
Alltermo | Китай | 140 |
Solar | Хорватия | 114 |
Tenrad | Германия | 82 |
Как рассчитать при покупке, сколько секций понадобится
Выбрать устройство нужного размера поможет формула расчета:
Кол–во секций = площадь помещения х 100 / мощность.
Например, для полноценного отопления в помещении площадью 25 кв. м при мощности 180 Вт = 0,18 кВт понадобится:
25х100/180 = 13,8, т.е. 14-секционная модель.
Полученный расчет надо подкорректировать:
- При установке в нишу к результату прибавляют 7%, под подоконником или полкой – 4%.
- При монтаже за экраном из–за низкой теплоотдачи добавляют 20%.
- Для квартир с тройным стеклопакетом показатель понижают на 15%, а при большом числе окон – повышают на 20%.
Увеличивают количество секций для угловых помещений, особенно с высокими потолками. Если есть сомнения, лучше взять агрегат чуть большей мощности и регулировать поступление теплоносителя. В холодную или ветреную зиму лишние киловатты будут кстати.
Оценить статью:
Вам будет интересно
материалов и количество секций
Как выбрать радиатор? В статье выясняем, какие типы радиаторов отопления предпочтительны для использования внутри помещений. для разных целей и какого размера они должны быть.
Наша задача — выбрать отопительный прибор по материалу и теплопередаче.
Материалы
Обзор опций
Начнем с краткого обзора современных методов производства, используемых в производстве. материалы для отопительных приборов.
- Чугун — материал, наиболее знакомый каждому, кто вырос в доме советской постройки. Большинство продаваемых сейчас чугунных радиаторов отопления внешне практически не отличаются от тех, что украшали комнаты нашего детства.
Но есть исключения: в попытках увеличить продажи многие производители предлагают очень привлекательные с точки зрения дизайна решения.
Характерными чертами чугуна, помимо неприглядного внешнего вида, являются вынужденно большое внутреннее сечение сечения и медленное движение теплоносителя в нем.Это приводит к заиливанию радиаторов и необходимости периодической (раз в 2-3 года) промывки.
Чугун боится гидроудара. Типичное рабочее давление, заявленное для чугунного радиатора, составляет 9-10 атмосфер.
Еще одна неприятная особенность чугуна — протечка между секциями: паронитовые прокладки между ними через несколько лет по мере остывания радиатора могут начать пропускать воду. Проблема устраняется переборкой радиатора и заменой прокладок.
Полезно: часто отопительную систему с радиаторами, стоящими вне отопительного сезона, просто сваливают на лето. Для радиаторов в этом нет ничего страшного: при нагревании секции будут выдавливать прокладки и протечки прекратятся. Но стальные стояки и вкладыши без воды быстро приходят в негодность из-за коррозии.
На фото — современный чугунный аккумулятор. Как видите, дизайн у изделия более чем удачный.
- Алюминий — материал с гораздо лучшей теплопроводностью по сравнению с железом.И последнее, но не менее важное: алюминий не обладает хрупкостью чугуна. Благодаря этому секция имеет небольшое внутреннее сечение и из-за быстрого движения воды в ней со временем практически не забивается: недостаток внутреннего объема компенсируется большой площадью оребрения.
Радиаторы, как правило, очень красивы внешне и прекрасно вписываются в любой дизайн. К недостаткам можно отнести ограниченную устойчивость к гидроударам (рабочее давление в алюминиевых радиаторах — от 12 до 16 атмосфер) и способность алюминия образовывать гальванические пары с другими металлами.
В частности, расположение в одной цепи алюминиевого радиатора и медных трубок приводит к ускоренному разрушению алюминия.
- Обе алюминиевые проблемы решены в биметаллических радиаторах : Алюминиевая оболочка с ребрами, снабженная сердечником из коррозионно-стойких марок стали. В результате разрушающее давление для лучших образцов радиаторов может достигать 200 атмосфер (пример — отечественная линия «Монолит», для которой заявлено РАБОЧЕЕ давление 100 атмосфер).
Единственный недостаток радиаторов — высокая цена. Он может превышать 700 рублей за одну секцию.
- Полностью стальные обогреватели — это пластинчатые, трубчатые радиаторы и конвекторы. Стальные трубчатые радиаторы и конвектор чрезвычайно прочны и без всяких оговорок могут использоваться в системах центрального отопления. №
Плиты выполнены как компактное решение: они имеют минимальную толщину и практически не занимают места в помещении.Однако, когда толщина стенок меньше миллиметра и они изготовлены из нержавеющей стали, их трудно рекомендовать к покупке.
- Конвектор может быть медно-алюминиевый . Трубка из меди традиционно служит транспортировкой теплоносителя. Выбранный материал обусловлен гораздо более высокой теплопроводностью даже по сравнению с алюминием.
А вот ребра — алюминиевые, предназначены для удешевления отопительного прибора. Медно-алюминиевые нагревательные устройства относительно дороги, но они обеспечивают отличную теплопередачу при компактных размерах.
- Напоследок стоит упомянуть отопительные приборы, которые чаще всего изготавливаются вручную. Это так называемые регистры — несколько стальных труб большого диаметра, соединенных в замкнутый контур. Трубы соединяются сваркой; сверху приварен дефлектор, снизу — отводной.
Внешний вид изделия оставляет желать лучшего, но регистры способны обеспечить огромную теплоотдачу при минимальных затратах.
Как выбрать радиаторы отопления по материалу в зависимости от специфики отапливаемого помещения?
- Для центрального отопления с его непредсказуемыми давлением и температурой лучшим выбором станут биметаллические радиаторы.Человеческий фактор никто не отменял: слесарю достаточно открыть вентиль дома в лифтовом узле БЫСТРО при запуске отопления — и уже через секунду давление в системе отопления может подняться до значений, которые пара в разы выше обычных.
Кроме того, это может привести к отрыву клапана винтового клапана на стояке или внезапному закрытию пробкового клапана. Прочность биметаллического утеплителя в этом случае убережет ваше имущество от затопления горячей и очень грязной водой.
Внимание: установка прочного биметаллического радиатора на пластиковую или металлопластиковую облицовку лишает затею всякого смысла. Используйте только прочные стальные трубы. Желательно — оцинкованный.
- В частном доме с автономным отопительным контуром и собственным котлом вы полностью контролируете как параметры отопления, так и материал, из которого изготовлены футеровки и стояки. Здесь лучше всего подходят алюминиевые радиаторы: их тепловая мощность равна или немного выше, чем у биметаллических отопительных приборов, и они намного дешевле.
Если планировка дома и пространство под отделку пола это позволяет, популярным вариантом является установка напольных медно-алюминиевых конвекторов. При этом в поле зрения остаются только горизонтальные решетки, через которые от конвекторов удаляется нагретый воздух.
- Наконец, в гаражах, теплицах и других помещениях сугубо утилитарного назначения на первом месте стоит сочетание теплопередачи и низкой стоимости. Совершенно равнодушен внешний вид отопительных приборов.
Здесь лучшим выбором становится регистр: он заваривается до нужного вам размера и, если вы сделаете его самостоятельно, стоит затрат на трубы и электроды.
1.
2.
3.
Особое значение при обустройстве любого жилища, безусловно, уделяется оборудованию качественной системы отопления. Чтобы теплоснабжение дома работало стабильно и умеренно экономично, требуется правильно подобрать отопительные приборы, которые будут выполнять обогрев жилища.Как выбрать радиатор, а также о типах оборудования и их технических характеристиках и пойдет речь далее.
Разновидности отопительных приборов
Выбор радиаторов отопления — очень ответственный процесс, поэтому прежде чем решить, какому варианту отдать предпочтение, следует подробно изучить типы этих устройств, а именно:- Чугунные батареи . Этот материал является традиционным в оборудовании системы отопления и используется уже не один десяток лет.При этом современные модели аккумуляторов, изготовленные из чугуна, внешне практически ничем не отличаются от знакомой каждому старой продукции. Однако при желании приобрести устройство, уникальное по своей конструкции, всегда можно найти образцы радиаторов, имеющих особое конструктивное решение. внешность.
