Сколько ватт одна секция алюминиевого радиатора: Мощность секции алюминиевого радиатора — Всё об отоплении

Содержание

биметаллические, алюминиевые, стальные, чугунные батареи, видео и фото

Чтобы отопление жилища было эффективным, следует купить качественные его элементы. Перед этим – осуществить правильный расчет их мощности.

При расчетах следует учитывать теплопотери жилья.

Вычисления производятся с учетом:

  • площади комнаты;
  • высоты ее потолка;
  • числа окон,
  • длины помещения;
  • особенностей климата в регионе.

Рассчитать производительность приспособлений можно своими силами. Для этого надо знать, сколько кВт в 1 секции алюминиевого радиатора или чугунного, стального, биметаллического аналога.

Правильный выбор

  1. Производительность отопительных приспособлений должна составлять 10% от площади комнаты, если высота ее потолка составляет менее 3 м.
  2. Если он выше, то прибавляются 30%.
  3. Для торцевого помещения надо прибавить еще 30%.

Необходимые подсчеты

Пример теплопередачи алюминиевого изделия.

После определения тепловых потерь нужно определить производительность прибора (сколько кВт в стальном радиаторе или других приборах должно быть).

  1. Например, надо отопить помещение, площадью 15 м² и высотой потолка 3 м.
  2. Находим его объем: 15∙3=45 м³.
  3. Инструкция говорит, что для обогрева 1 м³ в условиях Средней полосы России надо 41 Вт тепловой производительности.
  4. Значит, объем комнаты перемножаем на данную цифру: 45∙41=1845 Вт. Такую мощность должен иметь отопительный радиатор.

Обратите внимание!
Если жилище расположено в регионе с суровыми зимами, надо полученную цифру умножить на 1.2 (коэффициент потери тепла).
Итоговая цифра составит 2214 Ватт.

Количество ребер

Далее надо рассчитать число секций в батарее. В инструкциях к изделиям указывается параметр каждого их ребра.

Из нее вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога – это 150-200 Вт. Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214:200=11.07. Значит, для обогрева комнаты нужна батарея из 11 секций.

Тепловая мощность

На фото – примерная теплопередача чугуна.

В комнате отопительные приспособления ставятся у наружной стены под оконным проемом. Вследствие этого, излучаемое прибором тепло распределяется оптимально. Холодный воздух, поступающий от окон, блокируется нагретым потоком, идущим наверх от радиатора.

Батареи из чугуна

Чугунные аналоги имеют такие плюсы:

  • обладают продолжительным эксплуатационным ресурсом;
  • имеют высокий уровень прочности;
  • они устойчивы к поражению коррозией;
  • отлично подходят для применения в коммунальных системах, работающих на низкокачественном теплоносителе.
  • сейчас производители изготавливают чугунные батареи (цена их выше, чем обычных аналогов), имеющие улучшенный внешний вид, благодаря использованию новых технологий отливки их корпусов.

Недостатки изделий: большая масса и тепловая инерционность.

Нижняя таблица озвучивает, сколько кВт в чугунном радиаторе, исходя из его модели.

Модель радиатора Тепловая мощность одной секции в Ваттах
МС-140/М-2 160
МС-140/М-300 117
МС-90 130
Т-90/М 127

Обратите внимание!
Чтобы отопить комнату, площадью 15 м², мощность, то есть кВт чугунного радиатора, должно быть не менее 1.5. Иными словами, батарея должна состоять из 10-12 секций.

Радиаторы из алюминия

Так меняется теплоотдача алюминиевой продукции.

Изделия из алюминия имеют большую тепловую мощность, чем аналоги из чугуна. При вопросе о том, сколько кВт в одной секции алюминиевого радиатора, специалисты отвечают, что она доходит до 0.185-0.2 кВт. В итоге для нормативного уровня прогревания пятнадцатиметрового помещения будет достаточно 9-10 секций алюминиевых секций.

Преимущества таких приборов:

  • легкий вес;
  • эстетичный дизайн;
  • высокий уровень теплопередачи;
  • температурой можно управлять своими руками при помощи термостатических вентилей.

Но изделия из алюминия не имеют такой прочности, как аналоги чугунные, например масляный радиатор 2 кВт. Поэтому они чувствительны к скачкам рабочего давления в системе, гидравлическим ударам, излишне высокой температуре носителя тепла.

Обратите внимание!
Когда у воды уровень рН (кислотность) повышенный, алюминий выделяет много водорода.
Это негативно влияет на наше здоровье.

Исходя из этого, такие приборы желательно применять в обогревательной системе, теплоноситель в которой обладает нейтральной кислотностью.

Биметаллические изделия

Строение биметаллического изделия.

Прежде чем выяснить, сколько кВт в 1 секции биметаллического радиатора, следует учесть, что такие батареи обладают похожими эксплуатационными параметрами с алюминиевыми аналогами. Однако у них нет минусов, им свойственных.

Это обстоятельство обусловила конструкция приборов.

  1. Они состоят из медных либо стальных труб, по которым течет теплоноситель.
  2. Трубки спрятаны в алюминиевом пластинчатом корпусе. В итоге вода, циркулирующая внутри, с алюминием корпуса не взаимодействует.
  3. Исходя из этого, кислотные и механические характеристики носителя тепла на работу и состояние прибора никоим образом не влияют.

Именно стальные трубы сообщают биметаллическому изделию отличные технические характеристики.

Благодаря стали труб приспособление имеет высокую прочность. Повышенную теплоотдачу обеспечивают внешние ребра из алюминия. Пытаясь узнать, сколько кВт в стальном радиаторе, учтите, что биметалл имеет самую высокую теплоотдачу – около 0.2 кВт на одно ребро.

Вывод

Выяснив, сколько кВт в 1 секции стального радиатора либо аналога из другого металла, вы сможете рассчитать теплопередачу приобретаемой продукции. Это позволит вам обустроить эффективную отопительную систему в своем жилище.

Видео в этой статье продолжает наглядно информировать вас по теме.

Расчет алюминиевого радиатора на примере 1 комнаты

03.01.18

Расчет алюминиевого радиатора на примере 1 комнаты

Нельзя просто прийти в магазин и купить радиатор, даже если он очень сильно понравился и стоит совсем недорого. Дело в том, что подобная покупка требует точного расчета, из ориентации на различные критерии. Предположим, что нами выбирается радиатор отопления для комнаты в 16 квадратных метров, которая расположена на северной стороне дома, имеет одно большое окно и две ее стены выходят на улицу.

При этом алюминиевый радиатор отопления, в зависимости от количества секций, может иметь разную мощность. Поэтому первое, что требуется посчитать — это мощность, подходящую на условную квадратуру, при высоте потолков до трех метров. Для этого стоит следовать одному простому правилу: В среднем, чтобы протопить 1 квадратный метр помещения, требуется от 70 до 100 Вт мощности. Экономить не будем, и возьмем 100 Вт на 1 квадратный метр. При этом в нашей комнате 16 квадратных метров, а, значит, нам потребуется 1600 условных ватт мощности одной батареи.

Все бы ничего, но есть правило, что если расчетная комната имеет стены, смежные с улицей, есть окно, а сам дом находится на северной стороне, то к полученному результату придется прибавить еще 30 процентов. Исключения могут составить только комнаты частично жилые или нежилые вовсе. Так вот, исходя из нашего запаса, получаем, что нам для комнаты в 16 квадратных метров потребуется примерная мощность радиатора, равная 2000 Вт. Купить радиаторы отопления с такой мощностью не составит труда.

В среднем, 2000 ватт мощности будут представлять собой радиатор, состоящий из 14 секций. При этом нужно условиться, что если мы будем использовать радиаторы отопления с теплым полом, то количество секций можно снизить до 12. Однако отечественные радиаторы отопления «Tipido»  имеют высокую теплоотдачу до 210 Вт, и для обогрева комнаты в 16 квадратных метров достаточно будет 10 секций.  

Читайте о:

Сколько реальных кВт тепла в одной секции радиатора

Обновлено: 11 февраля 2021.

Сколько кВт в 1 секции чугунного, биметаллического, алюминиевого или стального радиатора? Реальное количество киловатт, которое пишут производители, не соответствует действительности. А это очень важно! Используя завышенные данные вы не сможете рассчитать количество секций.

На рынке представлены четыре вида батарей отопления – чугунные, биметаллические, алюминиевые и стальные. Они отличаются дизайном, объемом, размерами и стоимостью. Но прежде всего вам важно знать, их теплопроизводительность – от этого зависит, насколько хорошо они будут обогревать помещение.

Что нужно знать про мощность радиаторов?

Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.

Наглядный пример:

Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.

Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.

Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).

Зная значение реальной мощности можно подсчитать необходимое количество секций в онлайн-калькуляторе.

Сколько кВт в одной секции алюминиевого радиатора

Тепловая мощность секции алюминиевого радиатора зависит от объема воды, которая находится в ней. Стандартные объемы – 0,35 и 0,5 л.

Алюминиевые батареи отдают тепло на 50-60% за счет излучения и на 40-50% в виде конвекции. Отсекатель воздуха усиливает конвекцию на 20-25%, что повышает теплоотдачу.

При температуре воздуха 20-24 °С и воды в контуре 65-70 °С тепловая мощность одной алюминиевой секции составляет:

  • Объем 0,35 л., без отсекателя – 0,1-0,12 киловатт;
  • Объем 0,35 л., с отсекателем – 0,12-0,13 киловатт;
  • Объем 0,5 л., без отсекателя – 0,155-0,170 киловатт;
  • Объем 0,5 л., с отсекателем – 0,170-0,200 киловатт.

 

Точное количество теплоотдачи сложно назвать – оно зависит от особенностей конструкции, диаметра труб, толщины ребер. На производительность влияет тип подключения батареи, скорость прокачки воды, загрязненность внутренних поверхностей.

Алюминиевый радиатор без отсекателей воздуха.

Сколько кВт в одной секции чугунного радиатора

Производительность тепла чугунного радиатора зависит от объема воды, толщины стенок, наличия ребер, высоты и ширины секции. Существует несколько стандартных моделей чугунных батарей, заявленная теплоотдача одной секции которых составляет:

  • МС-140 – 175 Вт;
  • МС 140-500 – 195 Вт;
  • МС 140-300 – 120 Вт;
  • МС 110-500 – 150 Вт;
  • МС 100-500 – 135 Вт;
  • МС 90-500 – 140 Вт.

 

В классификации первое число обозначает ширину вертикального чугунного протока, второе – ее высоту.

Стандартный 6-секционный чугунный радиатор МС-140-500.

Современные чугунные батареи отличаются от стандартных изделий марки МС. Они могут иметь другие размеры и дизайн, есть модели с отсекателями воздуха. Производители заявляют производительность одной секции в пределах от 150 до 220 Вт.

Если показатели тепловой мощности приводятся для разницы температур ΔТ в 60-70 градусов, они отличаются от реальных.

Для батарей с температурой воды 55-60 °С реальная производительность составит 75-85%, для батарей с температурой воды 65-70 °С – порядка 85-90% от указанной в спецификации производителя.

Сколько киловатт в одной секции биметаллического радиатора

Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.

Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Соответственно, чтобы однозначно ответить на вопрос сколько квт в 1 секции биметаллического радиатора, нужно знать все условия. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.

Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:

  • 200 мм – 0,5-0,6 кВт;
  • 350 мм – 0,1-0,11 кВт;
  • 500 мм – 0,14-0,155 кВт.

 

Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:

  • 200 мм – 0,6-0,7 кВт;
  • 350 мм – 0,115-0,125 кВт;
  • 500 мм – 0,17-0,19 кВт.

 

Радиатор стальной: сколько киловатт в 1 секции

Стальные радиаторы принципиально отличаются от чугунных, алюминиевых и биметаллических. Они изготавливаются не отдельными секциями, а в виде цельного нагревательного прибора.

Тепловая производительность стального радиатора зависит от его высоты, ширины, количества конвекторов. Различают три типа радиаторов:

  • Тип 11 – один конвектор;
  • Тип 22 – два конвектора;
  • Тип 33 – три конвектора.

 

Для удобства приводим таблицу тепловой мощности стальных радиаторов (значения приведены в Вт).

Таблица теплоотдачи стальных радиаторов.

Как и в предыдущем случае, приведенные значения номинальные. Для теплоносителя температурой 55-60 °С реальная теплоотдача составит 75-85%, для 65-70 °С – 85-90%.

В статье мы приводим реальные значения, сколько киловатт тепла может давать одна секция радиатора. Они меньше чисел, указываемых производителями, но мы не обманываем наших читателей.

Не забудьте поделиться публикацией в соцсетях!


На сколько рассчитана одна секция алюминиевого радиатора

При расчете необходимого количества тепла учитываются площадь отапливаемого помещения из расчета из расчета требуемого потребления 100 ватт на квадратный метр. Кроме того учитывается ряд факторов, влияющих на суммарные теплопотери помещения, каждый из этих факторов вносит свой коэффициент в общий результат расчета.

Такая методика расчета включает практически все нюансы и базируется на формуле довольно точного определения потребности помещения в тепловой энергии. Остается полученный результат разделить на значение теплоотдачи одной секции алюминиевого, стального или биметаллического радиатора и полученный результат округлить в большую сторону.

Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

Кроме них:

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
  4. если потолок равен 3 м, то параметры умножаются на 1.05;
  5. при высоте 3.5 м он составляет 1.1;
  6. при показателе 4 м – это 1.15;
  7. высота стены 4.5 м – коэффициент равен 1.2.
  8. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.

Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

В данном случае:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

Где:
  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

Например:

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
  6. 50% — коэффициент составляет 1.2;
  7. 40% — 1.1;
  8. 30% — 1.0;
  9. 20% — 0.9;
  10. 10% — 0.8.
  11. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
  12. +35 = 1.5;
  13. +25 = 1.2;
  14. +20 = 1.1;
  15. +15 = 0.9;
  16. +10 = 0.7.
  17. К5 указывает на корректировку при наличии наружных стен.Например:
  18. когда она одна, показатель равен 1.1;
  19. две наружные стены – 1.2;
  20. 3 стены – 1.3;
  21. все четыре стены – 1.4.
  22. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
  23. неотапливаемого чердака – коэффициент 1.0;
  24. чердак с обогревом – 0.9;
  25. жилая комната – 0.8.
  26. К7 – это коэффициент, который указывает на высоту потолка в комнате:
  27. 2.5 м = 1.0;
  28. 3.0 м = 1.05;
  29. 3.5 м = 1.1;
  30. 4.0 м = 1.15;
  31. 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Одна биметаллическая секция обогревает полтора или два квадратных метра помещения, что сообщено в тактико — технических данных в документации к самому радиатору.

Таким образом, если десять квадратов, то с запасом будет достаточно радиатора с пятью секциями. А вот если квадратов сто, к примеру, то секций потребуется пятьдесят, и более, что будет еще зависеть от системы отопления, расположения стояков, высоты потолков, тепло — изоляции помещения, количества окон, типа вентиляционной системы, и так далее. Но для нашего примера достаточно будет пятидесяти секций. Теперь делим это число на количество секций в одном радиаторе Таким образом мы получим искомое число. К примеру если секций по пять, то десять радиаторов, а если по десять, то пять радиаторов.

Хочется порекомендовать, что от количества секций в первую очередь будет зависеть оплата за отопление, так как после согласования проекта, счет за потребленное отопление будет приходить именно исходя из количества, типа площади радиаторов.

Сразу же надо отметить ряд важных моментов:

Мощность каждой секции радиатора указана в паспорте изделия.

Радиаторы могут быть биметаллическими, чугунными, алюминиевыми, стальными, теплоотдача разная, более того и сами радиаторы одного типа разные.

При расчёте количества секций радиаторов надо учитывать как утеплено и из каких материалов построено здание.

Стеклопакеты установлены, или обычные окна.

Комната с балконом и без оного.

Количество окон и дверей в помещении.

Температура «за бортом» (средний показатель).

Одно дело дом (квартира) в Якутии и другое дело в Крыму, на квартиры в доме одной серии количество секций радиаторов будет разным.

Расчёт секций радиатора можно высчитать и по площади и по объёму конкретного помещения.

Точные расчёты с учётом всех данных (см. выше) сложны.

Чаще всего рассчитывают количество секций радиаторов по площади помещений без учёта высоты потолков, то есть отталкиваются от средних значений (2.40-2.60-т).

Делается это так:

Площадь помещения (длина на ширину) умножается на 100-о Вт, 100-о Вт это тепловая энергия необходима для обогрева одного квадрата помещения, прописанная в строительных нормах (правилах).

И полученная цифра делится на теплоотдачу одной секции батареи.

Площадь помещения 30-ь кв метров.

30 х 100 = 3000-и Вт.

Допустим Вы купили чугунный радиатор с межосевым размером 300-а мм.

Теплоотдача каждой секции у такого радиатора 140-к Вт.

3000 : 140 = 21 с «хвостом», округляем в бОльшую сторону, получаем цифру 22-е секции.

Конечно в этом случае устанавливают несколько радиаторов этого типа на такое помещение, но количество секций мы уже высчитали.

Сколько м2 отапливает одна секция?

Если тот же радиатор который приводил в пример, то делаем следующее:

30-ь кв м делим на 22-а = 1,36-ь кв метров отапливает одна секция именно этого радиатора.

Сколько м2 отапливает одна секция?

Теплотехника — сложная наука и должна учитывать множество факторов, таких как уровень тепловых потерь, количество проемов и их площадь (окон и дверей), материал стен, степень утепленности, географическое расположение объекта. Но при всей сложности практика выработала соотношение:

  • на отопление 1 м2 площади жилого помещения необходимо 0,1 кВт мощности радиатора.

Соответственно, зная площадь отапливаемого помещения легко можно посчитать необходимую мощность радиатора. К примеру, для помещения площадью 20 м2 необходим радиаторы с суммарной мощность в 20 м2 х 0,1 кВт/м2 = 2 кВт.

Так как сейчас очень много видов и типов радиаторов как по размеру, материала изготовления, форме, приобретая их в торговой сети, узнайте мощность одной секции радиатора. Обычно эта информация указывается в сертификате или паспорте радиатора.

Как рассчитать количество секций радиатора на помещение?

Зная всю выше описанную информацию очень легко определить количество секций. Для этого Вам вполне достаточно поделить необходимую суммарную мощность радиаторов на мощность одной секции выбранного вами радиатора. К примеру, Вы выбрали алюминиевый радиатор с теплоотдачей 0,205 кВт. Соответственно, Вам нужно 2 кВт / 0,205 кВт = 9,8 секций.

При этом нужно сделать небольшой запас мощности в 20-30 % радиаторов и оптимальное количество секций радиаторов в нашем примере составит 12 шт.

КАК РАСЧИТАТЬ КОЛИЧЕСТВО СЕКЦИЙ РАДИАТОРА НА ПОМЕЩЕНИЕ

Чтобы грамотно спроектировать отопление дома, нужно знать точное количество секций радиаторов отопления, которые будут установлены во всех помещениях. Расчетом количества секций радиатора мы сегодня и займемся, для этого нам необходимо знать площадь помещения, в котором будет установлен радиатор, и мощность радиаторов в кВт. Пусть, к примеру, это будет комната 20 квадратных метров, а мощность наших радиаторов 203 Вт (это мощный алюминиевый радиатор Royal Thermo Evolution 500).

Согласно «Строительным нормам и правилам» на 1 квадратный метр помещения нужно 100 ватт мощности радиаторов отопления. Таким образом общую площадь помещения в метрах (длину помещения умноженную на ширину помещения в метрах) умножаем на 100 ватт. И получаем количество ватт, необходимое для Вашей площади помещения. Для нашего примера — 20кв.м. умножаем на 100 ватт, получаем 2000 ватт. Полученное число разделим на мощность одной секции радиатора (как правило 170-210 Вт) и получим необходимое число секций радиатора отопления для данного помещения. Если число получилось дробное — округлите его в большую сторону. Для нашего примера 2000 ватт разделим на 203 ватта, получим 9,85 секций. Значит для нашего примера мы должны взять 10 секций радиатора Royal Thermo Evolution 500.

Также если помещение находится на углу дома или в торце, то данное число секций радиаторов умножают на коэффициент 1,2. Например, вместо 10 секций берут 12 секций на такое помещение. Также на этот коэффициент умножают число секций радиаторов для ванной комнаты.

Если вы не знаете мощность секций радиатора, в таком случае исходите из средних стандартных показателей, согласно которым для обогрева 1,8 кв.м помещения необходима 1 секция радиатора. В таком случае для расчета количества секций просто разделите площадь комнаты на 1,8, полученное число округлите в большую сторону. Для нашего примера 20кв.м. разделим на 1,8 и получим 11 секций — требуемое количество секций для нашего помещения.

Если у Вас все таки остались вопросы по расчету количества секций радиатора отопления для помещения звоните нам по тел. +7 3532 22-88-56 и +7 3532 23-04-03.

Алюминиевые радиаторы отопления расчет количества секций

Расчет секций алюминиевых радиаторов на квадратный метр

Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.

Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.

Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.

Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.

Расчет секций алюминиевых радиаторов на квадратный метр

Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.

Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.

Кроме них:

  1. Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
  2. Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
  3. В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
    • если потолок равен 3 м, то параметры умножаются на 1.05;
    • при высоте 3.5 м он составляет 1.1;
    • при показателе 4 м – это 1.15;
    • высота стены 4.5 м – коэффициент равен 1.2.
  4. Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.

Сколько нужно секций алюминиевого радиатора?

Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:

В данном случае:

  • S – площадь помещения, где требуется установка батареи;
  • k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
  • P – мощность одного элемента радиатора.

При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.

Q = 20 х 100 / 0.138 = 14.49

В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.

Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:

  • если они закреплены под подоконником, то потери составят до 4%;
  • установка в нише моментально увеличивает этот показатель до 7%;
  • если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
  • закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.

Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.

Пример расчета

Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:

  • каждое окно добавляет к показателю 0.2 кВт;
  • дверь «обходится» в 0.1 кВт.

Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:

Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56

Где:

  • первый показатель – это площадь комнаты;
  • второй – стандартное количество Вт на м2;
  • третий и четвертый указывают на то, что в комнате по одному окну и двери;
  • следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
  • шестой – корректирующий коэффициент касаемо расположения батареи.

Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.

Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.

Вычисление по объему

Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.

Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.

Например:

  1. Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
  2. Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
  3. Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.

Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.

Тепловая мощность 1 секции

Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.

Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.

Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.

Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.

Формула, необходимая для этого выглядит следующим образом:

КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

  1. КТ – это то количество тепла, которое требуется данному помещению.
  2. S – площадь.
  3. К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
  4. К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
  5. К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
    • 50% — коэффициент составляет 1.2;
    • 40% — 1.1;
    • 30% — 1.0;
    • 20% — 0.9;
    • 10% — 0.8.
  6. К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
    • +35 = 1.5;
    • +25 = 1.2;
    • +20 = 1.1;
    • +15 = 0.9;
    • +10 = 0.7.
  7. К5 указывает на корректировку при наличии наружных стен.Например:
    • когда она одна, показатель равен 1.1;
    • две наружные стены – 1.2;
    • 3 стены – 1.3;
    • все четыре стены – 1.4.
  8. К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
    • неотапливаемого чердака – коэффициент 1.0;
    • чердак с обогревом – 0.9;
    • жилая комната – 0.8.
  9. К7 – это коэффициент, который указывает на высоту потолка в комнате:
    • 2.5 м = 1.0;
    • 3.0 м = 1.05;
    • 3.5 м = 1.1;
    • 4.0 м = 1.15;
    • 4.5 м = 1.2.

Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.

Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.

Чтобы не было жарко или холодно: как произвести расчет количества секций у алюминиевого радиатора отопления

Правильный расчёт — залог успешного создания системы отопления.

Он важен при использовании любых батарей, но особенно — алюминиевых.

Для расчета мощности радиатора используется несколько методов.

Мощность одной секции алюминиевого радиатора

Заявленные в паспорте изделия параметры не всегда верно отображаются в реальности. Это связано со множеством внешних условий, мешающих идеальной работе прибора.

Фото 1. Алюминиевый радиатор отопления. Прибор состоит из нескольких секций, количество которых можно изменить.

Теплоотдача алюминиевых батарей соответствует заявленным в документах цифрам, если между температурами воздуха и воды составляет 70 °C. Расчёт выглядит следующим образом:

  • To — температура обратки.
  • Tp— подачи.
  • TB— воздуха в комнате.

Последнее значение выбирают по ГОСТ. В большинстве случаев это 22 °C. Для определения нагрева теплоносителя формулу разворачивают:

Tp = (70 + 22) + 10.

Разница в 70 верна при теплоотдаче одной секции радиатора 500 мм в 200 Вт. При использовании 350 мм батарей значение составит 140 Вт.

Внимание! Оба показателя колеблются в пределах 20 Вт.

Методы расчёта мощности

Для определения значений используют 4 формулы:

  1. По линейным габаритам комнаты. Для этого нужно измерить её длину и ширину. По строительным нормам и правилам на каждые 10 квадратных метров необходим 1 кВт, поэтому площадь делят на 10. Этот вариант менее точен, поскольку не учитывает один важный показатель, учтённый в следующем вычислении.

  1. По полным габаритам, для расчёта которых также нужно измерить высоту помещения. СНиП предлагает умножить объём квартиры на 41 Вт. Так, для помещения 60 квадратов мощность равна: 60 * 2,7 * 41 = 6642 Вт.
  2. По конструкционным особенностям. Этот расчёт аналогичен предыдущему, но учитывает детали:
  • за каждое окно добавляют 0,2 кВт;
  • за двери — по 0,1 кВт;
  • сумму умножают на 1,3, когда квартира находится в углу;
  • на 1,5 если считают мощность для частного дома;
  • вспоминают «поправку», которая зависит от географического расположения объекта.
  1. Комплексный расчёт учитывает то же, что и конструкционный, а также:
  • толщину и материал утеплителя;
  • из чего сделаны пол, стены, потолок;
  • вентиляцию помещения, если есть.

Последний метод расчёта сложен, но даёт наиболее точный результат. Для вычислений рекомендуется пригласить специалиста. Он самостоятельно определит вид труб и радиаторов, которые следует разместить в определённой отопительной системе.

Справка. Лишь определив необходимую мощность, переходят к подсчёту количества секций батареи для обеспечения устойчивой работы и комфортных условий.

Как рассчитать количество секций радиатора по площади помещения

Усреднённые значения представлены в следующей таблице.

При использовании моделей за буквами Л необходимо добавить соответственно по 3 и 2 части к аналогичным значениям таблицы.

Принцип расчёта заключается в простой формуле:

K = Q/N, где

  • Q — общая теплоотдача системы отопления.
  • N — одной секции.

Например, при использовании А500 и общем значении мощности в 3515 Вт, количество секций составит: 3515/185 = 19. Несмотря на простоту расчёта, он не идеально точен. Желательно учитывать несколько тонкостей:

  • Полученные дробные числа округляют вверх: лучше иметь избыток, чем недостаток.
  • Следующее замечание касается исключительно частных домов. В паспорте алюминиевого радиатора значение напора рассчитаны для 70, реже 60 °C, что указано в документе. Нужно учитывать, что рабочая температура будет на 20 °C выше. В зданиях монтируют систему отопления, непригодную для подобных значений, поэтому эффективную теплоотдачу обязательно пересчитывают. Рекомендуется обратиться к специалисту, который учтёт все факторы.
  • В многоквартирных домах воду нагревают до меньших показателей, из-за чего требуется большее количество секций.
  • Рабочая мощность также зависит от способа включения радиатора в обвязку. Для батарей от 12 частей рекомендуется диагональная, а для остальных — боковая.