Как бы то ни было, штатное оборудование имеет не только неважную конструкцию, но и необходимость обеспечения большого внутреннего сечения секции, что неизбежно снижает скорость циркуляции в ней теплоносителя.В результате такая батарея требует промывки не реже двух раз в год.
Среди недостатков таких моделей следует отметить также низкую стойкость чугунных радиаторов к гидроударам. Стандартное рабочее давление в таких устройствах колеблется от трех до десяти атмосфер.
Еще одна отрицательная сторона таких моделей — частые протечки, возникающие в пространстве между секциями, так как паронитовые прокладки, которые устанавливаются в этих местах, со временем начинают пропускать воду. Решить эту проблему можно, только перебрав аккумуляторную батарею и заменив эти прокладки.
Осуществляя подбор радиаторов, особенно для изделий из чугуна, необходимо помнить, что для оптимизации работы всей системы отопления и исключения возможных неисправностей рекомендуется производить сброс радиатора в теплое время года. Такое мероприятие не нанесет никакого вреда оборудованию, а наоборот избавит его от протечек и не допустит образования коррозионного покрытия. - Радиаторы алюминиевые .Теплопроводность этого материала значительно превышает теплопроводность чугуна, что положительно сказывается на эффективности алюминиевых радиаторов. К тому же эти аккумуляторы намного прочнее, поэтому внутреннее сечение секции небольшое, и теплоноситель в нем циркулирует быстро, не забивая при работе внутреннее пространство.
Алюминиевые батареи обычно имеют очень привлекательный внешний вид и могут гармонично вписаться в любой интерьер. Однако у этих агрегатов есть и недостатки: например, их устойчивость к гидравлическим ударам оставляет желать лучшего, поскольку их рабочее давление обычно не превышает параметра в 16 атмосфер.Алюминий также склонен к образованию гальванических пар с другими металлами. Это означает, что при наличии в отопительном контуре алюминиевых и медных элементов алюминиевые части конструкции со временем могут разрушиться. - Современным решением при обустройстве отопления является использование биметаллических радиаторов . Корпус этих устройств выполнен из алюминия, снабжен ребрами жесткости, а сердечник — из стали, устойчивой к коррозии. Рабочее давление этих устройств может достигать 200 атмосфер, в результате чего КПД батареи Нагрев биметалла очень высок.
Главный недостаток таких устройств — их высокая стоимость. - Радиаторы отопления стальные . К этой категории можно отнести несколько типов устройств — пластинчатые батареи, трубчатые радиаторы и конвекторы. Если говорить о долговечности, то самыми надежными считаются пластинчатые модели стальных батарей и конвекторов, для их эксплуатации в системах отопления не требуется никаких особых условий.
Приборы пластинчатого типа имеют компактные размеры, их толщина очень мала, поэтому производя подбор радиаторов отопления по площади помещения, в случае нехватки места можно обратить внимание на такие агрегаты.Но, как выясняется, из-за небольшой толщины стенок сталь в таких изделиях плохо справляется с последствиями коррозии. - Говоря о конвекторах как о нагревательных приборах , стоит упомянуть их вариант, в котором используются медь и алюминий. Подача теплоносителя в таких устройствах осуществляется по медной трубке, так как именно этот материал обладает высокой теплопроводностью.
Оребрение представлено алюминиевым, в результате чего цена устройства значительно снижается.Несмотря на то, что общая стоимость таких моделей довольно высока, они отлично справляются с обогревом жилища, обеспечивая отличную теплоотдачу даже при его небольших размерах. - Рассматривая, как выбрать радиатор, стоит упомянуть и те изделия, которые можно изготовить своими руками. Такие агрегаты обычно называют регистрами и представляют собой несколько стальных труб большого диаметра, соединенных в непрерывный замкнутый контур. Соединение составных частей этих устройств осуществляется сваркой (сверху монтируется дефлектор, снизу приваривается перемычка).
Несмотря на некоторую внешнюю неповоротливость таких агрегатов, они способны качественно обогреть жилое пространство, не затрачивая при этом большого количества энергии.
Как выбрать радиатор отопления — основные критерии выбора
На выбор того или иного отопительного прибора во многом влияют некоторые особенности обустроенного помещения, но благодаря широкому всегда можно выбрать подходящий вариант.Итак, перед покупкой того или иного оборудования следует ознакомиться со следующими рекомендациями по выбору отопительных приборов:
- центральное отопление, скорее всего, будет оснащено биметаллическими нагревательными приборами, способными выдерживать любые температурные условия и нестабильность давления в таких системах.Так, скачки давления в ЦО довольно часты, это может быть вызвано быстрым открытием клапана элеваторного узла, и отрывом клапана винтового клапана или резким перекрытием пробкового клапана. Благодаря своей прочности биметаллические радиаторы смогут защитить всю систему от внезапных поломок и предотвратить неожиданное затопление.
Важно помнить, что установку биметаллической батареи на вкладыш из пластика или металлопластика делать крайне не стоит.Единственно верным решением будет установка таких батарей вместе с оцинкованными стальными трубами; - в зданиях частного типа, где контур отопления регулируется автоматически, а основные нагревательные элементы котла выступают наружу; Лучше всего использовать алюминиевые радиаторы, так как по теплоотдаче они примерно равны биметаллическим моделям, а стоимость намного ниже.
В том случае, если площадь постройки большая, то еще одним вариантом устройства отопительного прибора является установка медно-алюминиевого конвектора под полом.В такой конструкции останутся видимыми только горизонтально расположенные решетки, которые служат местом отвода горячего воздуха; - в помещениях бытового назначения, таких как гаражи, теплицы и т. Д., Лучше всего выбрать такой, который сочетает в себе хорошие показатели теплоотдачи и невысокую стоимость. Такое устройство может быть изготовлено из регистратора ручной работы, который выполнен по размеру помещения.
Как рассчитать количество секций в батарее по площади
Принцип расчета количества секций в бытовых отопительных приборах пластинчатого, трубчатого типа, а также в конвекторах несложен, так как обычно информация о необходимой теплопроизводительности указывается непосредственно производителем (читайте также: «»).Как правило, среднее значение для одной секции — это параметр 180 Вт.Для того, чтобы рассчитать необходимое количество секций, необходимое для конкретной конструкции, необходимо общий параметр теплопотребления разделить на коэффициент теплопередачи одной секции. Например, если потребность в тепле для конкретного помещения составляет 12000 Вт, то количество секций легко рассчитать по следующей формуле: 12000/180 = 67 секций.
Таким образом, можно сказать, что нет особых сложностей в выборе отопительного прибора, наиболее подходящего для конкретной конструкции отопительного прибора; технические характеристики как самого здания, так и отопительного прибора.Чтобы более подробно изучить все варианты обогревателей, вы всегда можете обратиться к установщикам такого оборудования или поставщикам, которые смогут предоставить подробные фото моделей и видео о том, как правильно их подключить.
Видео о том, как правильно выбрать радиатор:
Выбор любого радиатора начинается с определения количества тепла, которое он должен генерировать в квартире или доме. Этот показатель можно рассчитать по-разному.Среди них есть как простые, так и сложные. Самый простой предполагает использование пространства и учет высоты комнаты (но этот показатель в расчетах не участвует).
Стандартный метод выбора
Применяется только при высоте помещения менее 3 м. Реализуется следующим образом:
- Определите площадь помещения. Например, 25 м².
- Умножьте полученное значение на 100 Вт. По СНиП этот показатель — норма.В документе сказано, что на каждый квадратный метр необходимо создать 100 ватт. Получается, что источник тепла должен создавать 2 500 Вт или 2,5 кВт.
- Результирующая мощность делится на теплоотдачу одной секции батареи. Этот шаг выполняется, когда вы планируете установить аккумулятор или батарею. Как известно, такую конструкцию имеют чугунные, алюминиевые и биметаллические нагревательные устройства. Если в АКБ есть секция с теплоотдачей равной 150 Вт, то нужно покупать прибор на 17 секций (2500/150 = 16.6, округление только в большую сторону).
Ситуация несколько иная. Они представляют собой цельную конструкцию, которую нельзя увеличивать или уменьшать. Поэтому учитывайте их полную мощность. Однако установка одного большого радиатора на 2,5 кВт была бы большой ошибкой. Это связано с тем, что для этих батарей используется другой метод расчета.
Некоторые особенности стандартного метода
Вышесказанное относится к тем комнатам, у которых одна внешняя стена, и потери тепла в которых невелики.
Однако, если в помещении увеличились теплопотери, необходимо отрегулировать общую мощность отопительных приборов (в нашем случае 2,5 кВт).
Регулировка должна быть:
- Увеличение итоговой цифры на 20% в случае, если комната угловая (то есть две стены внешние).
- Увеличение общей мощности на 10% при нижнем подключении радиатора.
- Уменьшение общего количества тепла на 15-25%, если в комнате пластиковые окна.
В каждом случае к 2,5 кВт добавляется определенная сумма процентов. Если все это произойдет, то цифра 2,5 кВт превратится в 2,625 кВт. Затем нужно установить радиатор на 18 секций.
Еще проще
По его словам для отопления 2 кв. м необходимо установить одну кромку. Вдобавок к общему количеству ребер добавьте еще одно. Если комната имеет площадь 25 кв. м, то нужно выбрать отопительный прибор с 25/2 = 12.5 ребер.
Округляя эту фигуру и прибавляя к ней 1, получаем 14 ребер. Как видите, этот результат меньше числа, полученного стандартным методом.
Конечно, отсутствие 3-х ребер не позволит нормально отапливать помещение. Поэтому этот метод лучше всего использовать как приблизительный. На момент покупки он не должен использоваться как основной.
Для его определения недостаточно одной площади комнаты. Необходимо знать высоту, а также применить цифру 41.Согласно СНиП, радиатор отопления должен генерировать 41 Вт на 1 куб. м. Как видно, для выбора прибора панельного отопления нужно делать расчет по объему.
Алгоритм простой:
- Определение площади.
- Определение объема (площадь умноженная на высоту).
- Умножьте громкость на 41.
- Окончательный результат скорректирован с учетом вышеуказанных процентов.
После получения. Вы можете установить одно мощное устройство.Такой вариант подходит для комнат, в которых есть одно большое окно. Если их две, то лучше использовать две панели с теплоотдачей 1,25 кВт.
Аналогичным образом подбирайте отопительные приборы для помещений с потолком более 3 м.
Расчет радиаторов отопления — задача крайне важная. Неправильно подобранные батареи с недостаточным количеством секций не смогут нормально обогреть жилое пространство. Большее количество секций, чем необходимо, приведет к неэффективности системы отопления.
На современном рынке представлен огромный выбор радиаторов отопления, в том числе и дизайнерские. Батареи водяного отопления различаются по материалу, теплопотерям и теплопередающей способности. Перед тем, как сделать окончательный выбор, следует уточнить параметры дома — это позволит не ошибиться в решении вопроса.
Виды радиаторов
В современных квартирах используются радиаторы из таких материалов:
- сталь;
- чугун;
- алюминий;
- биметаллический.
По конструктивным свойствам они делятся на две группы:
При выборе батарей важно знать следующее:
- Мощность обогревателей обязательно должна соответствовать норме отопления: на квадратный метр помещения, имеющего одну внешнюю стену и окно, должно приходиться 100 Вт.
- 30% к расчетной мощности прибавляется, если две стены внешние и два окна.
- 5-10% добавляется к мощности, в том случае, если окна выходят на север или радиаторы установлены в нише.
- Если указанные выше коэффициенты совпадают, проценты складываются.
Рассчитайте заранее также количество секций, а также тип радиаторов, ориентируясь на площадь помещения. Однако наличие высоких потолков не даст правильных результатов. Если высота комнаты стандартная, то расчеты довольно просты. Как уже было сказано, на один «квадрат» требуется 100 ватт в час, то есть несложно подсчитать, сколько секций нужно для обогрева помещения.
Например, площадь комнаты — 25 м2. Умножьте это число на 100 и получите 2500. Это означает, что необходимо отапливать 2,5 кВт в час. Этот результат делится на указанное в документации на радиатор значение — количество тепла, выделяемого одной секцией.
Итак, если мы знаем, что он выделяет 180 ватт, то производим такие действия; 2500 делим на 180 и получается 13,88. При округлении получается 14 — это количество секций нагревательного прибора.
Обязательно учтите потери тепла. Угловая комната, или та, в которой есть балкон, естественно медленнее нагревается и быстрее отдает тепло. Тогда расчет производится с запасом не менее двадцати процентов.
Как правильно выбрать радиатор смотрите в видео:
Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016 Другие двигатели и запчасти для мотоциклов Автомобильные двигатели
Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016 Другие двигатели и запчасти для мотоциклов Автомобильные двигателиНайдите много отличных новых и подержанных опций и получите лучшие предложения на Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016 по лучшим онлайн-ценам на, Бесплатная доставка для многих продуктов, Удивительная мода, Потрясающие цены, границы тренда, покупайте только аутентичные товары, товары оптом, сэкономьте еще больше с бесплатным самовывозом + скидка., Радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016 Новый алюминий, ABS MT07 MT-07 2015-2017 2016 Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07, Новый алюминиевый радиатор для Yamaha FZ07 FZ -07 FZ 07 ABS MT07 MT-07 2015-2017 2016.
неповрежденный товар в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине. если товар не был упакован производителем в не предназначенную для розничной торговли упаковку, неиспользованную, такую как коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. См. Все определения условий : Бренд: : OPL , Номер детали производителя: : LS-PRC252 : Гарантия: : 1 год , Страна / регион производства: : Китай : UPC: : 818771013712 ,。, Найдите много отличных новых и подержанных опций и получите лучшие предложения на новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016 по лучшим онлайн ценам на! Бесплатная доставка для многих товаров !. Состояние: Новое: Совершенно новое, неоткрытое.
Arregui 6393
Буэнос-Айрес, Аргентина
Эл. Почта: info @ akropolisdecor.com.ar
Телефон: 15-5023-1027
Начните вводить текст, чтобы увидеть продукты, которые вы ищете.
Todos los productos tienen una demora de producciòn de 15 dìas Descartar
Пролистать наверхНовый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016
Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016
Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07 2015-2017 2016, MT-07 2015-2017 2016 Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07, 2015-2017 2016 Новый алюминиевый радиатор для Yamaha FZ07 FZ-07 FZ 07 ABS MT07 MT-07.
Первоклассный радиатор мощностью 250 кВт с исключительными характеристиками, вдохновляющими на вождение
Получите самое новаторское. Радиатор 250 кВт на Alibaba.com и станьте свидетелями непревзойденных скидок в этой категории. Высокотехнологичное исполнение этих. Радиатор мощностью 250 кВт не имеет себе равных, и их мощность просто захватывает дух. Изготовленные с использованием первоклассных материалов и ультрасовременного инновационного дизайна, калибр. Радиатор мощностью 250 кВт не только долговечен, но и очень эффективен в своей работе.Это гарантирует, что их функциональность превзойдет ваши ожидания.
The. Радиаторы мощностью 250 кВт доступны в широком ассортименте, который включает в себя различные размеры, чтобы соответствовать требованиям различных пользователей. В них установлены вентиляторы охлаждения. Радиатор мощностью 250 кВт невероятно разработаны для увеличения количества воздуха, проходящего перед радиатором, сохраняя эффективность охлаждения на оптимальном уровне. Благодаря превосходным водяным насосам эти. Радиатор мощностью 250 кВт гарантирует пользователю, что охлаждающая жидкость циркулирует в водяных рубашках и во всем двигателе для максимального охлаждающего эффекта по мере необходимости.