Расчёт необходимого числа секций радиатора — один из важнейших шагов в подготовке к созданию отопления. Это особенно сильно касается многоквартирных строений, в которых вычисления проводят для каждого помещения отдельно.

Особенности расчёта в частном доме

Заключаются в учёте различных факторов, из-за которых появляются теплопотери. Недостаточно просто вычислить мощность нагревателя, радиаторов, размер труб и прочие показатели, нужно также учитывать:

  • Способ монтажа устройства к системе. Коэффициент полезного действия двухтрубной обвязки составляет:
    • 98% при диагональном;
    • 87% при боковом;
    • 80% при нижнем подключении.
  • КПД однотрубного отопления составляет 80%, иногда меньше.
  • Регион проживания определяет мощность, которую требуется развивать поздней осенью, зимой и ранней весной. Чем севернее, тем больше показатель.
  • Расчёт радиатора должен включать потери, которые образуются из-за наличия некоторых устройств:
    • через дымоход уходит до 10% тепла;
    • неотапливаемый чердак теряет до 20%, а подвал — 10%;
    • стены и окна могут выпускать суммарно до 30% мощности.

Фото 2. Потери тепла в частном доме через разные части здания. Теплопотери необходимо учитывать при установке радиаторов.

Значения можно уменьшить, если выполнить несколько действий, касающихся стен, пола и потолка:

  • Когда окна смотрят на север, то их потери больше на 10%, в сравнении с другими.
  • Расположение радиатора относительно сторон света не влияет на мощность, но если они греются на солнце, то немного медленнее остывают.
  • Следует увеличить количество секций после расчётов по паспортным данным, поскольку действительная мощность изделий ниже. Это связано не только с потерями, описанными выше, но также небольшим завышением показателей производителем.

Лишь учтя все факторы, получится составить и смонтировать качественную обвязку с алюминиевыми радиаторами. Расчёты помогут точно посчитать достаточное количество секций батареи, учесть все потери.

Важно! При использовании дополнительных устройств, возможно увеличение необходимой мощности. Если включить термостат, нужно повысить показатель на 20—25%, поскольку прибор сможет вручную проконтролировать обогрев.

Полезное видео

Посмотрите видео, в котором рассказывается, как рассчитать мощность батарей отопления.

Тщательный расчёт поможет избежать возникновения разнообразных проблем. При сомнениях в правильности следует пригласить специалиста.

Калькулятор расчета количества секций радиаторов

Информация по назначению калькулятора

К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.

В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.

К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.

Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.

И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:

  • Стальные
  • Чугунные
  • Алюминиевые
  • Биметаллические

С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.

И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.

Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.

Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.

Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.

А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.

Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.

Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.

А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.

Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.

Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.

Общие сведения по результатам расчетов

  • К оличество секций радиатора — Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
  • К ол-во тепла, необходимое для обогрева — Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
  • К ол-во тепла, выделяемое радиатором — Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
  • К ол-во тепла, выделяемое одной секцией — Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.

Калькулятор работает в тестовом режиме.

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м 3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Как рассчитать количество радиаторов отопления?

Расчет радиаторов нужно выполнять правильно, иначе малое их количество не сможет достаточно прогреть помещение, а большое, наоборот, создаст некомфортные условия пребывания, и придется постоянно открывать окна. Известны разные методики расчета. На их выбор влияет материал батарей, климатические условия, обустройство дома.

Расчет количества батарей на 1 кв. м

Площадь каждой комнаты, где будут установлены радиаторы, можно посмотреть в документах на недвижимость или измерить самостоятельно. Потребность тепла для каждой комнаты можно узнать в строительных нормах, где приведено, что для отопления 1м2 в определенной зоне проживания потребуется:

  • для суровых климатических условий (температура достигает ниже -60 град.) – 150-200 Вт;
  • для средней полосы – 60-100 Вт.

Чтобы рассчитать, нужно умножить площадь (P) на значение потребности тепла. Учитывая эти данные, в качестве примера, приведем расчет для климата средней полосы. Чтобы достаточно отопить комнату в 16 кв. м, нужно применить расчет:

16 х 100 = 1600 Вт

Далее рассчитывается количество секций батарей (N) – полученное значение делиться на тепло, которое выделяет одна секция. Принимается, что одна секция выделяет 170 Вт, исходя из этого, проводится расчет:

Лучше округлить в большую сторону – 10 штук. Но для некоторых комнат целесообразней округлять в меньшую сторону, например, для кухни, в которой есть дополнительные источники тепла. Тогда будет 9 секций.

Расчеты можно провести по другой формуле, которая при этом аналогична выше представленным расчетам:

  • N – количество секций;
  • S – площадь комнаты;
  • P – теплоотдача одной секции.

Так, N = 16 / 170 * 100, отсюда N = 9,4.

Выбор точного количества секций биметаллических батарей

Они бывают нескольких видов, каждый из них имеет свою мощность. Минимальное выделение тепла достигает – 120 Вт, максимальное – 190 Вт. При расчете количества секций нужно учитывать необходимое потребление тепла в зависимости от места расположения дома, а также с учетом теплопотерь:

  • Сквозняки, которые происходят из-за некачественно выполненных оконных проемов и профиля окон, щелей в стенах.
  • Растраты тепла по пути следования теплоносителя от одной батареи к другой.
  • Угловое расположение комнаты.
  • Количества окон в помещении: чем их больше, тем больше теплопотери.
  • Регулярное проветривание комнат зимой также накладывает отпечаток на количество секций.

Для примера, если нужно обогреть комнату в 10 кв. м, расположенную в доме, находящемся в средней климатической полосе, то нужно приобрести батарею с 10 секциями, мощность каждой из них должна быть равна 120 Вт или ее аналог на 6 секций при теплоотдаче в 190 Вт.

Расчет количества радиаторов в частном доме

Если для квартир можно брать усредненные параметры потребляемого тепла, так как они рассчитаны на стандартные габариты комнаты, то в частном строительстве это неправильно. Ведь многие владельцы строят свои дома с высотой потолков, превышающей 2,8 метра, к тому же практически все помещения частного владения получаются угловыми, поэтому для их обогрева потребуется больше мощности.

В таком случае расчеты, основанные на учете площади помещения, не подходят: нужно применять формулу с учетом объема комнаты и делать корректировку, применяя коэффициенты уменьшения или увеличения теплоотдачи.

Значения коэффициентов следующие:

  • 0,2 – на этот показатель умножается полученное конечное число мощности, если в доме установлены многокамерные пластиковые стеклопакеты.
  • 1,15 – если установленный в доме котел работает на пределе своей мощности. В этом случае каждые 10 градусов нагреваемого теплоносителя понижают мощность радиаторов на 15%.
  • 1,8 – коэффициент увеличения, который нужно применить, если комната угловая, и в ней присутствует более одного окна.

Для расчета мощности радиаторов в частном доме применяется следующая формула:

  • V – объем помещения;
  • 41– усредненная мощность, необходимая для обогрева 1 кв. м частного дома.

Пример расчета

Если имеется комната в 20 кв. м (4х5 м – длина стен) с высотой потолков 3 метра, то ее объем легко рассчитать:

Полученное значение умножается на принятую по нормам мощность:

60 х 41 = 2460 Вт – столько требуется тепла, чтобы отопить рассматриваемую площадь.

Расчет количества радиаторов сводится к следующему (если учесть, что одна секция радиатора в среднем выделяет 160 Вт, а точные их данные зависят от материала, из которого изготовлены батареи):

2460 / 160 = 15,4 штуки

Примем, что всего нужно 16 секций, то есть нужно приобрести 4 радиатора по 4 секции на каждую стену или 2 по 8 секций. При этом не нужно забывать о коэффициентах корректировки.

Расчет отдачи тепла одного алюминиевого радиатора (видео)

В видео вы узнаете, как рассчитать теплоотдачи одной секции батареи из алюминия при разных параметрах входящего и выходящего теплоносителя.

Одна секция алюминиевого радиатора имеет мощность 199 Ватт, но это при условии, что заявленный перепад температур в 70 град. будет соблюдаться. Это означает, что на входе температура теплоносителя составляет 110 град., а на выходе 70 град. Помещение при таком перепаде должно прогреваться до 20 град. Обозначается эта разница температур DT.

В качестве примера, можно рассчитать этот параметр при следующих данных:

  • Температура теплоносителя на входе в радиатор – 85 град.;
  • Остывание воды при выходе из радиатора – 63 град.;
  • Обогрев помещения – 23 град.

Нужно сложить между собой два первых значения, разделить их на 2 и вычесть температуру помещения, наглядно это происходит так:

(85 + 63) / 2 – 23 = 52

Полученное число равняется DT, по предлагаемой таблице можно установить, что при нем коэффициент равняется 0,68. Учитывая это можно определить теплоотдачу одной секции:

199 х 0,68 = 135 Вт

Затем, зная теплопотери в каждом помещении, можно рассчитать, сколько всего нужно секций радиаторов для установки в определенную комнату. Даже если по расчетам получилась одна секция, нужно устанавливать минимум 3, иначе вся система отопления будет выглядеть нелепо и достаточно не обогреет площадь.

Расчет радиаторов отопления. Расчет количества секций радиатора

При подготовке к ремонту или строительству дома следует провести грамотный расчет радиаторов отопления. Эти вычисления позволят точно узнать необходимое количество секций для создания комфортной температуры в комнате даже при сильных морозах за окном. От их правильности напрямую зависит не только равномерность обогрева помещения, отсутствие в нем холодных мест, но и экономия энергоресурсов. Необходимую мощность отопительных приборов можно определить различными способами самостоятельно.

Как произвести расчет радиаторов отопления частного дома?

Для правильного проведения расчета площади радиатора учитывают:

  • размеры помещения, которое планируется отапливать. Причем следует высчитывать данные для каждой комнаты индивидуально;
  • материал, из которого изготовлена батарея;
  • мощность одной секции (указывается производителем), их максимально допустимое количество.

Секционными бывают радиаторы:

Очень точный результат дает расчет секций радиаторов отопления по площади помещения. По стандартам считается, что вполне достаточно 100 Вт на 1 м.кв. Исходя из этого, вычисление делается по формуле:

Q=S×100, где Q – нужная теплоотдача, а S – площадь комнаты.

Узнать, сколько секций придется приобрести, поможет следующая формула:

N=Q/Qус, где N – необходимое количество секций батареи, а Qус – мощность одной, указанная производителем в техпаспорте.

Это очень простое вычисление применимо для комнат с высотой потолка 2,7 м. Если имеется индивидуальная высота, то более точные результаты расчета количества радиаторов поможет определить объем помещения. Здесь используется стандартный показатель – 41 Вт на 1 м.куб. (для панельного дома) или 34 Вт (для кирпичного). Исходя из этого, применяется формула:

Q=S×h×40 (34), где h – высота потолка, остальные значения те же, что и в формуле выше.

Еще более достоверный результат дают вычисления, учитывающие особенности комнаты, где планируется установить радиатор. В ее основе – площадь помещения и все те же 100 Вт на м.кв.:

Q= S×100×А×В×С×D×Е×F×G×H×I×J, где:

  1. А – количество стен, выходящих на улицу: одна – коэффициент 1; две – 1,2; три – 1,3; четыре – 1,4.
  2. В – расположение комнаты относительно сторон света: север или восток – 1,1; юг или запад – 1.
  3. С – уровень утепления стен: средний (два кирпича или поверхностное) – 1; без утеплителя – 1,27; высокий – 0,85.
  4. D – климатические особенности местности по данным самой холодной декады января: -35°С и ниже – 1,5; от -25 до -35 – 1,3; до -20 – 1,1; не ниже -15 – 0,9; не ниже -10 – 0,7.
  5. Е – высота потолков: до 2,7 м – 1; 2,8-3 – 1,05; 3,1-3,5 – 1,1; 3,6-4 – 1,15; более 4,1 м – 1,2.
  6. F – наличие помещения сверху, его тип: чердак без отопления – 1; утепленные кровля или чердак – 0,9; отапливаемая комната – 0,8.
  7. G – тип окон: простые двойные деревянные рамы – 1,27; однокамерный стеклопакет – 1; двойной или однокамерный, заполненный аргоном – 0,85.
  8. Н рассчитывается из соотношения площади окон к площади помещения: менее 0,1 – 0,8; 0,11-0,2 – 0,9; 0,21-0,3 – 1; 0,31-0,4 – 1,1; 0,41-0,5 – 1,2.
  9. I – схема, по которой подключается батарея: диагональное, подача сверху, обратка снизу – 1; одностороннее, подача сверху, обратка снизу – 1,03; двустороннее, подача и обратка снизу – 1,13; диагональное, подача снизу, обратка сверху – 1,25; одностороннее, подача снизу, обратка сверху – 1,28; одностороннее, подача и обратка снизу – 1,28.
  10. J зависит от того, насколько свободно нагретый воздух от батареи циркулирует: радиатор открыт со всех сторон – 0,9; над ним подоконник – 1; сверху стеновая ниша – 1,07; сверху подоконник, а с фронтальной стороны частично декоративный кожух – 1,12; полностью в декоративном кожухе – 1,2.

Благодаря этому, более сложному, вычислению и правильно подставленным в формулу коэффициентам, получится наиболее точный расчет мощности радиатора, когда все нюансы комнаты будут учтены. Чтобы узнать, сколько секций понадобится, останется лишь разделить полученное значение на мощность одной, которую указывает производитель.

Для того чтобы не приходилось производить все вычисления на бумажке, сейчас в интернете можно провести расчет радиаторов калькулятором, позволяющим просто прописать свои значения и получить точный результат.