На Alibaba.com вы найдете. Радиатор мощностью 250 кВт отличается отличным управлением потоком воды и воздуха, что обеспечивает достижение и поддержание оптимальных рабочих температур двигателями. Резервуар перелива им. Радиатор мощностью 250 кВт редко работает всухую, что предотвращает случаи закипания и перегрева. Легко поддерживать. Радиатор мощностью 250 кВт с рекомендованными рабочими уровнями, поскольку владелец транспортного средства может предпринять некоторые действия, например, оценить уровень охлаждающей жидкости в радиаторе.
Воспользуйтесь этими преимуществами, делая покупки на Alibaba.com. Вы сэкономите время и деньги, воспользовавшись приглашением. Радиатор 250 квт в наличии на сайте. Их долговечность и производительность продемонстрируют, почему они стоят каждого цента. Изучите разные предложения из разных. Радиатор 250 кВт оптовиков и поставщиков, и вы получите максимальную отдачу от своих вложений.
Радиаторы тепла — Атомные ракеты
Коэффициенты проектирования
Используя уравнение Стефана Больцмана, мы можем быстро увидеть, что радиатор с лучшим коэффициентом излучения, большей площадью поверхности и более высокой температурой удаляет больше отработанного тепла.
На космических кораблях важно использовать самые легкие компоненты для каждой задачи. Космический корабль с более легкими радиаторами будет быстрее ускоряться и иметь больше deltaV, что означает, что он может идти дальше и делать больше при меньшем количестве топлива.
Если нам нужен легкий радиатор, мы хотим, чтобы он имел самый высокий коэффициент излучения. Мы можем добиться этого, используя естественно темные материалы, такие как графит, или закрашивая блестящие металлы черной краской.
Радиатор большего размера весит больше.Поэтому нам нужны радиаторы наименьшего возможного размера. Чтобы компенсировать меньшую площадь поверхности, мы можем увеличить рабочую температуру. Небольшое повышение температуры приводит к значительному увеличению количества удаляемого отходящего тепла. Это означает, что горячие радиаторы намного легче и меньше холодных.
Дополнительные сведения
- Система EAC МКС
Типичный радиатор принимает охлаждающую жидкость от горячего компонента. Температура компонента охлаждающей жидкости на выходе — это начальная температура в радиаторе.Радиатор служит интерфейсом, который отводит тепло охлаждающей жидкости, что приводит к более низкой температуре на выходе из радиатора. Охлаждающая жидкость возвращается к компоненту для завершения цикла отвода отходящего тепла.
- Обратите внимание на то, что максимальная температура теплообменника, передаваемая пару, является самой низкой температурой жидкого натрия в активной зоне реактора.
Тепло течет только от горячего объекта к более холодному. Поэтому радиатор может работать только тогда, когда температура компонента выше, чем температура охлаждающей жидкости на выходе из радиатора.Например, если ядерный реактор работает при 2000 К, радиатор должен работать при 2000 К или меньше.
- Реактор от COADE. Реактор работает при температуре 2907К, а в радиатор поступает теплоноситель при 2400К.
Разница между температурами на входе и выходе из радиатора зависит от многих факторов, но обычно мы хотим максимально возможной разницы. Эта разница в температуре особенно важна для выработки электроэнергии. Большая разница означает, что от источника тепла можно извлечь больше энергии.Это также означает, что для охлаждения компонента требуется меньше охлаждающей жидкости.
Это создает проблемы с реалистичным дизайном.
Общее решение — использовать два комплекта радиаторов, работающих при разных температурах: один низкотемпературный контур и один высокотемпературный. Он отлично работает, когда ваше низкотемпературное отходящее тепло составляет несколько киловатт от систем жизнеобеспечения и авионики. Необходимо найти другие решения для компонентов, которые должны храниться при низких температурах, но при этом выделяют мегаватты отходящего тепла, например, лазеры.
- Эта конструкция имеет три комплекта радиаторов с уменьшающейся площадью для различных температурных составляющих. Фактически четыре комплекта, если считать радиаторы модуля обитания (Радиаторы полезной нагрузки / авионики)
Для низкотемпературных высокотемпературных компонентов необходимо использовать тепловые насосы. Они могут перемещать отходящее тепло против температурного градиента, позволяя, например, радиатору на 1000K охладить компонент на 500K. Однако это требует затрат энергии. Перемещение тепла с 500 К до 1000 К обходится насосу в 1 ватт на каждый перемещенный ватт.Реалистичный насос не будет эффективен на 100% и потребует более 1 ватта, чтобы переместить ватт отработанного тепла.
Pump_power = (Waste_heat * Tc / (Th — Tc)) / Pump_EfficiencyPump_power — сколько ватт потребляют тепловые насосы. Waste_heat — сколько ватт необходимо удалить из компонента. Tc — температура компонента. Th — температура радиатора в градусах Кельвина. Pump_efficiency — коэффициент.
- Холодильный цикл — это пример теплового насоса.
Как правило, охлаждающая жидкость должна быть жидкой. Это накладывает нижний и верхний предел температуры охлаждающей жидкости; любой холоднее, и он замерзнет и заблокирует трубы, любой более горячий он закипит и перестанет течь. Например, водяную охлаждающую жидкость можно использовать только при температуре от 273 до 373 К. Что еще более важно, он ограничивает разницу температур, которую можно получить от радиатора.
Большие перепады температур требуют, чтобы охлаждающая жидкость долгое время находилась внутри радиатора.Для этого требуются радиаторы большего размера или длинные обходные пути для труб. По мере того, как охлаждающая жидкость становится холоднее, она излучает меньшую скорость, а это означает, что последнее понижение температуры на 10 кельвинов может занять экспоненциально больше времени, чем первое понижение на 10 кельвинов. Есть сильная убывающая доходность.
Есть также структурные проблемы. Большие перепады температур вызывают термические нагрузки. Они могут быть слишком большими, чтобы справиться с ними. Легкие, напряженные радиаторы склонны плохо реагировать на любые боевые повреждения, что делает радиаторы слабым местом для любого военного корабля.
- Лонжероны опор радиаторов МКС. Разгоняемый космический корабль будет нуждаться в гораздо большей поддержке.
В целом, мы должны иметь в виду, что существует ограниченный диапазон температур между горячим и холодным концом радиатора, и что его характеристики не могут быть просто получены с помощью уравнения Стефана Больцмана для максимальной температуры. Мы также не можем использовать простое среднее значение, потому что теплоноситель теряет тепло с квадратично уменьшающейся скоростью по мере перехода от более высоких к более низким температурам.2 панель радиатора:
Мы можем видеть, что натрию требуется 17 секунд, чтобы остыть от 1000K до температуры, близкой к его температуре плавления 370K. Любой кулер, и он застынет в трубках. Если мы усредним излучаемые ватты, мы получим значение, близкое к 11,46 кВт. Это соответствует средней температуре излучения 545 К.
Наконец, радиатор подвергается нагрузкам при ускорении космического корабля. Некоторые типы радиаторов ломаются или разлетаются при сильном ускорении, поэтому перед выбором конструкции необходимо учитывать характеристики космического корабля.
Сплошные радиаторы
Простая конструкция, используемая сегодня.
Он состоит из металлической пластины, через которую проходит полая трубка для прохождения охлаждающей жидкости. Отработанное тепло выходит из хладагента в материал радиатора, который излучает его от его открытых поверхностей.
Эта конструкция имеет довольно высокую массу на единицу площади и низкие температурные ограничения, что делает ее одной из худших по производительности.Максимальная температура — это то, что сохраняет материалы радиатора как твердыми, так и прочными, что важно, поскольку многие металлы быстро теряют прочность по мере приближения к своей температуре плавления.
Охлаждающая жидкость должна оставаться жидкой на протяжении всего цикла охлаждения, поэтому это ограничивает возможную разницу температур. Использование металлов, таких как олово, или солей, таких как натрий, позволяет улучшить разницу температур, но для их перекачивания требуется специальное, иногда нереактивное, иногда энергопотребляющее оборудование.