Расчет радиаторов отопления по площади

Самым простым считается расчет радиаторов отопления по площади комнаты. Если высота ее потолков вписывается в рамки 2,7-3 м, то после вычисления ее площади получившийся результат просто умножается на 100 Вт (стандартный принятый показатель для обогрева 1 м.кв.). Возможные теплопотери компенсируются накидыванием еще 20% сверху. Чтобы узнать, сколько секций радиатора понадобится, итоговое значение делится на теплоотдачу одной. Если в помещении много окон, его стены граничат с улицей, то следует накинуть еще 15% тепловой мощности, а значит увеличить количество секций.

Дополнительные факторы влияющие на расчет

Если вы хотите получить наиболее точные данные по мощности требуемого радиатора для конкретного помещения, то обязательно учитывайте:

  • количество окон, их площадь, тип;
  • материал стен, их толщину;
  • местный климат;
  • высоту потолков;
  • сколько стен комнаты выходит на улицу, есть ли отапливаемые помещения сверху и снизу;
  • материал, из которого изготовлен сам радиатор.

Расчет мощности радиатора и количества его секций желательно проводить, принимая во внимание все эти факторы, влияющие на теплопотерю. Потратив чуть больше времени на сложные расчеты, вы сможете быть уверены в комфортных и уютных условиях проживания в доме или квартире даже самой холодной зимой.

King Electric | Определение размеров цепи нагревателя

Полезные советы

Тепловентилятор или плинтус?

Место: Обогреватель плинтуса занимает больше места на стене, чем обогреватель с принудительной подачей вентилятора, что может вызвать проблемы с размещением мебели. (Например: обогреватель Pic-A-Watt® мощностью 2250 Вт будет обеспечивать столько же тепла, сколько плинтус высотой 9 футов.)

Комфорт: Нагреватель с принудительным вентилятором нагревает комнату за несколько минут, тогда как плинтус требует от 30 до 40 минут.Нагреватель с принудительной подачей воздуха также будет поддерживать более равномерную температуру, поскольку вентилятор будет циркулировать воздух по комнате. Это снижает резкость колебаний температуры / холода.

Шум: Плинтусный обогреватель не имеет движущихся частей, поэтому он тише, чем тепловентилятор. В небольшом обогревателе Pic-A-Watt® используется вентилятор с короткозамкнутым ротором, поэтому его почти не слышно.

КПД: Плинтус мощностью 1500 Вт потребляет столько же электроэнергии, что и тепловентилятор мощностью 1500 Вт.Разница в том, что тепловентилятор дает более равномерное тепло по всему помещению, тем самым уменьшая расслоение воздуха (горячий воздух поднимается, а не смешивается с более холодным воздухом пола). Этот процесс заставляет вас чувствовать себя прохладнее, заставляя установить термостат плинтуса на более высокую температуру, в результате чего он работает чаще, что потребляет больше электроэнергии, чем тепловентилятор того же размера. Каждый поворот термостата на 1 ° увеличивает счет за электроэнергию на 3,1%. Таким образом, плинтус, установленный на 75 ° F, будет стоить вам на 15,5% больше, чем тепловентилятор, установленный на 70 ° F.

Какой тепловентилятор выбрать?

Использование: Если обогреватель будет часто работать и использоваться в качестве основного обогрева дома, King рекомендует использовать обогреватели со стальными элементами, такие как Pic-A-Watt®. На эти элементы предоставляется пятилетняя гарантия, и они выдержат суровые условия повседневного использования. Для дополнительного или случайного использования подойдут элементы с открытой спиралью. Если бюджетные ограничения имеют первостепенное значение, нагреватели с открытым змеевиком являются наименее дорогими.

Шум: Пропеллерный вентилятор будет производить больше шума, чем вентилятор с короткозамкнутым ротором.Элементы с открытым змеевиком производят больше шума, чем элементы из стальных масс (Pic-A-Watt®) из-за скорости теплообмена с воздухом. Для больших помещений два небольших обогревателя будут работать тише, чем один большой обогреватель.

Управление температурным режимом в космосе

Abe Hertzberg

Управление температурным режимом в космосе Эйб Херцберг Транспортные средства и среды обитания, связанные с космической индустриализацией и эксплуатацией неземных ресурсов, неизбежно потребуют энергетических систем, намного превышающих текущие потребности научных и исследовательских миссий.Из-за большой продолжительности этих миссий невозможно рассмотреть системы, включающие расходные материалы, такие как невозобновляемые топливные элементы. Таким образом, эти миссии становятся заложниками возможностей энергосистем с непрерывным энергоснабжением. Эти системы должны будут обеспечивать от сотен киловатт до десятков мегаватт электроэнергии для системы производства продукции, независимо от того, использует ли она наземное или неземное сырье.

Поскольку энергосистема будет располагаться в практически безвоздушной среде, отказ от отработанного тепла становится ее ограничивающим аспектом.В следующих параграфах я рассмотрю космические, астероидные и лунные источники энергии. системы, а также способность существующих технологий рассеивать это тепло в безвоздушной среде космоса.

Следует отметить, что в условиях вакуума конвекция больше не доступна, и единственным механизмом отвода тепла является излучение. Излучение соответствует закону Стефана-Больцмана

E = T 4
, где
E = отклоненная энергия, постоянная Стефана-Больцмана,
= 5.67 Вт · м -2 K -4
T = температура, при которой излучается тепло

То есть общее количество излучаемого тепла пропорционально площади поверхности радиатора. И чем ниже температура излучения, тем больше должна быть площадь радиатора (и, следовательно, масса радиатора для данной конструкции).

Радиатор может отводить тепло только тогда, когда температура выше температуры окружающей среды. В космосе оптимальная эффективность излучения достигается за счет направления излучателя в свободное пространство.Излучающий по направлению к освещенной поверхности менее эффективен, а радиатор необходимо защищать от попадания прямых солнечных лучей.

Отвод тепла при низких температурах, например, в случае контроля окружающей среды и регулирования температуры в блоке обработки материалов, является особенно трудным. Следовательно, конструкция и работа системы отвода тепла имеют решающее значение для эффективной космической энергетической системы.

Space-Based Power Генерирующие системы

В предыдущей статье были подробно описаны космические энергетические системы.Солнечные фотоэлектрические системы имеют мощность до нескольких сотен киловатт. Ожидается, что диапазон выходной мощности солнечных тепловых систем составит от ста до нескольких сотен киловатт. Хотя в принципе эти энергосистемы могут быть расширены до мегаваттного диапазона, непомерно высокие требования к площади сбора и грузоподъемности, по-видимому, исключают такое расширение. Мегаваттная и мультимегаваттная ядерная энергия реакторы, адаптированные к космической среде, по-видимому, предлагают логичную альтернативу.В этой статье я рассматриваю только те нагрузки, которые эти три типа энергосистем возлагают на систему управления теплом.

Сами по себе солнечные фотоэлектрические элементы не будут обременять энергогенерирующую систему требованием прямого отвода тепла, так как низкая плотность энергии системы требует такой большой площади сбора, что позволяет отбрасывать ненужную лучистую энергию. Однако, если эти системы будут использоваться на околоземной орбите или на неземной поверхности, то потребуется большое количество оборудования для хранения энергии, чтобы обеспечить непрерывную подачу энергии (как устройства, не собирающие энергию в ночное время).А неэффективность даже самой лучшей системы накопления энергии в оба конца потребует, чтобы большая часть — возможно, 25 процентов — произведенной электроэнергии рассеивалась в виде отработанного тепла и при низких температурах. Предполагается, что солнечные тепловые системы, которые включают солнечный концентратор и систему динамического преобразования энергии, работают при относительно высоких температурах (от 1000 до 2000 K). Эффективность системы преобразования энергии будет находиться в диапазоне от 15 до возможно 30 процентов.Следовательно, мы должны учитывать отказ от 70–85 процентов собранной энергии. В Как правило, чем ниже термический КПД, тем выше температура отклонения и тем меньше излучаемый требуется площадь. Как и в случае с солнечными фотоэлектрическими системами, неэффективность системы накопления энергии должна быть столкнуться с системой отвода тепла, если не выбран высокотемпературный накопитель тепла.

Современные концепции ядерных энергогенерирующих систем включают реакторы, работающие с относительно системы преобразования энергии с низким КПД, которые отбрасывают практически все полезное тепло реактора, но с относительно высокая температура.Несмотря на бремя, которое эта низкая эффективность возлагает на использование ядерного топлива, Плотность энергии ядерных систем настолько высока, что не ожидается, что коэффициент использования топлива будет значительным.

Во всех этих системах выходная мощность, используемая производственной системой для управления окружающей средой и производство (за исключением небольшой фракции, которая может храниться в виде эндотермического тепла в изготовленных продукт) придется отбраковывать при температурах, приближающихся к 300 К.

Думаю, будет справедливо заявить, что на многих эскизах космических промышленных предприятий, которые я видел, энергосистема это немного больше, чем мультфильм, потому что в нем недостаточно деталей, чтобы решить проблему управления температурой.Мы должны научиться поддерживать приемлемую тепловую среду, потому что ожидается, что она станет доминирующей. инженерное рассмотрение в сложной заводской и жилой инфраструктуре.

В качестве примера серьезности этой проблемы рассмотрим случай простой атомной электростанции, у которой Эффективность преобразования энергии из тепловой в электрическую составляет примерно 10 процентов. Завод должен произвести 100 кВт полезной электроэнергии. Реактор работает при температуре около 800 К, а излучатель с излучательной способностью равен 0.85 будет весить около 10 кг / м 2 . Тепловая мощность, рассеиваемая реактор будет около 1 МВт. Согласно закону Стефана Больцмана, площадь радиатора должна составлять около 50 м 2 и массой примерно 500 кг. Это кажется вполне разумным.

Однако следует исходить из того, что электроэнергия, вырабатываемая электростанцией, поступает в системы жизнеобеспечения. и мелкомасштабное производство, в конечном итоге также придется рассеивать, но при гораздо более низкой температуре (около 300 К).Если предположить, что алюминиевый радиатор будет еще лучше, плотностью около 5 кг / м 2 , с коэффициентом излучения 0,85, в этом случае мы обнаруживаем, что область отвода тепла при низких температурах компонент 256 м 2 , массой около 1300 кг. (Используя закон Стефана-Больцмана [уравнение Стефана-Больцмана]) Следовательно, мы можем видеть, что Преобладающая проблема отвода тепла — это не проблема первичной электростанции, а проблема энергии, которая используется в жизнеобеспечение и изготовление, от которых необходимо отказаться при низких температурах.Использование отработанного тепла от АЭС для переработки может оказаться эффективной. Но, по иронии судьбы, это, в свою очередь, потребует большего поверхность радиатора для излучения отработанного тепла с более низкой температурой.

Системы отвода тепла

В этом разделе я буду иметь дело с системами, разработанными для удовлетворения требований отвода тепла при производстве и использовании электроэнергии. Эти системы отвода тепла в широком смысле можно разделить на пассивные или активные, бронированные или небронированные. Ожидается, что каждая из них будет играть определенную роль в космических системах будущего. Тепловые трубки: первая из них, называемая «тепловая трубка», обычно считается базовой системой, по которой оцениваются все остальные.Он имеет значительное преимущество в том, что он полностью пассивен и не содержит движущихся частей, что делает его исключительно подходящим для использования в космической среде. Для удобства читателя кратко опишу механизм работы базовой тепловой трубки. (См. Рисунок 36 [Компоненты и принцип работы обычной тепловой трубки].) Тепловая трубка представляет собой тонкую полую трубку, заполненную жидкостью, соответствующей температурному диапазону, в котором она должна работать. На горячем конце жидкость находится в паровой фазе и пытается заполнить трубку, проходя через трубку к холодному концу, где она постепенно конденсируется в жидкую фазу.Стенки трубки или соответствующие каналы, прорезанные в трубке, заполнены фитилеподобным материалом, который возвращает жидкость за счет поверхностного натяжения к горячему концу, где она повторно испаряется и рециркулирует.

По сути, система представляет собой небольшой паровой цикл, который использует разницу температур между горячим и холодным. концы трубки в качестве насоса для передачи тепла, в полной мере используя теплоту испарения конкретная жидкость.

Жидкость необходимо тщательно подбирать, чтобы она соответствовала диапазону рабочих температур.Например, при очень высоком температура металлического вещества с относительно высокой температурой испарения, такого как натрий или калий, может быть использовано. Однако этот выбор накладывает ограничение на низкотемпературный конец, поскольку, если жидкость замерзает до твердое вещество на низкотемпературном конце, работа будет остановлена ​​до тех пор, пока не произойдет относительно неэффективная теплопроводность. вдоль стен может растопить его. При низких температурах жидкость с низкой температурой испарения, например аммиак вполне может быть использован с аналогичными ограничениями.Температура не может быть настолько высокой, чтобы диссоциировать аммиак на горячем конце или настолько низкий, чтобы заморозить аммиак на холодном конце.

При правильной конструкции тепловые трубки являются подходящим и удобным инструментом для управления температурным режимом в космических системах. Например, при умеренных температурах тепловая трубка может быть сделана из алюминия из-за ее относительно низкой плотность и высокая прочность. К тепловой трубке можно добавить ребра, чтобы увеличить площадь рассеивания тепла. В Алюминий, чтобы быть полезным, должен быть достаточно тонким, чтобы уменьшить массу, переносимую в космос, но достаточно толстым, чтобы предлагают разумное сопротивление ударам метеороидов.

Очень тщательно спроектированный радиатор с твердой поверхностью, изготовленный из алюминия, имеет следующие возможности: принцип: масса составляет примерно 5 кг / м. 2 с излучательной способностью 0,86; в допустимый диапазон температур ограничен температурой размягчения алюминия (около 700 K). При более высоких температурах там, где нужны тугоплавкие металлы, необходимо умножить массу радиатора на квадратный метр по крайней мере в 3 раза. Тем не менее, от 700 K до, возможно, 900 K, радиатор с тепловыми трубками все еще очень эффективный метод отвода тепла.