- Несколько радиаторов будут излучать тепло друг в друга и терять эффективность.
Расположение радиаторов вокруг космического корабля должно учитывать взаимное отражение, когда тепло одного радиатора перехватывается и поглощается другим радиатором. Это снижает их эффективность. Все, что больше двух радиаторов на ось, поглощает часть тепла другого радиатора … у четырех радиаторов только 70% тепла уходит в космос, у восьми радиаторов эффективность падает до 38%.2, если рассматривать только открытые панели.
Пока что только радиаторы из углеродного волокна без покрытия, работающие при 800-1000K, достигли такой плотности.
Альтернативная конструкция обеспечивает лучшую плотность за счет удаления контуров охлаждающей жидкости и насосов. Тепловая трубка имеет горячий конец и холодный конец, разделенные вакуумом.
- Тепловая трубка, отводящая отработанное тепло в радиатор.
Твердый хладагент выкипает и затем конденсируется на холодном конце, а затем повторно циркулирует за счет капиллярного действия или центробежного ускорения.Этот метод допускает высокие рабочие температуры и не требует насосов движущихся частей, но высокая масса на единицу площади сводит на нет многие из его преимуществ.
На военном корабле радиаторы — слабое место. Яркие, открытые и трудно защищаемые, в них легко попасть, а после повреждения они могут вывести космический корабль из строя. Они могут убить военный корабль, даже не пробивая броню. Избыточные радиаторы налагают массовый штраф. Покрытие радиаторов пластинами из брони значительно снижает их теплопроводность между охлаждающей жидкостью и открытыми поверхностями, что, в свою очередь, снижает их эффективность.
Решения для снижения уязвимости радиаторов включают направление их ребром к противнику, перемещение их в хвостовую часть корабля или использование выдвижных конструкций.
- Справа радиаторы открыты вражескому огню. Слева выступ корпуса защищает радиаторы от повреждений.
Если все радиаторы убраны, космический корабль должен полагаться на радиаторы для охлаждения. Источник тепла мощностью в мегаватт может испарить тонну воды менее чем за семь минут, так что это будет работать только в течение очень коротких периодов времени.
Высокотемпературные твердотельные радиаторы сталкиваются с проблемами, такими как необходимость иметь дело с закипанием охлаждающей жидкости или необходимость выдерживать огромное давление, чтобы поддерживать жидкости в сверхкритическом состоянии. Решение — использовать твердые блоки из металла вместо охлаждающей жидкости. Запуск этих блоков, как поезд по рельсам, позволяет использовать надежные радиаторы, которые могут выдерживать сильные ускорения и температуры вплоть до точек кипения блоков охлаждающей жидкости (в некоторых случаях 4000K, если рельсы активно охлаждаются). Чем меньше блоки, вплоть до размера шариков, тем быстрее они остывают и тем короче должна быть дорожка, что приводит к экономии массы и площади.
Подвижные радиаторы
Одна из главных причин, по которым твердые радиаторы настолько массивны, заключается в том, что им требуются трубы для охлаждающей жидкости, насосы и теплообменники для отвода отработанного тепла от оборудования на открытые поверхности.
Чтобы значительно уменьшить плотность помещения, мы можем разработать радиатор, не требующий громоздких контуров охлаждающей жидкости. Вместо этого перемещаем радиатор.
Движущиеся радиаторы полагаются на сам материал радиатора, который перемещается через теплообменник в космос, чтобы отвести тепло, а затем обратно внутрь.2 оценки. Однако движущихся частей гораздо больше, а излучающие поверхности составляют лишь часть объема, занимаемого радиаторами. Если не будут использованы очень легкие материалы, опорная конструкция сведет на нет массовое преимущество такого радиатора.
- От высокой границы
В диско-барабанной конструкции теплообменник имеет форму барабана, катящегося по излучающему диску. Радиатор hoola-hoop представляет собой большой диск, удерживаемый на кончике барабанным теплообменником.
- Шлевки для ремня держатся ребром к солнцу.Угловые петли будут меньше страдать от повторного поглощения излучаемого тепла на внутренних поверхностях, что более важно при более высоких рабочих температурах.
Если колесо или петля заменяется гибким ремнем или ремнем с гусеничной связью, его можно заставить двигаться по разным путям. «Радиатор с поясной петлей» может приблизить радиатор к космическому кораблю и снизить прочность конструкции, необходимую для выдерживания ускорений или вибраций.
Конфигурация проволочной петли использует черные углеродные волокна в качестве излучающей поверхности.Они выбрасываются из теплообменника и удерживаются на месте центростремительной силой. Использование материалов с высокой прочностью на разрыв позволяет создавать чрезвычайно легкие петли.
- С высокой границы. Для изготовления проводов используются углеродные нанотрубки.
Ролики могут направлять провода вместо центростремительной силы, тем самым становясь еще более легкой версией ленточного радиатора. Потребуются материалы с высокой прочностью на разрыв, поскольку это позволяет роликам и двигателям удерживать провода под натяжением, чтобы предотвратить их скольжение или спутывание.
Радиатор с вращающимся диском — это подвижный радиатор, центральным компонентом которого является вращающийся диск. На ступицу разбрызгивается охлаждающая жидкость. Поверхностное натяжение жидкости с низким давлением пара заставляет ее растекаться в тонкую, ровную пленку по диску. При вращении диска центростремительная сила заставляет пленку течь по мере охлаждения к желобам коллектора на краях. В этой конфигурации не используются тяжелые тепловые трубы и радиаторные насосы, но требуется использование жидкостей с очень низким давлением пара.Диск можно наклонять внутрь, наружу или наклонять, чтобы справиться с ускорением космического корабля.
Радиаторы с пузырьковой мембраной представляют собой трехмерную версию радиатора с вращающимся диском. Горячая охлаждающая жидкость разбрызгивается на надутую мембрану, в результате чего она растекается в виде тонкой пленки, которая очень эффективно теряет тепло. Вращение мембраны заставляет жидкую пленку собираться на экваторе пузыря, где она собирается и перерабатывается.
Преимущества включают возможность использования охлаждающих жидкостей с высоким давлением пара и очень легкую конструкцию.К недостаткам относится необходимость содержать пары высокого давления в контейнере, который должен оставаться легким и прозрачным.
Электрические радиаторы
В упомянутых до сих пор конструкциях используются физические конструкции для удержания радиаторов на месте. Это накладывает некоторые ограничения, такие как необходимость оставаться в пределах температурных пределов опорных конструкций, а для более крупных радиаторов требуется тяжелая опора, чтобы выдерживать даже легкие ускорения.
Решением было бы использовать магнитные силы для удержания радиаторов на месте.Сильный магнит может заменить физические опорные конструкции для значительной экономии массы.
Примеры таких радиаторов включают радиатор с флюсовыми выводами. Магнитные поля удерживают твердые компоненты радиатора на месте. Теплопроводящие ленты передают тепло к магнитным компонентам.
Однако есть сложности. Большинство металлов теряют свои магнитные свойства при нагревании, становясь совершенно нечувствительными к магнитным полям выше точки Кюри.Требуется тщательный выбор используемых материалов и контроль температуры.
Радиатор с точкой Кюри работает примерно при температуре, при которой частицы металлической пыли теряют свой магнетизм. Железо, например, теряет ферромагнетизм при 1043К.
В радиаторе с точкой Кюри используются металлические опилки или даже капли жидкости. Они нагреваются до температуры выше точки Кюри и выбрасываются в космос подальше от космического корабля. Магнитное поле присутствует, но оно не влияет на них.Железо может выделяться при температуре до 3134К и собираться при 1043К, но кобальт имеет температуру Кюри до 1388К, он естественно черный и кипит при 3400К, что делает его лучшим хладагентом. Небольшой размер частиц или капель жидкости позволяет излучать несколько мегаватт отработанного тепла на квадратный метр.