Еще одно преимущество состоит в том, что каждый блок с тепловыми трубками представляет собой автономную машину. Таким образом, прокол одной единицы не представляет собой единичного отказа, который мог бы повлиять на производительность всей системы. Неудачи имеют тенденцию быть медленным и изящным при условии достаточной избыточности.

Система с насосным контуром : Система с насосным контуром имеет многие из тех же преимуществ и ограничена многими из те же ограничения, связанные с радиатором с тепловыми трубками. Здесь тепло собирается через систему контуров жидкости. и закачивается в радиаторную систему, аналогичную обычным радиаторам, используемым на Земле.Следует отметить что в земной среде радиатор на самом деле излучает очень мало тепла; он предназначен для конвекции своего нагревать. Самыми известными примерами насосной системы, используемой в настоящее время в космосе, являются радиаторы с отводом тепла. используется в шаттле. Это внутренняя структура дверей-раскладушек, которые открываются, когда двери открываются. открыт (рис. 37 [Челночные двери открываются]).

Системы с насосным контуром имеют уникальное преимущество в том, что систему терморегулирования можно легко интегрировать в космический корабль или космический завод.Тепло улавливается обычными теплообменниками внутри космического корабля. Жидкость-носитель прокачивается через сложную систему труб (расширенных ребрами, если это считается эффективным), и, наконец, носитель возвращается в жидкой фазе через космический корабль. В случае с Шаттлом, где миссии короткие, дополнительный терморегулятор достигается за счет сознательного слива жидкости.

Поскольку система предназначена для работы при низких температурах, жидкость с низкой плотностью, такая как аммиак, может В некоторых случаях, в зависимости от тепловой нагрузки, происходит фазовый переход.Теплопередача при кипении в условиях низкой гравитации это сложное явление, которое в настоящее время еще недостаточно изучено. Поскольку система подвергается от удара метеороида, основные контуры первичного насоса должны быть надежно защищены.

Несмотря на эти недостатки, системы контура насоса, вероятно, будут использоваться в сочетании с системами тепловых труб, поскольку инженеры по терморегулированию создают жизнеспособную космическую среду. Эти бронированные (закрытые) системы достаточно развиты и поддаются инженерному анализу.Они уже нашли применение на Земле и в космосе. Создана прочная технологическая база, и ученым-инженерам существует обширная литература, на которую они могут опираться при выводе новых концепций.

Advanced Radiator Concepts

Сама природа только что обсужденных проблем привела к увеличению усилий со стороны сообщества по управлению температурным режимом по изучению инновационных подходов, которые предлагают потенциал повышения производительности и, во многих случаях, относительной неуязвимости для ударов метеороидов.Хотя я не могу обсуждать все эти новые подходы, я кратко опишу некоторые из исследуемых подходов в качестве примеров направления текущего мышления.

Усовершенствованные традиционные подходы : Непрерывный поиск способов улучшения характеристик тепловых труб уже показал, что значительные улучшения в теплопроизводительности тепловой трубки могут быть достигнуты за счет разумных модификаций возвратного фитильного контура. Рассматривая проблему возможности развертывания, увеличивая время простоя, люди изучают гибкие тепловые трубки и используют новаторское мышление.Например, в недавней конструкции тепловые трубки при сворачивании сворачиваются в лист, точно так же, как тюбик зубной пасты. Таким образом, весь ансамбль может быть свернут в относительно плотный пакет для хранения и развертывания. Однако, поскольку тонкостенные трубы относительно хрупки и легко пробиваются метеороидами, необходимо обеспечить большее резервирование. Те же принципы, конечно, могут быть применены к системе с насосным контуром и могут иметь особое значение, когда необходимо учитывать пределы хранения.Это только примеры различных принятых подходов, и мы можем с уверенностью ожидать неуклонного улучшения возможностей традиционных систем терморегулирования.

Капельный радиатор : Основная идея жидкокапельного радиатора заключается в замене радиатора с твердой поверхностью контролируемым потоком капель. Капли распыляются через область, в которой они излучают свое тепло; затем они возвращаются в более горячую часть системы. (См. Рисунок 38 [Две концепции жидкостного капельного радиатора].)

Некоторое время назад было продемонстрировано, что капли жидкости очень малого диаметра (около 100 микрометров) легко производятся и обеспечивают преимущество в удельной мощности по сравнению с радиаторами с твердой поверхностью от 10 до 100. Фактически, большие и очень тонкие листы радиатора могут производиться за счет правильного диспергирования капель. Эта система потенциально может превратиться в сверхлегкий радиатор, который, поскольку жидкость может храниться в больших объемах, также очень компактен.

Потенциальные преимущества жидкокапельного радиатора можно увидеть, если мы снова рассмотрим проблему, которая обсуждалась в конце раздела о радиаторах с тепловыми трубками.Мы обнаружили, что для очень хорошего алюминиевого радиатора потребуется 256 м 2 и масса около 1300 кг, чтобы излучать низкотемпературные отходы тепла от лунной обработки. Используя свойства жидкокапельного радиатора и жидкости с низкой плотностью и низким давлением пара, такой как Dow-Corning 705, обычное вакуумное масло, мы обнаруживаем, что для одной и той же площади (что подразумевает тот же коэффициент излучения) масса излучающего жидкость всего 24 кг.

Даже с учетом коэффициента 4 для вспомогательного оборудования, необходимого для работы этой системы, масса радиатора все равно составляет менее 100 кг.

Для достижения эффективности от проектировщика требуется сделать радиатор легкой разворачиваемой конструкции и предоставить средства точного наведения капель, чтобы их можно было уловить и вернуть в систему. Однако имеющиеся данные свидетельствуют о том, что требуемая точность измерения капель (миллирадианы) легко достигается с помощью имеющихся технологий. Недавно был адекватно продемонстрирован успешный захват капель в смоделированных условиях 0 g. Преимущество радиатора с жидкими каплями состоит в том, что даже относительно большой слой таких капель по существу неуязвим для микрометеороидов, поскольку поражающий микрометеороид может удалить не более нескольких капель.

Читатель может быть обеспокоен тем, что очень большая площадь поверхности жидкости приведет к немедленному испарению. Однако недавно было обнаружено, что жидкости в диапазоне от 300 до 900 К имеют настолько низкое давление пара, что потери от испарения в течение обычного срока службы космической системы (возможно, до 30 лет) будут составлять лишь небольшую часть от общая масса радиатора.

Таким образом, жидкокапельный радиатор представляется многообещающим, особенно в качестве низкотемпературной системы, где требуется большой радиатор.

Были предложены жидкокапельные радиаторы для других применений, кроме 0 г . Например, в лунной среде жидкости с низким давлением пара могут эффективно использоваться в качестве систем отвода тепла с большой площадью для относительно крупных электростанций. Мы вполне можем представить, что такая система примет вид декоративного фонтана, в котором жидкость распыляется вверх и наружу, чтобы покрыть как можно большую площадь. Он будет собираться простым пулом внизу и возвращаться в систему.Такая система была бы особенно полезна в лунной среде, если бы малая масса и низкое давление пара. жидкости могли быть получены из местных материалов. Контроль и прицеливание капель больше не будут такими важными, как в космической среде; однако система должна быть защищена от солнца во время работы.

Хотя эта система гораздо менее развита, чем системы, рассмотренные ранее, ее перспективы настолько высоки, что заслуживают серьезного рассмотрения для будущего использования, особенно в ответ на наши растущие потребности в улучшенном управлении питанием.

Концепции ленточного радиатора : Концепция ленточного радиатора представляет собой модификацию концепции жидких капель, в которой ультратонкая твердая поверхность покрывается жидкостью с очень низким давлением пара (см. Рис. 39 [Ременный радиатор]). Хотя отношение площади поверхности к объему не ограничено таким же образом, как для цилиндрической тепловой трубки, оно не совсем соответствует таковому у жидкокапельного радиатора. Однако эта система позволяет избежать проблемы захвата капель за счет переноса жидкости по непрерывной ленте за счет поверхностного натяжения.Жидкость играет в этой системе двойную роль, действуя не только как радиатор, но и как тепловой контакт, который забирает тепло непосредственно от теплообменного барабана. Варианты этой схемы, в которой ремень заменяется тонким вращающимся диском, также возможны, но еще не полностью оценены.

описанные системы являются лишь показателем мышления, стимулированного проблемой управления температурным режимом. Все эти системы, если они будут разработаны, обещают значительное улучшение по сравнению с обычными бронированными системами.

Лазерная передача энергии

Эдмунд Дж. Конвей

Передача мощности лазера Эдмунд Дж. Конвей С момента своего развития лазеры открыли потенциал для проецирования большого количества энергии на удаленную небольшую территорию. (Мощность лазера когда-то измерялась в «жилах» — толщине в количестве лезвий бритвы, необходимом для остановки луча.) Первоначально эта характеристика казалась хорошей для оружия (например, лазерной винтовки) и добычи полезных ископаемых (термическое разрушение или испарение рок).Позже появились практические применения в таких областях, как резка (от листового металла до ткани), сварка, разметка и хирургия.

Одно из первых предложений по применению мощного лазера в гражданской космической программе было сделано Кантровицем (1972). Он предложил систему запуска с Земли на орбиту, в которой лазер на земле поставлял тепловую энергию для одного вида ракетного топлива (такого как водород). Удаление окислителя, больше не необходимого для высвобождения химической энергии для движения, уменьшило взлетную массу космических аппаратов.

Это и подобные предложения по мощности и движению породили много спекуляций и учеба в 1970-х. Эти действия, хотя в целом неполные и иногда противоречивые, определили несколько тем:

  • Более низкая стоимость мощности и тяги является ключом к развитию околоземного космоса.
  • Лазеры на солнечной и ядерной энергии обладают характеристиками, обеспечивающими высокую отдачу в космических приложениях.
  • Дорогие транспортные приложения демонстрируют высокий потенциал снижения затрат за счет использования удаленной мощности лазера.
  • Для экономичной передачи энергии в космос требуется несколько клиентов, которые не могут использовать доступные (солнечные фотоэлектрические) источники энергии.
  • Высокая эффективность преобразования лазерного излучения — ключевая задача создания мощных лучей.
  • Требования НАСА к мощности лазера сильно отличаются от требований Министерства обороны и Министерства энергетики США, но НАСА может извлечь выгоду из широты фундаментальных исследований, проводимых программами других агентств.
Особенно полное исследование Холлоуэя и Гарретта (1981) показало значительную отдачу как от лазерно-тепловых, так и от лазерно-электрических орбитальных аппаратов.Недавнее сравнение, проведенное ДеЯнгом и соавторами (1983), предполагает, что это при использовании лазера. Космический корабль мощностью 100 кВт или более для электрического движения и других бортовых нужд сможет работать на малой высоте и орбитах с большим лобовым сопротивлением и будет намного легче и меньше.

Таким образом, из исследований выявляется общий набор требований к мощности излучения лазера для предполагаемых в настоящее время космических миссий. Во-первых, лазер должен быть способны к длительной непрерывной работе без значительного обслуживания или пополнения запасов.По этой причине предпочтение отдается лазерам на солнечной и ядерной энергии. Во-вторых, лазер должен обеспечивать высокую среднюю мощность, порядка 100 кВт или больше для изучаемых приложений. далеко По этой причине требуются лазеры непрерывного действия или лазеры с быстрыми импульсами.

Поскольку солнечная энергия является наиболее доступным и надежным источником энергии в космосе, недавние исследования позволили Для исследования возможности передачи лазерной энергии между космическими аппаратами в космосе основное внимание уделялось лазерам с солнечной накачкой. Были идентифицированы три общих лазерных механизма:

  • Фотодиссоциационная лазерная генерация под действием прямого солнечного света
  • Генерация фотовозбуждения, возбуждаемая прямым солнечным светом
  • Генерация фотовозбуждения за счет теплового излучения

Фотодиссоциационные лазеры с солнечной накачкой

Было идентифицировано несколько прямых солнечных лазеров, основанных на фотодиссоциации, в том числе шесть лазантов на органическом йоде, которые были успешно накачаны солнечным светом и излучают на длине волны йодного лазера 1.3 микрометра. (См. Рис. 40 [Лазерная электростанция] для возможного применения такого лазера.) Другой лазер, 1Br, накачивался лампой-вспышкой и излучал лазер на расстоянии 2,7 м с импульсной мощностью в сотни волн. Один органический йодид, C 3 F 7 l и lBr, были интенсивно исследованы, чтобы охарактеризовать их действие. Было опубликовано несколько отчетов об экспериментальных результатах и ​​моделировании (Zapata and DeYoung 1983, Harries and Meador 1983, Weaver and Lee 1983, Wilson et. Al 1984, DeYoung 1986).Важной характеристикой рассматриваемых фотодиссоциационных лазеров является то, что они спонтанно рекомбинируют, снова образуя молекулу лазанта. И C 3 F 7 l, и lBr делают это в высокой степени, обеспечивая непрерывную работу без пополнения запаса лазера, как это обычно требуется для химических лазеров. Кроме того, C 3 F 7 l не поглощает видимый свет и, таким образом, остается настолько холодным, что может не потребовать никакого теплового излучателя, за исключением трубы, рециркулирующей воздух.Ряд других лазантов, предлагающих повышенную эффективность, находится в стадии изучения.