Как только частицы охлаждаются ниже точки Кюри, они восстанавливают свой ферромагнетизм. На них начинает действовать магнитное поле, и они возвращаются к космическому кораблю для сбора.
Магнитные радиаторы — отличное решение для боевых повреждений — в худшем случае противник нарушит охлаждение на несколько секунд. Однако они потребляют много энергии и требуют тяжелого оборудования для создания сильных магнитных полей. Любое неожиданное ускорение или толчок космического корабля может рассеять весь материал, удерживаемый на месте магнитными полями.
Альтернативный электрический радиатор использует электростатические силы для удержания заряженных частиц на месте. Одним из примеров является пылевой радиатор, заряженный ETHER.Заряженные частицы движутся по силовым линиям и совершают эллиптические орбиты между теплообменником и точкой сбора. Подобно капельному радиатору, заряженные частицы могут механически диспергироваться и эффективно собираться на другом конце с помощью ложек с противоположным зарядом.
Преимущество электростатических излучателей заключается в том, что они потребляют меньше энергии, поскольку создать сильный дифференциал зарядов легче, чем расширять сильное магнитное поле. Оборудование легче и менее чувствительно к изменениям температуры, поскольку не используется сверхпроводящее или криогенное оборудование, а заряженные частицы могут удерживать заряд при большей разнице температур, чем они могут сохранять свои магнитные свойства.
Однако заряд, переносимый частицами, может быть сведен на нет естественным солнечным ветром или при контакте с проводником. Это означает, что им нужен чистый короткий путь между теплообменником и точкой сбора.
Жидкокапельные радиаторы
Жидкокапельные радиаторы не используют никаких излучающих поверхностей — они подвергают охлаждающую жидкость непосредственно воздействию вакуума. Полученные капли имеют невероятную площадь поверхности для своей массы, что обеспечивает быстрое охлаждение и чрезвычайно низкую поверхностную плотность.
Поскольку охлаждающую жидкость не нужно физически удерживать, ее можно нагреть до очень высоких температур и при этом очень быстро остыть. Для жидкостей нет ограничений по термическому напряжению, поэтому изменение температуры может быть сколь угодно резким или быстрым. Им не обязательно сохранять магнитные свойства или держать заряд. Этот калькулятор может дать приблизительное представление о производительности LDR. При 1300K и использовании капель размером 50 микрометров (мелкий туман) поверхностная плотность может составлять всего 0.2. Не включает массу теплообменника, каплеуловителя и коллектора.
Уже разработаны решения для таких проблем, как капли, сдуваемые солнечным ветром, сталкиваются и сливаются в более крупные капли или перемещаются с разными скоростями внутри слоя капель.
Давление пара по-прежнему вызывает беспокойство — горячие жидкости в вакууме имеют тенденцию быстро испаряться. Необходимо использовать специальные охлаждающие жидкости с низким давлением пара, такие как жидкий галлий, алюминий или олово до 1200K, литий до 1500K.Посолить эти жидкости таким материалом, как графитовая «крошка» или покрыть их черными чернилами, необходимо для достижения высокого коэффициента излучения. Наножидкости могут позволить использовать жидкости даже с более высокими температурами. Достижение более высоких температур означает принятие высоких скоростей потерь теплоносителя или заключение излучающего объема в мембрану, которая конденсирует и собирает пары. Мембрана должна быть прозрачной при температурах излучения.
Капли в радиаторе с жидкими каплями должны быть распределены равномерно и на расстояниях, намного превышающих диаметр капли — это необходимо для предотвращения значительных потерь между отражениями.
Варианты жидкокапельных радиаторов в основном связаны с ограничением и направлением потока охлаждающей жидкости между точками выброса и сбора.
Прямоугольный LDR имеет каплеуловитель и коллектор одинаковой длины. Коллекторный рычаг можно сделать шире эмиттера для улавливания капель, отклонившихся от их траектории из-за неожиданных движений или ошибок в образовании капель. Можно было бы перемещать коллектор выше и ниже плоскости капли, чтобы перехватывать капли, когда космический корабль ускоряется, поскольку это приведет к отклонению листа капли от плоскости.
- Дизайн ICAN-II с прямоугольными жидкокапельными радиаторами.
Треугольный LDR экономит массу за счет использования маленькой сборной тарелки вместо длинной руки. Однако он менее способен улавливать отклоняющиеся капли или компенсировать ускорение космического корабля.
- Треугольные варианты LDR
Некоторые конструкции LDR избавляются от длинных плеч и мембран, а вместо этого просто распыляют капли в космос.Импульс капель заставляет их следовать по траекториям, которые возвращают их обратно к коллекторам. Фонтан LDR стреляет каплями перед ускоряющимся космическим кораблем. Как только они остынут, их собирают. Этот метод диспергирования капель позволяет получить максимально легкие конструкции, но при этом существует риск потери капель.
- Капли падают с «передней части» космического корабля и попадают в коллекторные рукава в средней части.
Он лучше всего работает с космическими кораблями, которые плавно ускоряются в течение длительных периодов времени, например, с ядерно-электрическими кораблями на межпланетных траекториях.LDR душа рассеивает капли перед космическим кораблем, а коллекторы просто собирают их, как черпак. У него меньший риск рассеивания капель, чем у фонтанного LDR, но для него требуется длинная насадка для душа.
Мембраны под давлением могут быть дополнением к любому жидкокапельному радиатору. Они заключают в себе объем, через который проходят капли. Преимущества включают повторную конденсацию паров из слишком горячих капель, улавливание случайных капель, обеспечение более высокой скорости капель и большую устойчивость к нестабильности капельного слоя.Однако они должны оставаться прозрачными для всех длин волн, на которых излучаются капли, и удерживать давление паров газа. Это конкурирующие требования: поглощение на малых длинах волн достигается с помощью очень тонких мембран, в то время как высокое давление требует толстых мембран.
Радиаторы Advanced
Сфокусированные LDR с магнитной накачкой:
- Магнитно фокусируется коллекторным соплом.
Феррожидкости при низких температурах и жидкий металл при высоких температурах могут использоваться в качестве хладагента в жидкокапельных радиаторах.Они реагируют на вихревые токи и магнитные поля, позволяя перекачивать хладагент без каких-либо движущихся частей посредством магнитогидродинамики.
Магнитные поля также можно использовать для восстановления капельного листа. Циклические поля могут толкать и тянуть группу капель на расстояния, пропорциональные напряженности поля. Поля с высокой напряженностью могут позволить каплям простираться на несколько десятков метров, прежде чем они будут восстановлены. Они также позволят LDR компенсировать свою уязвимость к рассеянию и потере капель при ускорении космического корабля, удерживая капли на месте.
Вместе LDR может стать чрезвычайно легким для занимаемой площади, поскольку никакая физическая опорная конструкция не должна перекрывать его длину.
Газовые хладагенты:
Мы рассматривали твердые и жидкие хладагенты в качестве хладагентов. Также можно использовать газы.
Газовые теплоносители уже используются в ядерных реакторах. Двуокись углерода и гелий были выбраны, поскольку они инертны и поддерживают более высокие температуры, чем вода или натриевые охлаждающие жидкости.
В космосе главное преимущество газового хладагента заключается в том, что он может работать при гораздо более высоких температурах, чем жидкий или твердый хладагент.Тот же газ можно было запустить из ядерного реактора в трубы радиатора и обратно. Это также позволяет использовать надувные конструкции для радиаторов, которые могут быть намного легче, чем их жесткие эквиваленты.
- Радиаторы с надувными ребрами.
- Радиаторы с несколькими выдвижными ребрами.
- Надувные мешки проще и прочнее раскатывающихся плавников, но имеют меньшую площадь поверхности.
Однако есть ограничения и сложности. Горячий газ под давлением может быть очень химически активным.Хотя вы можете нагреть газ до температуры 3000K +, стенки труб, содержащих газ, также должны выдерживать эти температуры. Многие из сбережений массы, которые достигаются при эксплуатации радиатора при высоких температурах, теряются, пытаясь удержать газовый хладагент и выжить. Например, для перекачки газа требуется гораздо больше энергии на 1 кг перемещенного газа, чем для перекачки жидкости.