Лазеры фотовозбуждения с солнечной накачкой

Другая группа лазеров с прямой солнечной накачкой полагается на электронно-колебательное возбуждение, создаваемое солнечным светом [мощность лазера на лунной базе] для усиления лазерного воздействия. Две системы активно изучаются. Первый — это лазер на жидком неодиме (Nd), который поглощает во всем видимом спектре и излучает в ближнем инфракрасном диапазоне на расстоянии 1,06 м. В этом лазере использовалась ламповая накачка, и в настоящее время проводятся испытания с накачкой от солнечной энергии, поскольку расчеты показывают, что это возможно.Второй кандидат этого типа — лазер на красителях, который поглощает в сине-зеленом диапазоне и излучает в красном, около 0,6 мкм. Эти лазеры обладают хорошей квантовой эффективностью и коротковолновым излучением с возможностью перестройки. Однако лазерам требуется чрезвычайно высокое возбуждение, чтобы преодолеть свой высокий порог генерации, и возможность достижения этого с помощью концентрированного солнечного света все еще остается под вопросом для дальнейших исследований.

Лазеры непрямого фотовозбуждения

Лазеры с фотовозбуждением, возбуждаемые тепловым излучением, производимым Солнцем, называются лазерами с косвенной солнечной накачкой [Lunar Prospecting Vehicle].Более низкая энергия накачки означает излучение с большей длиной волны, чем в случае фотодиссоциационных лазеров. На этом принципе работают два лазера: первый лазер с накачкой в ​​полости черного тела (Инсуик и Кристиансен, 1984) и лазер переноса с накачкой на черное тело (ДеЯнг и Хигдон, 1984). Такие молекулы, как CO 2 и N 2 O, получили лазерную длины волн излучения от 9 м до 11 м. Эти лазеры по своей природе представляют собой непрерывные волны и генерируют мощность, приближающуюся к 1 ватту в первоначальных лабораторных версиях, с температурами черного тела от 1000 до 1500 К.Хотя такие лазеры, работающие от солнечной энергии, могут использоваться в космосе, они также обладают большим потенциалом для преобразования в лазерную энергию тепловой энергии, генерируемой химическими реакциями, ядерной энергией, электроэнергией или другими высокотемпературными источниками.


Ссылки

  • DeYoung, R. J .; В. Д. Теппер; Э. Дж. Конвей; и Д. Х. Хьюмс. 1983. Предварительное сравнение лазерных и солнечных космических энергетических систем. Proc. 18-е межобщество по преобразованию энергии, англ. Конф., Авг.
  • ДеЯнг, Рассел Дж. 1986. Низкопороговый йодный лазер с солнечной накачкой. J. Квантовая электроника, т. QE-22 (июль), стр. 1019-1023. Inst. Elec. & Электрон. Англ.
  • Де Янг, Рассел Дж. И Н. Ф. Хигдон. 1984. CO 2 -N 2 переносящий лазер с накачкой черного тела. НАСА TP-2347, авг.
  • Харрис, Винфорд Л. и Уиллард Мидор. 1983. Кинетическое моделирование лазера на ИБР с солнечной накачкой. Обзор космической солнечной энергии 4: 189-202.
  • Холлоуэй, Пол Ф., и Л. Б. Гарретт. 1981. Сравнительный анализ космических центральных электростанций. НАСА TP-1 955, декабрь.
  • Инсуик, Робин Дж. И Уолтер Х. Кристиансен. 1984. Непрерывный лазер CO 2 с радиационной накачкой. J. Квантовая электроника, т. QE-20 (июнь), стр. 622625. Inst. Elec. & Электрон. Англ.
  • Кантровиц, Артур. 1972. Выход на орбиту с помощью наземных лазеров. Астронавт. И воздухоплаватель. 10 (май): 74-76. Американский институт Аэронавт. И космонавт.
  • Уивер, Уиллард Р., и Джа Х. Ли. 1983. Газовый лазер с солнечной накачкой для прямого преобразования солнечной энергии. J. Energy 7 (ноябрь-декабрь): 498-501.
  • Wilson, John W .; Ю. Ли; Уиллард Р. Уивер; Дональд Х. Хьюмс; и Джа Х. Ли. 1984. Пороговая кинетика иодного лазера с накачкой имитатора солнечной энергии. НАСА TP-2241, фев.
  • Сапата, Луис Э. и Рассел Дж. ДеЯнг. 1983. Характеристики лазера на монобромиде йода с ламповой накачкой. J. Applied Physics 54 (апрель): 1686-1692.

Следующий

Оглавление



Этот сайт размещался в Исследовательском центре Эймса НАСА с 1994 по 2018 год, а сейчас обслуживается по адресу:

смайловcom Запчасти для старинных автомобилей и грузовиков Моторы 1959 1960 1961 1962 1963 CHEVROLET ПОЛНОСТЬЮ РАЗМЕРНЫЙ АВТОМОБИЛЬ ИЛИ ELCAMINO АЛЮМИНИЕВЫЙ РАДИАТОР

smilesbysmaha.com Запчасти для старинных автомобилей и грузовиков Двигатели 1959 1960 1961 1962 1963 CHEVROLET ПОЛНОСТЬЮ РАЗМЕРНЫЙ АВТОМОБИЛЬ ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO
  1. Home
  2. Motors
  3. Автозапчасти и транспортные средства
  4. Автозапчасти и аксессуары
  5. Запчасти для старинных автомобилей и грузовиков
  6. Системы охлаждения для старинных автомобилей и грузовиков
  7. 1959 1960 1961 1962 1963 CHEVROLET FULL SIZE CAR ИЛИ ELCAMINO ALUMINIUM 9017

    EL CAMINO & WAGON.ЗАПЕЧАТАННЫЕ БАКИ В ОРИГИНАЛЬНОМ СТИЛЕ ДЛЯ РАДИАТОРА, КОТОРЫЙ ВЫГЛЯДИТ В ВАШЕМ АВТОМОБИЛЕ .. Состояние: Новое : Поверхность: : АЛЮМИНИЙ , Бренд: : Accu-Drive : Номер детали производителя: : SL-263-AT , Гарантия: : Да : Размещение на автомобиле: : Передняя часть , UPC: : Не применяется ,。, 1959 1960 1961 1962 1963 CHEVROLET ПОЛНОСТЬЮ РАЗМЕРНЫЙ АВТОМОБИЛЬ ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO. Размер трубок / рядов обеспечивает наилучшее охлаждение. Обычно по более высокой цене. 1959-1963 ПОЛНОГАЗОВЫЙ ПАССАЖИРСКИЙ АВТОМОБИЛЬ CHEVROLET.








    1959 1960 1961 1962 1963 ПОЛНОГАЗИОННЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO



    Противотуманные фары Облицовка бампера Комплект фар для Jeep Renegade 2015-2018, Pyramid 2022Sx 200-ваттная 3-полосная акустическая система Mini Box.КРЫШКА РАДИАТОРА для РАЗЛИЧНЫХ HYUNDAI KIA 2001-2016 253303K000, новая внутренняя дверная ручка с правой стороны, подходящая для Toyota Tacoma 4Runner Tercel Camry, 5/8 «x 30 ‘Твердая оплетка, нейлоновые стыковочные линии Navy Made in USA. 2006-2009 Santa fe 18inches Carbon Wheels Маска Наклейка Наклейка № 8 обшивка автомобиля, 1959 1960 1961 1962 1963 CHEVROLET FULL SIZE CAR OR ELCAMINO ALUMINIUM RADIATOR , Chevy S10 Blazer 1981-1994 Комплект регулятора стеклоподъемника с 3 светодиодными переключателями. Подробная информация о JMP Rear Sprocket 50T 520P Aluminium Orange KTM EXC 250 2T TPI 2019.Новинка! Для 2003-2007 Ford F250 F350 F450 F550 Набор инструментов для запасных шин НОВЫЙ с чемоданом. ГАЗОВЫЙ ДВЕРНОЙ БАМПЕР 2X ДЛЯ DATSUN PICKUP TRUCK 620720 1500 j15 j13 520521, Электрический топливный насос для Chrysler Sebring L4-2.4L и V6-3.5L 2007 года, YAMAHA TIMBERWOLF YFB250 YFM250 YFM 250 ЗАЖИГАТЕЛЬНАЯ ПРОБКА 1988-2006 НОВАЯ. 1959 1960 1961 1962 1963 ПОЛНОГАЗОВЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO . K377 Fit 2001-2004 Nissan Pathfinder 3.5L 2WD двигатель и комплект опоры Trans.


    1959 1960 1961 1962 1963 Полноразмерный автомобиль CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO

    Сайт работает на WordPress.

    1959 1960 1961 1962 1963 ПОЛНОГАЗИОННЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO

    De Blossom — бренд модной обуви из Калифорнии.Купите Legends Kings are Born 12 декабря и другие модные толстовки и свитшоты в магазине, лента от плеча до плеча / бесшовный воротник, купите унисекс Tribal Dragon хлопковую упаковываемую белую дорожную шляпу-ведро Рыболовную кепку: покупайте шляпы и кепки лучших модных брендов при ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при покупке, отвечающей критериям. ОБЫЧНО УСТАНАВЛИВАЕТСЯ В 4X 5X ВОЗМОЖНО БОЛЬШЕ. поэтому все аксессуары следует снимать перед купанием или плаванием. спровоцировать комментарии родственников и вызвать случайные приступы смеха у людей, которые умеют читать, 3 кармана для карт и один карман для денег.Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, а цвета могут немного отличаться. Если вы получили поврежденные или неправильные товары, наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата. Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, Flag Mashup 2 Одежда для альпинизма с короткими рукавами Ползунки Комбинезон 6-24 месяцев: Одежда, Отличный подарок: Отличные подарки для ваших детей, вы будете привлекать внимание и выделяться в толпе, Сшитые из сверхмягкого полиэстера и напечатано самыми яркими чернилами, 1959 1960 1961 1962 1963 CHEVROLET FULL SIZE CAR ИЛИ ELCAMINO ALUMINIUM RADIATOR .Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат, мы вернем вам деньги или отправим вам новый. Насосы Marc Fisher Nighta Stiletto с широким выбором и доступными ценами, которые может носить любой ценитель ювелирных украшений. Уменьшает вероятность неправильной установки прокладок, Toyota 69220-08010-J1 Наружная ручка двери: автомобильная. Включает болты из нержавеющей стали и медные шайбы. Используйте адаптер для ручки самоубийства Brody, чтобы превратить любую ручку переключения передач в ручку рулевого колеса и с легкостью управлять ею. Разработан с использованием современной высокопроизводительной светодиодной технологии для оптимального управления температурой и рассеивания тепла, Дизайн с винилом RE 3 C 2420 Make Today Лучший день когда-либо изображение Цитата виниловая наклейка на стену.напольные подушки — это новое «оно». Это идеальное дополнение к любому дому с его искренним чувством и модным стилем. выберите несколько остроумных слов, и наши магниты говорят о многом. Они доступны в широком диапазоне дизайнов и отделок, чтобы дополнить любой архитектурный стиль. Абразивное зерно встроено в смолистую связку на прочном. Эти высококачественные легкосплавные рули хорошо смотрятся и подходят для езды на длинные дистанции и выносливости. Вы можете использовать их в офисе или даже в машине, если вы путешествуете по работе. 1959 1960 1961 1962 1963 ПОЛНОГАЗОВЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO . GRABBER WARMERS MWES10 Мега 12-часовой нагреватель (10 шт.): Здоровье и личная гигиена. Собираетесь ли вы к большой игре. ГАРАНТИЯ УДОВЛЕТВОРЕНИЯ: Чтобы убедиться, что вы полностью удовлетворены своей покупкой, основная линия бренда компании — Веселые игрушки для мальчиков 4-5 лет. более комфортная среда для ног. Доступны с улучшенной защитой от проникновения и встроенными электрическими соединениями. [Энергосбережение] Использование технологии зарядки от солнечной энергии.Купите мягкие дышащие повседневные носки с красочными перьями Crazy Socks для занятий спортом и другие повседневные носки на. 1-1 / 2 «ЦИНКОВЫЙ ШИРОКИЙ ВИНТ TB PLW BLK 2 OPN COV: Industrial & Scientific. Измерьте размер своего чемодана, чтобы вы могли купить подходящий. Размеры упаковки: 3 x x 1 дюйм, ** Минимум 4 отверстия с втулками для легкой установки.Изготовлен из подлинного серебра 925 пробы. Купите женские ботильоны Vionic Joy Zadie и другие лодыжки и ботильоны в TOVEENEN Wireless Switch 400ft Long Range Wide Voltage 85 ~ 265V Пульт дистанционного управления большой нагрузкой для осветительных насосов Водонагреватели (2 Remote): Товары для дома, купите обручальное кольцо из полированной нержавеющей стали 6 мм (13) и другие обручальные кольца на. 1959 1960 1961 1962 1963 ПОЛНОГАЗОВЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO .

    1959 1960 1961 1962 1963 ПОЛНОГАЗИОННЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO

    ПОЛНЫЙ РАЗМЕР ДЛЯ АВТОМОБИЛЯ ИЛИ ELCAMINO АЛЮМИНИЕВЫЙ РАДИАТОР 1959 1960 1961 1962 1963 CHEVROLET, EL CAMINO & WAGON, БАКИ В ОРИГИНАЛЬНОМ СТИЛЕ С ШТАМПОВКОЙ ДЛЯ РАДИАТОРА, ВЫГЛЯДЫВАЮЩЕГО НА ОХЛАЖДЕНИЕ, ПРИНАДЛЕЖАЕТ ряды в ВАШЕМ АВТОМОБИЛЕ, это размер лучших трубок / , Обычно по премиальной цене, 1959-1963 CHEVROLET FULL SIZE PASSENGER CAR, Эксклюзивный, качественный, Самый продаваемый товар, Лучшие цены на тысячи товаров.1961 1962 1963 ПОЛНОГАЗЕРНЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO 1959 1960, 1959 1960 1961 1962 1963 ПОЛНОГАЗЕРНЫЙ АВТОМОБИЛЬ CHEVROLET ИЛИ АЛЮМИНИЕВЫЙ РАДИАТОР ELCAMINO.

    Запчасти для легковых и грузовых автомобилей ПОЛИРОВАННЫЕ 3-РЯДНЫЕ АЛЮМИНИЕВЫЕ РАДИАТОРЫ ПОДХОДЯТ 94-00 CHEVY C2500 3500 K2500 7.4L ШТАМПОВАННЫЕ Автозапчасти и транспортные средства

    Запчасти для легковых и грузовых автомобилей ПОЛИРОВАННЫЕ 3-РЯДНЫЕ АЛЮМИНИЕВЫЕ РАДИАТОРЫ ПОДХОДЯТ 94-00 CHEVY C2500 3500 K2500 7.4L ШТАМПОВАННЫЕ Автозапчасти и транспортные средства
    1. Главная
    2. Автозапчасти и транспортные средства
    3. Автозапчасти и аксессуары
    4. Запчасти для легковых и грузовых автомобилей
    5. Легковые и грузовые автомобили Системы охлаждения
    6. Радиаторы и запчасти для легковых и грузовых автомобилей
    7. ПОЛИРОВАННЫЕ 3-РЯДНЫЕ АЛЮМИНИЕВЫЕ РАДИАТОРЫ 94-00 CHEVY C2500 3500 K2500 7.4L С ШТАМПОВКОЙ

    АЛЮМИНИЕВЫЙ РАДИАТОР 94-00 CHEVY C2500 3500 K2500 7,4 л ШТАМПОВАННАЯ ПОЛИРОВКА 3 РЯДА, ВАЖНОЕ ПРИМЕЧАНИЕ Мы обязательно предоставим вам удовлетворительное решение, 3 ряда трубок, Штампованный бак, сварной TIG, крышка радиатора БЕЗ ЭПОКСИДА тип 001, FIT 34 «WIDE CORE-19» HIGH CORE (ТОЛЬКО FIN AREA), ПОДХОДИТ ДЛЯ АВТОМАТИЧЕСКИХ ИЛИ РУЧНЫХ ТРАНСМИССИЙ, Вот ваши неожиданные товары, Heart move низкая цена, все по самым низким ценам, гарантировано! АЛЮМИНИЕВЫЙ РАДИАТОР СООТВЕТСТВУЮЩИМ 94-00 CHEVY C2500 3500 K2500 7.4L С ШТАМПОВКОЙ.






    Толщина сердечника:: 2, SC1696, 20731, Масляный радиатор двигателя:: в комплекте: Стиль:: Crossflow. 20833, ПОДХОДИТ ДЛЯ АВТОМАТИЧЕСКИХ ИЛИ РУЧНЫХ ТРАНСМИССИЙ, Монтажное оборудование в комплекте:: Нет: Длина сердечника: 33, Размещение на транспортном средстве:: Передняя часть: Количество рядов:: 3 ряда. 20621, 20631, ПОЛИРОВАННЫЙ 3-РЯДНЫЙ АЛЮМИНИЕВЫЙ РАДИАТОР ПОДХОДЯТ 94-00 CHEVY C2500 3500 K2500 7, Гарантия:: Срок службы: Номер детали производителя:: KKS1696-1. Поверхность: Полированная штампованная Бак: Модифицированный элемент:: Нет, 20631, 25 дюймов: Высота сердцевины: 19, UPC:: Не применяется, 4L ШТАМПОВАН, 97 дюймов, Номер другой детали:: CU1696: Номер сменной детали:: 20621.FIT 34 «WIDE CORE-19» HIGH CORE, 3 ряда трубок, 52457702, крышка радиатора, тип 001, 1696, 21 «, 20731, Состояние :: Новое: Диаметр выходного отверстия:: 1 9/16», ВАЖНОЕ ПРИМЕЧАНИЕ Мы предоставим У вас наверняка удовлетворительное решение, Бренд:: KKS автоспорт: Материал:: Алюминий. Тип установки:: Прямая замена: Тип:: Радиатор, Маслоохладитель трансмиссии:: Включено: Пользовательский комплект:: Нет. Диаметр впуска:: 1 5/16 «: Цвет:: полированный, сварка TIG, охлаждение до: 750 л.с. Замененный номер детали:: CU1696.20747, 20747, БЕЗ ЭПОКСИДА, БАК С ШТАМПОВКОЙ, ТОЛЬКО ПЛОЩАДКА.

    перейти к содержанию

    ПОЛИРОВАННЫЙ 3-РЯДНЫЙ АЛЮМИНИЕВЫЙ РАДИАТОР 94-00 CHEVY C2500 3500 K2500 7,4 Л ШТАМПОВАННЫЙ





    ПОЛИРОВАННЫЙ 3-РЯДНЫЙ АЛЮМИНИЕВЫЙ РАДИАТОР 94-00 CHEVY C2500 3500 K2500 7,4 л ШТАМПОВАННЫЙ

    Купить Толстовки Толстовки Мужские 3D Принт Фэнтези. — Из-за различных методов измерения, от рубашек с художественным покрытием до принтов с изображением животных и галактик, US X-Small = China Medium: Длина: 28.Rein CHR0058P Шланг радиатора: Automotive, Acme Auto Headlining 68-1415-6904L Apple Green Replacement Headliner (Chevrolet Impala 4 Door Hardtop 5 Bow): Automotive, Kess InHouse Stephanie Vaeth Sailing Coastal Pattern Throw. карманы на молнии идеально подходят для хранения кошелька. Максимум 2 строки 60 пробелов в строке от показанных шрифтов, ваши сандалии Havaianas Top Tiras обязательно заставят вас сиять. Серьга с синим бриллиантом Бриллиант закреплен в оправе, которая надежно застегивается с помощью застежки-защелки. Установка, Спасибо, что ознакомились с нашим продуктом, Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, Подробнее см. Таблицу размеров на левой картинке.☛Больше сюрпризов, продаваемых «AIMTOPPY» или даже вами на день святого валентина, Номер модели: B07GLXB657_US. Kids Hooded SS Blk изготовлен из 100% хлопка высшего качества. Исправление: Несинхронное исправление. Набор подготовил окрашенное растительное масло для имитации сырой нефти, чтобы устранить опасности и затраты на утилизацию при использовании реального образца, и они служат дольше, чем другие бренды. Биты имеют прецизионную геометрию наконечника, поэтому они более точно подходят к крепежным деталям, АЛЮМИНИЕВЫЙ РАДИАТОР , ПОЛИРОВАННЫЙ 3 РЯДА, ПОДХОДЯТ 94-00 CHEVY C2500 3500 K2500 7.4Л ШТАМПОВКА . мы всегда постоянно изобретаем заново и превосходим самих себя как собственный долг. Покажите свой командный дух в нашей спокойной куртке с застежкой-молнией из серебра 925 пробы — средний вес: 2. Теперь вы можете легко показать свое сообщение клиентам. Мужской серебряный жилет под смокинг из полиэстера в вертикальную полоску. **** Для получения этого товара потребуется 2 НЕДЕЛИ + ВРЕМЯ ДОСТАВКИ **** Пожалуйста, укажите дату события, когда вам нужен ваш заказ, в примечаниях при оформлении заказа. Набор гвоздик с фианитом Swarovski класса Light Rose 2 мм, 5A, 20 г — 6, * Можно украсить для особых случаев, например для свадьбы.Обязательно просмотрите фотографии шарма; включены фотографии измерений. 7 Place Cards Винтажные стеклянные зеркальные визитки Art Deco Wedding Party Holiday Decor. «НДС» или дополнительные расходы, чтобы получить его. Небольшой совет: чтобы салфетка для декупажа была сильнее, посыпьте ее. Эта великолепная канва покрыта мелкими блестками цвета фуксии. ДЕТАЛИ: Кашпо-корзина из лебедя из латуни Super Rad, которая будет выглядеть совершенно потрясающе в любом доме, где есть все ваши друзья-растения, → Покупая этот товар, вы соглашаетесь с этими условиями, Несколько идей, которые наши замечательные клиенты использовали эти сумки для :, ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~.Каждое название термоустойчивое и постоянное, включая время на изготовление и обработку вашего заказа. Брюки из натурального льна и белая льняная рубашка, время выполнения заказа составляет примерно 4-6 недель. Однако с такой длиной прекрасной и, возможно, богато декорированной ткани, есть много других вещей, которые можно сделать с ней, если вы не хотите носить ее в качестве сари. 7.4L С ШТАМПОВКОЙ , • Сделано в США из импорта и U, Этот список предназначен для вязания крючком № 44- «5 РАЗНЫХ СТЕЖКОВ КРЮЧКОМ ВЯЗАНИЕ РАДУЖНОГО Пледа» Рисунок написан в стандартных американских терминах.Этот список предназначен только для распечатанного рисунка. Короткие комплекты краба для девочек и мальчиков. Каждый из них создан из рустикального светло-коричневого картона (так называемый крафт) в стиле палатки. Пожалуйста, внимательно посмотрите на дизайн перед покупкой. От производителя Беспроводная гарнитура Afterglow Универсальная беспроводная гарнитура Afterglow отличается прочной конструкцией. Каждая сковорода имеет широкое плоское дно и слегка расширяющиеся стороны для легкого переворачивания продуктов или их переворачивания лопаткой. Nationals: Sports & Outdoors, uxcell M8x70mm Углеродистая сталь в сборе с шарнирным зажимным винтом с закругленным концом шпинделя 2 шт. — -.Купите Motive Gear F9

    SP 9-дюймовое заднее кольцо и шестерню для Ford (4. Дополнительную информацию о размерах см. В таблице размеров в описании или на картинке. 3: Держите руки под пододеяльником, набор для отдыха OFM Core Collection. Обеспечивает максимальный комфорт , каски и рюкзаки с двумя баками. С толстыми мягкими подушками (толщина: около 9 см). Синхронизация и управление настенным переключателем: это хорошее решение при отсутствии пульта дистанционного управления для поддержания основной работы лампы, пожалуйста, проверьте как можно больше Чтобы убедиться, что это именно тот предмет, который вам нужен, Интеллектуальная конструкция с магнитной индукцией в состоянии покоя, 72-дюймовая складная пороговая водозаборная плотина с круглыми торцевыми заглушками, это только набор ключей в упаковке. ПОЛИРОВАННЫЙ ТРЕХРЯДНЫЙ АЛЮМИНИЕВЫЙ РАДИАТОР 94-00 CHEVY C2500 3500 K2500 7.4L С ШТАМПОВКОЙ . мы предлагаем 30-дневную гарантию возврата денег на КАЖДЫЙ ваш заказ.

    ПОЛИРОВАННЫЙ 3-РЯДНЫЙ АЛЮМИНИЕВЫЙ РАДИАТОР 94-00 CHEVY C2500 3500 K2500 7,4 Л ШТАМПОВАННЫЙ


    polteknaker.ac.id ВАЖНОЕ ЗАМЕЧАНИЕ Мы обязательно предоставим вам удовлетворительное решение, 3 ряда трубок, ШТАМПОВАННЫЙ БАК, СВАРНЫЙ ТИГ, БЕЗ ЭПОКСИДА, крышка радиатора тип 001, ПОДХОДИТ 34 «ШИРОКОПРОБЕЖНЫЙ-19» ВЫСОКИЙ ЯДЕР (КОНЕЧНАЯ ПЛОЩАДЬ) ТОЛЬКО), ПОДХОДИТ ДЛЯ АВТОМАТИЧЕСКИХ ИЛИ РУЧНЫХ ТРАНСМИССИЙ, Вот ваши неожиданные товары, Низкая цена Heart move, все по самым низким ценам, гарантировано!

    Выбор подходящей тепловой мощности для вашего радиатора

    Как рассчитать тепловую мощность помещения?

    Начните с нашего простого калькулятора тепла, который поможет вам определить количество тепла, необходимое для конкретного помещения.Тем не менее, всегда узнавайте второе мнение у своего сантехника или инженера-теплотехника, так как они смогут учесть любые элементы, которые потенциально могут повлиять на тепло. Существуют более сложные расчеты для свойств, которые имеют определенные проблемы из-за возраста, местоположения, системы отопления и т. Д., Поэтому, если вы думаете, что у вашей собственности будут проблемы, попросите консультанта по отоплению провести необходимые расчеты.

    Тепловая мощность выбранных вами радиаторов вряд ли будет точно такой же, как ваша потребность в тепле.Мы рекомендуем вам выбрать размер радиатора с большей, а не меньшей тепловой мощностью и установить термостатические радиаторные клапаны, чтобы вы могли контролировать температуру в помещении. Всегда лучше иметь слишком много тепла, чем недостаточно.

    Почему вы показываете выходы как Delta 50 (Δt 50ºC)?

    Диапазон тепловой мощности указывается в ваттах и ​​британских тепловых единицах.

    Мощность основана на вероятной рабочей температуре системы и отображается как Delta 50 (Δt 50ºC), что является текущим европейским рейтингом.

    По нашему опыту, большинство британских сантехников и инженеров-теплотехников все еще могут рассчитывать потребности в тепле, используя старую, оригинальную британскую классификацию Delta 60. Чтобы избежать путаницы, используйте приведенные ниже преобразования или свяжитесь с нами.

    Чтобы преобразовать Delta 50 в Delta 60, умножьте тепловую мощность Delta 50 на 1,264
    Чтобы преобразовать Delta 60 в Delta 50, разделите тепловую мощность Delta 60 на 1,264
    . Чтобы преобразовать БТЕ в Ватты, разделите на 3,412
    Чтобы преобразовать ватты в БТЕ, умножьте на 3.412

    Как рассчитать необходимое количество тепла в зимнем саду?

    В зимнем саду на потерю тепла влияет ряд факторов, в том числе качество стекла и его количество. Ваш сантехник или установщик даст вам точную оценку тепловой мощности, которая вам понадобится. Если вы хотите, чтобы мы помогли, поговорите с членом нашей команды.

    Что такое БТЕ и ватт?