Другая трудность — очень низкая скорость передачи тепла между теплообменником и газом. Горячий газ с низкой плотностью, такой как нагретый гелий, может иметь теплопроводность в сотни раз ниже, чем жидкость, подобная расплавленному натрию.Это приводит к трудностям как на границе теплообмена, так и на границе излучающей поверхности.
Многие из этих проблем могут быть решены с помощью двухфазного контура охлаждающей жидкости, то есть он проводит часть своего времени как жидкость, а часть своего времени как газ. До теплообменника охлаждающая жидкость находится в жидком виде. Он течет по трубкам с помощью простых насосов. Теплообменник разделен на множество труб меньшего размера, чтобы увеличить площадь контакта между теплообменником и хладагентом.
За теплообменником охлаждающая жидкость расширяется.Падение давления позволяет ему закипеть в газ. Этот газ проходит через объем, закрытый герметичной мембраной. Благодаря сочетанию декомпрессии при расширении и закона Стефана-Больцмана газ быстро охлаждается и конденсируется на стенках мембраны. Это образует тонкую пленку в условиях микрогравитации, которая может быть направлена к точкам сбора, где жидкость перекачивается обратно в теплообменник.
Пылевой плазменный излучатель:
В этом излучателе используется проводящая плазма, управляемая магнитными полями, для перемещения и управления частицами пыли.
Частицы пыли, взвешенные в плазме, ведут себя удивительным образом, и их все еще обнаруживают в области исследований пылевой плазмы. Интересные варианты поведения включают самоорганизацию в квазикристаллическую структуру, построение мостиков, похожих на нити ДНК, через плазму или сбор в диски с пустыми центрами. Все это происходит из-за самоотталкивающих зарядов, которые частицы пыли получают внутри плазмы.
Лучшее понимание этого поведения может позволить радиатору сочетать в себе все полезные характеристики: широкий диапазон рабочих температур, очень низкую массу на квадратный метр, легкость управления электромагнитными и электростатическими силами, низкую уязвимость к повреждениям и способность выдерживать сильные ускорения.
Плазма может быть довольно холодной и по-прежнему служить для манипулирования частицами пыли. Низкотемпературная плазма безопасна для манипуляций и довольно прозрачна для длин волн, на которых будут излучать частицы пыли, что означает, что она не нагревается и не уносится тепловым расширением.
В простом пылевом плазменном излучателе плазма была бы захвачена магнитными петлями, такими как корональные петли. По этим плазменным трубкам двигалась пыль. Более совершенные плазменные излучатели будут распылять частицы пыли в плазму и заставлять ее самоорганизовываться в тонкие плоскости для получения максимальной площади излучающей поверхности.Простое изменение состояния ионизации частиц путем пропускания электрического тока через плазму позволило бы пыли слипаться и следовать линиям магнитного поля прямо обратно к коллектору.
в Collection.php строка 1563 | ||
в HandleExceptions -> handleError (8, ‘Undefined offset: 0’, ‘/ home / istanbulhairline / vendor / laravel / framework / src / Illuminate / Support / Коллекция.php ‘, 1563, массив (‘ key ‘=> 0)) в Collection.php строка 1563 | ||
в Collection -> offsetGet (0) в b5319231b18c8aa907b8da682ed49ca01p6856893490 line на включить (‘/ home / istanbulhairline / storage / framework / views / b5319231b18c8aa907b8da682ed49ca01fee2670.php’) в PhpEngine.php строка 42 | | |
at Phphairline -> homePEngine на Phphair -> homePEngine | / istanbul / PhpEngine framework / views / b5319231b18c8aa907b8da682ed49ca01fee2670.php ‘, массив (‘ __env ‘=> объект ( Factory ),’ app ‘=> объект ( Приложение ),’ errors ‘=> объект ( ViewErrorBag ),’ dil ‘=> объект ( Коллекция ),’ dils ‘=> null ,’ menu ‘=> объект ( Коллекция ),’ ceviriler ‘=> объект ( Коллекция ), ‘sayfa’ => null , ‘hizmetler’ => объект ( Коллекция ), ‘rehber’ => объект ( Коллекция ), ‘hizmet’ => объект ( Коллекция ) , ‘kvkk’ => объект ( Sayfa ), ‘sacekimi’ => object ( Sayfa ), ‘iletisim’ => объект ( IletisimAyarlari ), ‘hakkimizda object’ => object ( Sayfa ), ‘sosyal’ => объект ( Sosyal ), ‘blog’ => объект ( LengthAwarePaginator ))) в Compi lerEngine.php строка 59 | |
в CompilerEngine -> get (‘/ home / istanbulhairline / resources / views / tema / alt.blade.php’, array (‘__env’ => object ( Factory ), ‘app’ => объект ( Application ), ‘errors’ => объект ( ViewErrorBag ), ‘dil’ => объект ( Коллекция ), ‘dils’ => null , ‘menu’ => object ( Collection ), ‘ceviriler’ => object ( Collection ), ‘sayfa’ => null , ‘hizmetler’ => объект ( Коллекция ), ‘rehber’ => объект ( Коллекция ), ‘hizmet’ => объект ( Коллекция ), ‘kvkk’ => объект ( Sayfa ), ‘sacekimi’ => объект ( Sayfa ), ‘iletisim’ => object ( IletisimAyarlari ), ‘hakkimizda’ => объект ( Sayfa ), ‘ sosyal ‘=> объект ( Sosyal ),’ blog ‘=> объект ( LengthAwarePaginator ))) в представлении .php line 137 | ||
at View -> getContents () in View.php line 120 | ||
at View -> renderContents () in View.php line 85 | 90 at View -> render () в Response.php line 38 | |
at Response -> setContent ( object ( View )) в Response.php line 206 | ||
at Router -> prepareResponse ( object ( Request ), object ( View )) в Router.php line 572 | ||
на конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в SubstituteBindings.php строка 41 | ||
на SubstituteBindings -> handle ( объект ( Запрос ), объект ( Закрытие )) в Pipeline.php line 148 | ||
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в VerifyCsrfToken.php line 65 | ||
at VerifyCsrfToken -> handle ( object ( Request ), object ( Closure )) в Pipeline.php line 148 | ||
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в ShareErrorsFromSession.php строка 49 | ||
на ShareErrorsFromSession -> handle ( объект ( Запрос ), объект ( Закрытие )) в Pipeline.php строка 148 | ||
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в StartSession.php строка 64 | ||
в StartSession -> дескриптор ( объект ( запрос ), объект ( закрытие )) в конвейере Pipeline.php строка 148 | -> Освещение \ Конвейер \ {закрытие} ( объект ( Запрос )) в Pipeline.php строка 53 | |
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в AddQueuedCookiesToResponse.php line 37 | ||
at AddQueuedCookiesToResponse -> handle ( object ( Request ), object ( Closure )) в Pipeline.php 9069 906 -> Освещение \ Конвейер \ {закрытие} ( объект ( Запрос )) в Pipeline.php строка 53 | ||
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в EncryptCookies.php line 59 | ||
at EncryptCookies -> handle ( object ( Request ), object ( Closure )) в Pipeline.php line 148 | ||
на Конвейер -> Освещение \ Маршрутизация \ {закрытие} ( объект ( Запрос )) в конвейере .php line 102 | ||
at Pipeline -> then ( object ( Closure )) in Router.php line 574 | ||
at Router -> runRouteWithin Route ), объект ( Request )) в Router.php line 533 | ||
at Router -> dispatchToRoute ( object ( Request )) в Router.php | ||
на маршрутизаторе -> отправка ( объект ( запрос )) в ядре .php line 176 | ||
at Kernel -> Illuminate \ Foundation \ Http \ {closure} ( object ( Request )) в Pipeline.php line 30 | ||
at 904-42 Pipeline > Освещение \ Routing \ {closure} ( объект ( Запрос )) в TransformsRequest.php строка 30 | ||
в TransformsRequest -> handle ( объект ( Запрос объекта), ( Закрытие )) в трубопроводе .php line 148 | ||
at Pipeline -> Illuminate \ Pipeline \ {closure} ( object ( Request )) в Pipeline.php line 53 | ||
at Pipeline> Illuminate \ Routing \ {closure} ( объект ( Запрос )) в TransformsRequest.php строка 30 | ||
в TransformsRequest -> handle ( объект ( Запрос ), объект ( Запрос ), объект Замыкание )) в трубопроводе .php line 148 | ||