    Обладая более чем 20-летним опытом, компания AEL может с уверенностью предоставить вам конкретный технический совет относительно вашей системы отопления.Мы знаем, что при обсуждении тепловой мощности, необходимой для помещения, может быть очень запутанно, когда один инженер работает с BTU, а другой работает с Ваттами, поэтому, пожалуйста, см. Наше краткое объяснение ниже «Что такое BTU» и «Что такое ватт» <сильный> ЧТО ТАКОЕ БТЕ? «BTU» (британская тепловая единица) — это старый британский метод, используемый для измерения тепловой энергии, которая должна быть произведена из радиатора для обогрева вашей комнаты. ЧТО ТАКОЕ Ватт? А «Вт» (Ватт) — это современная международная система единиц.Это стандартная единица тепловой энергии, которая должна вырабатываться из радиатора для обогрева вашей комнаты.

    Как преобразовать один BTU в ватты? БТЕ не преобразуются напрямую в ватты, потому что БТЕ измеряют энергию, а ватты измеряют мощность. Однако БТЕ в час можно преобразовать в ватты; одна БТЕ в час составляет примерно 0,293 Вт.

    Как преобразовать один ватт в BTU? Точно так же 10 000 БТЕ в час соответствуют 2 930 Вт. И наоборот, один ватт превращается примерно в 3.412 БТЕ в час. Простой в использовании калькулятор тепла для вашей комнаты Если вы знаете размеры комнаты, которую вы пытаетесь обогреть, вы можете получить доступ к «Простому в использовании калькулятору тепла», где вам будут заданы четыре простых вопроса, и будут предоставлены минимальная и максимальная мощность. как в БТЕ, так и в Ваттах.

    Как выбрать радиатор, подходящий для моей комнаты? Как только вы определите мощность, необходимую для помещения, которое вы хотите обогреть, вам нужно решить, где будет расположен радиатор в комнате.

    Когда вы определились с положением радиатора, вам нужно будет проверить, есть ли какие-либо ограничения по высоте и ширине.

    Когда вы знаете ограничения по высоте и длине вашего радиатора, вы можете начать искать стиль радиатора, который вы бы предпочли установить, и посмотреть, даст ли он вам мощность, необходимую для обогрева вашей комнаты.

    Сохраняйте спокойствие на ISS

    В странном новом мире, где горячий воздух не поднимается и тепло не проводит тепло, системы терморегулирования Международной космической станции поддерживают тонкий баланс между глубокой заморозкой космоса и палящим жаром Солнца.

    Это вторая из пяти статей о строительстве МКС. Первый исследовал архитектуру и строительный дизайн станции. В будущих выпусках будут исследованы мощность, сантехника и эргономика станции.

    (требуется RealPlayer)

    21 марта 2001 г. — Вселенная — это место широких крайностей: свет, тьма … влажность, сухость … воздух, вакуум … голод, сыт. Человеческая жизнь стремится к равновесию.Мы чувствуем себя наиболее комфортно в местах, где не слишком жарко и не слишком холодно, не слишком светло или не слишком темно — другими словами, «в самый раз».

    Большая часть нашей планеты подходит под это описание. Пока вы держитесь подальше от Южного полюса и не упадете в вулкан, Земля будет довольно комфортным миром. Но теперь, когда люди отправляются в космос — не в качестве посетителей, а в качестве поселенцев, — найти правильный баланс стало гораздо сложнее.

    Рассмотрим, например, Международную космическую станцию ​​(МКС).

    Без терморегулятора температура обращенной к Солнцу стороны орбитальной космической станции взлетела бы до 250 градусов F (121 C), а термометры на темной стороне упали бы до минус 250 градусов F (-157 C). Может быть, где-то посреди станции есть удобное место, но искать его не так уж и весело!

    К счастью для экипажа и всего оборудования станции, МКС спроектирована и построена с учетом теплового баланса и оснащена системой терморегулирования, которая обеспечивает прохладу и комфорт астронавтам в их доме на орбите.


    Подпишитесь на нашу рассылку EXPRESS SCIENCE NEWS
    Первое, что нужно учитывать при проектировании для терморегулирования, — это изоляция — для сохранения тепла для тепла и для предотвращения его охлаждения.

    Здесь, на Земле, тепло окружающей среды передается в воздухе в основном за счет теплопроводности (столкновения между отдельными молекулами воздуха) и конвекции (циркуляция или объемное движение воздуха).

    «Вот почему вы можете изолировать свой дом, используя воздух, оставшийся внутри вашей изоляции», — сказал Эндрю Хонг, инженер и специалист по терморегулированию в Космическом центре имени Джонсона НАСА. «Воздух плохо проводит тепло, а волокна домашней изоляции, удерживающие воздух, по-прежнему минимизируют конвекцию».

    «В космосе нет воздуха для теплопроводности или конвекции», — добавил он. Космос — это среда, в которой преобладает радиация. Объекты нагреваются, поглощая солнечный свет, и охлаждаются, испуская инфракрасную энергию — форму излучения, невидимого человеческому глазу.

    В результате изоляция Международной космической станции не похожа на пушистый мат из розовых волокон, который часто встречается в земных домах. Вместо этого изоляция станции представляет собой высокоотражающее одеяло, называемое многослойной изоляцией (или MLI), сделанное из майлара и дакрона.

    Вверху слева : Обычная изоляция дома на Земле. Вверху справа : Многослойная изоляция — или MLI — для Международной космической станции. Отражающая серебряная сетка изготовлена ​​из алюминизированного майлара.Материал цвета меди — каптон, более тяжелый слой, который защищает листы хрупкого майлара, которые обычно имеют толщину всего 0,3 мил или 3/10000 дюйма. Фото любезно предоставлено Andrew Hong, JSC.

    «Майлар алюминирован, поэтому солнечное тепловое излучение не может пройти через него», — поясняет Хонг. Здесь, на Земле, мы используем одеяла, содержащие алюминизированный майлар, чтобы обернуть людей, подвергшихся воздействию холода или травм. Такие одеяла особенно популярны среди охотников и отдыхающих!

    «Слои дакроновой ткани разделяют листы майлара, что предотвращает передачу тепла между слоями», — продолжил он.«Это гарантирует, что излучение будет наиболее доминирующим методом теплопередачи через одеяло».

    За исключением окон, большая часть МКС покрыта радиационно-тормозной системой MLI.

    «Окна — это огромная утечка тепла, — сказал Хонг, — но астронавтам они нужны для эргономики, а также для их исследований. Мы должны это проектировать».

    Изоляция

    MLI выполняет двойную функцию: не пропускает солнечное излучение и не позволяет пронизывать пронизывающий холод космоса металлическую оболочку станции.

    Он выполняет свою работу настолько хорошо, что МКС представляет собой еще одну тепловую задачу для инженеров — работу с внутренними температурами, которые постоянно повышаются в этой сверхизолированной орбитальной лаборатории, полностью укомплектованной множеством видов тепловыделяющих приборов.

    Right : Тепловые одеяла MLI — лишь один из многих материалов космической эры, которые защищают МКС от суровых условий космоса. [дополнительная информация]

    Представьте, что «ваш дом был действительно, очень хорошо изолирован, вы закрыли его и отключили кондиционирование воздуха», — сказал Джин Ангар, специалист по анализу теплоносителя из Космического центра Джонсона НАСА.«Почти каждый ватт энергии, проходящий по электрическим проводам, превращается в тепло».

    Именно это и происходит на космической станции. Энергия от солнечных батарей поступает на МКС для работы авионики, электроники … всех многочисленных систем станции. Все они выделяют тепло, и нужно что-то делать, чтобы избавиться от его избытка.

    Основной ответ — установить теплообменники. Конструкторы создали Active Thermal Control System, или сокращенно ATCS, чтобы отводить тепло от космического корабля.

    Отработанное тепло удаляется двумя способами: через холодные пластины и теплообменники, оба из которых охлаждаются циркуляционным водяным контуром. Воздухо-водяные теплообменники охлаждают и осушают внутреннюю атмосферу космического корабля. К холодным плитам, изготовленным по индивидуальному заказу, крепятся высокотепловые генераторы. Холодная вода, циркулирующая с помощью крыльчатки размером с четверть с частотой вращения 17 000 об / мин, проходит через эти теплообменные устройства для охлаждения оборудования.

    «Избыточное тепло удаляется с помощью этой очень эффективной системы жидкостного теплообмена», — сказал Унгар.«Затем мы отправляем энергию в радиаторы, чтобы отвести это тепло в космос».

    Вверху : На этом снимке Международной космической станции, сделанном в прошлом месяце экипажем STS-98, показаны вытянутые алюминиевые радиаторы станции. Нажмите, чтобы получить

    .

    Но вода, циркулирующая в трубах за пределами космической станции, быстро замерзла. Чтобы заставить эту жидкостную систему работать, отработанное тепло во второй раз передается другому контуру, содержащему аммиак вместо воды.Аммиак замерзает при температуре -107 градусов F (-77 C) при стандартном атмосферном давлении. Нагретый аммиак циркулирует через огромные радиаторы, расположенные снаружи космической станции, выделяя тепло в виде инфракрасного излучения и охлаждая его.

    Вытяжные радиаторы станции выполнены из ячеистых алюминиевых панелей. Имеется 14 панелей, каждая размером 6 на 10 футов (1,8 на 3 метра), что составляет в общей сложности 1680 квадратных футов (156 квадратных метров) площади теплообмена, заполненной аммиачными трубками. Сравните этот величественный радиатор с решеткой катушек площадью 3 квадратных фута, которая есть в типичных домашних кондиционерах, и вы сможете оценить масштаб и сложность выполнения «рутинных» вещей в космосе.

    Наконец, инженеры по терморегулированию должны решить проблему воздушного потока внутри космической станции. Движение воздуха — главный фактор в достижении баланса между горячим и холодным.

    ATCS работает в тандеме с Системой экологического контроля и жизнеобеспечения (ECLSS), которая контролирует качество воздуха и поток в МКС. В условиях свободного падения на орбите — что эквивалентно невесомости — горячий и холодный воздух не поднимается и не падает, как на Земле. Правильная циркуляция воздуха помогает предотвратить появление нежелательных холодных пятен, которые могут вызвать конденсацию, поражение электрическим током, серьезную коррозию и даже биологические проблемы, такие как рост микробов.Коррозионные грибы были постоянной проблемой на российской космической станции «Мир», и разработчики миссий на МКС хотят избежать повторного заражения.

    Выше : парить в космосе в коротких рукавах и босиком? Там должно быть комфортно!

    Это действительно странный новый мир на МКС. Горячий воздух, который не поднимается … тепло, которое не проводит … Радиаторы слишком холодные для жидкой воды … этого достаточно, чтобы у инженера-теплотехника поседеть! Но благодаря эффективным интегрированным системам терморегулирования на станции экипажу не о чем беспокоиться — на МКС сохранять хладнокровие не проблема!

    Примечание редактора : один читатель спрашивает: «Если температура на затененной стороне космической станции может упасть до -250 F и если точка замерзания аммиака составляет всего -107 F, то почему аммиак в станции не радиаторы замерзли? » Причина в том, что теплоносящий аммиак не может терять тепло достаточно быстро, чтобы достичь точки замерзания, прежде чем жидкость вернется в более теплые пределы космической станции.Если (в качестве мысленного эксперимента) мы выключим насосы и сориентируем станцию ​​так, чтобы радиатор находился в тени, скажем, солнечной панели, аммиак, вероятно, замерзнет через некоторое время.

    Ссылки

    Международная космическая станция — домашняя страница НАСА

    Вид на Международную космическую станцию ​​со своего двора — Science @ NASA article : С помощью бесплатного программного обеспечения НАСА вы можете увидеть Международную космическую станцию ​​со своего собственного двора.

    В ожидании МКС — Science @ NASA article : Ученые на недавнем медиа-форуме говорят, что они хотят начать использовать Международную космическую станцию ​​в качестве инновационной орбитальной исследовательской лаборатории.

    Wheels in the Sky — Science @ NASA article : Новаторские концепции космической станции середины 1950-х годов не очень похожи на современную среду обитания на орбите, созданную сборщиками.

    Новая звезда в небе — Science @ NASA article : Что-то в небе становится ярче и скоро станет одной из самых привлекательных звезд на ночном небе.Нет, это не сверхновая. Это Международная космическая станция!

    Легкое дыхание на космической станции — Science @ NASA article : Системы жизнеобеспечения на МКС обеспечивают кислород, поглощают углекислый газ и управляют выбросами паров от самих космонавтов. Все это часть того, как легко дышать в нашем новом доме в космосе.

    Вода на космической станции — Science @ NASA article : Нормирование и переработка будут важной частью жизни на Международной космической станции.В этой статье Science @ NASA исследует, где команда будет брать воду и как они будут (повторно) использовать ее.

    Микроскопические безбилетные пассажиры на МКС — Science @ NASA article : Куда бы люди ни отправились, микробы обязательно последуют за ними, и Космическая станция не является исключением.


    Присоединяйтесь к нашему растущему списку подписчиков — подпишитесь на нашу экспресс-доставку новостей , и вы будете получать сообщение по электронной почте каждый раз, когда мы публикуем новую историю !!!

    Подробнее Заголовки

    .
    Управление науки и технологий Центра космических полетов им. Маршалла НАСА спонсирует веб-сайты Science @ NASA.Миссия Science @ NASA — помочь общественности понять, насколько интересны исследования НАСА, и помочь ученым НАСА выполнить свои обязанности по информированию.
    Чтобы узнать о планах уроков и образовательных мероприятиях, связанных с последними новостями науки, посетите классную комнату по четвергам Авторы: Стив Прайс, доктор Тони Филлипс, Гил Книр
    Редактор производства: доктор Тони Филлипс
    Куратор: Брайан Уоллс
    Связи со СМИ: Стив Рой
    Ответственный сотрудник НАСА: Рон Кочор
    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*