at Pipeline -> Illuminate \ Pipeline \ {closure} ( object ( Request )) в Pipeline.php line 53 | ||
at Pipeline> Illuminate \ Routing \ {closure} ( объект ( Запрос )) в ValidatePostSize.php строка 27 | ||
в ValidatePostSize -> дескриптор ( объект ( запрос 2), 906 Замыкание )) в трубопроводе .php line 148 | ||
at Pipeline -> Illuminate \ Pipeline \ {closure} ( object ( Request )) в Pipeline.php line 53 | ||
at Pipeline> Illuminate \ Routing \ {closure} ( объект ( Запрос )) в CheckForMainastedMode.php строка 46 | ||
в CheckForMain maintenanceMode -> дескриптор ( объект ( запрос 2 объект ), объект Замыкание )) в трубопроводе .php line 148 | ||
at Pipeline -> Illuminate \ Pipeline \ {closure} ( object ( Request )) в Pipeline.php line 53 | ||
at Pipeline> Illuminate \ Routing \ {closure} ( object ( Request )) в Pipeline.php line 102 | ||
at Pipeline -> then ( object ( Closure )) in Kernel.php строка 151 | ||
at Ядро -> sendRequestThroughRouter ( объект ( запрос )) в ядре .php строка 116 | ||
на Ядро -> дескриптор ( объект ( запрос )) в index.php строка 59 |
Общий коэффициент теплопередачи
Теплопередача через поверхность подобно стене можно рассчитать как
q = UA dT (1)
где
q = теплопередача (Вт (Дж / с), БТЕ / ч)
U = общее тепло Коэффициент передачи (Вт / (м 2 K), BTU / (фут 2 ч o F) )
A = площадь стены (м 2 , фут 2 )
dT = (t 1 — t 2 )
= разница температур по стене ( o C, o F)
Общий коэффициент теплопередачи для a многослойная стена, труба или теплообменник — с потоком жидкости на каждой стороне стены — можно рассчитать как
1 / UA = 1 / ч ci A i + Σ (s n / k n A n ) + 1 / h co A o (2)
, где
U = общий коэффициент теплопередачи (Вт / (м 2 K) , БТЕ / (фут 2 ч o F) )
к n = теплопроводность материала в слое n (Вт / (м · К), БТЕ / (час фут ° F) )
h ci, o = внутренняя или внешняя стенка отдельная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч 9 1485 o F) )
s n = толщина слоя n (м, футы)
Плоская стена с равной площадью во всех слоях — можно упростить до
1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)
Теплопроводность — k — для некоторые типичные материалы (не то, чтобы проводимость — это свойство, которое может изменяться в зависимости от температуры)
- Полипропилен PP: 0.1 — 0,22 Вт / (м · К)
- Нержавеющая сталь: 16 — 24 Вт / (м · К)
- Алюминий: 205 — 250 Вт / (м · К)
Преобразовать между Метрическая и британская единицы
- 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
- 1 Вт / (м 2 Вт / (м 2) K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)
Коэффициент конвективной теплопередачи — h — зависит от
- тип жидкости — газ или жидкость
- свойства потока, такие как скорость
- другие свойства, зависящие от потока и температуры
Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:
- Воздух — от 10 до 100 Вт / м 2 K
- Вода — 500 до 10 000 Вт / м 2 K
Многослойные стены — Калькулятор теплопередачи
Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.
A — площадь (м 2 , фут 2 )
t 1 — температура 1 ( o C, o F)
t 29 температура 2 ( o C, o F)
h ci — коэффициент конвективной теплоотдачи внутри стены (Вт / (м 2 K), Btu / ( ft 2 h o F) )
s 1 — толщина 1 (м, фут)
k 1 — теплопроводность 1 (W (м · К), БТЕ / (час · фут · ° F) )
с 2 — толщина 2 (м, фут)
k 2 — теплопроводность 2 ( Вт / (м · К), БТЕ / (ч · фут · ° F) )
с 3 — толщина 3 (м, фут)
k 3 — теплопроводность 3 (Вт / (м · К), БТЕ / (час фут ° F) )
h co — коэффициент конвективной теплоотдачи снаружи стены (Вт / (м 2 K), BTU / (ft 2 h o F) )
Тепловое сопротивление теплопередачи
Теплопередача Сопротивление можно выразить как
R = 1 / U (4)
, где
52
R = сопротивление теплопередаче (м 914 2 K / Вт, футов 2 h ° F / BTU)Стена разделена на участки термического сопротивления, где
- теплопередача между жидкостью и стеной является одним сопротивлением 90 013 сама стена представляет собой одно сопротивление
- передача между стенкой и второй жидкостью является тепловым сопротивлением
Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление стенке, уменьшая общий коэффициент теплопередачи.
Некоторые типичные сопротивления теплопередаче
- статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / Вт
- внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
- внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
- внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
- внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W
Пример — теплообмен в теплообменнике воздух-воздух
Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.
Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура в теплообменнике составляет 100 o C , а наружная температура составляет 20 o C .
Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на
U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)
Общий коэффициент теплопередачи для теплообменника из полипропилена
- с теплопроводностью 0,1 Вт / мК составляет
U PP = 1 / (1 / () 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )
= 24,4 Вт / м 2 K
Теплопередача
q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))
= 3904 W
= 3.9 кВт
- нержавеющая сталь с теплопроводностью 16 Вт / м · К :
U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )
= 25 Вт / м 2 K
Теплопередача
q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))
= 4000 Вт
= 4 кВт
- 11
- алюминий с теплопроводностью / мK :
U Al = 1 / (1 / ( 50 Вт / м 2 K 90 119) + ( 0.1 мм ) (10 -3 м / мм) / ( 205 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )
= 25 Вт / м 2 K
Теплопередача
q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))
= 4000 Вт
= 4 кВт
95 1
- 900 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)
Типичный общий коэффициент теплопередачи
- Свободный газ конвекции — свободный газ конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
- Свободный конвекционный газ — принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
- Свободная конвекция газа — конденсирующийся пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
- Принудительная конвекция (проточная) Газ — Свободная конвекция Газ: U = 3-10 Вт / м 2 K (пароперегреватели)
- Принудительная конвекция (проточный) Газ — Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
- Принудительная конвекция (проточный) газ — Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 1486 K (газовые охладители)
- Принудительная конвекция (проточный) Газ — конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
- Безжидкостная конвекция — принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
- Жидкостная конвекция — свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
- Без жидкости Конвекция — принудительный ток жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуарной воде) , вода с рулевым управлением)
- Конвекция без жидкости — конденсация водяного пара: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
- Принудительная жидкость (текущая) вода — газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера + излучение)
- Принудительная жидкость (текущая) вода — Свободная конвекционная жидкость: U = 500 — 1500 Вт / м 2 K (охлаждающий змеевик — перемешиваемый)
- Принудительная жидкость (текущая) вода — Принудительная жидкость (проточная вода): U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
- Принудительная жидкая (проточная) вода — Конденсирующий пар водяной: U = 1000 — 4000 Вт / м 2 K (конденсаторы водяного пара)
- Кипящая жидкая вода — свободный конвекционный газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
- Кипящая жидкая вода — принудительное течение жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
- Кипящая жидкая вода — Конденсирующий пар воды: U = 1500 — 6000 Вт / м 2 K (испарители паровые / вода)